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The multi-grid method, which has made a considerable impact on both 
theoretical and applied numerical analysis in the past decade, is reviewed within 
the context of the solution of boundary value problems in 3 + 1 numerical 
relativity. The basic principles of operation of a multi-grid algorithm are dis- 
cussed and, with the aid of numerical experiments on exactly soluble model 
problems, the method is compared to more traditional techniques such as SOR. 
The results of application of the method to a set of axisymmetric problems for 
black hole initial data, previously determined by relaxation techniques, are 
presented. 

1. INTRODUCTION 

Boundary value problems are commonplace in numerical relativity. Elliptic 
partial differential equations are encountered in both the initial value 
problem and the evolution problem, the two stages in the 3 + 1 construc- 
tion of a space-time. In York's procedure for determining appropriate 
initial data for a space-time, all four quantities which are not freely 
specified are constrained by such equations. When the initial data is time 
evolved, as many as eight separate boundary value problems may have to 
be solved at each time step, depending on the particular evolution scheme 
employed. The complexity and nonlinearity of these equations for a generic 
space-time implies that they will have to be treated numerically. 

Most numerical relativists would agree that given a well-posed boun- 
dary value problem (BVP), determining an approximate numerical 
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solution is not, in principle, an extraordinarily difficult task. The 
straightforward combination of finite difference techniques and successive 
over-relaxation (SOR) seems to have served researchers well. Because of 
the "steady state" nature of elliptic problems, one can be almost certain 
that the end point of a converging relaxation process will be a reasonable 
approximation to the true solution. 

There are difficulties with this standard approach, however, which will 
become more pronounced as increasingly realistic space-times are construc- 
ted. In terms of computer resources, SOR is not an efficient way of solving 
difference systems. Anyone who has used the method knows that many 
passes over the grid may be required to produce an acceptable solution. 
Furthermore, the number of passes needed increases if the grid is made 
finer in an effort to produce a better approximation. Another difficulty with 
SOR lies in the fact that the user typically has very little idea about when 
to stop the iteration. If it is terminated too soon, the solution may not be 
very reliable; if it is continued too long, much computational work may be 
wasted computing corrections to the estimated solution, which are 
negligible in comparison to the unavoidable error which results from the 
discretization process. Finally, for many boundary value problems, given a 
difference approximation of fixed order, the grid spacing required to yield a 
solution of uniform accuracy may vary significantly from place to place in 
the solution domain. If the grid used is too coarse, accuracy will be com- 
promised. On the other hand, if a grid fine enough to adequately resolve all 
of the solution detail is used, work may again be wasted in regions of the 
domain where a coarser grid would suffice. Apart from a change of coor- 
dinates or the use of a nonuniform grid, there is little that can be done 
about this problem using standard relaxation techniques. 

One of the purposes of this paper is to review a relatively new method 
which goes a long way toward remedying all three of these difficulties. In 
applications from many fields of study, the multi-grid method [3 6], com- 
bined with adaptive discretization techniques has provided accurate, 
efficient solutions to boundary value problems. The method has recently 
been used [7] to reconstruct initial data for black hole space-times 
originally calculated by Bowen and York [2], and York and Piran [19]. 
The results of this study, which include comparisons with relaxation 
methods, are also presented here. Although knowledge of the formalism 
used in 3 + 1 numerical relativity is assumed for Sections 3 and 4, Sections 
2 and 3 are reasonably self-contained and may be of interest to others who 
have boundary value problems to solve. 
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2. THE MULTI-GRID METHOD 

The multi-grid method is a general numerical technique for solving 
continuous problems such as boundary value problems or functional 
integral equations. There are many separate aspects and extensions of the 
method and the study of multi-grid is an active area of numerical analysis 
research. The aim of this section is only to introduce the basic principles of 
a multi-grid solver which suffice to demonstrate why the method represents 
such an improvement over more well-known methods such as SOR. Much 
of the material below is originally due to A. Brandt and various 
collaborators [3 6]. 

Consider the following boundary value problem in d dimensions 

L [ u ( x ) ]  = f ( x )  xef2  ~ Nd 

B [ u ( x ) ]  = g (x )  x e  a~2 (1) 

where s is a subspace of d-dimensional (Euclidean) space with boundary 
Of 2, and L and B are differential operators corresponding to the interior 
and boundary equations for the unknown u(x).  Typically, L will be a 
second order, elliptic operator; B will usually be the identity operator, the 
normal derivative operator, or some combination of the two. Numerical 
schemes for solving such systems fall into two general classes: finite dif- 
ference methods [10] and finite element methods [11]. Here, only the 
application of the multi-grid method to finite difference equations will be 
considered, although the method may also be used in conjunction with 
finite element techniques. 

The first step in the approximate solution of the system (1) by finite 
difference methods involves the introduction of a grid (mesh) on f~. The 
points in f2 which the grid defines comprise the discrete domain f~h with 
boundary ~?~2 h. With the multi-grid method, it is almost always the case 
that g?h is defined by a uniform grid, that is, a mesh with constant spacing 
between lines in each of the coordinate directions. 

The next step in the solution of (1) involves the introduction of finite 
difference approximations L h, B h of the differential operators L and B. A 
properly constructed difference scheme results in a system of algebraic 
equations 

Lhu,~ = f h  

Bhuh = gh (2) 

Here, u h is to be thought of as n-component vector of unknowns, 
where n is the number of points in f2 h. fh and gh are n-component restric- 
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tions of the given functions f and g onto O h and Of 2 h, respectively. Assum- 
ing that this algebraic system can be solved, the success of the finite dif- 
ference scheme is dependent upon two main factors: the order of 
approximation of L h and B h and the density of grid points used. In theory, 
these factors should be chosen so as to provide a solution of acceptable 
accuracy with a minimum of computation. In most applications of the 
finite difference method, however, they are determined by more ad hoc con- 
siderations. 

There are many techniques which have been developed to solve the 
systems of algebraic equations resulting from the discretization of boun- 
dary values problems via finite difference techniques. Of these, only 
relaxation methods have been used extensively in numerical relativity [8, 9, 
12, 14, 15, 19]. Because of this, and because relaxation processes play a 
crucial role in the operation of a multi-grid algorithm, a brief review of 
relaxation methods is in order. 

It will be assumed, for simplicity, that both L and B are linear 
operators. In this case, the solution of the difference scheme satisfies a 
linear system which will be written as 

Ahu h = b h (3) 

It will also be assumed that the typical number of grid points in any par- 
ticular coordinate direction is roughly N ~ - n  l/d, where as before, n is the 
total number of grid points and d is the dimension of the problem. 
Relaxation methods for solving (3) belong to a general class called iterative 
methods. In these methods, a sequence of iterates u (k), k =  1, 2 ..... is 
generated from some initial estimate u (~ such that 

lim u (~) = u h (4) 
k ~ o o  

In practice, the iterative procedure is terminated for some finite k when it is 
felt that the solution estimate is "close enough" to u h. One possibility is to 
stop the process when the change in norm of two successive iterates is less 
than some prescribed amount. Another possibility is to compute, or 
approximately compute, at each iteration, the residual vector r (k) 

r~k)= A h u ~ k ) - - b  h (5) 

If the iteration converges, the residual vector tends to the zero vector and 
the process can be terminated when the norm of r (k) is less than some given 
tolerance. 

Relaxation method also fall into two general classes: point and line 
methods. A typical point relaxation scheme is the Gauss-Seidel (GS) 
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method. Let the n points of the grid be numbered in some fashion. Denote 
the value of the unknown at grid position i by u~ and the elements of the 
matrix A h by a~/. Then the GS iteration is given by 

/ t(k + 1) /./.,ll{k + 1) k) (6) - i  = -- -u"J + aij u( q- bi aii 
j 1 j = i + l  

Thus, each component ul k+ 1) is determined by the demand that it instan- 
taneously satisfy the ith equation using the most recently computed values 
of the other unknowns. Although this method is easy to implement and 
economical of memory storage, it usually converges very slowly, and is 
rarely used in practice. It typically requires O(N 2) iterations, or relaxation 
sweeps, to reduce the error in the approximation by an order of magnitude 
[16]. 

Historically, it was discovered that the convergence of GS could often 
be accelerated by modifying the iteration so that 

ulk+ i)= ~O,~}k + ~)+ (1 - ~)u l  k) (7) 

where fil k+ ~) is determined from the right hand side of (6) and co is called 
the relaxation parameter. For 0~<~o ~<2, (7) defines the well-known suc- 
cessive overrelaxation (SOR) iteration [16]. An optimal value of co usually 
must be determined by numerical experimentation. Given a good choice of 
co, the number of sweeps needed to solve the system may be reduced to 
O(N). 

As mentioned previously, the above two relaxation methods are 
properly referred to as point-GS and point-SOR. Line relaxation methods 
involve updating entire groups of unknowns, such as all of the unknowns 
along one grid line, at a time. These methods may converge somewhat 
faster for some problems and have been found to be applicable (i.e., con- 
vergence is guaranteed) for a larger class of problems [16]. 

Perhaps the most distressing feature of relaxation methods such as 
SOR is that they require an increasing amount of computational work per 
grid point as the grid is made finer. This shortcoming can be partially cir- 
cumvented by noticing that, as with any iterative procedure, a good initial 
estimate is highly desirable, and that such an estimate may be generated by 
first solving an equivalent difference problem on a coarser grid, s ~/. For 
example the grid lines of f~/~ might consist of every other line of f~h. Thus, 
the system 

LHblH : f H  

BHu H = gH 
(8) 
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is solved, and the coarse grid solution, u H, can then be interpolated to 
initialize the estimate, fib, of the fine grid unknown. That is 

t~ h := I I ~ u  H (9) 

where I1 L is a coarse-to-fine interpolation operator. In general, determining 
u H will require only a fraction of the computational work needed to 
calculate u h and the hope is that this additional work will be more than 
offset by work saved in the subsequent computation of u h. A logical exten- 
sion of this idea is to solve the discretized version of (1) on a sequence of 
increasingly finer grids, starting with as coarse a grid as is feasible. The suc- 
cessfulness of this technique depends on the degree of smoothness of the 
exact solution, but in any case, given that one wants to choose a good 
starting point for an iterative process, one is naturally led to the notion of 
using a related, but less costly, process. 

This idea of successive approximations using multiple grids is, as the 
reader might suspect, a part of many multi-grid applications. However, the 
feature which is most characteristic of multi-grid methods is the use of 
coarse grids to acce lera te  a fine grid solution process. 

To see how this is accomplished, again assume that L h is linear and 
that an estimate ffh of the fine grid unknown has been determined. Then the 
residual vector, r h, is given by 

r h = Lh~h  _ _ f h  (10) 

and (2) is solved by finding the correction, v h, which satisfies 

L h v  h = - - y  h 

(11) 
u h = ~h + v h 

Now, if there were some way of representing (11) accurately on a coarser 
grid, f2 h, then an estimate of v h could be obtained on f2 H and then inter- 
polated to f2 h in a fashion analogous to the determination of fih from the 
solution of coarse-grid difference equations. In general, (11) cannot be well 
represented on ~?H since r h may be highly oscillatory from point to point 
on f2 h. That is, r h may have high frequency components which could not be 
reproduced on a coarser grid. In fact, a highly oscillatory residual is just 
what one gets from a fine grid solution estimate which has been generated 
from interpolation of a coarse-grid solution. Thus, before (11) can be well 
approximated on ~2 ~, the residual must be smoothed, so as to remove high 
frequency components. Fortunately, for most problems, such smoothing 
may be accomplished simply by employing some form of relaxation. A 
simple example best illustrates this. 
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Consider the one-dimensional boundary value problem 

a2u(x) 
- A u ( x )  - Ox 2 - f ( x )  x e [-O, 1] 

u(0) = u(1 ) = 0 
(12) 

Discretize the problem by introducing the uniform grid 

s h =  { x i l x g = i h ;  i = 0,..., N} 

h N =  1 
(13) 

Denoting u(xi)  by ui, replace the second derivative with a secoond-order 
centered difference approximation [10] to get the set of difference 
equations 

- - H i +  l q - 2 u i - u i _  1 
h2 - f , .  i = l , . . . , N - 1  

U 0 = U N ~ 0  

(14) 

which may be written in the form 

Lhu h = f h  (15) 

Here, L h is an ( N -  1) x ( N -  1) matrix; u h and fh are ( N -  1)-component 
vectors. Now, consider the iteration for the solution of the above system 

u(k+ 1) = u{k) _ coD l(Lhu(k) _ f h )  
(16) 

= u (k) - coD-lr(~) 

where D is the main diagonal of L h and co is a parameter which will be 
chosen from the interval [0, 1]. Examine the effect of this relaxation 
method on the residual vector 

Using (16), this becomes 

r(g+ 1) = Lhu(k+ 1 )_  f h  (17) 

r(k + ~) = Gr(k) 
(18) 

G _ I _ ( . o L h D  I 

where I is the ( N -  1) x ( N -  1) identity matrix. Clearly 

r (k) = G(k)r m) (19) 
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where G (k) is the k th  power of the matrix G, and r (~ is the residual 
corresponding to the initial solution estimate. G has a complete set of 
orthogonal eigenvectors ~bm, m =  l,..., N - 1 ,  with corresponding eigen- 
values 2m SO r I~ may be expressed as 

N 1 

r ~~ ~ Cm~ m (20) 
m = l  

where the c are coefficients. It then follows from (19) that 

N - - 1  

r~k)= ~ Cm(/~m)k(~m (21) 
m = l  

Now, taking ~o = �89 the eigenvectors and eigenvalues of G are readily 
calculated 

~m = (sin(~mh), sin(2rcmh) ..... s i n ( N -  1)Ttmh) 
(22) 

2m = cos2(m~h/2) m = 1 ..... N -  1 

Now consider the eigenvalue corresponding to the lowest frequency eigen- 
vector 

21 = cos2(~h/2) = 1 - O(h 2) (23) 

For  small h, it is clear that the lowest frequency component of the residual 
will be damped very slowly by the iteration (16) resulting in the slow 
asymptotic convergence rate characteristic of relaxation methods. This is 
not the case, however, for the high-frequency components of the residual. 
Consider those components of r ~k) which could not be represented on a 
grid f2H with H = 2h. These components correspond to eigenvectors having 
wavelengths greater than 4h, that is with mh >~ �89 The corresponding eigen- 
values satisfy 

2m ~< cosZ(~z/4) = 0.5 (24) 

This result shows that the high-frequency residual components will be dam- 
ped very effectively by the iteration. A few relaxation sweeps will virtually 
eliminate them. Moreover, the rate at which the high-frequency com- 
ponents are reduced, which is called the smoothing rate, is independent of h. 
It can also be shown that the error vector 

e ~k~ = u h - u ~k) (25) 

is also smoothed by this relaxation process. 
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The smoothing of the residual and error vectors is a characteristic 
property of relaxation methods. However, the smoothing rate of a given 
method is dependent on the particular system of difference equations being 
solved and the determination of an appropriate scheme is crucial to the 
proper operation of a multi-grid algorithm [3].  

Assume that a relaxation scheme with satisfactory smoothing proper- 
ties has been determined for the system (2). Then after the application of a 
few relaxation sweeps on (2 h the high-frequency components of r h will be 
essentially eliminated. At this point, the system (11) may be accurately 
represented on the coarser grid f2 n since the desired correction, v h, will also 
be smooth. Thus, on f2 H, the following problem is solved 

L %  H = - I ~ r  h (26) 

Here, I x is a restriction operator which produces a coarse-grid function 
from a fine-grid function. Once v H has been determined, the approximation 
to the fine-grid unknown is updated as 

fih := ~h + I I ~  V H (27) 

I I ~  is an interpolation operator which, in practice, usually performs linear 
interpolation. The interpolation process may introduce high-frequency 
components in the residual, but these may be effectively eliminated with a 
few more relaxation sweeps on the fine grid. The process of using a coarse 
grid to compute an approximation to v h is called a coarse grid correction. 

Clearly, the same technique may be used to solve the coarse-grid 
system (26). Relaxation sweeps over f2 H, which update the approximation 
O H of v H are performed until the corresponding residual 

r H = I ~ r  h - L H o  H (28) 

is smoothed. Then, an even coarser grid may be used to compute a good 
approximation to the defect v H -  0 H. The process continues, using coarser 
and coarser grids until eventually, on the coarsest grid, a problem results, 
which can be solved very inexpensively without the aid of another grid. 
Once this problem has been solved, a descent toward the finest grid is 
initiated, using a series of interpolations of the various computed coarse 
grid corrections. Each interpolation is followed by a few more relaxation 
sweeps to remove high-frequency error components. This entire process is 
called a coarse-grid correction cycle. At the end of such a cycle, all com- 
ponents of r h will essentially have been damped by the same factor, and if 
the initial estimate of u h was good, the fine grid problem may be solved to 
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the desired tolerance. If an even better approximation of u h is desired, 
another coarse grid correction cycle may be performed. 

Even though attention has been restricted here to the case of linear dif- 
ference equations, the preceding description illustrates the key features of a 
generic multi-grid algorithm. There are three major ideas involved: (1) A 
sequence of grids with geometrically decreasing mesh sizes is employed. On 
each successive grid, the finite difference equivalent of (1) is solved to yield 
an initial estimate of the unknown on the next finer grid. (2) In the process 
of solving any system of equations on any particular grid, relaxation 
sweeps are performed solely for the purpose of smoothing the residual of 
the system. (An exception is made for the coarsest grid, where relaxation 
may be used to actually solve the system.) (3) Once the residual of a given 
system is sufficiently smooth, the problem of computing the necessary 
correction to the grid function is transferred to a coarse grid. 

Because the role of relaxation in the multi-grid method is to smooth 
the system, rather than solve it, the method does not suffer from the slow 
convergence rate characteristic of relaxation methods. As long as a 
relaxation scheme with a smoothing rate independent of the mesh size can 
be found, the actual number of relaxation sweeps applied on the finest grid 
in the course of solving the fine grid equations will also be independent of 
the mesh size. All of the additional work performed in the solution process 
will amount to the equivalent of a few additional sweeps on the fine grid. 
Thus, a properly constructed multi-grid solver can solve the system (3) 
using an amount of computational work per grid point which is indepen- 
dent of the density of grid points. That is, in comparison to the O(N) 
relaxation sweeps typically needed to solve (3) by SOR, multi-grid requires 
the equivalent of O(1) sweeps (typically 4-10 in two or more dimensions 
I-3]). 

The multi-grid method is equally applicable to nonlinear equations. 
The algorithm described above must be modified, but the same basic prin- 
ciples apply. In particular, most nonlinear difference systems are as readily 
smoothed by some form of relaxation as linear systems, so that nonlinear 
equations are also typically soluble by multi-grid in time proportional to 
the number of unknowns. Equations resulting from the discretization of 
elliptic systems have also been successfully solved using the method. 
Provided an appropriate form of relaxation is chosen, a multi-grid 
program can be fully parallelized to take advantage of any available 
parallel processing capability. There are many other attractive features of 
the multi-grid method; some of these will be mentioned in Section 5. 

At the present time the major drawback to the use of the multi-grid 
method would seem to be its implementation. Coding a multi-grid 
algorithm is a nontrivial task--especially when compared to the coding of 
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an SOR routine. General purpose multi-grid software is available [6], but 
its usefulness for the class of BVPs encountered in numerical relativity has 
yet to be investigated. The next section is intended to give the interested 
reader some ideas regarding the construction of a simple, yet representative 
multi-grid program. The description of an actual implementation also has 
the benefit of clarifying the various multi-grid processes which have been 
described in a somewhat abstract fashion thus far. 

3. A S I M P L E  M U L T I - G R I D  E X A M P L E  

Again for simplicity, consider the one-dimensional BVP described in 
the previous section: 

02u 
- & 2  =f(x)  x~ [0, 1] 

(12) 
u(0)=u(1)=0 

As before, the discrete domain is a uniform grid 

s h = { x i l x i  = ih; i = 0,..., N }  

h N =  1 
(13) 

and the second-order centered difference approximation is employed, 
resulting in the set of algebraic equations 

h - 2 ( -  u/+ 1 + 2 u i -  ut_ j) = f i  

b/0 = U N = 0  

i = 1  ..... N - 1  
(14) 

The solution of these equations is an approximation to the solution of (l)  
whose error is O(h 2) as h ~ 0, for f sufficiently smooth. 

In what follows, the reader should be aware that use of the multi-grid 
method for the solution of such a simple BVP is not being advocated. This 
type of problem--if it cannot be treated analytically--will probably be 
soluble by any one of a number of commonly available ODE solvers. In 
addition, (14) is a tridiagonal system which can be solved with O ( N )  
calculations [10]. This does not imply, however, that the multi-grid 
solution of this problem is valueless. The program described below already 
has many of the algorithmic and data structuring complexities of a more 
realistic application. At the same time, exact solutions of (12) are easily 
constructed for testing purposes, and because the problem is one-dimen- 
sional, computer resource constraints are not really a concern. More 
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importantly, this type of exercise provides the opportunity to gain a feeling 
for the operation of a multi-grid process while minimizing the effects of 
programming difficulties induced by complexities in the BVP itself. 

The task of programming a multi-grid algorithm is considerably sim- 
plified if proper attention is paid to the organization of the data objects 
which the program is to manipulate. The basic data structure used in the 
current application is depicted in the form of pseudo-code in Fig. la. It 
consists of an aggregate of substructures each of which contains the data 
objects associated with a specific level of discretization. The ease of 
implementation of such a structure varies from language to language--the 
important thing is that at the top levels of the program, some facility 
should exist for communicating arbitrary data objects from arbitrary grids 
to lower level routines which will perform the actual multi-grid processes. 
As a final point regarding the data structure, it is implicit in the following 
that all grids cover the unit interval and that the relation nj = 2nj_ 1 holds 
for all j > 1. 

Given the main data structure, the highest level routine is very 
straightforward and is described in the form of pseudo-code in Fig. lb. 
Four parameters are supplied to the main routine: ngrid and ncycle deter- 
mine the number of levels of discretization to be employed and the number 
of coarse grid corrections to be made at each level, respectively; the roles of 
p and q will be explained below. 

On the coarsest grid, the components of the unknown grid function 
are (arbitrarily) initialized to (Y--on subsequent levels the initial estimate is 
cubically interpolated from the final solution on the previous level. The use 
of cubic interpolation is dictated by the known smoothness of solutions to 
(12) for smooth f - - in  general the appropriate degree of interpolation is a 
function of both the order of the differential equation and the order of the 
difference approximation [3]. Polynomial interpolation is a very common 
and well-studied numerical operation (see for example [1]) and the 
"Cubically-Interpolate" routine is easily written. 

The recursive routine "Solve," given in pseudo-code in Fig. lc is the 
heart of the multi-grid solver. The parameters j and m indicate which 
problem is being solved and on which grid it is being solved, respectively. 
Thus if m <j ,  then "Solve" is performing a coarse grid correction. On the 
coarsest grid, relaxation sweeps are always used to solve the system to 
some tolerance cl. In the runs described below, where there was only one 
equation to be solved on the coarsest level, a single relaxation sweep would 
always solve the system, but in general, many sweeps can be performed on 
the coarsest level, using a negligible portion of the total computational 
effort. 

For m > 1, the role of relaxation sweeps is to smooth the residuals, 



m a i n _ s t r u c t u r e  IS 

n g r t d  : INTEGER 

g r t d j  ; J := l . . . n g r i d  : STRUCTURE 

Fig. 1. 

g r l d j  IS 

n j  : INTEGER 

h j  : REAL 

u j [ O . . . n j ]  : REAL ARRAY 

r h s j [ O m . . n j ]  : REAL ARRAY 

r j [ O . . . n j ] l  : REAL ARRAY 

{number of grids} 

{number of g r id  po in ts }  

{g r id  spacing} 

{unknown vector}  

{ r i gh t  hand side vector}  

{ residual  vector}  

Legend: 

PSEUDO-RESERVED WORDS 

P r o c e d u r e s  (may be n u l l  v a l u e d ,  a r r a y  v a l u e d ,  e t c . )  

i d e n t i f i e r s  

{comments} 

:= means " i s  a s s i g n e d  the  v a l u e "  

(d) 

Pseudo-code ~ r m  of the basic multi-grid algorithm described in the text. 

(c) 

(a) 

PROCEDURE Ma in  m c J ( n g r l d , n c y c l e , p , q )  

C r e a t e  m a | n _ s t r u c t u r e ( n g r J d )  

DO J := 1 . . . n g r l d  

I n l t l a 1 | z e ( g r l d j )  

IF j = I 

THEN 

u j  := 0 

ELSE 

u j  := C u b l c a l l y _ I n t e r p o l a t e ( u j _ f )  

END I F  

DO n c y c l e  TIMES 

u j  := S o l v e ( j , J , p , q )  

END DO 

END DO 

END PROCEDURE 

PROCEDURE S o l v e ( j , m , p , q )  

IF  m = I 

THEN 

DO ( e := R e l a x ( m )  ) UNTIL ( e ~ c I ) END DO 

ELSE 

I)0 p TIMES ( e := R e l a x ( m )  ) END DO 

r m := R e s | d u a l s ( m )  

rhSm_ / := R e s t r i c i ( - r m )  

urn_ I := 0 
S o I v e ( j , m - l , p ' , q )  

u m := u m + L i n e a r l y _ l n t e r p o l a t e ( u  m_1) 

DO q TIMES ( e := R e l a x ( m )  ) END DO 

END IF  

END PROCEDURE 
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and, as discussed previously, if a good form of relaxation has been chosen, 
adequate smoothing can be accomplished at any level with a constant 
number of sweeps. Thus, p Gauss-Seidel (point-GS) relaxation sweeps are 
performed by the routine "Relax" before the coarse grid correction is star- 
ted. The residual vector rm is calculated and then its negative is injected 
into the right hand side vector, r h s  m _  1 of the coarse grid. The "Restrict" 
routine coded here was the simplest possible--the components of rhs,~ 1 

are every second component of - r  m. This is an entirely adequate 
procedure for the simple problem solved here; other problems may require 
more sophisticated transferring schemes [3].  Following the residual injec- 
tion, the vector Um 1, which will eventually contain the coarse grid correc= 
tion, is zeroed and then "Solve" is recursively invoked with the same j, but 
with m decremented by one. When this invocation of "Solve" returns, the 
coarse grid correction is complete and the solution estimate um is updated 
by addition of the correction, which is linearly interpolated from Urn_ 1" 

Again, the routine "Linearly-Interpolate" is very easy to write in this case. 
Following the coarse grid correction, q additional point-GS sweeps are per- 
formed, and the routine terminates with Um containing either an estimate of 
the solution of (12) on level j if m = j  or a smoothed correction to a level 
m + 1 unknown if m < j. As with the data structure for the program, the 
ability to implement "Solve" recursively is language dependent; however, 
an iterative version may also be coded without too much trouble. 

The results obtained from a FORTRAN-66 version of this program as 
well as an SOR routine for a problem with 

f =  _e~((1 _ ~2) sin(nx) + 2n cos0zx)) (29) 

corresponding to an exact solution 

u = e x sin(nx) (30) 

are summarized in Fig. 2. The systems solved ranged in size from N = 2 to 
N =  1024. The left y axis shows the amount  of relaxation work WR 
invested per grid point to solve the system. For  the SOR method, this 
represents virtually all the computational work; for the multi-grid method, 
at least 70 % of the total work is invested in relaxation (except for very 
small N). The dotted line shows a measure of the average relative error 

Crj = IHexac t j  - -  U c a l c . f l / u  . . . .  tj 

at each level as labeled on the right axis. For  all MG runs p and q were 
both 3 and ncycle was 1. 

An examination of the slope of the dotted line shows that the error is 
going to 0 slightly faster than h 2, which suggests that the single cycle of the 
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Fig. 2. Comparison of the solution efficiencies of SOR and multi-grid solvers. 
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MG program solves each problem to the level of inherent discretization 
error. The ability of the method to solve the difference equations with con- 
stant relaxation work per grid point is evident, as is the linear increase in 
W e N  -~ for the SOR method. It should be remarked that because of the 
simple nature of (12) and the discretization procedure, the optimal 
relaxation parameter can be exactly calculated [16] 

( / ) o p t  = 2(1 + sin(~/N)) -~ (31) 

and this value was used in the SOR routine. In addition, the initial estimate 
given to the SOR program was the same cubically interpolated function 
that the corresponding MG routine began with, and the SOR process was 
terminated as soon as the norm of the residual was less than the norm of 
the residual at the end of the MG run. 

The reader might suspect that even through the SOR routine takes 
more sweeps to converge, it might be terminated early without a 
corresponding decrease in accuracy. That this is not the case is suggested 
by Fig. 3 which shows a plot of the absolute value of the SOR residual vec- 
tor for a N =  256 system, throughout the solution process. It would seem 
that stopping the solution early is likely to result in a solution whose 
accuracy is good in one part of the domain and questionable, at best, in the 
other. 
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Fig. 3. Effect of SOR solver on residual vector. 

Finally, Fig. 4 shows a similar plot of the residuals generated in the 
course of an MG solution of the N =  64 problem. The residuals after any 
relaxation sweep on any level are displayed as solid lines. The spacing 
between any residual vector and its predecessor reflects the amount of 
work, in units of a N=64  relaxation pass, performed to produce the 
residual. Thus, for example, the dark strip around 6 on the right-hand axis 
represents all of the relaxation work expended on the three coarsest grids. 
The dotted line shows the SOR residual after 12 SOR sweeps. The con- 
trasting nature of the solution processes is quite evident. 

4. A SPECIFIC BOUNDARY VALUE PROBLEM 

As mentioned in the introduction, the determination of initial data for 
a space-time via York's procedure [13, 17-19] is one part of numerical 
relativity which requires the solution of elliptic boundary value problems. 
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Effect of multi-grid solver on residual vector. 

We have used the multi-grid method to determine a portion of the initial 
data for space-times containing boosted and spinning black holes. This 
data was originally constructed by Bowen and York [3]  and York and 
Piran [19]. The current work relies heavily on some of the results in these 
papers which will be reviewed briefly below. Our approach to the dis- 
cretization of the Hamiltonian constraint, which differs from that used in 
the previous work, will also be described. Familiarity with York's for- 
mulation of the initial value problem is assumed for this section. 

In order to simplify the solution of the initial value problem, Bowen 
and York restricted attention to maximal, conformally flat, vacuum hyper- 
surfaces. Thus, the mean extrinsic curvature of the slices vanishes 

Tr K = go.K U = 0 (32) 

The 3-metric is of the form 

g ~ = 0 %  (33) 

8 4 2 / '  8 / ' 8 - 4  
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where fu is a flat metric, and ~ is the conformal factor. The energy and 
momentum densities on the slices vanish, and the slices are also assumed to 
be asymptotically fiat. By further demanding that the conformally scaled 
extrinsic curvature, K 'j 

~o = 01OKiJ (34) 

where K U is the physical extrinsic curvature, be purely longitudinal, the 
momentum constraints were reduced to 

Dj/~ ~ = 0 (35) 

Dj is the covariant derivative compatible with the conformal metric. Of the 
many possible solutions of the above equations, Bowen and York chose 

3 
R + = ~ [Pin] + Pjni + (fij - ninj) Pknk] 

3a 2 
-T- ~r 4 [ Pinj + Pjni + ( f , j -  5ninj) Pknk] (36) 

~2ij = -~ [e.t, itJtnknj + e.kjtfnkni] (37) 

Here, r is the Euclidean distance from some arbitrary point on the hyper- 
surface, n i is the unit normal to a r = constant 2-sphere, pi and ji are 
constant vectors, %k is the permutation tensor, and a is a free parameter 
having Units of length. 

With the simplifying assumptions outlined above, the Hamiltonian 
constraint for the conformal factor reduces to 

KVKij 
AO + - - - ~ =  0 (38) 

with/~ij given by (36) or (37). Asymptotic flatness of the slices provides the 
boundary condition for 

lim ~k=l+O(!) (39) 
r - -*  o o  

Equations (38) and (39) do not yield a well posed boundary value problem 
for ~ due to the irregular behavior of the ~2~ at r = 0. To deal with this 
problem, Bowen and York demanded that the slices be isometric with 
respect to a mapping through a 2-sphere of radius a. The/(U's of (36) and 
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(37) are compatible with this requirement. The isometry condition yields 
an inner boundary condition for 

00+~ r=o ~ r  = 0 (40) 

Physically, the isometric condition leads to the identification of the regions 
0 < r ~< a, r~> a as two separate, but identical asymptotically flat sheets 
joined in a smooth fashion by a "throat" at r = a. Because of the similarity 
to the case of the Schwarzschild black hole at a moment of time symmetry, 
Bowen and York concluded that their initial data represented time instants 
of black holes. Furthermore, it was shown that a slice with k ~ given by 
(36) or (37) was a time instant of a space-time having linear momentum pi 
or angular momentum Ji, repectively. 

Equation (38) for r>>a, together with the boundary conditions (39) 
and (40) constitute a well-posed boundary value problem for ~ which can 
be solved numerically by finite difference techniques. Introducing spherical 
polar coordinates (r, 0, 4b) on the slice, the flat metric is 

f j =  diag(1, r 2, r 2 sin 2 0) (41) 

The explicit form of the /s163 term in (38) is easily calculated from (36) 
and (37). For the boosted hole 

H~ = R0K 0. 

9 p 2 [ (  a2"~ 2 ( a4)] 
--2 r 4 1-T-7~ ) +2cos 2 1-}-~22+7 (42) 

p =_ ( f i j p i p j ) l / 2  

and for the spinning hole 

18 j2 sin 2 0 
H s - r6 

(43) 
J==_ ( f i j j i j j )  1/2 

H + and Hs have no ~b dependence (the space-times are axisymmetric), and 
are reflection symmetric about 0 = ~/2. Thus, it suffices to solve the boun- 
dary value problem on the domain r ~> a, 0 ~ 0 ~< r~/2. The symmetry con- 
ditions provide the additional boundary conditions for Vs 

0qs ~ = 0 (44) 
00 = ~/'2.o 
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The unboundedness of the domain in the radial direction presents a 
problem numerically, since any computational domain is necessarily finite. 
York and Piran replaced (39) with a boundary condition, derived from the 
known asymptotic behavior of @, which could be imposed at a finite 
radius. A different approach is used here [20] which involves the introduc- 
tion of a new radial coordinate: 

a 
s -  1 - -  (45) 

f 

Thus, the interval a ~< r < oo is mapped onto 0 ~< s < 1. This transformation 
proved to be quite advantageous from a numerical point of view. 

The Laplacian of ~b in (s, 0) coordinates is 

( sin 0 ~--~k) (46) 
~ ,_ (1 - s )4a:O ( l - s ) :  

a2 OS 2 t -~-~lln-O 00 

At 0 = 0, the second term in the above is singular. Accordingly, it is 
replaced by 2(1--s)2/a2"02~/~02 which follows from an application of 
L'Hopital's rule and the boundary condition (44). In terms of the s coor- 
dinate, the inner boundary condition (40) becomes 

8r ,=o ~-s = 1 (47) 

and the outer boundary condition is simply 

O]s=l= 1 (48) 

A uniform grid is now introduced on the domain of the boundary 
value problem as illustrated in Fig. 5. The points marked with x in the 
diagram, which comprise the set 

{(si, Oi)lsi=iAs, i = 0 ,  1 ..... n s - 1 ;  

Oj=jAO, j = 0 , 1  ..... no- l}  

ns = (As)-1 

no = rc(2A0) -1 (49) 

are the points at which a difference analog of the interior equations is to be 
satisfied. The points marked with [], which lie outside of the continuous 
domain, are introduced so that centered difference approximations may be 
employed throughout the domain and on the boundaries. Finally, the 
circled points are locations where the value of ~k is known. 
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Fig. 5. Uniform grid for discretization of the BVP described in the text. 

Using (46), and replacing all derivatives by conservative second order  
differences [10] ,  the discrete version of (38) is 

(1 - s i )  4 
a2As ;  [~ i+  1, j -20i ,y + ~9i l , j ]  

+ H~j (I--si)2 [Cj ( O i , j + l - - O i , j ) - - C j  (Oi,j--Oi,  j 1 ) I - J -  = 0  

+ a 2 AO 2 ~8~i,y 

where i = 0, 1 ..... n, - 1, j = 0,..., no 

l sin Oj+ 1/2 
C + =  sinOy ' j = l , . . . , n  o 

,l 
2, j = 0  

(50) 

where, for example, #Jij= ~9(iAs, jAO). The boundary  condit ions (44) and 
(47) are discretized in the same fashion 
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~r 1--0, i=O, . . . ,ns - -1  
2AO 

f f l  i, n o  + I - -  f f /  i, n o  1 
= O~ 

2AO 

O"J-O2As 1j ~ - - ~ = 0 ,  

i = 0  ..... n s - 1  (51) 

j = 0,..., n o 

Finally, (48) simply becomes 
ffJ,~,j : 1 (52) 

The last five expressions define the system of nonlinear equations whose 
solution via the multi-grid method is discussed in the next section. 

5. N U M E R I C A L  E X P E R I M E N T S  A N D  RESULTS 

In order to evaluate the performance of the multi-grid method with 
respect to relaxation methods, a series of numerical experiments using a 
modified version of the system of equations described in the previous sec- 
tion were performed. York and Bowen had discovered that if the following 
form for K~JKij is used in (38) 

6p2 {1 a2"~2 
HMODE L - - - -  (53) -- r 4 \ - - 7 2 / /  

then the conformal factor is given by 

2E 6a 2 2aZE a4~1/4 
0MODEL= 1 + - - + - -  

r r 2 + (54) 

E = (p2 + 4a2)1/2 

Here, E is the ADM energy of the space-time. It was originally intended to 
solve the system given by equations (50)-(52) using both the multi-grid 
and relaxation methods. However, it was found that the inner boundary 
condition (47) makes the system of difference equations nondefinite. That 
is, the system has both positive and negative eigenvalues. When relaxation 
sweeps are applied to such a system, residual components corresponding to 
the negative eigenvalues tend to be magnified so that convergence to a 
solution is not achieved. For this reason, the difference equations were 
modified by specifying values for the unknowns on the inner boundary 
(Dirichlet conditions) to restore definiteness. 
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Table L Multi-Grid Results for Modified Test Problem 

835 

Grid n n Time Storage I[ r II 
(msec) (kbytes) 

9 x 9 7.0 80 25 8.7 ( ( - 4 )  
17 x 17 7.0 145 40 3.1 ( - 4 )  
33 x 33 7.5 390 90 4.4 ( - 5 )  
65 x 65 8.5 1540 260 9.4 ( - 6 )  

127 x 127 7.5 5200 960 1.4 ( - 6 )  

Tables I, II, and III list the results of applying the multi-grid, point- 
SOR and line-SOR methods, respectively, to test problems of various sizes, 
all with a = 1 and P = 2. (For the last method, lines of constant radial coor- 
dinate were used.) All routines were coded in FORTRAN-66 using 8-byte 
variables, and compiled with the IBM H Optimizing compiler. The tests 
were performed on an Amdahl 470 V/8 CPU, operating under the MTS 
time-sharing system. The tables list the size of the grid, the number of 
relaxation sweeps, n~, required to solve the system, the CPU time and 
memory storage required, the L~ norm of the residual when the solution 
process was stopped, and for the relaxation methods, the over relaxation 
parameter which was determined by numerical experiment. Although the 
multi-grid algorithm used more time for the smaller grids, it is clearly 
superior for the larger problems. Notice that the constancy of nR in Table I, 
as well as the timing figures demonstrate the ability of the multi-grid 
method to solve the nonlinear difference equations with an amount  of work 
which is proportional to the number of grid points. It should be noted that 
the line-SOR method failed to converge on the 65 x 65 grid for any co > 1, 
and converged so slowly for ~o = 1 that it was terminated before a solution 
with the required accuracy had been attained. Finally, although the multi- 
grid method used about four times as much storage as the relaxation 

Table II. Point-SOR Results for Modified Test Problem 

Grid ~o n R Time Storage tl r II 
(msec) (kbytes) 

9 x 9 1.55 l0 20 1 5.6 ( - 4 )  
17 x 17 1.60 10 64 4 2.8 ( - 4 )  
33 x 33 1.60 48 1170 16 4.3 ( - 5 )  
65 x 65 1.60 170 17000 64 9.4 ( - 6 )  
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Table III. Line-SOR Results for Modified Test Problem 

Grid ~o nR Time Storage [[rll 
(msec) (kbytes) 

9 x 9 1.35 8 16 1 2.9 (-4)  
17 x 17 1.45 9 71 4 3.1 ( -4)  
33 x 33 1.45 38 1100 16 4.4 ( -5)  
65 x 65 1.00 1-100] [11300] 64 [1.8 ( -5)]  

methods, at least 40 % of the storage was unnecessary and could have been 
eliminated at the expense of a 5-10 % increase in execution time. 

Before proceeding to a discussion of the multi-grid solution of the 
actual difference equations described in the previous section, a few com- 
ments about  the specific algorithm used should be made. Because of the 
nonlinearity of the boundary value problem, a multi-grid variant called the 
full approximation scheme (FAS) [-3] was used. In an FAS algorithm, 
coarse grid corrections to fine grid unknowns are not calculated explicitly 
as in the procedure discussed in Sections 2 and 3. Instead, the basic grid 
function which is manipulated on any level during a coarse grid correction 
represents a full approximation to the finest level unknown. One attractive 
feature of the FAS scheme, as well as other multi-grid methods, is that 
estimates of the l o c a l  t r u n c a t i o n  e r r o r  of the approximate solution can be 
routinely generated. Given the differential operator  L of (1) and a 
corresponding difference operator  L h, the local truncation error, rh, defined 
on O h is given by 

zh = L h i h  u _ i h L u  (55) 

where u is the exact solution of (1) and I h restricts a function on f2 to f2 h. 
The value of rh at any point of f2 h provides a measure of how well the dif- 
ference operator approximates the differential operator at that point. 

The ability to estimate the local truncation error provides a way of 
defining natural terminating criteria for the multi-grid algorithm. The basic 
rule is simple and logical: once the size of the residual is comparable to the 
size of the estimated truncation error, the problem is essentially solved, and 
any additional computat ional  work expended on the solution may well be 
wasted. 

Another place where truncation error estimation is useful is in the 
implementation of adaptive discretization techniques [3-6] .  The basic aim 
of such methods is to provide uniformly accurate solutions with a 
minimum of wasted work by introducing fine grids only in those areas of 



An Introduction to the Multi-Grid Method for Numerical Relativists 837 

the problem domain where they are really needed. The multi-grid program 
used to obtain the results described below accepted a parameter, re, which 
represented an upper bound on the desired level of truncation error. When 
the submitted problem had been solved on some grid (2 h, a local truncation 
error estimate zh was generated. This estimate was then examined to deter- 
mine if there was some region in Qh where rh consistently exceeded rc. If 
such a region was found, a finer grid was introduced, only in that region. 
Finer and finer grids were introduced only where they were needed until 
the estimated truncation error was less than ~, everywhere. 

Because of the nondefiniteness of the difference equations (50)-(52), 
systems on the coarsest grid could not be solved by relaxation. Therefore, a 
scheme which combined an n-dimensional version of Newton's method 
with a direct (i.e., Gaussian elimination) solution of the resulting linear 
systems was employed. The basic relaxation scheme used in the algorithm 
was line-GS with the lines of unknowns having constant radial coordinate. 
Point-GS could not be effectively used, since the coupling between 
unknowns in the angular direction is much greater than that in the radial 
direction, and point methods smooth predominantly along directions of 
strong coupling. Finally, the boundary equations (51) were treated 
according to Brandt's suggestions for non-Dirichlet conditions [4]. That is, 
a process which aimed only to smooth the boundary residuals, indepen- 
dently of the interior relaxation, was employed. 

To test the operation of the adaptive multi-grid algorithm, two 
additional sets of numerical experiments were performed using the actual 
difference equations (50) (52) and the model H of (53). The results of a 
series of test runs with fixed momentum, P = 4 (a = 1), and varying values 
of rc are listed in Table IV. The first column lists the supplied values of re. 
The next six columns show the extent of the various grids used for each 
problem. The number heading each column is the maimum number of grid 
points available in the radial direction at each level; the numbers beneath 
indicate the position of the outer boundary of the corresponding grid for 

Table IV. Effect of  V a r y i n g  T r u n c a t i o n  E r r o r  P a r a m e t e r  

Exten t  of  g r ids  E r r o r  ( % )  

T ime  

r c 9 17 33 65 129 257 (msec)  [I'FI ~ I1' rl, 

10 3 9 . . . .  360 .707 .698 

10 4 9 17 21 - -  - -  1130 .178 .170 

10 -5  9 17 33 53 73 - -  3200 .041 .036 

10 6 9 17 33 65 113 201 6900 .009 .007 
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each run. The execution times listed are for the solution of the entire 
problem, which in each case began on a 5 • 5 grid. Because the test 
problem is spherically symmetric, only four angular zones were used at 
each level. In the final two columns, the relative percentage errors in the 
computed solutions, calculated as 

•/exact ~/computed 
i,i - i,~ (56) 

I//iej act 

using both La and L~  norms are listed. Notice how the error in the com- 
puted solution uniformly decreases as the convergence criteria become 
more stringent, even though the entire domain is not being discretized in a 
uniform fashion. 

Table V shows the results of a series of runs in which vc was held con- 
stant at 10 -5 and the momentum was varied. The format of this table is the 
same as Table IV. The execution time needed increases with momentum, 
but remains essentially linear in the total number of grid points used at the 
various finest levels. The error in the computed solution as a function of 
momentum is quite constant, varying from 0.04% to 0.12% in the L1 
norm. Again, this demonstrates the effectiveness of the adaptive procedure 
in producing solutions of uniform accuracy with a minimum of wasted 
work. 

Table VI displays results obtained with the multi-grid algorithm for 
the case of the boosted black holes, for both Hff and Hff.  The problem 
was solved for a series of linear momentum values chosen to correspond 

Table V. Multi-Grid Test Results for Varying M o m e n t u m  

Extent of grids Error (%) 
Time 

P 9 17 33 65 129 (msec) b['[I ~ II'lll 

2 9 17 25 45 - -  2000 .058 .052 
4 9 17 33 53 73 3225 .041 .036 
6 9 17 33 57 93 3700 .081 .062 
8 9 17 33 57 101 3750 .132 .090 

10 9 17 33 57 105 3800 .196 .121 
12 9 17 33 65 109 4200 .081 .046 
14 9 17 33 65 113 4300 .106 .053 
16 9 17 33 65 113 4500 .133 .062 
18 9 17 33 65 117 4400 .165 .070 
20 9 17 33 65 117 4850 .194 .078 
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Table VI. Total Energy Versus 
M o m e n t u m  for Boosted Holes 

P E(H~) E(H~) 

1.0 2.35 2.33 
2.5 3.59 3.55 
5.0 6.15 6.09 
7.5 8.87 8.81 

10.0 11.6 11.5 
12.5 14.4 14.3 
15,0 17.2 17.1 
! 7.5 20.0 20.0 

with those used by Piran in his work on the problem. Again, E is the ADM 
energy, which was calculated from the expression 

16~r r>~, 07 dv+~ tpsinOdO (57) 

via numerical integration. Judging from the results for the test problem, the 
energies are probably accurate to within a percent or two. The results agree 
with those obtained previously to within 2 %. All of the solutions were very 
nearly spherically symmetric. 

Another series of runs was performed to determine the conformal fac- 
tor for the spinning black holes, using expression (43). The calculated total 
energy as a function of momentum appears in the second column of 
Table VII. The range of J values used was again chosen to facilitate com- 
parison with Piran's results. The computed solutions for large values of J 

Table VII. Angular  M o m e n t u m  and Energy Parameters for Spinning Holes 

J E MAH M(J, MAIl) AE (%) 

1.0 2.05 2.03 2.05 0 
3,0 2.33 2.23 2,33 0 

10.0 3.48 3.03 3.45 1 
30.0 5.76 4.67 5.67 2 

100.0 10.4 8.07 10.2 2 
300.0 18.0 13,7 17.5 3 

1000.0 32.9 24.7 31.9 3 
10000.0 104. 77.6 101. 3 
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show significant departure from spherical symmetry near the inner boun- 
dary. Figure 6 shows a plot of ~ for J =  1000, in the region 1 ~< r ~< ~ ,  
0 <~ 0 <<. n/2. The asymmetry near r = 1 is clearly visible. 

Following York and Piran, the values of three parameters character- 
izing the rotating black holes are plotted in Fig. 7. The quantities 

~l =- J/E2 (58) 

and 
eu - J/M2(MAH, J) (59) 

are analogous to the usual Kerr angular momentum parameter which 
tends to unity for an extreme Kerr hole. M(MAH, J) is defined as 

M(MAH, J ) = ( M ~ I ~ + ~ )  1/2 (60) 

4 

Q 

Fig. 6. Conformal factor of spinning black hole (J= 1000). 

~.0 
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Fig. 7. Angular momentum and energy parameters for spinning holes. 

where MAH is related to the area of the apparent horizon of the hole, A,~H 
by 

/ A AH\ I/2 

The apparent horizon for the current data is located at r = a, and AAH is 
readily calculated once r has been determined. Assuming that the new 
black holes are asymptotically Kerr and that they do not radiate away 
angular momentum, York and Piran conclude that the quantity 

A E =  E -  M(MAH, J) (62) 

is an upper limit on the amount of gravitational radiation present in the 
space-time. The last three columns of Table VII show the computed values 
of MAH, M(MAH, J), and E for the various values of J. 

The results show in Figure 7 and Table VII differ from those found by 
York and Piran. They found et and eu tending to limiting values of about 
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0.33 and 0.55, respectively, while Figure 7 suggests asymptotic limits of 
approximately 0.92 and 0.98. An examination of the code for their solution 
of the Hamiltonian constraint (for the rotating holes only) suggests that 
the factor of 1/8 appearing in the nonlinear term of (38) may have been 
omitted. Because Hs is quadratic in J, the values of J supplied to the code 
probably corresponded to actual values larger by a factor of x/-8. Among 
other things, this implies that the asymptotic limit for ~ should be mul- 
tiplied by x/8 which yields a value of 0.93, in good agreement with the 
current result. 

Finally, it would appear that d E  is considerably smaller for large 
values of J than calculated previously. Here, the maximum value is 3 % of 
AE for the three configurations of greatest angular momentum; Piran and 
York had obtained a figure of about 25 % for J = 1000. This would seem to 
indicate that this family of black holes may radiate less than had been 
expected, although no firm conclusions can be drawn without actually 
evolving the initial data. 

Although the multi-grid algorithm performed quite well in solving the 
Hamiltonian constraint for the new black hole families, the performance 
appeared to be suboptimal. Three, rather than one, coarse grid correction 
cycles were usually needed to solve a problem to the level of truncation 
error. This behavior seemed related to the nondefiniteness of the problem 
induced by the boundary condition (47). It is probable that the relaxation 
scheme used, or the treatment of the boundary conditions, or a com- 
bination of both caused excessive amplification of the lowest frequency 
residual components, thus degrading the overall convergence. It is quite 
possible that a different smoothing technique would remedy this problem; 
this area of the analysis needs additional research. 

6. CONCLUSIONS 

It seems fairly clear that the multi-grid method should be seriously 
considered by numerical relativists, especially when the solution of elliptic 
equations is anticipated to consume an undue amount of computer resour- 
ces. The combination of generality, adaptability, and efficiency is unique to 
multi-grid among current methods for solving boundary value problems. It 
is not an overstatement to say that for large problems a multi-grid solution 
will be orders of magnitude less costly than a solution obtained by SOR. 
Thus, making the SOR/multi-grid transition is probably as significant as 
moving from a VAX to a Cray. 
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