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We present the results from a numerical investigation of dynamics in the head-on collision of
mini-boson stars. We solve the Einstein-Klein-Gordon equations in axisymmetry with mini-boson
stars being represented by the massive complex scalar field. Choosing to study the situations where
gravity is strong but black holes do not form, we find the existence of the two distinct regimes
(which we call solitonic and merger regimes) with significantly different dynamical properties. In
the solitonic regime, two mini-boson stars that collide head-on do not merge, but rather “pass
through” each other exhibiting the solitonic nature. The internal structure of the massive complex
scalar fields that are hidden for an isolated mini-boson star manifest itself during the collision as an
interference pattern in the spacetime geometry as well as the complex scalar field with a relationship,
λ ∝ 1/P , where λ and P are distance measureed between local minima in the fringe pattern and
initial momentum respectively. In the merger regime, the collision of two mini-boson stars do result
in a single merged compact object that oscillates with a highly non-spherical matter distribution.

PACS numbers:

I. INTRODUCTION

In this article, we present results from a numeri-
cal study in dynamics of mini-boson star axisymmet-
ric (head-on) collisions. Boson stars generally refer to
soliton-type solutions of the coupled system of Einstein
and Klein-Gordon equations for a complex scalar fields
possibly with various forms of self-interaction potentials
[1, 2]. They are usually motivated as one of the key play-
ers in many scenarios of interest in cosmology (see e.g.
[1]) or one of the exotic matter sources of gravitational
waves [3, 4]. From a mathematical point of view, boson
stars provide an exellent laboratory to explore solution
space of compact objects in general relativity.

There are many different types of boson stars with dif-
ferent form of non-gravitational self-interactions [1]. As
a first attempt to understand collision dynamics of bo-

son stars, we consider here mini-boson stars for which
there in no self-interaction with no free parameters in
the model. Mini-boson star solutions were found numer-
ically [5, 6] and later the existence has also been proven
mathematically [7]. To date, study of mini-boson stars
has been mostly limited to the studies of properties of
a single boson star [6, 8–12]. Only recently, dynamical
studies of binary boson stars start to appear, [13, 14],
where initial results on both head-on and orbital colli-
sions of binary boson stars in various different configura-
tions were reported with focus on analyzing gravitational
waveforms.

In the present study, we report on the dynamics of
axisymmetric (head-on) collisions of binary mini-boson
stars in the regimes where collisions result in non-singular
final objects. Initial data in our study is parameterized
by the initial boost momentum, P of the colliding mini-
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boson stars. Depending on the values of P , we have
identified in the head-on collisions two distintive regimes
with the very different dynamical properties: solitonic
and merger regimes.

In the solitonic regime, two mini-boson stars that are
initially boosted towards each other do not merge as a
final outcome. Rather remarkably, they collide and inter-
act with each other, and then emerge from the collision as
two compact objects propagating away from each other
continuing their initial propagation. In other words, they
interact as solitons. The solitonic collisions are accom-
panied with interference patterns in the spacetime ge-
ometry as well as matter fields while the two mini-boson
stars overlap with each other. This interference pattern
is a maifestation of the internal structure of the mini-
boson star, which is hidden in its isolated state, but is
revealed during the interaction with another mini-boson
star. The solitonic regime is unexpected new phenomena
and there is no analogue in collisions of black holes or
neutron stars.

On the other hand, the merger regime, which does have
an analogue in black holes and neutron stars, describes
the situation where two mini-boson stars interact with
each other, but rather than showing solitonic behavior,
merges to become a single compact object. The merger
remnant oscillates with a certain frequency that depends
on initial momentum. This perturbation is highly non-
sphefical and persists through a severl periods.

The numerical study of axisymmetric head-on collision
of Bose-Einstein condensate (BEC) (a condensed matter
analog of Newtonian version of mini-boson stars) [17] re-
vealed the existence of solitonic behavior and the inter-
ferene patterns during the collision. There it was found
that there is a relationship, λ ∼ 1/P , between λ distance
between local minima in the interference patterns and P
linear momentum of the colliding BECs. Here we study
dynamics of a head-on collision of the fully relativistic
mini-boson stars.

The paper is organized as follows. In section II, we
briefly discuss the equations and computational methods
used. In section III, we describe a method we used to
construct initial data. Results on numerical evolution of
the initial data for solitonic and merging regimes are pre-
sented in sections, IV, and V respectively. We conclude
with discussions in section VI.

II. EQUATIONS AND COMPUTATIONAL

MODEL

A mini-boson star is described with the massive com-
plex scalar fields, ψ. Adopting the unit where G = c =
h̄ = 1, the Lagrangian for the Einstein-Klein-Gordon
equation is

L =
R

16π
− gµνψ∗

;µψ;ν −m2|ψ|2 (1)

where m is the mass of the bosonic particle.
Dynamics of geometric fields gµν and the scalar field

ψ is governed by the Einstein-Klein-Gordon equations:

Gµν = 8πTµν (2)

ψ;ν
;ν −m2ψ = 0 (3)

where Tµν is stress energy tensor for the mini-boson star
and is given by

T µ
ν = gµσ(ψ∗

;σψ;ν + ψ;σψ
∗

;ν)

− δµ
ν (gλσψ∗

;λψ;σ +m2|ψ|2) (4)

In what follows, we further assume the unit wherem = 1.
Note that a self interaction potential of the form, e.g.,
1
2C|ψ|

4 modifies the boson star ground state and can be
used to create a boson star with a larger mass [16]. We
will consider such situation in the future publicaion and
study only the non-self-interacting mini-boson star cases
in the present study.

Since we are only considering head-on collisions, we
impose the condition of axi-symmetry about the axis of
collision. To take advantage of the axi-symmetry, the
following form of the metric is chosen

ds2 = −α2dt2 +ψ4
conf [(dρ+ βρdt)2

+(dz + βzdt)2 + ρ2e2ρσ̄dφ2] (5)

in the cylindrical coordinate system, {ρ, φ, z}. The axial
Killing vector is (∂/∂φ)ν and hence all the metric func-
tions, α, βρ, βz, ψconf and σ̄ and the complex scalar field,
ψ, depend only on ρ, z and t.

We use (2+1)+1 formalism [18] and follow the ap-
proach outlined in [19]. Then, Eintein-Klein-Gordon
equations become a system of mixed hyperbolic-elliptic
partial differential equations (PDEs) for the geometrical
variables and the complex scalar file, ψ. See [19, 21] for
further details.

We use adaptive mesh refinement (AMR) technique
[20] in order to achieve adequate resolutions around the
mini-boson stars and to locate the outer boundaries far
away so that effects of numerical errors due to reflections
off the the outer boundaries are significantly reduced and
does not impact the results of the simultions.

The methodology has been applied to the study of crit-
ical collapse of massless scalar fields in axisymmetry [21]
and the study of critical collapse of scalar fields with ro-
tation [22] in axisymmetry. Since this is the first time
the method was applied to the study of massive complex
scalar fields, we carried out additional tests to ensure the
fidelity of the methodology for the study in the interac-
tion of the two compact objects.

As a first test, we evolve a single mini-boson star wiht a
typical boost parameter used for our head-on collisions.
We have verified the mini-boson star moves along the
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FIG. 1: Time evolution of a single mini-boson star with an
initial boost along the z-axis. Plots represent |ψ(ρ = 0, z)|2 at
several different times. Initial central density is ρ0 = 0.00752

and an initial boost parameter, P0 = 0.5. The results con-
firms a stable evolution of a single mini-boson star across the
computational grid without spreading.

z-axis without spreading or changing shapes, Fig. 1.
As a second test, we evolved the head-on collision of bi-
nary mini-boson stars. The results are shown in Fig. 2
where the maximum density of the complex scalar field,
max(|ψ|2) is shown as a function of time for 4 differ-
ent values of the maximum truncation error threshold,
τ . Results converged for different values of τ . We also
verified that the results do not depend on the location of
the outer boundary during the time interval of the sium-
lations by changing the location of the outer boundaries
while keeping the same overall resolutions. The ADM
mass estimated sufficiently far way indicated that they
remain the same with an error less than 0.5% for the
duration of the simulations.

III. INITIAL DATA

Here we briefly describe a method we use to set up
initial data for binary mini-boson stars in axisymmetry.
To do so, we first describe how we set up a single ground-
state mini-boson star in spherical symmetry.

Ground state solutions of a single non-rotating mini-
boson star is a stationary solution in spherical symmetry

FIG. 2: Maximum value of |φ|2, ρmax, as a function of time
in the solitonic collision of two identical mini-boson stars.
Central density of the mini-boson stars at the initial time is
ρ0 = 0.00752 and the initial boost parameter along z-axis,
P0 = 0.475. Initial separation between the stars is large
enough so that φ does not overlap between the two stars. Dif-
ferent line indicate results of runs using different maximum
truncation error threshold, τ . (Local truncation errors for φ
and the derivatives of φ are used as error measures.) As the
τ decreases, the solutions converge. Refer to section III for
details of initial data set-up.

and can be obtained by solving an eigenvalue problem
with the following ansatz. Let the ground state solutions
to the Einstein-Klein-Gordon equations be ψ(t, r). Then
assume the spherical symmetricity of the solutions and
an ansatz for ψ(t, r),

ψ(t, r) = φrad(r)e
−iωt (6)

where φrad(r) is a real function and ω is an eigenvalue
that will be determined.

The spacetime line element in spherical symmetry is
given by

ds2 = (−α2 + a2β2)dt2 + 2a2βdtdr + a2dr2 + r2b2dΩ2(7)

where α ≡ α(r) is a lapse function, β ≡ β(r) shift func-
tion, and a ≡ a(r), b ≡ b(r) represent spatial geometry.
To simplify the equations, we make the following coordi-
nate choices:

a = b, β = 0 (8)
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Introducing a conformal factor, ψc ≡ ψc(r), to replace
a(= b) with a relation, a(= b) = ψ2

c , we obtain

ds2 = −α2dt2 + ψ4
c (dr2 + r2dΩ2) (9)

Note that the choice of a = b is equivalent to choosing
conformal flatness for the spatial metric. And we fur-
ther assume time-symmetry of the initial data by setting
the extrinsic curvature to zero, Kij = 0. Then maximal
slicing condition, K = 0, is automatically satisfied.

Then we are left to solve a set of three ODEs (Ordinary
Differential Equations). The solutions are functions of r
only. The three equations are Hamiltonian constraint
equation which is a (time,time)-component of Einstein
equations (G00 = T00), the equation from the maximal
slicing condition, and the Klein-Gordon equation, Eqn.
3, for three unknowns, α, ψc, φrad.

We need to specify boundary conditions to complete
the eigenvalue problem. We choose a value of φrad(r = 0)
which gives a “central” density of the mini-boson star, ρ0,
ρ0 = |φrad(r = 0)|2. Given ρ0, values of α(r = 0) and
ψc(r = 0) are adjusted to satisfy the boundary condi-
tions at r → ∞, where we require 1−α ∝ 1/r ψc − 1 ∝
1/r. Now we have 3 ODEs that constitute an eigen-
value problem with an eigenvalue ω and eigenfunctions
{α, ψc, φrad}. ρ0 is a free parameter that is analogous to
a central density in the “ordinary” hydrodynamic stars.
There is a maxium value of ρ0, ρs for a stable mini-boson
star, i.e., eigen-solutions with ρ0 < ρs are stable against
linear perturbation while solutions with ρ0 > ρs are un-
stable against linear perturbation [6, 9].

Since our goal here is to study the collision dynamics
where black holes do not form as a result of a collision,
we choose a small value in the stable branch for a cen-
tral density. We use ρ0(r = 0) = 0.0075 in this article.
However, the values larger than ρ0(r = 0) = 0.0075 are
certainly be of interest, for example, with respect to black
hole critical phenomena [15]. We will consider such cases
in the furture publications

Once we obtain the solutions for the ground state for
a single mini-boson star {φrad, α, ψc} in spherical coor-
dinate, the initial data for the binary mini-boson stars
in axisymmetry is set up by superimposing two single
mini-boson star initial data separated along z axis. Let
such a solution be ψ(t = 0, ρ, z) = φ(ρ, z) in cylin-
drical coordinate (note r2 = ρ2 + z2). Then, φ(ρ, z)
can be constructed by simply adding two single mini-
boson star solutions, φ(ρ, z) = φ1(ρ, z) + φ2(ρ, z), where
φ1(ρ, z) = φrad(ρ, z − z1) and φ2(ρ, z) = φrad(ρ, z − z2).
φrad(ρ, z) is a single mini-boson star ground-state solu-
tion obtained as described above, but this time is repre-
sented in a cylindrical coordinate system. Values of z1
and z2 are the locations of the mini-boson stars at t = 0
and chosen to be large enough to gaurantee that there
is no overlap between the two boson stars at the initial
time, φ1(ρ, z)

∗φ2(ρ, z) = 0.
In order to specify linear momentum of the mini-

boson stars to set them in motion towards each other
at t = 0, we assume that each mini-boson stars are
given velocity (boost) parameters, p1 and p2 along z-
axis initially. Given the eigenvalues for the mini-boson
stars, ω1 and ω2, we Lorenz-transfrom the solution,
ψ(t = 0, ρ, z) = φ(ρ, z) = eiω1p1γ(p1)zφ1 + eiω2p2γ(p2)zφ2,

where γ(p) = 1/
√

(1 − p2) is a Lorent boost factor and
φ1 and φ2 are now functions in the boosted coordinates.

Note that ψ(t = 0, ρ, z) constructed as such is a freely
specifiable part of the binary mini-boson star initial data.
Once ψ(t = 0, ρ, z) is determined, we are ready to solve
for the initial data for two mini-boson stars in cylin-
drical coordinate. We solve maximal slicing condition
along with the Hamiltonian and momentum constraint
equations of the Einstein-Klein-Gordon equations. These
equations are elliptic PDEs and solved by using the FAS
multigrid algorithm. We refer details to [19]. In the re-
sults sections that follow, we choose P0 ≡ p1 = −p2 and
z0 ≡ z2 = −z1 for convenience without losing generality.

IV. SOLITONIC REGIME

Here, we describe the solutions in the solitonic collision
of the mini-boson stars. Initial data for the massive
complex scalar field, ψ(t = 0, ρ, z) and the geometrical
variables are set up in the way as described in Sec.
III. Two mini-boson stars are boosted towards each
other with a boost parameter, P0. We have used P0 =
0.25, 0.275, 0.3, 0.325, 0.35, 0.375, 0.4, 0.425, 0.45, 0.475, 0.5,
0.525, 0.55, 0.575, 0.6, 0.625, 0.65, 0.675, 0.7, 0.75, 0.8, 0.85, 0.88
for the results of this section. We also choose the central
density of mini-boson stars to be ρ0 = 0.00752. We
found this value is small enough to gaurantee that the
collisions do not trigger black hole formation.

In all cases presented in this section the outer bound-
ary of the computational domains is at ρ = |z| = 256.
We have varied location of the outer boundary (e.g.
ρ = |z| = 1024) to make sure that the above choice does
not significantly impact the results. The base level in
the adaptive hierarychy was given resolution of 65x129
points, and up 7 additional 2:1-refined levels were used
depending upon the maximum truncation error τ speci-
fied for the given simulation.

Main results from the solitonic collisions are that 1)
mini-boson stars do indeed behave as solitons through the
collisions and 2) solutions exhibit interference patterns
during the collisions in both complex scalar field and the
geometrical variables.

We show an example of solitonic collision in Fig. 3.
The boost parameter for this evolution is P0 = 0.5. To
show the detailed features in the solution, we shows the
time evolution of the complex scalar field along the z-
axis, |ψ|2(ρ = 0, z), of the same evolution, Fig. 4.

Initially two mini-boson stars are boosted toward each
other. They move across without spreading and when
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FIG. 3: Several time frames of |ψ|2(t, ρ, z) from the evolution
of head-on collision of two mini-boson star initial data in the
solitonic regime. The figures span the full duration of the
simulation and the particular times shown correspond to the
initial data, profile right before the collision, during the col-
lision where the interference pattern is clearly shown, and a
couple of frames post-collision profiles where the mini-boson
stars recover their general Gaussian-like shapes propagating
away from each other. The figures clearly demonstarte soli-
tonic nature of the mini-boson stars.

they start to interact with each other, an interference
pattern starts to develop (around t ∼ 60 − 150 in this

FIG. 4: Time evolution of the complex scalar field, |ψ|2(ρ =
0, z), in the head-on collision of two mini-boson stars in the
solitonic regime. Initial boost paramter, P0 = 0.5, and the
initial central density of the stars is ρ0 = 0.00752. Mini-boson
stars propagate with an initial boost velocity before and after
the collision. Note that the shape of the boson stars after
the collision changed although their masses remain constant.
This indicate that the collision is inelastic, i.e. does change
internal structure of the boson stars.

evolution). During this time, two mini-boson stars tem-
porarily occupy the same region of space (see third frame
from top in Fig. 4). Discussion on the interference pat-
tern is given below. Then after t ∼ 150, two compact
objects start to emerge from the collision and recover
their original smooth Gaussian-like profiles. Two mini-
boson stars pass through each other cleanly. This is a
clear signal that mini-boson stars are solitons. After the
collision, the interference pattern completely disappears
from the mini-boson stars (last fram in Fig. 4).

There are, however, some non-spherical features that
can be noticed at later time in the post-collision phase
and it appears that the central density of the post-
collision mini-boson star is larger than the initial value.
In this example, central density of the post-collision bo-
son star appears to be ≈ ρcentral ∼ 0.012 which is
larger than the initial value of ρcentral = 0.00752 and
the overvall profile of ρ also appears to match closely to
that of a stationary mini-boson star with central den-
sity of ρ0 ∼ 0.012. In general, we observe during the
post-collision phases that the configurations appear to



6

be oscillatory boson stars, but nothing definite could be
said without going to higher resolutions and, presumably,
longer integration times.

To check the fidelity of the simulations we also moni-
tored total ADM mass, Madm, of the system and found
that it is conserved with errors less than 0.5% throughout
the evolution. It also implies that no significant gravita-
tional energy was radiated during the collisions.

A. Interference Patterns

The interference pattern is observed during the col-
lision in the simulation shown in Figs. 3 and 4 at
t ∼ 60−150. A single isolated boson star has an internal
oscillations between the real and the imaginary part of
the complex scalar field. This oscillation is of the form
∼ e−iωt for a certain value of ω. In fact, this is an ansatz
we used to construct ground state mini-boson star state.
For an isolated mini-boson stars, this oscillations does
not impact the geometry because only the norm of the
complex scalar field appears in the stress-energy tensor in
the Einstein equations. However, interacting boson stars
do manifest this internal structure through interfernce
patterns.

Fig. 5 provides a close-up view of the interference.
Moving along the z-axis, profile of |ψ|2 shows regular
pattern of local minima/maxima. Coordinate distance
between the neighboring local minima of the interference
pattern is λ ∼ 4.7(±2%). Interference pattern is im-
printed on the geometric variables as well as shown in
the lower panels of Fig. 6.

The fact that interference pattern, a signature for
wave-like behavior of the mini-boson star, occurs dur-
ing the solitonic collision where a signature for particle-
like behavior of the mini-boson star is exhibited, pro-
vides unique peek at the nature of this stable compact
object. In the same dynamical processs, we observe both
particle-like feature and wave-like natures.

The interference patterns appear for the initial boost
paramter, P0, roughly larger than 0.2. For the values
smaller than P0 ∼ 0.2, collision dynamics exhibits com-
pletely different behavior as will be discussed in the next
section. We summarize the results for different values
of P0 in Fig. 7. The average coordinate diatance be-
tween the local minima in the interference patterns, λ, is
found to be inversely proportional to the initial momen-
tum λ ∝ 1/P , where P = P0γ(P0) with Lorentz factor
γ(P0). This relationship deviates for P < 0.3 as shown
in the figure. This can be due to the fact that for smaller
values of P , a different dynamical regime is approached
where the mini-boson stars merge into each other rather
than pass through each other. We discuss the merger
regime next.

FIG. 5: |ψ(ρ = 0, z)|2 at t = 112 for the simulation shown in
Fig. 3 (P0 = 0.5) for three different values of the maximum
truncation error estimate, τ . Coordinate distance between
the local minima is λ ∼ 4.7(±2%).

V. MERGER REGIME

Here, we describe the merger regime. We observe
direct mergers of the two mini-boson stars with initial
boost paramter P0 less than about 0.125. Although, the
study of the transition regime between the solitonic and
merger regimes would be interesting, we leave such study
for future works. In Fig. 8, we show an example of a
merging collision of the two mini-boson stars. The mini-
boson stars with given initial boost parameter, P0 = 0.05,
propagate without spreading as in the solitonic collisions.
When they collide, however, two boson stars merge into
a single star instead of passing through each other. Once
formed a single compact object, it never separates into
two mini-boson stars as in the solitonic collision. Outer
boundary of the computational domain is ρ = |z| = 2048
since evolution time is longer than in the solitonic colli-
sions.

Fig. 9 shows time evolution of |ψ|2 along z-axis. Two
mini-boson stars boosted towards each other initial prop-
agate stably without spreading as in the solitonic colli-
sions. Once the mini-boson stars collide, they result in a
single merged compact object without ever splitting into
two compact objects as in the solitonic collision. The re-
sulting compact object oscillates as can be seen from the
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FIG. 6: Upper panel: conformal factor, ψconf (ρ = 0, z), along
the z-axis at t = 112. Lower panel: Lapse function, α(ρ =
0, z) along the z-axis at t = 112. Geometrical variables also
show imprints of interference pattern.

plots.

We followed the post-merger oscillation for a several

FIG. 7: The average distance between the local minima, λ, of
the interference patterns for various values of P in the soli-
tonic regime, where P is the initial momentum of the mini-

boson stars, P ≡ P0γ(P0) = P0/
√

1 − P 2

0
. Solid line repre-

sents λ as a function of P calculated from the simulations.
Dotted line is a least square fit to the solid line, of the form
λ = c0/P with c0 being a constant.

periods. As is evident from Fig. 8, merged compact
object oscillates with a highly non-spherical density dis-
tribution. Fig. 10 shows maxsimum value of density, |ψ|2

as a function of time for three different values of P0. Lo-
cation of our outer boundary did not allow us to follow
evolutions indefinitely. For the time span our simulations
cover, oscillation in the central density of the merged bo-
son star persists as shown in Fig. 10.

Noted above, merging collision occurs when the initial
boost parameter is small. Exactly how small the initial
boost parameter should be for merging collisions depends
on the other parameters in the simulations such as the
initial central density ρ0 of the mini-boson stars. For
ρ0 = 0.00752, we have found that the threshold value
of P0 for merging collision is between P0 ∼ 0.12 and
P0 ∼ 0.25.

VI. CONCLUSION

We have presented results from a first study of axisym-
metric (head-on) collision of the mini-boson stars in the
fully nonlinear regime. We find that there are two dis-
tinctive dynamical regimes, solitonic regime and merger
regime, with very different properties.

In the solitonic regime, we find that two mini-boson
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FIG. 8: Several time frames of |ψ|2(ρ, z) from the evolution
of head-on collision of the two mini-boson stars in the merger
regime. The figures span time interval of initial merger and
roughly two periods of oscillation of the merged compact ob-
ject. Initial boost parameter is given by P0 = 0.05. The fig-
ures clearly demonstrate the merger of the mini-boson stars.

stars boosted towards each other with some boost
paramter P0 collide, pass through each other, and prop-
agate away from each other. Before and after the col-
lision, mini-boson stars show solitonics behavior: they

FIG. 9: Time evolution of |ψ|2(ρ = 0, z) in the merger regime.
Initial boost paramter, P0 = 0.05 and the initial central den-
sity of the boson stars is ρ0 = 0.00752 . Propagatition of the
mini-boson stars before the collision shows solitonic bevhaior.
They move along z-axis without changing their shapes or
without spreading. After the collision, the two mini-boson
stars merge into a single compact object that oscillates.

are localized and propagate without spreading. During
the collision, however, we observe interference patterns in
the complex scalar fields that represent mini-boson stars
|ψ|2 as well as geometrical variables. We found there is
a relationship, λ ∝ 1/P where λ is the average distance
between local minima in the interference pattern and P
is the initial linear momentum of the mini-boson star.

In the merger regime, two mini-boson stars boosted
towards each other merges into form a single compact
object that oscillates persistently with a highly non-
spherical density distribution. We could evolve for a
several periods without any apparnet sign of decays or
collapse. This supports the idea is that the merger rem-
nant is the stable compact object.

In the future publications, we would like to explore
head-on dynamics of two two mini-boson stars with dif-
ferent values of the initial central density ρ0, especially
with larger values of ρ0. If ρ0 is close enough to the
critial value for the stability, ρs, collision of two mini-
boson stars may produce a black hole as a result of the
collision. We also plan to explore other boson star models
where there is non-zero self-interacting potential terms in
the Klein-Gordon equation such as the one of the form,
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FIG. 10: Maximum density of |ψ|2 as a function of time for
the two mini-boson star collisions in the merger regime. Cal-
culations shown was for the initial boost parameter density of
P0 = 0.01, 0.0075, 0.05 For each value of P0, plots are shown
for three different values of the maximum truncation error
estimate, τ .

∼ |ψ|4.
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