
PHYS 410 Finite Di�erence Methods November 2{7 2000Notes on the 1-d Wave EquationRecall that we are considering the following problem (1-d wave equation with unit speed (c2 = 1) and �xed(Dirichlet) boundary conditions): utt(x; t) = uxx(x; t) ; (1)on the domain 0 � x � 1 t � 0 ;with initial and boundary conditions: u(x; 0) = f(x); (2)ut(x; 0) = g(x); (3)u(0; t) = u(1; t) = 0 : (4)Continuum SolutionAssume for a moment that we are solving (1) on an in�nite spatial domain:�1 < x < +1 t > 0 :In this case, the general solution can be written as the superposition of an arbitrary left-moving \pro�le"(v = �c = �1) and an arbitrary right-moving \pro�le" (v = +c = +1), i.e.u(x; t) = l(x+ t) + r(x � t) : (5)The function l(x; t) = l(x+ t) is constant along the \left-directed" characteristics of the wave equation, whilethe function r(x; t) = r(x � t) is constant along the \right-directed" characteristics (see Figure 1).
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: "left−directed" characteristics,      x + t  =  constant

: "right−directed" characteristics,    x − t  =  constant

xFigure 1: Characteristics of the wave equation: uxx = utt. Signals (disturbances) travel along the charac-teristics (dashed and dotted lines.)In fact, it is often convenient to specify the initial conditions for a wave equation, such as (1), in terms of theinitially left-going and initially right-going parts of the solution. In particular, given the arbitrary pro�les(functions), l(x) and r(x), we specify u(x; 0) = l(x) + r(x) ; (6)ut(x; 0) = l0(x)� r0(x) : (7)1



where 0 denotes ordinary di�erentiation (i.e. l0 � dl=dx, etc.).Generating Initial Data for The FDAWe �rst re-introduce the notation wherein a caret (hat) denotes a quantity which satis�es a di�erenceequation. Thus, ûnj is the quantity which satis�es the usual O(h2) approximation of (1):ûn+1j � 2ûnj + ûn�1j4t 2 = ûnj+1 � 2ûnj + ûnj�14x 2 ; (8)while unj satis�es the di�erential (continuum) equation, i.e.(utt) nj = (uxx) nj ; j = 1; 2; � � � ; J n = 0; 1; 2; � � � :(since the di�erential equation holds everywhere, it must, in particular, hold at all \grid points" (xj ; tn)).We initialize (8) by specifying û0j ; û1j ; j = 1; 2; � � � ; Jfreely, but in a manner consistent with the boundary conditionsû01 = û0J = û11 = û1J = 0:We now assume that our di�erence solution will admit a Richardson expansion (why?)û(x; t) = u(x; t) + h2e2(x; t) + h4e4(x; t) + � � � ; (9)and ask what this implies about how accurately we must specify û0j and û1j . First recall that the problemprescription includes the initial conditions:u (x; 0) = f (x) ; ut (x; 0) = g (x) :Clearly then, we can (and might as well) specify û0j exactly:û0j = fj ;which implies (of course) that e2(x; 0) = 0. Then in order for (9) to hold, we must haveû1j � û(xj ; 4t )= u(xj ; 4t ) + h2e2(xj ; 4t ) +O(h4) ;which implies that û(xj ; 4t )� u(xj ; 4t ) = h2e2(xj ; 4t ) + O(h4) :But e2(xj ; 4t ) = e2(xj ; 0) + 4t @e2@t (xj ; 0) + O(4t 2)= 4t @e2@t (xj ; 0) +O(4t 2) = �h@e2@t (xj ; 0) +O(4t 2)Thus, û(xj ; 4t )� u(xj ; 4t ) = h2��h@e2@t (xj ; 0)� + � � � = O(h3) ;and we see that we must specify û1j to O(h3) accuracy in order for our solution to be (globally) O(h2) accurate.2



In this example (and elsewhere) we can readily initialize û1j to O(h3) accuracy simply by Taylor-expandingto su�ciently high order, and then using the equations of motion to eliminate higher time derivatives:u(xj ; 4t ) = u(xj ; 0) + 4t ut(xj ; 0) + 12 4t 2 utt(xj ; 0) +O(4t 3)= u(xj ; 0) + 4t ut(xj ; 0) + 12 4t 2 uxx(xj ; 0) +O(h3) :Recalling (6-7), where we speci�ed the initial conditions in terms of initially left-moving and right-movingpro�les, l(x) and r(x), and their derivatives, l0(x) and r0(x):u (x; 0) = l (x) + r (x) ;ut (x; 0) = l0 (x)� r0 (x) ;and noting that utt (x; 0) = l00 (x) + r00 (x) ;we have for our initialization:û0j = lj + rj ; (10)û1j = lj + rj + 4t �l0j � r0j�+ 12 4t 2 �l00j + r00j� : (11)Implementation NotesIn treating time-dependent PDEs using FD techniques, it is generally not feasible (even in 1-d) to store allof the data which is generated during the evolution|i.e., in the current case, all of the unj for n = 0; 1; � � �.Indeed, for multi-dimensional problems (3-d calculations in particular), computations are often memory-limited or memory-bound, and then it becomes important to implement the FD algorithm using as littlestorage as possible, using periodic output (usually to a �le) to save the generated data from intermediatetime-steps. A natural way to represent (store) un�1j , unj and un+1j is to use a two dimensional array:real*8 u(maxj,ntlevs)where the constant maxj is the maximum number of spatial grid points allowed, and the constant ntlevs isthe number of time-levels of data stored at any instant. Super�cial investigation of the di�erence equation (8)suggests that we need ntlevs = 3, but we can actually code (8) using storage for only two levels (level nand level n+1) since un�1j is only referenced just before un+1j is computed. The following code segment alsoillustrates a technique wherein we use integer variables n, nm1 and np1 as \pointers" to whichever columnsof the array u currently hold the levels n, n� 1 and n+ 1 data respectively. Using this mechanism we cane�ect (implement) a time-step advance|wherein the level n data becomes level n�1 and level n+1 becomeslevel n|simply be re-de�ning the scalars n, nm1 and np1. In particular, with this approach there is no needto copy any of the grid function data to advance from t = tn to t = tn+1.real*8 u(maxj,2)integer n, nm1, np1, nswapn = 2 ! Initialize "pointers"---note 'n-1' and 'n+1'nm1 = 1 ! storage is shared; only possible due tonp1 = 1 ! explicit nature of FDAc Section of code which initializes u(j,nm1) and u(j,n)c goes here. 3



do it = 2 , nt ! Begin time-step loopu(1,np1) = 0.0d0do j = 2 , nx - 1u(j,np1) = 2.0d0 * u(j,n) - u(j,nm1) +& lamsq * (u(j+1,n) - 2.0d0 * u(j,n) + u(j-1,n))end dou(nx,np1) = 0.0d0c Periodic output of u(j,np1) goes herec Swap time level pointers (time step advance)nswap = np1np1 = nn = nswapnm1 = np1end do ! End time step loopStability AnalysisOne of the most frustrating|yet fascinating|features of FD solutions of time dependent problems, is thatthe discrete solutions often \blow up"|e.g. oating-point overows are generated at some point in theevolution. Although \blow-ups" can sometimes be caused by legitimate (!) \bugs"|i.e. an incorrectimplementation|at other times it is simply the nature of the FD scheme which causes problems. We arethus lead to consider the stability of solutions of di�erence equations (as well as their di�erential-equationprogenitors).Let us again consider our prototypical time-dependent di�erential equation (1), and let us now remark thatthis is a linear, non-dispersive wave equation, a consequence of which is the fact that the \size" of the wavesdoes not change with time: ku(x; t)k � ku(x; 0)k ; (12)where k � k is an suitable norm, such as the L2 norm:ku(x; t)k � �Z 10 u(x; t)2 dx�1=2 : (13)We will use the property captured by (12) as our working de�nition of stability. In particular, if youbelieve (12) is true for the wave equation, then you believe the wave equation is stable.Fundamentally, if our FDA approximation converges, then we expect the same behaviour for the di�erencesolution (note that in this section, we drop the carets on solutions of di�erence equations):kunj k � ku0jk : (14)Now, we construct our FD solution by iterating in time, generatingu0j ; u1j ; u2j ; u3j ; u4j ; � � �in succession, using the FD equationun+1j = 2unj � un�1j + �2 �unj+1 � 2unj + unj�1� :4



As it turns out, we are not guaranteed that (14) holds for all values of � � 4t =4x . In fact, for certain �(all � > 1, as we shall see), we have kunj k � ku0jk ;and for those �, kunk diverges from u, even (especially!) as h! 0|that is, the di�erence scheme is unstable.In fact, for many wave problems (including all linear problems), given that a FD scheme is consistent (i.e.so that �̂ ! 0 as h! 0), stability is the necessary and su�cient condition for convergence (and vice versa).Heuristic Stability AnalysisLet us write a general time-dependent FDA in the formun+1 = G[un] ; (15)where G is some update operator (linear in our example problem), and u is a column vector containingsu�cient unknowns to write the problem in �rst-order-in-time form. For example, if we introduce a new,auxiliary set of unknowns, vnj , de�ned by vnj = un�1j ;then we can rewrite the di�erenced-wave-equation (8) asun+1j = 2unj � vnj + �2 �unj+1 � 2unj + unj�1� ; (16)vn+1j = unj ; (17)so with un = [un1 ; vn1 ; un2 ; vn2 ; � � � unJ ; vnJ ] ;(for example), (16-17) is clearly of the form (15). Equation (15) provides us with a compact way of describingthe solution of the FDA. Given initial data, u0, the solution after n time-steps isun =Gnu0 ; (18)where Gn is the n-th power of the matrix G. Now, assume that G has a complete set of orthonormaleigenvectors ek; k = 1; 2; � � � J ;and corresponding eigenvalues �k; k = 1; 2; � � � J ;so that Gek = �k ek; k = 1; 2; � � � J :We can then write the initial data as (spectral decomposition):u0 = JXk=1 c0k ek ;where the c0k are coe�cients. Using (18), the solution at time-step n is thenun = Gn JXk=1 c0k ek! (19)= JXk=1 c0k (�k)n ek : (20)5



Clearly, if the di�erence scheme is to be stable, we must havej�kj � 1 k = 1; 2; � � � J (21)(Note: �k will be complex in general, so j�j denotes complex modulus, j�j � p��?).Geometrically, then, the eigenvalues of the update matrix must lie on or within the unit circle (see Figure2).
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Figure 2: Schematic illustration of location in complex plane of eigenvalues of update matrix G. In thiscase, all eigenvalues (dots) lie on or within the unit circle, indicating that the corresponding �nite di�erencescheme is stable. Von-Neumann (Fourier) Stability AnalysisVon-Neumann stability analysis is based on the ideas sketched above, but additionally assumes that thedi�erence equation is linear with constant coe�cients, and that the boundary conditions are periodic. Wecan then use Fourier analysis, which has the same bene�ts in the discrete domain|di�erence operatorsin real-space variable x �! algebraic operations in Fourier-space variable k|as it does in the continuumSchematically, instead of writing un+1(x) = G[un(x)] ;we consider the Fourier-domain equivalent:~un+1(k) = ~G[~un(k)] ;where k is the wave-number (Fourier-space variable) and ~u and ~G are the Fourier-transforms of u and G,respectively. Speci�cally, we de�ne the Fourier-transformed grid function via~un(k) = 1p2� Z +1�1 e�ikx un(x) dx : (22)For a general di�erence scheme, we will �nd that~un+1(k) = ~G(�) ~un(k) ;6



where � � kh, and we will have to show that ~G(�)'s eigenvalues lie within or on the unit circle for allconceivable �. The appropriate range for � is �� � � � � ;since the shortest wavelength representable on a uniform mesh with spacing h is � = 2h (Nyquist limit),corresponding to a maximum wave number k = (2�)=� = ��=h.Let us consider the application of the Von-Neumann stability analysis to our current model problem. We�rst de�ne a (non-divided) di�erence operator D2 as follows:D2 u(x) = u(x+ h)� 2u(x) + u(x� h) :Then, suppressing the spatial grid index, we can write the �rst-order form of the di�erence equation (16-17)as un+1 = 2un � vn + �2D2 un ;vn+1 = un ;or � uv �n+1 = � 2 + �2D2 �11 0 � � uv �n : (23)In order to perform the Fourier transform, we need to know the action of D2 in Fourier-space. Using thetransform inverse to (22) we have u(x) = 1p2� Z +1�1 eikx ~u(k) dk ;so D2 u(x) = u(x+ h)� 2u(x) + u(x� h) = Z +1�1 �eikh � 2 + e�ikh� eikx ~u(k) dk= Z +1�1 �ei� � 2 + e�i�� eikx ~u(k) dk :Now consider the quantity �4 sin2(�=2):�4 sin2 �2 = �4�ei�=2 � e�i�=22i �2= �ei�=2 � e�i�=2�2 = ei� � 2 + e�i� ;so D2 u(x) = 1p2� Z +1�1 ��4 sin2 �2� eikx ~u(k) dk :In summary, under Fourier transformation, we haveu(x) �! ~u(k) ;D2u(x) �! �4 sin2 �2 ~u(k) :Using this result in the Fourier transform of (23), we see that we need to compute the eigenvalues of� 2� 4�2 sin2(�=2) �11 0 � ;7



and determine the conditions under which the eigenvalues lie on or within the unit circle. The characteristicequation (whose roots are the eigenvalues) is����� 2� 4�2 sin2(�=2)� � �11 �� ; ����� = 0or �2 +�4�2 sin2 �2 � 2��+ 1 = 0 :This equation has roots �(�) = �1� 2�2 sin2 �2�� �1� 2�2 sin2 �2�2 � 1!1=2 :We now need to �nd su�cient conditions for j�(�)j � 1;or equivalently j�(�)j2 � 1:To this end, we note that we can write�(�) = (1�Q) � ((1�Q)2 � 1)1=2 ;where the quantity, Q Q � 2�2 sin2 �2 ;is real and non-negative (Q � 0). There are now two cases to consider:1. (1�Q)2 � 1 � 0 ,2. (1�Q)2 � 1 > 0 .In the �rst case, ((1�Q)2 � 1)1=2 is purely imaginary, so we havej�(�)j2 = (1�Q)2 + (1� (1�Q)2) = 1 :In the second case, (1�Q)2 � 1 > 0 �! (1�Q)2 > 1 �! Q > 2, and then we have1�Q� ((1�Q2)� 1)1=2 < �1 ;so, in this case, our stability criterion will always be violated. We thus conclude that a necessary conditionfor Von-Neumann stability is (1�Q)2 � 1 � 0 �! (1�Q)2 � 1 �! Q � 2 :Since Q � 2� sin2(�=2) and sin2(�=2) � 1, we must therefore have� � 4t4x � 1 ;for stability of our scheme (8). This condition is often called the CFL condition|after Courant, Friedrichsand Lewy who derived it in 1928 (the ratio � = 4x =4t is also frequently called the Courant number). Inpractical terms, we must limit time-discretization scale , 4t , to values no larger than the space-discretizationscale, 4x . Furthermore, this type of instability has a \physical" interpretation, often summarized by thestatement the numerical domain of dependence of an explicit di�erence scheme must contain the physicaldomain of dependence. 8


