
Physics 410: Unix

Please report all errors/typos. etc to choptuik@physics.ubc.ca

Last updated September 5, 2005

Index

Introduction and motivation
Files and Directories

Absolute and relative pathnames, working directory
Home directories
"Dot" and "Dot-Dot"
Filenames

Commands Overview
General Structure
Executables and Paths
Control Characters
Special Files
Shell Aliases

Basic Commands
Getting Help or Information

man
Communicating with Other Machines

ssh
ssh-keygen
ftp
Mail

Logging out
logout
exit

Creating, Manipulating and Viewing Files
vi or emacs
more
lpr
cd and pwd
ls
mkdir
cp
mv
rm
chmod
scp

More on the C-shell
Shell Variables
Environment Variables
Using C-shell Pattern Matching
Using the C-shell History and Event Mechanisms
Standard Input, Standard Output and Standard Error
Input and Output Redirection
Pipes
Regular expressions and grep
Using Quotes: (’ ’, " ", and ‘ ‘)

Forward quotes: ’ ’
Double quotes: " "
Backward quotes: ‘ ‘

Job control
Basic Shell Programming

INTRODUCTION AND MOTIVATION

The main purpose of these notes is to get you familiar with the interactive use of Unix for day-to-day organizational and
programming tasks. First, recall that Unix is an operating system (OS), which we can loosely define as a collection of programs
(often called processes) that manage the resources of a computer for one or more users. These resources include the CPU,
network facilities, terminals, file systems, disk drives and other mass-storage devices, printers, and many more. During the course,
one common way you will use Unix is through a command-line interface; you will type commands to create and manipulate files and
directories, start up applications such as text-editors or plotting packages, compile and run Fortran programs etc. etc. As many of
you are probably aware, various Unix vendors have written GUIs (graphical user interfaces) for their particular versions of Unix. As
with similar systems on Macs and PCs, these GUIs largely eliminate the need to issue commands by providing intuitive visual
metaphors for most common tasks. However, the command-line approach is still well worth mastering for a variety of reasons,
including:

Portability: All Unix systems support the command-line approach, and by sticking with standard features, what you learn on
the Linux and Sun machines will be applicable on virtually all Unix systems

Power: Commands can be extended and combined in a straightforward way. Defining new commands using shell
programming facilities, or via C and Fortran, is also relatively easy.
Speed: Command-line interfaces minimize the amount of information that needs to be passed from machine to machine when
working remotely. If you just want to accomplish a few quick tasks, few things are more annoying than a sluggish GUI.

The versions of Unix implemented by specific vendors (or programming teams) typically have specific names. In particular, on the
lnx machines you will be using the Linux flavour of Unix, originally coded in large part by Linus Torvald for PCs, and now widely
distributed by many different companies and organizations. You will also be using one of Sun Microsystems’ implementations of
Unix, called SunOS, on physics.

When you type commands in Unix, you are actually interacting with the OS through a special program called a shell, which provides
a more user-friendly command-line interface than that defined by the basic Unix commands themselves. I recommend that you use
the improved "C-shell", tcsh, for interactive use. Your lnx accounts are initially set up so that tcsh is your default interactive shell,
and I suggest that, if possible, you also use tcsh on your physics accounts.

One of the improvements of tcsh upon the original C-shell, csh, was the introduction of command-history recall and editing via the
"arrow" keys (as well as "Delete" and "Backspace"). After you have typed a few commands, hit the "up arrow" key a few times and
note how you scroll back through the commands you have previously issued.

In the following, commands that you type to the shell, as well as the output from the commands and the shell prompt (denoted "% ")
will appear in typewriter font. Here’s an example

% pwd
/home/matt
% date
Mon Sep 5 12:02:13 PDT 2005
%

If you are going through these notes on-line, then you should have at least one active shell running in which to type sample
commands. I will often refer to a window in which a shell is executing as the terminal.

FILES AND DIRECTORIES

I assume you are familiar with the notion of a hierarchical organization (tree structure) of files and directories that most modern
operating systems employ. If you are not, refer to one of the Unix references or on-line tutorials that I have suggested. There are
essentially only two types of files in Unix:

Plain files: that contain specific information such as plain text, C or Fortran source code, object code, executable code,
postscript code, a Maple worksheet etc.
Directories: special files that serve as containers for other files (including other directories)

Absolute and relative pathnames, working directory: All Unix filesystems are rooted in the special directory called /. All files
within the filesystem have absolute pathnames that begin with / and that describe the path down the file tree to the file in question.
Thus

/home5/choptuik/junk

refers to a file named junk that resides in a directory with absolute pathname

/home5/choptuik

that itself lives in directory

/home5

that is contained in the root directory

/

In addition to specifying the absolute pathname, files may be uniquely specified using relative pathnames. The shell maintains a
notion of your current location in the directory hierarchy, known, appropriately enough, as the working directory (hereafter
abbreviated WD). The name of the working directory may be printed using the pwd command:

% pwd
/home/matt
%

If you refer to a filename such as

foo

or a pathname such as

dir1/dir2/foo

so that the reference does not begin with a /, the reference is identical to an absolute pathname constructed by prepending the WD
followed by a / to the relative reference. Thus, assuming that my working directory is

/home/matt

the two previous relative pathnames are identical to the absolute pathnames

/home/matt/foo
/home/matt/dir1/dir2/foo

Note that although these files have the same filename foo, they have different absolute pathnames, and hence are distinct files.

Home directories: Each user of a Unix system typically has a single directory called his/her home directory that serves as the base
of his/her personal files. The command cd (change [working] directory) with no arguments will always take you to your home
directory. On physics.ubc.ca you should see something like this

% cd
% pwd
/home2/phys410

while on the lnx machines (lnx1.physics.ubc.ca etc.) it will be something like

/home/phys410

or

/d/lnx1/home/phys410

When using the C-shell, you may refer to your home directory using a tilde (~). Thus, assuming my home directory is

/home/matt

then

% cd ~

and

% cd ~/dir1/dir2

are identical to

% cd /home/matt

and

% cd /home/matt/dir1/dir2

respectively. (Note that the command cd changes the working directory.) The C-shell will also let you abbreviate other users’ home
directories by prepending a tilde to the user name. Thus, provided I have permission to change to phys410’s home directory,

% cd ~phys410

will take me there.

"Dot" and "Dot-Dot": Unix uses a single period (.) and two periods (..) to refer to the working directory and the parent of the
working directory, respectively:

% cd ~phys410/hw1
% pwd
/home/phys410/hw1
% cd ..
% pwd
/home/phys410
% cd .
% pwd
/home/phys410

Note that

% cd .

does nothing---the working directory remains the same. However, the . notation is often used when copying or moving files into the
working directory. See below.

Filenames: There are relatively few restrictions on filenames in Unix. On most systems (including Sun and Linux systems), the
length of a filename cannot exceed 255 characters. Any character except slash (/) (for obvious reasons) and "null" may be used.
However, you should avoid using characters that are special to the shell (such as () * ? $!) as well as blanks (spaces). In fact, it is
probably a good idea to stick to the set:

a-z A-Z 0-9 _ . -

As with other operating systems, the period is often used to separate the "body" of a filename from an "extension" as in:

program.c (extension .c)
paper.tex (extension .tex)
the.longextension (extension .longextension)
noextension (no extension)

Note that in contrast to some other operating systems, extensions are not required, and are not restricted to some fixed length (often
3 on other systems). In general, extensions are meaningful only to specific applications, or classes of applications, not to all
applications. The underscore and minus sign are often used to create more "human readable" filenames such as:

this_is_a_long_file_name
this-is-another-long-file-name

You can embed blanks in Unix filenames, but it is not recommended.

Unix generally makes it difficult for you to create a filename that starts with a minus. It is also non-trivial to get rid of such a file, so be
careful. If you accidentally create a file with a name containing characters special to the shell (such as * or ?), the best thing to do is
remove or rename (move) the file immediately by enclosing its name in single quotes to prevent shell evaluation:

% rm -i ’file_name_with_an_embedded_*_asterisk’
% mv ’file_name_with_an_embedded_*_asterisk’ sane_name

Note that the single quotes in this example are forward-quotes (’ ’). Backward quotes (‘ ‘). have a completely different meaning to
the shell.

COMMANDS OVERVIEW

General Structure: The general structure of Unix commands is given schematically by

command_name [options] [arguments]

where square brackets (’[...]’) denote optional quantities. Options to Unix commands are frequently single alphanumeric characters
preceded by a minus sign as in:

% ls -l
% cp -R ...
% man -k ...

On Linux systems, many commands also accept options that are longer than a single character; by convention, these options are
preceded by two minus signs as in:

% ls --color=auto -CF

Arguments are typically names of files or directories or other text strings that do not start with - (or --). Individual arguments are
separated by white space (one or more spaces or tabs):

% cp file1 file2
% grep ’a string’ file1

There are two arguments in both of the above examples; note the use of single quotes to supply the grep command with an
argument that contains a space. The command

% grep a string file1

which has three arguments has a completely different meaning.

Executables and Paths: In Unix, a command such as ls or cp is usually the name of a file that is known to the system to be
executable (see the discussion of chmod below). To invoke the command, you must either type the absolute pathname of the
executable file or ensure that the file can be found in one of the directories specified by your path. In the C-shell, the current list of
directories that constitute your path is maintained in the shell variable, path. To display the contents of this variable, type:

% echo $path

(Note that the $ mechanism is the standard way of evaluating shell variables and environment variables alike.) On the lnx machines,
the resulting output should look something like

. /usr/local/bin /usr/bin /bin /opt/pgi/linux86/bin /usr/local/PGI/bin /usr/X11R6/bin /usr/local/maple8/bin /usr/games /d/lnx1/home/phys410/bin

Note that the . in the output indicates that the working directory is in your path. The order in which path-components (first ., then
/usr/bin, then /bin, etc.) appear in your path is important. When you invoke a command without using an absolute pathname as in

% ls

the system looks in each directory in your path---and in the specified order---until it finds a file with the appropriate name. If no such
file is found, an error message is printed:

% helpme
helpme: Command not found.

The path variable is typically set for you in a special system file each time a shell starts up (/etc/csh.cshrc on the lnx machines),
and it is conventional to modify the default setting via a set command in your ~/.cshrc file.

IMPORTANT NOTE: See the discussion below on the special structure of the ~/.cshrc file for new undergraduate accounts on
physics.ubc.ca and lts.physics.ubc.ca, and observe that you should NOT modify ~/.cshrc per se on those systems, if you have a
new account. Instead all references to ~/.cshrc below should be interpreted as references to ~/.cshrc.solaris or ~/.cshrc.linux,
when used in the context of physics.ubc.ca or lts1.physics.ubc.ca, respectively.

Examine the file ~/.cshrc in your lnx account. You should see a line like

set path=($path $HOME/bin)

that adds $HOME/bin to the previous (system default) value of path. Also note the use of parentheses to assign a value containing
whitespace to the shell variable. HOME is an environment variable that stores the name of your home directory. Thus

set path=($path ~/bin)

will produce the same effect.

Control Characters: The following control characters typically have the following special meaning or uses within the C-shell. (If they
don’t, then your keyboard bindings are "non-standard" and you may wish to contact the system administrator about it.) You should
familiarize yourself with the action and typical usage of each. I will use a caret (^) to denote the Control (Ctrl) key. Then

% ^Z

for example, means depress the z-key (upper or lower case) while holding down the Control key.

^D: End-of-file (EOF). Type ^D to signal end of input when interacting with a program (such as Mail) that is reading input from
the terminal. Here’s an example using Mail on the lnx machines:

% Mail -s "test message" choptuik@physics.ubc.ca
This is a one line message.
^D
Cc:
%

If you try the above exercise, you will notice that the shell does not "echo" the ^D. This is typical of control characters---you
must know when and where to type them and what sort of behaviour to expect. In this case, Mail prompts for an optional list
of addresses to which the message is to be carbon-copied, but other commands, such as cat, will not echo anything. In
almost all cases, however, you should be presented with a command prompt, once your have typed ^D. Also, by default, a
C-shell exits when it encounters EOF, so if you type ^D at a shell prompt, you may find that you are logged out from the
terminal session. If you don’t like this behaviour (I don’t), put the following line in your ~/.cshrc:

set ignoreeof

^C: Interrupt. Type ^C to kill (stop in a non-restartable fashion) commands (processes) that you have started from the
command-line. This is particularly useful for commands that are taking much longer to execute or producing much more
output to the terminal than you had anticipated.

^Z: Suspend. Type ^Z to suspend (stop in a restartable fashion) commands that you have started from the shell. It is often
convenient to temporarily halt execution of a command as will be discussed in job control below.

^V: Escape Special Characters: Type ^V in order to "escape" (protect from shell evaluation) certain other control characters
and special keys.

Example 1: Search for [TAB] characters in file foo using grep:

% grep ’^V[TAB]’ foo

Example 2: Removing "Carriage returns" (^M) using vi

:%s/^V^M//g

Special Files: The following files, both of which reside in your home directory, have special purposes and you should become
familiar with what they contain on the systems you work with:

~/.cshrc
Commands in this file are executed each time a new C-shell is started.
~/.login
Commands in this file are executed after those in ~/.cshrc and only for login shells. The existence of separate ~/.cshrc and
~/.login files was more useful in the days when interaction with Unix was typically via a single screen (dumb ASCII terminal)
and machines were slower, so startup time of shells was an issue. When interacting with Unix via a windowing system, it is
easy to start an interactive shell that is not a login shell, but for which you presumably want the same initialization procedure.
Consequently, your ~/.login should be probably be kept as brief as possible and you should put startup commands in
~/.cshrc instead. By default, your accounts on the lnx machines do not contain a ~/.login file.

Notes on ~/.cshrc on physics and lts1: Because your accounts on physics and lts1 share a common home directory, the shell
startp process must be slightly more involved to take into account the fact that the shell may be running on one of two distinct
architectures (machine/OS combinations).

For recently created undergraduate accounts, ~/.csrhc should contain the following, and should NOT be modified:

###
.cshrc file
###
#
PATH
#
set ARCH=‘/bin/arch‘
#
if (${?ARCH} != 0) then
 if (${ARCH} == "sun4") then
 #echo $ARCH is sun4
 source .cshrc.solaris
 else
 #echo $ARCH is linux
 source .cshrc.linux
 endif
endif

Upon startup this file simply sources (executes the commands contained in) either ~/.cshrc.solaris or ~/.cshrc.linux, depending
on the architecture on which the shell is running. Startup commands that would normally go in ~/.cshrc should be placed in
.cshrc.linux and/or .csrhc.solaris as appropriate.

For the case of older undergraduate accounts, you should find that your home directory contains a file ~/.csrhc.user. You should
copy that file to .cshrc.solaris, then replace the contents of ~/.cshrc.user with the those of the ~/.cshrc file listed above. Finally,
you should copy the contents of ~/.csrhc from your lnx account to ~/.cshrc.linux on your physics/lts1 account.

Students who have a graduate account can follow the same instructions to effect context-sensitive sourcing of an appropriate
startup file, except that the ~/.cshrc.user file referred to in the previous paragraph will now simply be ~/.cshrc.

Note on ~/.login on physics and lts1: All users should add the following lines to the beginning of their ~/.login on physics/lts1
(but not on the lnx machines).

if (‘hostname‘ != physics) then
 exit
endif

This will disable execution of the ~/.login commands, which are somewhat specialized for the Sun environment, unless you are
logging into physics.

Special Files (continued). Note that files whose name begins with a period (.) are called hidden files since they do not normally
show up in the listing produced by the ls command. Use

% cd; ls -a

for example, to print the names of all files in your home directory. Note that I have introduced another piece of shell syntax in the
above example; the ability to type multiple commands separated by semicolons (;) on a single line. There is no guaranteed way to
list only the hidden files in a directory, however

% ls -d .??*

will usually come close. At this point it may not be clear to you why this works; if it isn’t, you should try to figure it out after you have
gone through these notes and possibly looked at the man page for ls.

Shell Aliases: As you will discover, the syntax of many Unix commands is quite complicated and furthermore, the "bare-bones"
version of some commands is less than ideal for interactive use, particularly by novices. The C-shell provides a mechanism called
aliasing that allows you to easily remedy these deficiencies in many cases. The basic syntax for aliasing is

% alias name definition

where name is the name (use the same considerations for choosing an alias name as for filenames; i.e. avoid special characters) of
the alias and definition tells the shell what to do when you type name as if it was a command. The following examples should
illustrate the basic idea; see the tcsh documentation (man tcsh) for more complete information:

% alias ls ’ls -FC’

provides an alias for the ls command that uses the -F and -C options (these options are described in the discussion of the ls
command below). Note that the single quotes in the alias definition are essential if the definition contains special characters; it is
good defensive programming to always include them.

The following lines define aliases for rm, cp and mv (see below) that will not clobber files without first asking you for explicit
confirmation. They are highly recommended for novices and experts alike.

% alias rm ’rm -i’

% alias cp ’cp -i’
% alias mv ’mv -i’

The following lines define aliases RM, CP, and MV that act like the "bare" Unix commands rm, cp and mv (i.e. that are not
cautious). Use them when you are sure you are about to do the correct thing: the presumption being that you have to think a little
more to type the upper-case command.

% alias RM ’/bin/rm’
% alias CP ’/bin/cp’
% alias MV ’/bin/mv’

To see a list of all your current aliases, simply type

% alias

Note that all of the preceding aliases (and a few more) are defined in a file ~/.aliases in your lnx accounts. As configured, these
aliases will be available in all interactive shells you start since

% source ~/.aliases

is in your ~/.cshrc. (The source command tells the shell to execute the commands in the file supplied as an argument). Although
this is not a "standardized" approach, I commend it to you as a means of keeping your ~/.cshrc relatively uncluttered if you define a
lot of aliases.

You can view the initial contents of your ~/.cshrc and ~/.aliases files on the lnx machines by clicking on the links below:

.cshrc

.aliases

BASIC COMMANDS

The following list is by no means exhaustive, but rather represents what I consider an essential base set of Unix commands
(organized roughly by topic) with which you should familiarize yourself as soon as possible. Refer to the man pages, or one of the
suggested Unix references for additional information.

Getting Help or Information:

man

Use man (short for manual) to print information about a specific Unix command, or to print a list of commands that have something
to do with a specified topic (-k option, for keyword). It is difficult to overemphasize how important it is for you to become familiar with
this command. Although the level of intelligibility for commands (especially for novices) varies widely, most basic commands are
thoroughly described in their man pages, with usage examples in many cases. It helps to develop an ability to scan quickly through
text looking for specific information you feel will be of use. Examples of man invocations include:

% man man

to get detailed information on the man command itself,

% man cp

for information on cp and

% man -k compiler

to get a list of commands having something to do with the topic ’compiler’. The command apropos, found on most Unix systems, is
essentially an alias for man -k.

Output from man will typically look like

% man man
man(1) man(1)

NAME
 man - format and display the on-line manual pages
 manpath - determine user’s search path for man pages

SYNOPSIS
 man [-acdfFhkKtwW] [-m system] [-p string] [-C con
 fig_file] [-M path] [-P pager] [-S section_list] [section]
 name ...

DESCRIPTION
 man formats and displays the on-line manual pages. This

 version knows about the MANPATH and (MAN)PAGER environment
 variables, so you can have your own set(s) of personal man
 .
 .
 .

fol a specific command and,

B (3pm) - The Perl Compiler
B::Bytecode (3pm) - Perl compiler’s bytecode backend
 .
 .
 .
diagnostics [splain] (1) - Perl compiler pragma to force verbose warning diagnostics
f4rpcgen [rpcgen] (1) - an RPC protocol compiler
g77 (1) - GNU project Fortran 77 compiler
gcc (1) - GNU project C and C++ compiler
less (3pm) - perl pragma to request less of something from the compiler
perlcompile (1) - Introduction to the Perl Compiler-Translator
tic (1m) - the terminfo entry-description compiler
uic (1) - Qt user interface compiler
xsubpp (1) - compiler to convert Perl XS code into C code
zic (8) - time zone compiler
zic (8) - time zone compiler
 .
 .
 .

for a keyword-based search. Note that the output from man -k ... is a list of commands and brief synopses. You can then get
detailed information about any specific command (say cpp in the current example), with another man command:

% man g77

Communicating with Other Machines:

ssh

Use ssh to establish a secure (i.e. encrypted) connection from one Unix machine to another. This is the basic mechanism we will
use to (1) start a Unix shell on a remote host and (2) execute one or more Unix commands on such a machine.

Note: There are still two major protocol versions of the secure shell, Version 1 and Version 2. The software installed on the lnx
machines supports both versions. However, protocol Version 1 has security flaws and is not supported on many systems on the
internet. Consequently, the discussion that follows is limited to ssh Version 2, and is specific to that version.

Typical usage of ssh is

% ssh lnx1.physics.ubc.ca -l matt

which will initiate a remote-login for user matt on the machine lnx1.physics.ubc.ca. The following commands are equivalent to the
above invocation:

% ssh matt@lnx1.physics.ubc.ca
% slogin lnx1.physics.ubc.ca -l matt
% slogin matt@lnx1.physics.ubc.ca

If additional arguments are supplied to ssh, they are interpreted as commands to be executed remotely. In this case, control
immediately returns to the invoking shell after completion (successful, or otherwise) of the command(s), as seen in the following
examples:

lnx1% ssh matt@vnfe1.physics.ubc.ca date
Mon Sep 5 12:12:58 PDT 2005

lnx1% ssh matt@vnfe1.physics.ubc.ca ’pwd; date’
/home/matt
Mon Sep 5 12:13:12 PDT 2005

lnx1%

Gory Details: In contrast to many of the other commands described here, the behaviour of ssh depends crucially on the current
context for the command, which, by convention, ssh stores as a number of files in the directory ~/.ssh (i.e. as a number of files in a
directory named .ssh, located in your home directory). If ~/.ssh does not exist (which nominally means that you have yet to issue
the ssh command from that specific account), it will automatically be created, and certain files within ~/.ssh will be created and/or
modified.

For example, assume that as matt@lnx1.physics.ubc.ca, I have never used the ssh command. However, I can and do login into
lnx1.physics.ubc.ca (as matt) using the machine’s console in the computer lab, and start up a command shell. I can now establish
a secure connection to my account on physics.ubc.ca via ssh as follows:

lnx1% ssh choptuik@physics.ubc.ca

Warning: Permanently added ’physics.ubc.ca,142.103.236.11’ (RSA) to the list of known hosts.
choptuik@physics.ubc.ca’s password:

Last login: Mon Sep 5 12:13:36 2005 from bh0.physics.ubc
To print one-sided use "lpr -Zsimplex file".
Undergraduate students will need to arrange for a quota.
--
 type "more /etc/motd" on physics to re-read this message.
 type "more /etc/motd.full" on physics to read the complete message file
==
 Authorized uses only. All activity may be monitored and reported.
==

physics%

Note that I’ve added an occasional blank line to the above output to increase legibility. At this point I am connected to a tcsh running
on physics.ubc.ca, and I can now "work" (i.e. issue Unix commands) within a shell executing on that machine.

When I’m done my work on physics, I can use the logout (or exit) command

physics% logout
Connection to physics.ubc.ca closed.
lnx1%

to return to lnx1.

Assuming I’ve done the above, I now see that the directory ~/.ssh has been created, and contains the file known_hosts:

lnx1% cd ~/.ssh
lnx1% ls
known_hosts

The purpose of the known_hosts file is to maintain a list of hostnames (i.e. things like physics.ubc.ca), and identification
information, to which I’ve previously ssh’ed. Refer to the man page on ssh (on the lnx machines) for full details on this command.

ssh-keygen

Use ssh-keygen to generate authentication information that can be used to enable password-free connection, command execution
and file copying (via scp) from one Unix system to another (assuming both systems have Secure Shell Version 2 software installed).
Note that there are two types of keys supported by the ssh: RSA and DSA. For the purposes of this course, either type will suffice,
but for specificity, we will consider the RSA case.

Typical usage, continuing with the above example, and assuming that I am logged in as matt@lnx1.physics.ubc.ca is

lnx1% ssh-keygen -t rsa

Generating public/private rsa key pair.
Enter file in which to save the key (/home/matt/.ssh/id_rsa):
Created directory ’/home/matt/.ssh’.
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in /home/matt/.ssh/id_rsa.
Your public key has been saved in /home/matt/.ssh/id_rsa.pub.
The key fingerprint is:
ef:f6:04:bd:b4:55:04:01:83:4b:08:db:76:82:a8:26 matt@lnx1.physics.ubc.ca

Note that the ssh-keygen command prompts you three times, namely:

Enter file in which to save the key (/home/matt/.ssh/id_rsa):
Enter passphrase (empty for no passphrase):
Enter same passphrase again:

Be sure to select the default value each time by hitting "Enter" -- and nothing else!

My ~/.ssh directory now contains new files, id_rsa and id_rsa.pub, as can seen in the following output:

lnx1% pwd
/home/matt/.ssh

lnx1% ls
id_rsa id_rsa.pub known_hosts

I can now use the information in ~/.ssh/identity.pub to enable password-less access to my account(s) on any remote site that is
also running ssh (Version 2). The basic idea is that each account maintains a database of authorized keys in the file
~/.ssh/authorized_keys. When a ssh request from some userid at some hostname is received, ssh checks the database to see
whether a connection from userid@hostname should be initiated without entry of a password.

In the above example, no such file exists yet, so if I ssh from lnx1 to lnx1, I still get prompted for a password:

lnx1% ssh lnx1
Warning: Permanently added ’lnx1,142.103.238.211’ (RSA) to the list of known hosts.
matt@lnx1’s password:

However, if I "create" the authorized keys database via

lnx1% cd .ssh
~/.ssh
lnx1% cp id_rsa.pub authorized_keys

access to matt@lnx1 from matt@lnx1 is now password-less.

lnx1% ssh lnx1
Warning: Permanently added ’lnx1,142.103.234.4’ (RSA) to the list of known hosts.
 .
 .
 .

A more interesting use of this facility involves exporting a key to a remote machine. Thus, I now ssh to my account on physics, and
add my matt@lnx1.physics.ubc.ca public key (the contents of ~/.ssh/id_rsa.pub on my lnx account) to ~/.ssh/authorized_keys
on the remote host.

Again, the initial ssh results in a prompt for a password:

lnx1% ssh choptuik@physics.ubc.ca
choptuik@physics.ubc.ca’s password:

I now modify ~/.ssh/authorized_keys using, for example, cut-and-paste and my favorite text editor so that one of its lines is
identical to the contents of my ~/.ssh/id_rsa.pub on lnx1, as is verified by the following:

physics% cd .ssh
~/.ssh
physics% grep matt@lnx1 authorized_keys
ssh-rsa AAAAB3NzaC1yc2EAAAABIwAAAIEAsLBXIvI8qmrAnChYLi34xWg ...

physics% exit

I can now ssh to physics from lnx1 without being asked for a password

lnx1% ssh choptuik@physics

Last login: Mon Sep 5 12:15:42 2005 from bh0.physics.ubc
To print one-sided use "lpr -Zsimplex file".
Undergraduate students will need to arrange for a quota.
--
 .
 .
 .

Here, I’ve also illustrated the little twist that ssh recognizes "aliased" hosts -- in this case physics is an alias (via DNS lookup) for
physics.ubc.ca. The use of such aliases is, as usual, a matter of convenience.

Once you understand how the password-less access facility outlined above works, a little thought will convince you that if you
duplicate ~/.ssh/id_rsa, ~/.ssh/id_rsa.pub and ~/.ssh/authorized_keys across all machines on which you compute, then,
assuming that authorized_keys contains the contents of id_rsa.pub as a single line, you will be able to ssh between any and all of
the machines that you use without being prompted for a password. This is the strategy that I advocate you employ.

Finally, experience shows that the use of ssh, ssh-keygen and scp can sometimes be confusing to the uninitiated. You are urged
to contact me immediately if you have any problems using these commands, since their mastery is a key component of this part of
the course.

ftp

Use ftp to establish a connection to another machine for the express purpose of copying files (particularly very large files) between
the two machines. Here’s an example illustrating how I might copy my ~/.ssh/authorized_keys, ~/.ssh/id_rsa and
~/.ssh/id_rsa.pub files file from my lnx account to my account on vnfe1.physics.ubc.ca:

lnx1% pwd
/home/matt/.ssh

Connected to bh0.physics.ubc.ca.
220 ProFTPD 1.2.8 Server (UBC Numerical Relativity FTP Server) [bh0.physics.ubc.ca]
500 AUTH not understood
500 AUTH not understood
KERBEROS_V4 rejected as an authentication type
Name (bh0.physics.ubc.ca:matt):

331 Password required for matt.
Password:
230 User matt logged in.
Remote system type is UNIX.
Using binary mode to transfer files.

ftp> bin
200 Type set to I.

ftp> cd .ssh
250 CWD command successful.

ftp> prompt
Interactive mode off.

ftp> mput authorized_keys id_rsa id_rsa.pub
local: authorized_keys remote: authorized_keys
200 PORT command successful
150 Opening BINARY mode data connection for authorized_keys
226 Transfer complete.
53563 bytes sent in 0.024 seconds (2.2e+03 Kbytes/s)
local: id_rsa remote: id_rsa
200 PORT command successful
150 Opening BINARY mode data connection for id_rsa
226 Transfer complete.
883 bytes sent in 6.9e-05 seconds (1.2e+04 Kbytes/s)
local: id_rsa.pub remote: id_rsa.pub
200 PORT command successful
150 Opening BINARY mode data connection for id_rsa.pub
226 Transfer complete.
235 bytes sent in 5.5e-05 seconds (4.2e+03 Kbytes/s)

ftp> quit
221 Goodbye.

lnx1%

ftp has a rudimentary on-line help facility. Type

% ftp
ftp> help

to get a full list of available commands, for which brief synopses are available via

ftp> help bin

etc. A useful subset of basic commands is

cd, lcd, put, get, prompt, mget, mput, exit

It is usually advisable to use "BINARY mode" to transfer files.

Some installations support anonymous ftp. This means that anyone can ftp to the site using the username anonymous. In such
cases you are usually requested to type your full name or e-mail address as your password. In most cases you will only be able to
get (and not put) files from such sites.

Note: Many sites, including the lnx machines as well as physics have disabled inbound ftp due to security concerns. In such
cases, outbound ftp may still be supported, and if so, as long as the destination machine accepts inbound ftp connections, files can
be transferred to and fro, due to the bi-directional nature of ftp.

In all cases, scp provides a secure replacement for ftp. However, the security currently comes at a performance cost due to the
encrypted nature of the scp connection, and thus on slow networks, or for large files, there is still an argument for using ftp at times.

Mail

I assume most of you will read and send your e-mail from a single machine/account, probably via your account on physics.ubc.ca.
(Using the lnx machines as your "home base" for reading mail is not recommended.)

If you do not yet have a favorite Unix mail system, then I recommend that you use pine, which provides a much friendlier user
interface than Mail that is described briefly here (pine has an extensive on-line help facility). The advantage of knowing a bit about
Mail is that it is almost universally available, and is good for firing-off short messages, or for sending material that has been
pre-prepared in a file.

Here’s a quick example showing how to use Mail to send a message:

% Mail -s "this is the subject" choptuik@physics.ubc.ca
This is a one line test message.
Cc:

%

Note that multiple recipients can be specified on the command line. Another form involves redirection from a file.

% Mail -s "sending a file as a message" matt@laplace.physics.ubc.ca < message

sends the contents of file message.

If you wish to read mail using Mail, type Mail (when you have mail) then type help to figure out how to continue. The Mail
sub-commands:

h to display message headers
p to print the next message
s to save a message
d to delete a message
r to reply to a message
q to quit Mail

should get you going. Finally note that I advocate using the alias

% alias mail Mail

so that you never invoke the unfriendly "bare" mail command. Your accounts on the lnx machines are initially set up so that this
alias is defined for you.

Having your mail forwaded

1. .forward (the old, easy mechanism, available on lnx[123])

Whichever mailer you use (again, pine is recommended), you should make sure that on every system for which you have a distinct
home directory, you have enabled mail forwarding to your preferred e-mail address. On Unix systems, one traditionally
accomplishes this by creating a file in one’s home directory called .forward. The content of the .foward file is simply your e-mail
address on the machine on which you normally read your mail. This mechanism works on the lnx machines; will will discuss the
mechanism used on physics shortly.

Once you have created a .forward file in the appropriate directory, mail sent to your username at that machine will be automatically
forwarded to the address specified in the file. You can verify for yourself that my .forward on the lnx machines contains

matt@laplace.physics.ubc.ca

Of course, your .forward should contain your own preferred e-mail address.

2. .procmailrc (the new-fangled, not so easy, but despamming-compatible mechanism, used on physics.ubc.ca)

On physics, users have a distinct mail home directory

 /mail/$HOME

in addition to their usual Unix home, $HOME. In /mail/$HOME, there should be a hidden file called .procmailrc. If there isn’t, you
should be able to copy a ‘‘template’’ from the phys410 account (Let the instructor know immediately if the copy fails for some
reason)

% cd /mail/$HOME
% cp ~phys410/Mail/.procmailrc .

The contents of .procmailrc will look something like this

 #Set on when debugging
 #VERBOSE=on

 #Replace "mail" with your mail directory (Pine uses mail, Elm uses Mail)
 MAILDIR=$HOME/mail

 # File anything tagged as spam by PureMessage in a folder called "SPAM_PMX"
 :0:
 * ^Subject: \[SPAM\]
 $MAILDIR/SPAM_PMX

 # to enable vacation message after spam filtering, replace {username} with your
 # username and uncomment next two lines, ie. remove "#" at beginning
 #:0c
 #| /usr/bin/vacation {username}

 ## Forward any remaining mail to donald.duck@bh0.physics.ubc.ca
 :0:
 ! donald.duck@bh0.physics.ubc.ca

and all that need be changed in the .procmailrc, to recover the functionality of the good old .forward mechanism, is the last line of
the file:

! donald.duck@bh0.physics.ubc.ca

where donald.duck@bh0.physics.ubc.ca is, of course, to be replaced by the address to which you wish your mail forwarded. (You
should, of course, also change the comment about where the mail is being forwarded.)

For further information, see the PHAS Computing Staff’s on-line E-mail FAQ, which provides details about forwarding and many
other topics, including the virus/spam filtering software that is currently being used.

Logging out:

logout

Type logout to terminate a Unix session:

% logout

If there are suspended jobs (see job control below), you will get a warning message, and you will not be logged out.

% logout
There are stopped jobs

If you then type logout a second time (with no intervening command), the system assumes you have decided you don’t care about
the suspended jobs, and will log you out. Alternatively, you can deal with the suspended jobs, and then logout.

exit

The exit command is actually a C-shell "built-in" that, as the name suggests, exits the shell. For login shells, exit is effectively a
synonym for logout.

Creating, Manipulating and Viewing Files (including Directories):

vi or emacs (xemacs)

It is absolutely crucial that you become facile with one of these standard Unix editors, and because each editor itself has many
sub-commands, I refer you to suitably general texts on Unix, or specific references on vi or emacs for detailed information. emacs
has an extensive on-line help facility, as does the Linux implementation of vi. Also note that a complete on-line User’s Guide for
xemacs is available in PDF form HERE.

Another option for straightforward editing tasks is pico, which is sufficiently simple that the on-line help facility should suffice to
quickly make you expert in its usage.

Either vi or emacs will more than suffice for creation, modification and viewing of text files at the level required for this course.

more

Use more to view the contents of one or more files, one page at a time. For example:

% more /usr/share/dict/words
Aarhus
Aaron
Ababa
aback
abaft
abandon
abandoned
abandoning
--More--(0%)

In this case I have executed the more command in a shell window containing only a few lines (i.e. my pages are short). The

--More--(0%)

message is actually a prompt: hit the spacebar to see the next page, type b to backup a page, and type q to quit viewing the file.
Refer to the man page for the many other features of the command. Note that the output from man is typically piped through more.

lpr

Use lpr to print files. If no options are passed to lpr, files are sent to the system-default printer, or to the printer specified by your
PRINTER environment variable (see below). Typical usage is

lpr file_to_be_printed

The default printer on the lnx machines is the HP LaserJet 4100 in Hennings 205 and, by default, printing will be two-sided (duplex).
Should you need to make one-sided hardcopy, print the file using the -Psimplex option:

lnx1% lpr -Psimplex file

Note that this last form of the lpr command is specific to the physics.ubc.ca machines.

cd and pwd

Use cd and pwd to change (set) and print, respectively, your working directory. We have already seen examples of these
commands above. Here’s a summary of typical usages (again note the use of semi-colons to separate distinct Unix commands
issued on the same line):

% cd
% pwd
/home/matt
% cd ~; pwd
/home/matt
% cd /tmp: pwd
/tmp
% cd ~phys410; pwd
/home/phys410
% cd ..; pwd
/home
% cd phys410; pwd
/home/phys410

Recall that .. refers to the parent directory of the working directory so that

% cd ..

takes you up one level (closer to the root) in the file system hierarchy.

ls

Use ls to list the contents of one or more directories. On Linux systems, I advocate the use of the alias

% alias ls ’ls --color=auto -FC’

which will cause ls to (1) append special characters (notably * for executables and / for directories) to the names of certain files (the
-F option), (2) list in columns (the -C option), and (3) color-code the output, again according to the type of the file. Example:

% cd ~jdoe
% ls
cmd* dir1/ dir2/ tmp/
%

Note that the file cmd is marked executable while dir1, dir2 and tmp are directories. To see hidden files and directories, use the -a
option:

% cd ~jdoe; ls -a
./ ../ .Xauthority .aliases .cshrc .ssh/ cmd* dir1/ dir2/ tmp/

and to view the files in "long" format, use -l:

% cd ~jdoe; ls -l
total 12
-rwxr-xr-x 1 jdoe phys410 67 Aug 30 2001 cmd*
drwxr-xr-x 4 jdoe phys410 4096 Aug 30 2001 dir1/
drwxr-xr-x 2 jdoe phys410 4096 Aug 30 2001 dir2/
drwxr-xr-x 2 jdoe phys410 4096 Sep 5 2001 tmp/

The output in this case is worthy of a bit of explanation. First observe that ls produces one line of output per file/directory listed. The
first field in each listing line consists of 10 characters that are further subdivided as follows:

first character: file type: - for regular file, d for directory.
next nine characters: 3 groups of 3 characters each specifying read (r), write (w), and execute (x) permissions for the user
(owner of the file), user’s in the owner’s group and all other users. A - in a permission field indicates that the particular
permission is denied.

Thus, in the above example, cmd is a regular file, with read, write and execute permissions enabled for the owner (user jdoe) and
read and execute permissions enabled for members of group phys410 and all other users. dir1, dir2 and tmp are seen to be
directories with the same permissions. Note that you must have execute (as well as read) permission for a directory in order to be
able to cd to it. See chmod below for more information on setting file permissions. Continuing to decipher the long file listing, the
next column lists the number of links to this file (if you don’t know what a link is, don’t worry) then comes the name of the user who
owns the file and the owner’s group. Next comes the size of the file in bytes, then the date and time the file was last modified, and
finally the name of the file.

If any of the arguments to ls is a directory, then the contents of that directory are listed. Finally, note that the -R option will
recursively list sub-directories:

% cd ~jdoe; pwd
/home/jdoe

% ls -R
.:
cmd* dir1/ dir2/

./dir1:
file_1 subdir1/ subdir2/

./dir1/subdir1:
file_2

./dir1/subdir2:
file_3

./dir2:
file_4

./tmp:

Note how each sub-listing begins with the relative pathname to the directory followed by a colon. For kicks, you might want to try

% cd /
% ls -R

which will list essentially all the files on the system which you can read (have read permission for). Type ^C when you get bored.

mkdir

Use mkdir to make (create) one or more directories. Sample usage:

% cd ~
% mkdir tempdir
% cd tempdir; pwd
/home/matt/tempdir

If you need to make a ’deep’ directory (i.e. a directory for which one or more parents does not exist) use the -p option to
automatically create parents when needed:

% cd ~
% mkdir -p a/long/way/down
% cd a/long/way/down; pwd
/home/matt/a/long/way/down

In this case, the mkdir command made the directories

/home/matt/a /home/matt/a/long /home/matt/a/long/way

and, finally

/home/matt/a/long/way/down

cp

Use cp to (1) make a copy of a file, (2) copy one or more files to a directory, or (3) duplicate an entire directory structure. The
simplest usage is the first, as in:

% cp foo bar

which copies the contents of file foo to file bar in the working directory. Assuming that cp is aliased to cp -i, as recommended, you
will be prompted to confirm overwrite if bar already exists in the current directory; otherwise a new file named bar is created. Typical
of the second usage is

% cp foo bar /tmp

which will create (or overwrite) files

/tmp/foo /tmp/bar

with contents identical to foo and bar respectively. Finally, use cp with the -r (recursive) option to copy entire hierarchies:

% cd ~jdoe; ls -a
./ ../ .Xauthority .aliases .cshrc .ssh/ cmd* dir1/ dir2/ tmp/
% cd ..; pwd
/home
% cp -r jdoe /tmp
cp: jdoe/.Xauthority: Permission denied
cp: jdoe/.ssh/known_hosts: Permission denied
cp: jdoe/.ssh/random_seed: Permission denied

% cd /tmp/jdoe; ls -a

./ ../ .aliases .cshrc .ssh/ cmd* dir1/ dir2/ tmp/

Study the above example carefully to make sure you understand what happened when the command

% cp -r jdoe /tmp

was issued. In brief, the directory /tmp/phys410 was created and all contents of /usr/people/phys410 (including hidden files) for
which I had read permission were recursively copied into that new directory: sub-directories of /tmp/jdoe were automatically created
as required.

mv

Use mv to rename files, or to move files from one directory to another. Again, I assume that mv is aliased to mv -i so that you will
be prompted if an existing file will be clobbered by the command. Here’s a "rename" example

% ls
thisfile
% mv thisfile thatfile
% ls
thatfile

while the following sequence illustrates how several files might be moved up one level in the directory hierarchy:

% pwd
/tmp/lev1
% ls
lev2/
% cd lev2
% ls
file1 file2 file3 file4
% mv file1 file2 file3 ..
% ls
file4
% cd ..
% ls
file1 file2 file3 lev1/

rm

Use rm to remove (delete) files or directory hierarchies. The use of the alias rm -i for cautious removal is highly recommended.
Once you’ve removed a file in Unix there is essentially nothing you can do to restore it other than restoring a copy from backup
tapes (assuming the system is regularly backed up). Examples include:

% rm thisfile

to remove a single file,

% rm file1 file2 file3

to remove several files at once, and

% rm -r thisdir

to remove all contents of directory thisdir, including the directory itself. Be particularly careful with this form of the command and
note that

% rm thisdir

will not work. Unix will complain that thisdir is a directory.

chmod

Use chmod to change the permissions on a file. See the discussion of ls above for a brief introduction to file-permissions and check
the man pages for ls and chmod for additional information. Basically, file permissions control who can do what with your files. Who
includes yourself (the user u), users in your group (g) and the rest of the world (the others o). What includes reading (r), writing (w,
which itself includes removing/renaming) and executing (x). When you create a new file, the system sets the permissions (or mode)
of a file to default values that you can modify using the umask command. (See man umask for more information).

On the lnx machines, your defaults should be such that you can do anything you want to a file you’ve created, while the rest of the
world (including fellow group members) normally has read and, where appropriate, execute permission. As the man page will tell
you, you can either specify permissions in numeric (octal) form or symbolically. I prefer the latter. Some examples that should be
useful to you include:

% chmod go-rwx file_or_directory_to_hide

which removes all permissions from ’group’ and ’others’, effectively hiding the file/directory,

% chmod a+x executable_file

to make a file executable by everyone (a stands for all and is the union of user, group and other) and

% chmod u-w file_to_write_protect

to remove the user’s (your) write permission to a file to prevent accidental modification of particularly valuable information. Note that
permissions are added with a + and removed with a -. You can also set permissions absolutely using an =, for example

% chmod a=r file_for_all_to_read

scp

Use scp (whose syntax is an extension of cp) to copy files or hierarchies from one Unix system to another. scp is part of the ssh
distribution and uses the same authentication for password-less access described in the ssh section above.

For example, assume I am logged into lnx1 and that choptuik@physics.ubc.ca:~/.ssh/authorized_keys contains a line
duplicating the contents of matt@lnx1.physics.ubc.ca:~/.ssh/id_rsa.pub. Then the command

lnx1% scp ~/.cshrc choptuik@physics.ubc.ca:~/lnx_cshrc

will copy my ~/.cshrc file on lnx1 to the file ~/lnx_cshrc on physics. Similarly, the command

lnx1% scp choptuik@physics.ubc.ca:~/.cshrc ~/sun_cshrc

will copy my ~/.cshrc file on physics to the file ~/sun_cshrc on lnx1.

Be very careful using scp, particularly since there is no -i (cautious) option. Also note that there is a -r option for remote-copying
entire hierarchies.

On some machines, a default mode for scp includes a "statistics trace" that can be useful if you are scping large files over slow
connections. Printing of these statistics may be disabled by setting the SSH_NO_SCP_STATS environment variable. For instance

% setenv SSH_NO_SCP_STATS on

will do the trick, and you may wish to have such a line in your ~/.cshrc file(s), as it is by default on your lnx accounts.

MORE ON THE C-SHELL

Shell Variables: The shell maintains a list of local variables, some of which, such as path, term and shell are always defined and
serve specific purposes within the shell. Other variables, such as filec and ignoreeof are optionally defined and frequently control
details of shell operation. Finally, you are free to define you own shell variables as you see fit (but beware of redefining existing
variables). By convention, shell variables have all-lowercase names. To see a list of all of your currently defined shell variables,
simply type

% set

To print the value of a particular variable, use the Unix echo command, plus the fact that a $ in front of a variable name causes the
evaluation of that variable:

% echo $path

To set the value of a shell variable use one of the two forms:

% set thisvar=thisvalue
% echo $thisvar
thisvalue

or

% set thisvarlist=(value1 value2 value3)
% echo $thisvarlist
value1 value2 value3

Shell variables may be defined without being associated a specific value. For example:

% set somevar
% echo $somevar

The shell frequently uses this "defined" mechanism to control enabling of certain features. To "undefine" a shell variable use unset
as in

% unset somevar
% echo $somevar
somevar - Undefined variable

Following is a list of some of the main shell variables (predefined and optional) and their functions:

path: Stores the current path for resolving commands. See discussion above.
prompt: The current shell prompt---what the shell displays when it’s expecting input.

cwd: Contains the name of the (current) working directory.
term: Defines the terminal type. If your terminal is acting strangely

 % set term=vt100; resize

often provides a quick fix.
noclobber: When set, prevents existing files from being overwritten via output redirection (see below)
filec: When set, enables file-completion. Partially typing a file name (using an initial sequence that is unique among files in the
working directory), then typing TAB will result in the system doing the rest of the typing of the file-name for you.
shell: Which particular shell you are using
ignoreeof: When set, will disable shell "logout" when ^D is typed.

Environment Variables: Unix uses another type of variable---called an environment variable---which is often used for
communication between the shell (not necessarily a C-shell) and other processes. By convention, environment variables have
all-uppercase names. In the C-shell, you can display the value of all currently defined environment variables using

% env

Some environment variables, such as PATH, are automatically derived from shell variables. Others have their values set (typically in
~/.cshrc or ~/.login) using the syntax:

% setenv VARNAME value

Note that, unlike the case of shell variables and set, there is no = sign in the assignment.

Individual environment variables may be viewed using printenv or echo:

% printenv HOME
/home/matt
% echo $HOME
/home/matt

Observe that, as with shell variables, the dollar sign causes evaluation of an environment variable. It is particularly notable that the
values of environment variables defined in one shell are inherited by commands (including C and Fortran programs, and other
shells) that are initiated from that shell. For this reason, environment variables are widely used to communicate information to Unix
commands (applications).

Following is a list of a few standard environment variables with their functions:

HOME: Stores the user’s home directory;

cd $HOME/dir1

is equivalent to

cd ~/dir1

PRINTER: Defines default printer for use with lpr, netscape etc.

DISPLAY: Tells X-applications what display (screen) to use for output. Generally set on remote shells so that output appears
on a local screen. In the past, this was typically accomplished manually, or in a user’s ~/.cshrc or ~/.login.

ssh now handles appropriate setting of DISPLAY automatically. Notify me if you have any problems apparently related to
mis-settings of DISPLAY.

Using C-shell Pattern Matching: The C-shell provides facilities that allow you to concisely refer to one or more files whose names
match a given pattern. The process of translating patterns to actual filenames is known as filename expansion or globbing. Patterns
are constructed using plain text strings and the following constructs, known as wildcards

? Matches any single character

* Matches any string of characters (including no
 characters)

[a-z] (Example) Matches any single character contained
 in the specified range (the match set)---in this
 case lower-case ’a’ through lower-case ’z’

[^a-z] (Example) Matches any single character
 not contained in the specified range

Match sets may also be specified explicitly, as in

[02468]

Examples:

ls ??

lists all regular (not hidden) files and directories whose names contain precisely two characters.

cp a* /tmp

copies all files whose name begins with ’a’ to the temporary directory /tmp.

mv *.f ../newdir

moves all files whose names end with ’.f’ to directory ../newdir. Note that the command

mv *.f *.for

will not rename all files ending with ’.f’ to files with the same prefixes, but ending in ’.for’, as is the case on some other operating
systems. This is easily understood by noting that expansion occurs before the final argument list is passed along to the mv
command. If there aren’t any ’.for’ files in the working directory, *.for will expand to nothing and the last command will be identical to

mv *.f

which is not at all what was intended.

Using the C-shell History and Event Mechanisms: The C-shell maintains a numbered history of previously entered command
lines. Because each line may consist of more than one distinct command (separated by ;), the lines are called events rather than
simply commands. Type

% history

(which I personally alias as hi) after entering a few commands to view the history. Although tcsh (which I assume you are using)
allows you to work back through the command history using the up-arrow and down-arrow keys, the following event designators for
recalling and modifying events are still useful, particularly if the event number forms part of the shell prompt as it does in your initial
set-up on the lnx machines.

!! Repeat the previous command line

!21 (Example) Repeat command line number 21

!a (Example) Repeat most recently issued command line
 that started with an ’a’. Use an initial sub-string
 of length > 1 for more specificity.

!?b (Example) Repeat most recently issued command line
 that contains ’b’; any string of characters can be
 used after the ’?’

(Note that Unix users often refer to an exclamation point (!) as "bang".) The following constructs are useful for recycling command
arguments:

!* Evaluates to all of the arguments supplied to
 the previous command

!$ Evaluates to the last argument supplied to the
 previous command

Finally, the following construct is useful for correcting small typos in command lines:

^old_string^new_string

This changes the first occurrence of old_string in the previous command to new_string, then executes the modified command.
Example:

% cp foo /hmoe/matt
cp: cannot create regular file ‘/hmoe/matt’: No such file or directory
% ^mo^om
cp foo /home/matt

Note that whenever any of the above constructs are used, the shell echoes the effective command before it is executed.

Standard Input, Standard Output and Standard Error: A typical Unix command (process, program, job, task, application) reads
some input, performs some operations on, or depending on, the input, then produces some output. It proves to be extremely
powerful to be able to write programs that read and write their input and output from "standard" locations. Thus, Unix defines the
notions of

standard input: default source of input
standard output: default destination of output
standard error: default destination for error messages and diagnostics

Many Unix commands are designed so that, unless specified otherwise, input is taken from standard input (or stdin), and output is
written on standard output (or stdout). Normally, both stdin and stdout are attached to the terminal. The cat command with no
arguments provides a canonical example (see man cat if you can’t understand the example):

% cat
foo
foo
bar
bar
^D

Here, cat reads lines from stdin (the terminal) and writes those lines to stdout (also the terminal) so that every line you type is
"echoed" by the command. A command that reads from stdin and writes to stdout is known as a filter.

Input and Output Redirection: The power and flexibility of the stdin/stdout mechanism becomes apparent when we consider the
operations of input and output redirection that are implemented in the C-shell. As the name suggests, redirection means that stdin
and/or stdout are associated with some source/sink other than the terminal.

Input Redirection is accomplished using the < (less-than) character, followed by the name of a file from which the input is to be
extracted. Thus the command-line

% cat < input_to_cat

causes the contents of the file input_to_cat to be used as input to the cat command. In this case, the effect is exactly the same as if

% cat input_to_cat

had been entered

Output Redirection is accomplished using the > (greater than) character, again followed by the name of a file into which the
(standard) output of the command is to be directed. Thus

% cat > output_from_cat

will cause cat to read lines from the terminal (stdin is not redirected in this case) and copy them into the file output_from_cat. Care
must be exercised in using output redirection since one of the first things that will happen in the above example is that the file
output_from_cat will be clobbered. If the shell variable noclobber is set (recommended for novices), then output will not be
allowed to be redirected to an existing file. Thus, in the above example, if output_from_cat already existed, the shell would respond
as follows:

% cat > output_from_cat
output_from_cat: File exists

and the command would be aborted.

The standard output from a command can also be appended to a file using the two-character sequence >> (no intervening spaces).
Thus

% cat >> existing_file

will append lines typed at the terminal to the end of existing_file.

From time to time it is convenient to be able to "throw away" the standard output of a command. Unix systems have a special file
called /dev/null that is ideally suited for this purpose. Output redirection to this file, as in:

verbose_command > /dev/null

will result in the stdout from the command disappearing without a trace.

Pipes: Part of the "Unix programming philosophy" is to keep input and output to and from commands in "machine-readable" form:
this usually means keeping the input and output simple, structured and devoid of extraneous information which, while informative to
humans, is likely to be a nuisance for other programs. Thus, rather than writing a command that produces output such as:

% pgm_wrong
Time = 0.0 seconds Force = 6.0 Newtons
Time = 1.0 seconds Force = 6.1 Newtons
Time = 2.0 seconds Force = 6.2 Newtons

we write one that produces

% pgm_right
0.0 6.0
1.0 6.1
2.0 6.2

The advantage of this approach is that it is then often possible to combine commands (programs) on the command-line so that the
standard output from one command is fed directly into the standard input of another. In this case we say that the output of the first
command is piped into the input of the second. Here’s an example:

% ls -1 | wc
10 10 82

The -1 option to ls tells ls to list regular files and directories one per line. The command wc (for word count) when invoked with no

arguments, reads stdin until EOF is encountered and then prints three numbers: [1] the total number of lines in the input [2] the total
number of words in the input and [3] the total number of characters in the input (in this case, 82). The pipe symbol "|" tells the shell
to connect the standard output of ls to the standard input of wc. The entire ls -1 | wc construct is known as a pipeline, and in this
case, the first number (10) that appears on the standard output is simply the number of regular files and directories in the current
directory.

Pipelines can be made as long as desired, and once you know a few Unix commands, and have mastered the basics of the C-shell
history mechanism, you can easily accomplish some fairly sophisticated tasks by interactively building up multi-stage pipelines.

Regular Expressions and grep: Regular expressions may be formally defined as those character strings that are recognized
(accepted) by finite state automata. If you haven’t studied automata theory, this definition won’t be of much use, so for our purposes
we will define regular expressions as specifications for rather general patterns that we will wish to detect, usually in the contents of
files. Although there are similarities in the Unix specification of regular expressions to C-shell wildcards (see above), there are
important differences as well, so be careful. We begin with regular expressions that match a single character:

a (Example) Matches ’a’, any character other than
 the special characters: . * [] \ ^ or $ may be
 used as is

* (Example) Matches the single character ’*’.
 Note that ‘\’ is the "backslash" character. A
 backslash may be used to "escape" any of the
 special characters listed above
 (including backslash itself)

. Matches ANY single character.

[abc] (Example) Matches any one of ’a’, ’b’ or ’c’.

[^abc] (Example) Matches any character that ISN’T an
 ’a’, ’b’ or ’c’.

[a-z] (Example) Matches any character in the inclusive
 range ’a’ through ’z’.

[^a-z] (Example) Matches any character NOT in the
 inclusive range ’a’ through ’z’.

^ Matches the beginning of a line.

$ Matches the end of a line.

Multiple-character regular expressions may then be built up as follows:

ahgfh (Example) Matches the string ’ahgfh’. Any string
 of specific characters (including escaped special
 characters) may be specified in this fashion.

a* (Example) Matches zero or more occurrences of the
 character ’a’. Any single character expression
 (except start and end of line) followed by a ’*’ will
 match zero or more occurrences of that particular
 sequence.

.* Matches an arbitrary string of characters.

All of this is may be a bit confusing, so it is best to consider the use of regular expressions in the context of the Unix grep command.

grep

Grep (which loosely stands for (g)lobal search for (r)egular (e)xpression with (p)rint) has the following general syntax:

 grep [options] regular_expression [file1 file2 ...]

Note that only the regular_expression argument is required. Thus

% grep the

will read lines from stdin (normally the terminal) and echo only those lines that contain the string ’the’. If one or more file arguments
are supplied along with the regular expression, then grep will search those files for lines matching the regular expression, and print
the matching lines to standard output (again, normally the terminal). Thus

% grep the *

will print all the lines of all the regular files in the working directory that contain the string ’the’.

Some of the options to grep are worth mentioning here. The first is -i which tells grep to ignore case when pattern-matching. Thus

% grep -i the text

will print all lines of the file text that contain ’the’ or ’The’ or ’tHe’ etc. Second, the -v option instructs grep to print all lines that do not
match the pattern; thus

% grep -v the text

will print all lines of text that do not contain the string ’the’. Finally, the -n option tells grep to include a line number at the beginning
of each line printed. Thus

% grep -in the text

will print, with line numbers, all lines of the file text that contain the string ’the’, ’The’, ’tHe’ etc. Note that multiple options can be
specified with a single - followed by a string of option letters with no intervening blanks.

Here are a few slightly more complicated examples. Note that when supplying a regular expression that contains characters such as
’*’, ’?’, ’[’, ’!’ ..., that are special to the shell, the regular expression should be surrounded by single quotes to prevent shell
interpretation of the shell characters. In fact, you won’t go wrong by always enclosing the regular expression in single quotes.

% grep ’^.....$’ file1

prints all lines of file1 that contain exactly 5 characters (not counting the "newline" at the end of each line):

% grep ’a’ file1 | grep ’b’

prints all lines of file1 that contain at least one ’a’ and one ’b’. (Note the use of the pipe to stream the stdout from the first grep into
the stdin of the second.)

% grep -v ’^#’ input > output

extracts all lines from file input that do not have a ’#’ in the first column and writes them to file output.

Pattern matching (searching for strings) using regular expressions is a powerful concept, but one that can be made even more
useful with certain extensions. Many of these extensions are implemented in a relative of grep known as egrep. See the man page
for egrep if you are interested.

Using Quotes (’ ’, " ", and ‘ ‘): Most shells, including the C-shell and the Bourne-shell, use the three different types of quotes found
on a standard keyboard

 ’ ’ -> Known as forward quotes, single quotes, quotes
 " " -> Known as double quotes
 ‘ ‘ -> Known as backward quotes, back-quotes

for distinct purposes.

Forward quotes: ’ ’ We have already encountered several examples of the use of forward quotes that inhibit shell evaluation of any
and all special characters and/or constructs. Here’s an example:

% set a=100
% echo $a
100

% set b=$a
% echo $b
100

% set b=’$a’
% echo $b
$a

Note how in the final assignment, set b=’$a’, the $a is protected from evaluation by the single quotes. Single quotes are commonly
used to assign a shell variable a value that contains whitespace, or to protect command arguments that contain characters special
to the shell (see the discussion of grep for an example).

Double quotes: " " Double quotes function in much the same way as forward quotes, except that the shell "looks inside" them and
evaluates (a) any references to the values of shell variables, and (b) anything within back-quotes (see below). Example:

% set a=100
% echo $a
100

% set string="The value of a is $a"
% echo $string
The value of a is 100

Backward quotes: ‘ ‘ The shell uses back-quotes to provide a powerful mechanism for capturing the standard output of a Unix
command (or, more generally, a sequence of Unix commands) as a string that can then be assigned to a shell variable or used as
an argument to another command. Specifically, when the shell encounters a string enclosed in back-quotes, it attempts to evaluate
the string as a Unix command, precisely as if the string had been entered at a shell prompt, and returns the standard output of the
command as a string. In effect, the output of the command is substituted for the string and the enclosing back-quotes. Here are a
few simple examples:

% date
Mon Sep 5 13:51:14 PDT 2005

% set thedate=‘date‘
% echo $thedate
Mon Sep 5 13:51:23 PDT 2005

% which true
/bin/true

% file ‘which true‘
/bin/true: ELF 32-bit LSB executable, Intel 80386 ...

% file ‘which true‘ ‘which false‘
/bin/true: ELF 32-bit LSB executable, Intel 80386 ...
/bin/false: ELF 32-bit LSB executable, Intel 80386 ...

Note that the file command attempts to guess what type of contents its file arguments contain and which reports full path names for
commands that are supplied as arguments. Observe that in the last example, multiple back-quoting constructs are used on a single
command line.

Finally, here’s an example illustrating that back-quote substitution is enabled for strings within double quotes, but disabled for strings
within single quotes:

% set var1="The current date is ‘date‘"
% echo $var1
The current date is Mon Sep 5 13:51:53 PDT 2005

% set var2=’The current date is ‘date‘’
% echo $var2
The current date is ‘date‘

Job Control: Unix is a multi-tasking operating system: at any given time, the system is effectively running many distinct processes
(commands) simultaneously (of course, if the machine only has one CPU, only one process can run at a specific time, so this
simultaneity is somewhat of an illusion). Even within a single shell, it is possible to run several different commands at the same time.
Job control refers to the shell facilities for managing how these different processes are run. It should be noted that job control is
arguably less important in the current age of windowing systems than it used to be, since one can now simply use multiple shell
windows to manage several concurrently running tasks.

Commands issued from the command-line normally run in the foreground. This generally means that the command "takes over"
standard input and standard output (the terminal), and, in particular, the command must complete before you can type additional
commands to the shell. If, however, the command line is terminated with an ampersand: &, the job is run in the background and you
can immediately type new commands while the command executes. Example:

% grep the huge_file > grep_output &
[1] 1299

In this example, the shell responds with a ’[1]’ that identifies the task at the shell level, and a ’1299’ (the process id) that identifies the
task at the system level. You can continue to type commands while the grep job runs in the background. At some point grep will
finish, and the next time you type ’Enter’ (or ’Return’), the shell will inform you that the job has completed:

[1] Done grep the huge_file > grep_output

The following sequence illustrates another way to run the same job in the background:

% grep the huge_file > grep_output
^Z
Suspended
% bg
[1] grep the huge_file > grep_output &

Here, typing ^Z while the command is running in the foreground stops (suspends) the job, the shell command bg restarts it in the
foreground. You can see which jobs are running or stopped by using the shell jobs command.

% jobs
[1] + Stopped grep the huge_file > grep_output
[2] Running other_command

Use

% fg %1

to make run the job labeled ’[1]’ (that may either be stopped or running in the background), run in the foreground. You can kill a job
using its job number (%1, %2, etc.)

% kill %1
[1] Terminated grep the huge_file > grep_output

You can also kill a job using its process ID (PID), which you can obtain using the Unix ps command. See the man pages for ps and

kill for more details.

On many Unix systems, including Linux, there is a killall command, which allows you to kill processes by name. Finally, the shell will
complain if you try to logout or exit the shell when one or more jobs are stopped. Either explicitly kill the jobs (or let them finish up if
that’s appropriate) or type logout or exit again to ignore the warning, kill all stopped jobs, and exit.

Another useful, though Linux-specific, command is pstree, which shows processes currently running on the host machine in the
form of a tree. If you want to limit the output to your own processes (and not, for example, root’s), use

% pstree -u your_userid

BASIC SHELL PROGRAMMING

For the novice user a Unix shell can be viewed primarily as a command interpreter. However, shells are actually fully functional
programming languages and it is extremely useful to know at least a little about shell programming, also known as writing shell
scripts, for the following reasons (not an exhaustive list!):

Scripts can be used to customize or extend Unix commands in a more powerful and robust fashion than the aliasing
mechanism discussed above.

1.

Scripts can be used to automate sequences of Unix commands, with the possibility of changing one or more of the arguments
to one or more of the commands. If you find yourself typing a series of commands several times, it takes very little time to
create a script to accomplish the task, after which the execution of a single command does the trick. This has the added
bonus that the script per se provides documentation for the job you are doing.

2.

Many tasks that are cumbersome to perform in the context of a general purpose programming language, such as C or
Fortran, are easy to accomplish using a script. This particularly applies to issues involving file and directory manipulation, or
the processing of output from a number of programs.

3.

Although it is entirely possible to write tcsh-scripts, the Bourne-shell, sh, (or on Linux and many other Unix systems, bash, for
Bourne-again-shell) tends to be used more often for scripting, and thus will be our focus here. Time constraints preclude anything
but a cursory overview of shell programming; if you wish to become a wizard of this particular craft, I suggest you consult the classic
text, The UNIX Programming Environment, by Kernighan and Pike, cited in the following as reference [1]. In addition, should you
find yourself in need of complex scripts, you may wish to consider using perl, which is an extremely powerful scripting language that
has become very popular in the Unix community over the past decade or so.

We start with a very simple example. Consider the problem of "swapping" the names of two files, which arises more often in practice
than one might expect, and which cannot be accomplished with a standard Unix command. Assuming that no file t exists in the
working directory, the command sequence

% mv a t
% mv b a
% mv t b

will exchange the names of files a and b. Building on this sequence, here’s a script called swap that, naturally enough, "swaps" the
names of an arbitrary pair of files:

#! /bin/sh

Bare-bones script to swap names of two files

Usage: swap file1 file2

mv $1 t
mv $2 $1
mv t $2

The first line of the script

#! /bin/sh

is an important bit of Unix magic that tells the shell that when the name of the file containing the script is used as a command, the
shell should start up a new shell (in this case a Bourne-shell, sh) and execute the remaining contents of the script in the context of
that new shell. Every shell-script that you write should start with this incantation.

Lines that begin with a hash ("number sign") # (excluding the magic first line) such as

Bare-bones script to swap names of two files

Usage: swap file1 file2

are comments, and are ignored by the shell.

The final three lines of the script

mv $1 t
mv $2 $1
mv t $2

do all the work. The constructs $1 and $2 evaluate to the first and second arguments, respectively, which are supplied to the script.
In general, one can access the first nine arguments of a script using $1, $2, ..., $9, and, if more than nine arguments need to be
parsed (!), using ${10}, ${11}, etc. If a specific argument is missing, the corresponding construct will evaluate to the null string, i.e. to
"nothing".

Having created a file called swap containing the above lines, I set execute permission on the file with the chmod command

% chmod a+x swap
% ls -l swap
-rwxr-xr-x 1 phys410 phys410 114 Aug 31 2001 swap*

and the script is ready to use:

% ls
f1 f2 swap*
% cat f1
This is the first file.
% cat f2
This is the second file.
% swap f1 f2
% cat f1
This is the second file.
% cat f2
This is the first file.

When developing and debugging a shell program, it is often very useful to enable "tracing" of the script. This is done by adding the
-x option to the header line:

#! /bin/sh -x

Having made this modification, I now see the following output when I invoke swap a second time:

% swap f1 f2
+ mv f1 t
+ mv f2 f1
+ mv t f2

Note how each command in the script is echoed to standard error (with a + prepended) as it is executed. Also observe that the mv
command used in this instance is the "bare bones" version; i.e. any aliases that I have defined for use in interaction with tcsh will not
be in effect since the commands are being executed by a different shell.

Although swap as coded above is reasonably functional, it is not very robust and can potentially generate undesired "side-effects" if
used incorrectly. Observe, for example, what happens when the script is invoked without any arguments (tracing has now been
disabled by removing the -x option in the header)

mv: missing file argument
Try ‘mv --help’ for more information.
mv: missing file arguments
Try ‘mv --help’ for more information.
mv: missing file argument
Try ‘mv --help’ for more information.

or, worse, with one argument

% swap f1
mv: missing file argument
Try ‘mv --help’ for more information.
mv: missing file argument
Try ‘mv --help’ for more information.
% ls
f2 swap* t

Here’s a second version of swap that fixes several of the shortcomings of the naive version, and that also illustrates a few more
shell programming features:

#! /bin/sh

Improved version of script to swap names of two files

Set shell variable ’P’ to name of script
P=‘basename $0‘

Set shell variable ’t’ to name of temporary file
t=.swap.tempfile.3141

Usage function
usage () {
cat << END
usage: $P file1 file2

 Swaps filenames of file1 and file2
END
exit 1
}

Function that is invoked if temporary file already exists
t_exists () {
cat << END
$P: Temporary file ’$t’ exists.
$P: Remove it explicitly before executing this script.

/bin/rm -f $t
END
exit 1
}

Function that checks that its (first) argument is an
existing file
check_file () {
if [! -f $1]; then
 echo "$P: File ’$1’ does not exist"
 error="yes"
fi
}

Argument parsing---script requires exactly 2 arguments
case $# in
2) file1=$1; file2=$2 ;;
*) usage;;
esac

Check that the arguments refer to existing files
check_file $1
check_file $2

Bail out if either or both arguments are invalid
test "X${error}" = X || exit 1

Ensure that temporary file doesn’t already exist
test -f $t && t_exists

Do the swap
mv $file1 $t
mv $file2 $file1
mv $t $file2

Normal exit, return ’success’ exit status
exit 0

Let us examine this new version of swap in detail.

As the comment indicates, the command

Set shell variable ’P’ to name of script
P=‘basename $0‘

sets the shell variable P to the filename of the script, i.e. to swap in this case. This happens as follows. First, $0 is a special
shell-script variable that always evaluates to the invocation name of the script---i.e. what the user actually typed in order to execute
the script. Second, as man tells us, the basename command deletes any prefix ending in / from its argument and prints the result
on the standard output. Third, the backquotes around the basename invocation capture the standard output of the command, which
is then assigned to the shell variable P via the assignment statement.

Note the syntax for setting shell variables in sh, which is slightly different than that for tcsh variables:

% var=value

There is no set in this case, but, again, there can be no white space before or after the equals sign.

We use basename here so that if someone invokes our script using its full path name, perhaps

% /home/phys410/shellpgm/ex2/swap f1 f2

the shell variable P will still be assigned the value swap. The value of P is subsequently used in diagnostic messages, to make the
origin of the messages clear to the user. Use of this mechanism can save some typing if one is writing a script that prints many such
messages. In addition, if the script is subsequently used as a basis for a new shell program, a minimum of changes (perhaps none)
are necessary in order that the new script output the "correct" diagnostics.

The next assignment sets the shell variable t to the name of a temporary file that, under normal circumstances, should never exist in

the directory in which swap is executed. This isn’t the most bullet-proof of strategies, but it’s better than using t itself for the name
for the temporary file!

Set shell variable ’t’ to name of temporary file
t=.swap.tempfile.3141

The next section of code defines a shell function, called usage, which can be invoked from anywhere in the script. When called, the
function will print a message to standard output informing the user of the proper usage of the command, and then exit (stop
execution of the script).

Usage function
usage () {
cat << END
usage: $P file1 file2

 Swaps filenames of file1 and file2
END
exit 1
}

The general form of a function definition is

routinename () {
 command
 command
 ...
}

The parentheses pair after routinename tells the shell that a function is being defined, while the braces enclose the body of the
function.

Within the usage routine appears the construct

cat << END
 ...
END

known as a "here document". Here documents can be used anywhere in a script to provide "in-place" input for the standard input of
a command. You can refer to the man page on sh for full details, but the idea and mechanics are simple. To provide "in-place" input
to an arbitrary command, append << END after the command name, any arguments to the command, and any output redirection
directives. Be certain that there is no white space after the token END. Subsequent lines are then the standard input to the
command. A line that exactly matches the string END (i.e. grep ’^END$’ succeeds) signals end-of-file (so be sure you have such a
line in your script!). Again, beware of leading or trailing white space in the end-of-file marker. Finally, note that the string END is
arbitrary; you can use essentially any string you wish as long as you use the identical string in both contexts. END is simply my
convention.

An interesting and useful feature of here-documents is that they are partially interpreted by the shell before being fed into their
destination command. In particular, shell-variable-evaluations

$var

are executed, as are

‘command [arguments]‘

constructs. Thus, when the usage function is executed, the message

usage: swap file1 file2

 Swaps filenames of file1 and file2

will appear on standard output, after which the execution of

exit 1

will return control to the invoking shell. Here, the argument to the exit command is an exit code indicating a completion status for the
script. Since there is generally only one way for a command to succeed, but often many ways it can fail, a exit status of 0 indicates
success in Unix, while any non-zero value (1 in this case), indicates failure.

All Unix commands return such codes (scripts that terminate without an explicit exit, implicitly return success to the invoking shell)
and they can be used in the context of shell-control structures such as if, while and until statements.

The function t_exists is very similar in construction to usage, and is used in the unlikely event that a file named
.swap.tempfile.3141 does exist in the directory in which the script is invoked.

Function that is invoked if temporary file already exists
t_exists () {
cat << END
$P: Temporary file ’$t’ exists.

$P: Remove it explicitly before executing this script.

/bin/rm -f $t
END
exit 1
}

Function check_file illustrates the use of function arguments, as well as the shell if statement.

Function that checks that its (first) argument is an
existing file
check_file () {
if [! -f $1]; then
 echo "$P: File ’$1’ does not exist"
 error="yes"
fi
}

As with arguments to the script itself, function arguments are accessed positionally, via $1, $2, Note, then, that the evaluation of
$1, for example, depends crucially on context (or scope): within a function, $1 evaluates to the first argument to the routine, while
outside of any function it evaluates to the first argument to the script.

For our purposes, a suitably general form of the shell if statement is

if command a; then
 commands 1
elif command b; then
 commands 2
elif command c; then
 commands 3
 ...
else command last
 commands n
fi

All clauses apart from the first are optional, as is apparent from the if statement in the check_file routine. The evaluation of the if
statement begins with the execution of command a. If this command succeeds (returns exit status 0), then commands 1 are
executed (commands must appear on separate lines, or be separated by semicolons) and control then passes to the command
following the end of the if statement (i.e. after the fi token). Otherwise, command b is executed; if it succeeds, commands 2 are
performed, otherwise command c is executed, and so on.

The if statement in our check_file routine

if [! -f $1]; then
 echo "$P: File ’$1’ does not exist"
 error="yes"
fi

uses the Unix test command, for which [is essentially an alias (the] is "syntactic-sugar" and does nothing but make the expression
"look right"). Thus an equivalent form is

if test ! -f $1; then
 echo "$P: File ’$1’ does not exist"
 error="yes"
fi

test accepts a general expression expr as an argument, evaluates expr and, if its value is true, sets a zero exit status (success);
otherwise, a non-zero exit status (failure) is set. test accepts many different options for performing a variety of tests on files and
directories, and implements a fairly complete set of logical operations such as negation, or, and, tests for string
equality/non-equality, integer equal-to, greater-than, less-than etc.; see man test for full details.

In the current case, the -f $1 option returns true if the first argument to the routine is an existing regular file (i.e. not a directory or
other type of special file). The ! is the negation operator, so the overall test command returns success (true) if the first argument is
not an existing regular file.

The next section of code introduces the shell case statement:

Argument parsing---script requires exactly 2 arguments
case $# in
2) file1=$1; file2=$2 ;;
*) usage;;
esac

A general case statement looks like

case word in
pattern) commands ;;
pattern) commands ;;
...

esac

Starting from the top, and using essentially the same pattern-matching rules used for filename matching, the case statement
compares word to each pattern in turn, until it finds a match. When a match is found the corresponding commands (and only those
commands) are executed, after which control passes to the statement following the end of the case statement (i.e. after the esac
token). Note that the commands associated with each case must be terminated with a double semi-colon.

In our current example, we match on the built-in shell variable $#, which evaluates to the number of arguments that were supplied to
the shell. The first set of actions

2) file1=$1; file2=$2 ;;

is evaluated if precisely two arguments have been supplied. If the script has been invoked with anything but two arguments, $# is
then matched against *, which will always succeed; i.e.

*) usage ;;

serves as a "default" case, and the usage function will thus be called if we’ve used an incorrect number of arguments.

Using the check_file function, the script then ensures that each argument names an existing regular file:

Check that the arguments refer to existing files
check_file $file1
check_file $file2

Note that if either or both of the checks fail, then the shell variable error (all variables are global in a shell script unless explicitly
declared local, see man sh for more information) will be set to yes. The calls to check_file are followed by a command list that
tests whether error has been set, and exits the script if it has:

Bail out if either or both arguments are invalid
test "X${error}" = X || exit 1

The expression

"X${error}" = X

illustrates a little shell trick that tests whether a shell variable has been defined. If error has been set to yes by check_file, then
"X${error}" evaluates to Xyes; otherwise it evaluates to X. The binary operator || (double pipe) can be used between any two Unix
commands (or, more generally, pipelines):

command 1 || command 2

and has the following semantics: command 1 is executed, and if and only if the command fails (returns a non-zero exit status),
command 2 is executed. Thus, the sequence is equivalent to

if [! command 1]; then
 command 2
fi

Similarly, the next piece of the script

Ensure that temporary file doesn’t already exist
test -f $t && t_exists

illustrates the use of the binary operator && (double ampersand), which also can be used between any two commands:

command 1 && command 2

In this case command 1 is executed, and if and only if the command succeeds (returns a 0 exit status), command 2 is executed.
Thus, an equivalent form is

if [command 1]; then
 command 2
fi

In the current example, if the temporary file .swap.temp.3141 does exist, the function t_exists is called to print the diagnostic
message and exit.

Finally, if we’ve made it past all of the error-checking, it’s time to actually swap the filenames, and have the script return a "success"
exit status to the invoking environment:

Do the swap
mv $file1 $t
mv $file2 $file1
mv $t $file2

Normal exit, return ’success’ code
exit 0

We can now test our improved version of swap, exercising in particular all of the error-checking features that have been
incorporated. Here again is a contents-listing of the directory containing the script:

% ls
f1 f2 swap*
% more f1 f2
::::::::::::::
f1
::::::::::::::
This is the first file.
::::::::::::::
f2
::::::::::::::
This is the second file.

We start with a no-argument invocation:

% swap
usage: swap file1 file2

 Swaps filenames of file1 and file2

followed by single-argument execution:

% swap f1
usage: swap file1 file2

 Swaps filenames of file1 and file2

In both cases swap dutifully prints the usage message to standard output as desired.

We now invoke swap in a "normal" fashion, and verify that it is working properly:

% swap f1 f2
% more f1 f2
::::::::::::::
f1
::::::::::::::
This is the second file.
::::::::::::::
f2
::::::::::::::
This is the first file.

Supplying swap with two arguments that are not names of files in the working directory results in appropriate error messages:

% swap a1 a2
swap: File ’a1’ does not exist
swap: File ’a2’ does not exist

as does an invocation where one of the arguments is invalid:

% swap a1 f2
swap: File ’a1’ does not exist

Finally, after (perversely) creating .swap.tempfile.3141,

% touch .swap.tempfile.3141

execution of swap with valid arguments triggers the t_exists routine:

swap: Temporary file ’.swap.tempfile.3141’ exists.
swap: Remove it explicitly before executing this script.

/bin/rm -f .swap.tempfile.3141

Removing the file as instructed, the script once again silently performs its job:

% /bin/rm -f .swap.tempfile.3141
% swap f1 f2

We will conclude our whirlwind tour of shell programming with a description of a few more control structures, some additional
niceties concerning shell variable evaluation, and a glimpse at a command useful for writing scripts that "interact" with the user.

The shell provides three structures for looping. The first is a for loop:

for var in word list; do
 commands
done

Here, for each word (token) in word list, the commands in the body of the loop are executed, with the shell variable var being set to
each word in turn. As usual, an example makes the semantics clear:

% cat for-example
#! /bin/sh

Illustrates shell ’for’ loop

for i in foo bar ’foo bar ’; do
 echo "i -> $i"
done

% for-example
i -> foo
i -> bar
i -> foo bar

Note that a "word" can contain white space if it has been quoted, as is the case for ’foo bar ’

In many instances, a for loop in a script will loop over all of the arguments supplied to the script. The built-in shell variable $*
evaluates to the argument list, so we can write

for i in $*; do
 commands
done

but the shell also has a shorthand for this particular case, namely:

for i; do
 commands
done

In addition to for iterations, there are also while loops:

while command; do
 commands
done

and until loops:

until command; do
 commands
done

For these iterations, the body of the loop is repetitively executed as long as command succeeds or fails, respectively.

The following table summarizes some built-in shell variables that are particularly useful for script writing [1]:

Variable Evaluates to
$# number of arguments

$* all arguments

$? return value of last command

$$ process-id of the script

Also observe that a script inherits all of the environment variables (such as $HOME, $PATH, ...) that have been set in the invoking
shell (be it a tcsh, sh, bash or whatever). Within a Bourne-shell, a syntax differing from the C-shell case must be used to set an
environment variable:

var=value
export var

The export command tells the shell that var is to be identified as an environment variable. Also, the "Bourne-again" shell, bash
(which is the same as sh on Linux systems), allows the above two statements to be combined into a single one:

export var=value

As shown in the next table [1], we can also use some tricks in the evaluation of shell variables to make writing scripts a little easier
at times:

Expression Evaluates to
$var value of var, nothing if var undefined

${var} same as above; useful if alphanumerics follow variable name

${var-thing} value of var if defined; otherwise thing; $var unchanged.

${var=thing} value of var if defined; otherwise thing; if undefined $var set to thing

${var+thing} thing if var defined; otherwise nothing

${var?message} if defined, $var; otherwise print message and exit shell.

Finally, the read command can be used to interactively provide input to a script. Here’s an example

% cat read-example
#! /bin/sh

echo "Hello there! Please type in your name:"
read name
echo "Pleased to meet you, $name"

% read-example
Hello there! Please type in your name
Matthew Choptuik
Pleased to meet you, Matthew Choptuik

References

[1] Brian W. Kernighan and Rob Pike, The UNIX Programming Environment, Prentice Hall, 1984

