BUILDING THE 'series_op' PROCEDURE INTERACTIVELY

First define the series as in Abramowitz and Stegun

$$
\begin{aligned}
& >s[1]:=1+a[1]^{*} x+a[2]^{*} x^{\wedge} 2+a[3]^{*} x^{\wedge} 3 ; \\
& s_{1}:=1+a_{1} x+a_{2} x^{2}+a_{3} x^{3} \\
& >\mathrm{s}[2]:=1+\mathrm{b}[1]^{\star} \mathrm{x}+\mathrm{b}[2]^{\star} \mathrm{x}^{\wedge} \mathbf{2}+\mathrm{b}[3]^{\star} \mathrm{x}^{\wedge} \mathbf{3} \text {; } \\
& s_{2}:=1+b_{1} x+b_{2} x^{2}+b_{3} x^{3} \\
& >s[3]:=1+c[1]^{*} x+c[2]^{*} x^{\wedge} 2+c[3]^{*} x^{\wedge} 3 \text {; } \\
& s_{3}:=1+c_{1} x+c_{2} x^{2}+c_{3} x^{3}
\end{aligned}
$$

Define a set of unknowns (the coefficients of s3)
$>$ unknowns := $\{\mathrm{c}[1], \mathrm{c}[2], \mathrm{c}[3]\}$;

$$
\text { unknowns }:=\left\{c_{1}, c_{2}, c_{3}\right\}
$$

Define a 'shorthand' procedure for converting P to a polynomial
$>P:=\operatorname{proc}(x)$ convert(x,polynom) end;
$P:=p r o c(x)$ convert(x, polynom) end

Define a specific series to re-express
> series_in := 1 / s[1];

$$
\text { series_in }:=\frac{1}{1+a_{1} x+a_{2} x^{2}+a_{3} x^{3}}
$$

Perform a series expansion to high enough order
$>\operatorname{series}(", x=0,4)$;

$$
\begin{aligned}
& 1-a_{1} x+\left(-a_{2}+a_{1}^{2}\right) x^{2}+\left(-a_{3}+a_{1} a_{2}+\left(a_{2}-a_{1}^{2}\right) a_{1}\right) x^{3}+ \\
& \quad \mathrm{O}\left(x^{4}\right)
\end{aligned}
$$

Convert the power series to a polynomial
> p1 := P(");
$p l:=1-a_{1} x+\left(-a_{2}+a_{1}^{2}\right) x^{2}+\left(-a_{3}+a_{1} a_{2}+\left(a_{2}-a_{1}^{2}\right) a_{1}\right) x^{3}$

Convert s[3] to a polynomial
> p2 := P(s[3]);

$$
p 2:=1+c_{1} x+c_{2} x^{2}+c_{3} x^{3}
$$

Subtract the two converted series (equivalent to equating them)
> p2-p1;

$$
\begin{gathered}
c_{1} x+c_{2} x^{2}+c_{3} x^{3}+a_{1} x-\left(-a_{2}+a_{1}^{2}\right) x^{2} \\
-\left(-a_{3}+a_{1} a_{2}+\left(a_{2}-a_{1}^{2}\right) a_{1}\right) x^{3}
\end{gathered}
$$

Extract the coefficients with respect to x
> coeffs(",x);

$$
a_{2}-a_{1}^{2}+c_{2}, a_{1}+c_{1}, c_{3}+a_{3}-a_{1} a_{2}-\left(a_{2}-a_{1}^{2}\right) a_{1}
$$

Convert the coefficient sequence to a set.
Order by order the coefficients must vanish, and Maple assumes "=0" if there is no "=" in an equation
> \{"\};

$$
\left\{a_{2}-a_{1}^{2}+c_{2}, a_{1}+c_{1}, c_{3}+a_{3}-a_{1} a_{2}-\left(a_{2}-a_{1}^{2}\right) a_{1}\right\}
$$

Solve the set of equations for c[1], c[2], c[3]
> solve(",unknowns);

$$
\left\{c_{1}=-a_{1}, c_{2}=-a_{2}+a_{1}^{2}, c_{3}=-a_{3}+2 a_{1} a_{2}-a_{1}^{3}\right\}
$$

[^0]
[^0]: $>$

