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We propose that stable boson stars generically fall within an infinite-parameter family of solutions that
oscillate on any number of noncommensurate frequencies. We numerically construct two-frequency
solutions and explore their parameter space. These solutions merge with the standard boson star family in
the limit where the nondominating frequencies are turned off. We find that, for a fixed energy, these two-
frequency solutions can differ considerably in size from standard boson stars.
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Introduction.—Boson stars are compact self-gravitating
objects made of a massive complex scalar field. They were
first introduced by Kaub and also Ruffini and Bonazzola in
the late 1960s [1,2]. (See [3] for a review.) Besides their
intrinsic interest as self-gravitating solitonic solutions in
general relativity, they are used in models of gravitational
collapse, dark matter, and as gravitationally compact
objects. Part of their utility stems from the fact that complex
scalar fields do not suffer from issues like shocks and
discontinuities that affect fluid dynamics. Thus, relative to
neutron stars, for example, boson stars are easier to treat
computationally, but still remain useful probes of strong
field gravity.
The recent success of the gravitational wave observato-

ries LIGO and VIRGO [4,5] has led to a growing interest in
the merger dynamics of exotic compact objects like boson
stars. It is important, therefore, to identify the generic
configuration of these compact objects that forms from
some dynamical process. In contrast to black holes, there
are no uniqueness theorems for boson stars. Indeed,
numerical simulations that do not form black holes or
disperse to infinity appear to either leave a stable boson star
or approach some oscillating solution [6–10]. Are these
oscillating solutions transient or do they remain indefi-
nitely? If they are long lasting, how large is the space of
such oscillating solutions?
We propose that such oscillating solutions constitute an

infinite dimensional family. This family includes the
usual boson star family, as well as an infinite-parameter
space of configurations that oscillate indefinitely on any
number of frequencies. By analogy with similar solutions
found in anti–de Sitter space [11–16], we call these
“multioscillators.” We will explicitly construct such
configurations with two oscillations (double oscillators),
but our methods can in principle be used for including
more oscillations.

We mention that in [8] strong numerical evidence was
presented for the existence of solutions to the Einstein-
Klein-Gordon system with more than one scalar field. In
that case a time evolution with initial data composed of a
complex scalar field with the imaginary part phase-shifted
was performed and it was found that the system approached
a solution that was called a phase-shifted boson star. Such
solutions should lie within the family of multioscillators.
Let us now review the phase space and stability of boson

stars [6–9,17–25]. For concreteness, we consider the theory
of a complex scalar φ with mass μ, minimally coupled to
gravity. Boson stars are derived from an ansatz for the scalar
field of the form φ ¼ eiω1tψðrÞ for some real function ψ
with time coordinate t, and radial coordinate r. That is, the
complex scalar is spherically symmetric and has periodic
time dependence with frequency ω1. This time dependence
only appears as an overall phase, so the equations of motion
are independent of t and reduce to a set of ordinary
differential equations (ODEs) in r. Solutions to these
equations can be parametrized by the frequency ω1. Since
there is only one periodic oscillation, boson stars are single
oscillators in the multioscillator family.
Figure 1 shows the energy of boson stars vs the

frequency ω1. We see that there is a maximum energy
that divides the solution into two branches. Solutions on
the right branch (from arbitrarily small energies up to the
maximum energy) are stable, while solutions on the left
branch are unstable.
The spectrum of linear perturbations of solutions on the

stable branch consists of an infinite number of normal
modes. The lowest normal mode frequency, which we call
ω2, is shown as a function of ω1 in Fig. 2. The point where
ω2 vanishes (with ω1 ∼ 0.85) coincides with the boson star
with maximum energy. That is, at this point, ω2 corre-
sponds to the zero mode that marks the onset of instability
of boson stars.
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We will demonstrate that a linear normal mode pertur-
bation of a boson star can in fact be extended to a new
nonlinear solution. Nonlinear corrections will modify the
perturbative frequency ω2, so this new solution can be
parametrized by ω1 and ω2. This solution oscillates on both
of those frequencies: a double oscillator. In a sense, this
double oscillator is a combination of a boson star and an
oscillaton star [10] (stars with a single time-periodicity
consisting of a real scalar field). But the same process can
be applied using higher modes than ω2, as well as any
combination of those modes. This generates a family of
solutions that oscillate on any number of frequencies ωi: a
multioscillator.
Numerical construction.—We now present the details

of our numerical construction of double oscillators.
We consider the action

S ¼ 1

16πGN

Z
d4xðR − ∂μφ∂μφ� − μφφ�Þ; ð1Þ

and we set GN ¼ 1. Our metric and field ansatz is

ds2 ¼ −δfdt2 þ dr2

f
þ r2dΩ2; ð2aÞ

φ ¼ eiω1tðφr þ iφiÞ: ð2bÞ

We use the coordinate ρ given by r¼ rsρ
ffiffiffiffiffiffiffiffiffiffiffiffi
2−ρ2

p
=ð1−ρ2Þ

so that the domain ρ ∈ ð0; 1Þ is compact, with the origin at
ρ ¼ 0 and asymptotic infinity at ρ → 1. Here, rs is a scaling
parameter that can be chosen freely without affecting the
physical solution. We also treat the mass of the scalar μ as
an overall scale, so it will not appear in our equations. (This
is equivalent to setting μ ¼ 1). For convenience, take

δ ¼ 1 − ð1 − ρ2Þf1;
f ¼ 1 − ρ2ð2 − ρ2Þð1 − ρ2Þf2;
φr ¼ ð1 − ρ2Þ2f3;
φi ¼ ð1 − ρ2Þ2f4; ð3Þ

and take fi, i ¼ 1, 2, 3, 4 to be real functions of t and ρ.
The equations of motion contain two first-order spatial
constraints for f1 and f2, and the two second-order
Klein-Gordon equations for the scalar fields f3 and f4.
There is also a single first-order temporal constraint
equation that we do not solve directly, but monitor as a
measure of numerical accuracy. Note that since ω1 only
appears as an overall phase, the time dependence of the
equations of motion lies only in the functions fi and the
derivative ∂t.
The required boundary conditions are regularity at the

origin ρ ¼ 0 (r ¼ 0) and asymptotic flatness at infinity
ρ → 1 (r → ∞). As is typical of boson stars and similar
solutions in flat space, the scalar field and its perturbations
form bound states in that they decay exponentially at
infinity. One can also supply initial data for f3 and f4
and their time derivatives at a fixed time, say t ¼ 0, and
solve this system as an initial value problem. For our
purposes, however, we wish to find solutions with some
specified quasiperiodic behavior in time. That is, we seek
solutions that oscillate with some superposition of periods.
We will therefore require additional boundary conditions
on t.
A quasiperiodic function f on k frequencies has a

spectral expansion

fðt; ρÞ ¼
X

n1;…;nk

An1;…;nkðρÞein1ω1tþ;���;þinkωkt; ð4Þ

which contains the same spectral information as

fðt1;…; tk; ρÞ ¼
X

n1;…;nk

An1;…;nkðρÞein1ω1t1þ;���;þinkωktk : ð5ÞFIG. 2. Perturbative frequencies of the stable boson star branch.
The zero-frequency at ω1=μ ≈ 0.853 agrees with the maximum
energy in Fig. 1.

FIG. 1. Energy of boson stars vs their frequency. The red dot
with zero energy marks Minkowski space. The vertical dashed
line separates the solutions into the stable branch (right) and the
unstable (left).
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Note that the operator ∂t applied on fðt; ρÞ is equivalent
to the operator ∂t1þ; � � � ;þ∂tk applied on fðt1;…; tk; ρÞ.
However, the functions themselves are not the same under
t → t1þ; � � � ;þtk, so we require that the equations of
motion are independent of t, except for appearances of
the derivative ∂t and the function f.
Multioscillators can therefore be found by setting

∂t → ∂t1þ; � � � ;þ∂tk in the equations of motion, promoting
the functions fiðt; ρÞ → fiðt1;…; tk; ρÞ, and demanding
that each coordinate ti be periodic with frequency ωi.
In general, the result of this process defines a boundary
value problem on kþ 1 coordinates, which can be solved
numerically. The frequencies ωi can be used to parametrize
the solutions, and need not be commensurate with each
other.
We have somewhat simplified this process in our ansatz

by placing one of the frequencies ω1 into an overall phase,
removing the time dependence in t1. Single oscillators
(boson stars) can therefore be found setting f4 ¼ 0 and
removing any time dependence in the functions, leading to
a set of ODEs in ρ. Double oscillators can be found by
allowing the fi to be independent of t1 and periodic on the
coordinate t2 with frequency ω2, resulting in a partial
differential equation (PDE) in t2 and ρ.
Without loss of generality, we can choose the time

Fourier series of f1, f2, and f3 to be cosine series, and
f4 to be a sine series.

fiðt2; ρÞ ¼
X
k

f̂ðkÞi ðρÞ cosðkω2t2Þ; i ∈ f1; 2; 3; g;

f4ðt2; ρÞ ¼
X
k

f̂ðkÞ4 ðρÞ sinðkω2t2Þ: ð6Þ

We introduce the Fourier coefficients

ϵ1 ¼ f̂ð0Þ3 ð0Þ; ϵ2 ¼ f̂ð1Þ4 ð0Þ; ð7Þ

which essentially measure the amplitudes of the corre-
sponding fields f3 and f4 at the origin. We find ϵ2 to be
more convenient than ω2 as a parameter since at ϵ2 ¼ 0 one
recovers the boson star. We can therefore treat ϵ2 as a
measure of our deformation from the boson star solution.
Thus we use the parameters fω1; ϵ2g to move numerically
in phase space. We take rsμ ¼ 5=

ffiffiffiffiffi
ϵ1

p
as a convenient

choice of scaling parameter rs.
The main features we extract from our numerical

calculation are the frequencies ω1 and ω2, as well as the
energy E and the mass aspect function M:

E
μ
¼ rs

2
f̄2ð1Þ;

MðρÞ
μ

¼ rsρ3ð2 − ρ2Þ3=2
2

f̄2ðρÞ: ð8Þ

Notice that the mass aspect function tends to the energy as
ρ → 1. Additionally, since the solutions are periodic in
time, we compute these quantities by taking the average

over a period in t2 (which we express using a bar, as in f̄2)
at a fixed radius ρ. Though we’ve taken E to be an average
over a period of t2, energy conservation actually guarantees
that f2ðt2; 1Þ is constant. We can therefore use the standard
deviation of f2ðt2; 1Þ as a check on numerics.
We solve the double-oscillator equations numerically

using Fourier spectral methods in t2, and fourth order finite
differences in ρ. We use a Newton-Raphson method with
the boson star solutions as initial estimates. For our
numerical algorithm, we used 31 gridpoints in the time
direction and 71 in the radial direction. For data shown
here, the temporal constraint and the standard deviation of
f2ðt2; 1Þ over a period are smaller than 10−6.
Results.—As we have mentioned earlier, solutions with

small ϵ2 are well approximated by linear perturbation
theory about boson stars, where ω2 is the perturbative
normal mode frequency, which have already been shown
in Fig. 2.
In Fig. 3, we show how ω2 changes from the perturbative

boson star value (Δω2 ¼ ω2 − ωðBSÞ
2 ) as ϵ2 is increased.

Depending on ω1, ω2 may either increase or decrease from
its perturbative value. Around ω1 ∼ 0.952 there appears to
be a divergence in this figure, which arises as a result of a
degeneracy of normal modes.
We mention that a similar divergence has been observed

in toroidal perturbations of black branes [26]. In the black
brane, this divergence is a consequence of a particular
alignment of perturbations. The usual perturbations are ill
defined at this divergence, and are replaced by a special and
distinct set of perturbations with different symmetry prop-
erties. In the present double-oscillator case, there may
likewise be a special double oscillator generated by a
distinct set of perturbations, but such a solution would not
be generic.
Despite this feature of a divergence, we conclude from

this figure that the secondary frequency ω2 does not
typically differ too far from the perturbative value. This
could be anticipated from the fact that corrections to the
frequency ω2 occur at higher orders in perturbation theory.

FIG. 3. Change in frequency ω2 with respect to the normal
mode of the boson star as a function of ω1.

PHYSICAL REVIEW LETTERS 123, 131101 (2019)

131101-3



We now compare various quantities between boson stars
and multioscillators at fixed energy. We normalize the
energy with respect to the maximum energy of the boson

star shown in Fig. 1 using E=EðBSÞ
max . We note that all of the

solutions we have found satisfy E=EðBSÞ
max ≤ 1. It is con-

ceivable that some multioscillators may have higher energy
than the maximum boson star energy, but these would most
likely exist close to the critical frequency ω1 ¼ 0.853,
where finding such solutions is numerically challenging.
In Fig. 4 we plot the relative difference between the

multioscillator primary frequency and the frequency of

the boson star Δω1=ω
ðBSÞ
1 ≡ ω1=ω

ðBSÞ
1 − 1 as a function of

the energy. As was seen for ω2, we find that ω1 can either
decrease or increase from the boson star solution with the
same energy, but the difference tends to remain small.
To compare the size of boson stars and double oscil-

lators, we consider the quantity r99, which is the spherical
radius at which the mass aspect function is 99% of the total
energy [9]. [We take the usual spherical radius r as defined
just below the ansatz (2) rather than the coordinate ρ.]

In Fig. 5, we again plot a relative radiusΔr99¼r99=r
ðBSÞ
99 −1

as a function of energy. We see from this figure that
double oscillators are larger and less dense objects than
boson stars with the same energy. Among the solutions
we have obtained, we find double oscillators with a radius

up to 200% larger than that of the boson star with the
same energy.
Discussion.—We have shown that boson stars are only a

special case of the more general double-oscillator solutions,
which we propose are part of an infinite-parameter family
of multioscillator solutions. The construction comes pri-
marily from extending normal modes of a boson star to
fully backreacting configurations. Our solution approach is
general and can be used, in principle, to obtain any
multioscillator solution with more frequencies.
The infinite-parameter character of the multioscillator

family suggests that the most generic stable configuration
of a complex scalar star is a multioscillator with some
number of frequencies. While we have not studied the
stability of double oscillators, we can make inferences from
what is known about oscillatons and boson stars. At the
linear level, the same symmetries present for the boson star
that are of the form ω → −ω imply that the normal mode
frequencies are either purely real or purely imaginary.
Unstable modes (purely growing) modes are not present
for boson stars in the stable region, and one would expect
the linear stability of boson stars to imply that nearby
multioscillator solutions are also linearly stable.

FIG. 4. Difference in principal frequency Δω1 ≡ ω1 − ωðBSÞ
1 as

a function of the energy. Top: larger range of energies, in
particular the line with ϵ2 ¼ 0.0005 goes from frequencies ω1 ¼
0.997 to ω1 ¼ 0.875. Bottom: Enlargement of the region of larger
energies where we have obtained solutions for larger values of ϵ2.

FIG. 5. Position at which the mass aspect function is 99% of the
total energy, as a function of the energy. Comparison is made
relative to the boson star with the same energy. Top: larger range
of energies, in particular the line with ϵ2 ¼ 0.0005 goes from
frequencies ω1 ¼ 0.997 to ω1 ¼ 0.875. Bottom: Enlargement of
the region of larger energies.
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At the nonlinear level, studies on oscillatons [10]
performed by [27,28] demonstrate that oscillatons decay
classically at a very small rate. This decay is present for
nonstationary metric configurations like the ones encoun-
tered for oscillatons but not for boson stars. The double
oscillators we have presented also have nonstationary
metric fields, so we expect that double oscillators might
also suffer from effects of scalar radiation. However, based
on the oscillaton results, we expect the rate to be so small as
to be negligible for a wide range of scalar masses, even on
cosmological timescales. Unfortunately, its smallness also
means that this effect is currently inaccessible to our
numerical methods. We leave the study of scalar radiation
and its decay rate for future work.
We note that there are unstable boson stars as well, whose

scalar field has additional nodes in the radial direction. Their
linear perturbations include at least one unstable growing
mode, along with an infinite number of stable normal modes.
Any of these normal modes can be extended to multi-
oscillator solutions. When such multioscillators are still near
the boson star and well approximated by perturbation theory,
they should inherit the instability of the boson star. However,
their instability remains unclear when the backreaction is
much stronger. We leave the stability analysis of these
solutions to future work.
Among the properties analyzed, we have found that the

primary and secondary frequencies of double oscillators
tend to remain close to boson stars, but their radii can differ
significantly even when they have the same energy. Since
double oscillators are but a small portion of the more
general multioscillators, we expect that the radii of complex
scalar stars can have considerable variation, even for a fixed
energy. We expect such differences in radii to be a
distinguishing feature of these compact objects. In particu-
lar, the late merger dynamics of multioscillators might be
noticeably different from those of boson stars [29,30].
We are also unconstrained by the specific matter content

we have considered here. So long as there are solitonic
configurations with perturbative normal modes, our meth-
ods can be used to construct multioscillating extensions to
them. In particular, even with the introduction of self-
interaction terms in the action, we expect this procedure to
be applicable since boson star–like solutions also exist in
these cases [31]. It is natural to expect that multioscillating
solutions built from other models, such as a real scalar field,
would also exhibit similar differences in their radii.
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