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Boson stars driven to the brink of black hole formation
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We present a study of black hole threshold phenomena for a self-gravitating, massive complex scalar field in
spherical symmetry. We construct type I critical solutions dynamically by tuning a one-parameter family of
initial data consisting of a boson star and a massless real scalar field. The massless field is used to perturb the
boson star via a purely gravitational interaction which results in asignificant transfer of energy from the
massless field to the massive field. The resulting~unstable! critical solutions, which display great similarity
with unstable boson stars, persist for a finite time before either dispersing most of the mass to infinity~leaving
a diffuse remnant! or forming a black hole. To further the comparison between our critical solutions and boson
stars, we verify and extend the linear stability analysis of M. Gleiser and R. Watkins@Nucl. Phys.B319, 733
~1989!# by providing a method for calculating the radial dependence of boson star quasinormal modes of
nonzero frequency. The frequencies observed in our critical solutions coincide with the mode frequencies
obtained from perturbation theory, as do the radial profiles of many of the modes. For critical solutions with
less than 90% of the maximum boson star massMmax.0.633M Pl

2 /m, the existence of a small halo of matter in
the tail of the solution distorts the profiles which otherwise agree very well with unstable boson stars. These
halos appear to be artifacts of the collision between the original boson star and the massless field, and do not
appear to belong to the true critical solutions, which are interior to the halos and which do in fact correspond
to unstable boson stars. It appears that unstable boson stars are unstable to dispersal~‘‘explosion’’ ! in addition
to black hole formation, and given the similarities in macroscopic stability between boson stars and neutron
stars, we suggest that those neutron star configurations at or beyond the point of instability may likewise be
unstable to explosion.

PACS number~s!: 04.25.Dm, 04.40.Dg
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I. INTRODUCTION

Over the past decade, detailed studies of models of gr
tational collapse have revealed that the threshold of bl
hole formation is generically characterized by special, ‘‘cr
cal’’ solutions. The features of these solutions are known
‘‘critical phenomena,’’ and arise in even the simplest c
lapse models, such as a model consisting of a single,
massless scalar field, minimally coupled to the general r
tivistic field in spherical symmetry@1#. Although we present
a brief overview of black hole critical phenomena here,
suggest that interested readers consult the excellent rev
by Gundlach@2,3# for many additional details.

Black hole critical solutions can be constructed dynam
cally via simulation, i.e. via solution of the full time
dependent partial differential equations~PDEs! describing
the particular model, by considering one-parameter fami
of initial data which are required to have the following ‘‘in
terpolating’’ property: for sufficiently large values of th
family parameter,p, the evolved data describes a spaceti
containing a black hole, whereas for sufficiently small valu
of p, the matter-energy in the spacetime disperses to la

*Email address: shawley@physics.utexas.edu
†Email address: choptuik@physics.ubc.ca
0556-2821/2000/62~10!/104024~19!/$15.00 62 1040
i-
k

s
-
al,
a-

e
ws

-

s

e
s
ge

radii at late times, andno black hole forms. For any such
family, there will exist a critical parameter value,p5p!,
which demarks the onset, or threshold, of black hole form
tion. To date at least, it has invariably turned out that
solutions which appear in the strongly-coupled regime of
calculations~i.e., the critical solution!, are almost totallyin-
dependentof the specifics of the particular family used as
generator. In fact, the only initial-data dependence which
been observed so far in critical collapse occurs in models
which there is more than one distinct black-hole-thresh
solution. In this sense then, black hole critical solutions
akin to, for example, the Schwarzschild solution, which c
be formed through the collapse of virtually any type and
shape of spherically distributed matter. In particular, like t
Schwarzschild solution, black hole critical solutions poss
additional symmetry~beyond spherical symmetry! which, to
date, has either been a time-translation symmetry, in wh
the critical solution is static or periodic, or a scale-translat
symmetry ~hometheticity!, in which the critical solution is
either continuously or discretely self-similar~CSS or DSS!.

However, in clear contrast to the Schwarzschild soluti
black hole threshold solutions are, by construction,unstable.
Indeed, after seminal work by Evans and Coleman@4# and by
Koike et al. @5#, we have come to understand that critic
solutions are in some senseminimally unstable, in that they
tend to have precisely one unstable mode in linear pertu
©2000 The American Physical Society24-1
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SCOTT H. HAWLEY AND MATTHEW W. CHOPTUIK PHYSICAL REVIEW D62 104024
tion theory. Thus lettingp→p! amounts to minimizing or
‘‘tuning away’’ the initial amplitude of the unstable mod
present in the system.

As already suggested, two principal types of critical b
havior have been seen in black hole threshold studies; w
type is observed depends, in general, upon the type of m
modeland the initial data used—as mentioned, some mod
exhibit both types of behavior. Historically, one of us term
these type I and type II solutions, in a loose analogy to ph
transitions in statistical mechanics, but at least at this ju
ture, we could equally well label the critical solutions b
their symmetries~i.e. static-periodic or CSS-DSS! . For type
I solutions, there is a finite minimum black hole mass wh
can be formed, and, in accord with their static-periodic
ture, there is a scaling law,t;2g lnup2p!u, relating the
lifetime, t, of a near-critical solution to the proximity of th
solution to the critical point. Hereg is a model-specific ex-
ponent which is the reciprocal of the real part of the eig
value associated with the unstable mode. On the other h
type II critical behavior—less relevant to the curre
study—is characterized by arbitrarily small black hole ma
at threshold, and critical solutions which are genericallyself-
similar.

The direct construction, or simulation, of critical sol
tions, has thus far been performed almost exclusively wit
the ansatzof spherical symmetry. In the spherical case o
must couple to at least one matter field for non-trivial d
namics, and spherically symmetric critical solutions for
considerable variety of models have now been constru
and analyzed. In addition to the massless scalar case m
tioned above, these include solutions containing a per
fluid @4,6#, a scalar non-Abelian gauge field@7#, and particu-
larly germane to the current work, amassivereal scalar field
@8#. The work of Abrahams and Evans@9#, which considered
axisymmetriccritical collapse of gravitational waves, re
mains notable for being the only instance of a reasona
well-resolved non-spherical critical solution@10#.

Our current interest is a critical-phenomena-inspired st
of the dynamics associated with ‘‘boson stars’’@11–13#, a
class of equilibrium solutions to the Einstein-Klein-Gord
system for massive complex fields, which are suppor
against gravitational collapse by the effective pressure du
the dispersive nature of a massive Klein-Gordon field.~For
extensive reviews on the subject of boson stars, see J
@14# or Mielke and Schunck@15#.! We know from the studies
by Gleiser and Watkins@16# and by Lee and Pang@17#, that
there exists a critical value of the central density wh
marks the transition between boson stars which are st
with respect to infinitesimal radial perturbations, and tho
which are unstable. The dynamical simulations of Seidel
Suen@18# revealed scenarios in which a boson star on
unstable branch would either form a black hole or radi
scalar material and form a boson star on the stable bra
Their study is extended in this paper, in which we consi
dynamical changes to the geometry of a boson star which
large enough to bring it to the threshold of black hole fo
mation.

As already mentioned, another paper closely related
this work is that of Bradyet al. @8#, which described a dy-
10402
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namical study of critical solutions of a massive real sca
field. Those authors demonstrated scenarios in which b
holes could be formed with arbitrarily small mass~type II
transitions!, and those in which the black holes formed had
finite minimum mass~type I transitions!. The boundary be-
tween these regimes seemed to be the relative length sca
the pulse of initial data compared to the Compton wa
length associated with the boson mass. Initial data which
‘‘kinetic energy dominated’’ evolved in a manner essentia
similar to the evolution of a massless scalar field. Initial d
pulses having widths larger than the length scale set by
boson mass were ‘‘potential dominated,’’ providing a cha
acteristic scale for the formation of the critical solution
Brady et al. found that the resulting type I critical solution
corresponded to a class of equilibrium solutions discove
by Seidel and Suen@19#, called ‘‘oscillating soliton stars.’’

These soliton stars share many characteristics with
complex-valued boson stars, such as the relationship
tween the radius and mass of the star. Both types of ‘‘sta
have a maximum mass, and show the same overall beha
as ‘‘real’’ ~fermion! stars in terms of the turnover in the
respective stability curves. Interestingly, although the soli
stars are not static—they are periodic~or quasi-periodic!—
many of the same macroscopic properties seen in fluid s
are still observed.

In this paper, we construct critical solutions of the Ei
stein equations coupled to a massive,complexscalar field
dynamically, by simulating the implosion of a spherical sh
of masslessreal scalar field around an ‘‘enclosed’’ boso
star. The massless field implodes toward the boson star
the two fields undergo a~purely gravitational! ‘‘collision.’’
The massless pulse then passes through the origin, expl
and continues tor→`, while the massive complex~boson
star! field is compressed into a state which ultimately eith
forms a black hole or disperses. We can thus play the ‘
terpolation game’’ using initial data which result in blac
hole formation, and initial data which give rise to dispers
specifically, we vary the initial amplitude of themassless
pulse to tune to a critical solution. We analyze the black h
threshold solutions obtained in this manner, and discuss
similarities between our critical solutions for the se
gravitating complex massive scalar field and boson stars
the unstable branch. To further this discussion, we extend
work of Gleiser and Watkins@16# and compare the results o
the simulations with those of linear perturbation theory.

The layout of the remainder this paper is as follows:
Sec. II, we describe the mathematical basis for our numer
simulations. In Sec. III, we present results from our simu
tions, in which the type I character of the critical solutions
demonstrated, along with the close similarities one finds
tween the features of the critical solutions and those of bo
stars. In most of the critical solutions we find a halo of ma
near the outer edge of the solution which is not a feature
boson star equilibrium data. Inside this halo, however,
critical solutions match the boson star profiles very well.
Sec. IV, we give a synopsis of our linear stability analysis
boson star quasinormal modes, from which we obtain
boson star mode frequencies as functions of the central v
of the modulus of the complex field. Section V concerns
4-2
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BOSON STARS DRIVEN TO THE BRINK OF BLACK . . . PHYSICAL REVIEW D 62 104024
radial profiles of the perturbative modesper se, and includes
a comparison of the mode shapes and frequencies obta
from perturbation theory with our simulation data. Th
modes obtained by these two different methods agree
with each other, although the additional oscillatory mode
our simulation data is only shown to agree with the cor
sponding boson star mode in terms of the oscillations in
metric and not in the field. We believe this disagreemen
caused by the presence of a ‘‘halo’’ of scalar field seen in
simulation data. In Sec. V we provide further discussion
garding the properties of the halos surrounding the crit
solutions.

Conclusions in Sec. VI are followed by Appendices g
ing tables of mode frequencies versus the central field va
of the boson star, details about our finite difference code,
details of our linear stability analysis, which includes a d
scription of our algorithm for finding the frequencies of b
son star modes.

II. SCALAR FIELD MODEL

A boson star is described by a complex massive sc
field f, minimally coupled to gravity as given by gener
relativity. We work solely within the context of classica
field theory, and choose units in whichG and c are unity.
Furthermore, since all lengths in the problem can be sca
by the boson massm @13#, we choosem51. To the usual
boson star model, we add an additional, massless real s
field, f3, which is also minimally coupled to gravity. Thi
additional scalar field will be used to dynamically ‘‘perturb
the boson star.

The equations of motion for the system are then the E
stein equation and Klein-Gordon equations:

Gab5Rab2
1

2
gabR58p„Tab

C ~f!1Tab
R ~f3!… ~2.1!

hf2m2f50 ~2.2!

hf350 ~2.3!

where

8pTab
C ~f!5]af]bf* 1]af* ]bf

2gab~]cf]cf* 1m2ufu2!, ~2.4!

8pTab
R ~f3!52]af3]bf32 gab]

cf3]cf3, ~2.5!

and h is the D’Alembertian operator. While more gener
terms in Eqs.~2.2! have been employed recently@20,21#, we
will restrict our discussion to the simplest case, i.e. mer
the m2f2 term. We also stress that the complex scalar fie
f, and the massless, real scalar field,f3 are coupledonly
through gravity—in particular we do not include any inte
action potentialVI(f,f3).

Restricting our attention to spherical symmetry, we wr
the most general spherically-symmetric metric us
Schwarzschild-like ‘‘polar-areal’’ coordinates
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ds252a2~ t,r !dt21a2~ t,r !dr21r 2dV2 , ~2.6!

and generally make use of the ‘‘311’’ formalism of Ar-
nowitt, Deser and Misner@22# which regards spacetime as
foliation of spacelike hypersurfaces parametrized byt.

We write the ~spherically-symmetric! complex field,
f(t,r ), in terms of its components

f~ t,r !5f1~ t,r !1 if2~ t,r ! ~2.7!

wheref1(t,r ) and f2(t,r ) are each real. Again, since ou
model includes no self-interaction~anharmonic! potential for
the complex field,f1 and f2 are only coupled through the
gravitational field.

We then define

F1~ t,r ![f18 , F2~ t,r ![f28 , ~2.8!

P1~ t,r ![
a

a
ḟ1, P2~ t,r ![

a

a
ḟ2, ~2.9!

F3~ t,r !5f38 , P3~ t,r !5
a

a
ḟ3, ~2.10!

where 8[]/]r and •[]/]t.
With these definitions, the equations we solve are

Hamiltonian constraint,

a8

a
5

12a2

2r
1

r

2
@P1

21P2
21P3

21F1
2

1F2
21F3

21a~f1
21f2

2!# ~2.11!

@whereP1
2 should be read as (P1)2], the slicing condition,

a8

a
5

a221

r
1

a8

a
2a2r ~f1

21f2
2!, ~2.12!

and the Klein-Gordon equations,

Ṗk53
]

]r 3 S r 2a

a
FkD 8

2aafk~12d3k!, ~2.13!

wherek51,2,3 andd3k is a Kronecker delta used to deno
the fact thatf3 is a massless field.

We also have equations which are used to update the
tial gradients of the scalar fields, as well as the scalar fie
themselves. These follow directly from the definitions~2.8!
and ~2.9!:

Ḟk5S a

a
PkD 8

~2.14!

fk5E
0

r

Fkdr̃. ~2.15!

Equations~2.11!–~2.15! are solved numerically using th
second order finite difference method described in App
dix B.

Initial conditions for our simulations are set up as follow
First, initial data for the massive field are constructed fro
the boson star ansatz
4-3
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SCOTT H. HAWLEY AND MATTHEW W. CHOPTUIK PHYSICAL REVIEW D62 104024
f~ t,r !5f0~r !e2 ivt, ~2.16!

where we letf0(r ) be real. Substitution of this ansatz in
the full set of equations~2.11!–~2.15!, yields a system of
ordinary differential equations~ODEs!, whose solution, for a
given value of the central field modulus, is found by ‘‘shoo
ing,’’ as described in@12#. Once the boson star data is
hand, we add the perturbing massless field by freely sp
fying F3 and P3. At this point, all matter quantities hav
been specified ; the initial geometry,a(0,r ) and a(0,r ) is
then fixed by the constraint and slicing equations~2.11! and
~2.12!.

In relating the simulation results which follow, it is usef
to consider the individual contributions of the complex a
real fields to the total mass distribution of the space-time
order that we can meaningfully and unambiguously discu
for example, the exchange of mass-energy from the r
massless field to the massive, complex field. By Bircho
theorem, in any vacuum region, the mass enclosed b
sphere of radiusr at a given time t is given by the
Schwarzschild-like mass aspect functionM (t,r )5r (1
21/a2)/2. However, at locations occupied by matter,M (t,r )
cannot necessarily be usefully interpreted as a ‘‘physic
mass. In polar-areal coordinates, the mass aspect functi
related to the local energy densityr(t,r ) by

]M ~ t,r !

]r
5r 2r~ t,r !, ~2.17!

with r(t,r ) given in our case by

r~ t,r !5
1

2a2 @P1
21P2

21F1
21F2

21a2~f1
21f2

2!#

1
1

2a2 @P3
21F3

2# . ~2.18!

Here, we have explicitly separated the contributions from
complex and real fields. Since]M /]r is given by a linear
combination of the contributions from each field, we c
decompose]M /]r so that, in instances where there is
overlap in the supports of the distinct fields, we can una
biguously refer to the mass due to one field or the other. T
is, we can refer to the individual contributions of each fie
to the total mass as being physically meaningful masse
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their own rights. Then, by integrating the contribution
each field to ]M /]r over some range of radiu
(r min•••r max), ~where there issomeregion of vacuum start-
ing atr min and extending inward, andsomeregion of vacuum
starting atr .5r max and extending outward!, and demanding
that none of the other type of field is present in the domain
integration, we can obtain a measure of the mass due to
field.

Motivated by such considerations, we define an ene
density for the complex field,rC , as

rC~ t,r !5
1

2a2 @P1
21P2

21F1
21F2

21a2~f1
21f2

2!#,

~2.19!

with a corresponding mass aspect function,MC(t,r ), given
by

MC~ t,r !5E
0

r

r̃ 2 rC dr̃ . ~2.20!

Similarly, the energy density due to the real field is defin
as

rR~ t,r ![
1

2a2 @P3
21F3

2#, ~2.21!

with a corresponding mass aspect function,MR(t,r ) given
by

MR~ t,r !5E
0

r

r̃ 2 rR dr̃.

We again emphasize that in regions where the support
the different fields overlap~and in non-vacuum regions in
general! it may not be possible to ascribe physical mean
to the individual mass aspect functions defined above.~How-
ever, even in such instances, these functions are still us
diagnostics.! Most importantly, where the supports of th
fieldsdo overlap, and only in these regions, it is possible
mass-energy to be exchanged from one scalar field to
other—through the gravitational field—while the sumMC
1MR5M ~measured in an exterior vacuum region! is con-
served. The quantities given above allow us to measure
exchange of mass by looking at the profilesMC(t,r ) and
,
ose
TABLE I. Families of initial data. For both families, the initial data,f(0,r )5f1(0,r )1 if2(0,r ), for the
massive complex field is given by a boson star, obtained by solving Eqs.~2.11!–~2.13! numerically according
to the ansatz~2.16! ~with the parameterv found via ‘‘shooting’’!. The initial real massless field profile
f3(0,r ), is given in closed form by the ‘‘Gaussian’’ and ‘‘kink’’ initial data. For each family, we also cho
] tf3(0,r ) such that the pulse is initially in-going, i.e.,P3(0,r )5F3(0,r )1f3(0,r )/r .

Complex fieldf11 if2 Real fieldf3

Family Name Parameters Profile Name Parameters Profile

I Boson star f0(0) f0(r ) Gaussian A,r 0 ,D A expS2Sr2r0

D D2D
I I Boson star f0(0) f0(r ) Kink A,r 0 ,D

A

2 S11tanhSr2r0

D DD

4-4
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MR(t,r ) before and after a time when the fields are intera
ing. This is shown in the next section.

As a further consideration, we point out that theU(1)
symmetry of the complex field implies that there is a co
served Noether current,Jm, given by

Jm5
i

8p
gmn~f]nf* 2f* ]nf!. ~2.22!
10402
t-

-

The corresponding conserved charge or ‘‘particle numb
N is

N5E
0

`

r 2A2gJt.

We may also wish to regardN as a function oft and r by
e of
nts
the

ut which it

ser, critical
FIG. 1. Evolution of a perturbed boson star withf0(0)50.043A4p and massMC50.59M Pl
2 /m. This shows contributions to]M /]r due

to the massive field~solid line! and massless field~dashed line!. We start with a stable boson star centered at the origin, and a puls
massless field given by family I withr 0530 andD58. @We see two peaks indM/dr of the massless field because it is only the gradie
of f3, not f3 itself, which contribute toMR(r ,t) for a massless field.# In the evolution shown above, the pulse of massless field enters
region containing the bulk of the boson star (t.15), implodes through the origin (t.30) and leaves the region of the boson star (t.50).
Shortly after the massless pulse passes through the origin, the boson star collapses into a more compact configuration, abo
oscillates for a long time before either forming a black hole or dispersing.~The case of dispersal is shown here.! Note that the perturbing field
f3 passes through the boson star and exits the region containing most of the star, even before the massive field reaches its den
state. Thus the massless field isnot part of the critical solutionper se. Black hole formation~always with a finite black hole ADM mass in
our study! can take place at times long after the massless pulse has left the neighborhood of the boson star.
4-5
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SCOTT H. HAWLEY AND MATTHEW W. CHOPTUIK PHYSICAL REVIEW D62 104024
integrating the above function from zero to some finite
dius, in which case

]N~ t,r !

]r
5r 2~P1f22P2f1!. ~2.23!

Some authors have considered the differenceMC2mN to
be a sort of ‘‘binding energy’’ of the complex field@14#,
however this quantity does not correspond to any transi
in the stability of boson stars, and we have not found it to
very useful in understanding the dynamics of our simu
tions.

Finally, following Seidel and Suen@18#, we define a ra-
dius R95(t,r ) for the boson star implicitly byMCuR95

50.95MCur→` . Alternatively, we will also consider a ra
dius R63(t,r ) which encloses (12e21);63% of MCur→` ,
and which will include the ‘‘bulk’’ of a boson star but wil
neglect the ‘‘tail.’’

III. SIMULATION RESULTS

We choose the initial data for the complex field to be
boson star at the origin, with a given central densityf0(0).
For the massless fieldf3(0,r ), we choose one of the familie
in Table I. We generate critical solutions by tuning the a
plitude A of f3(0,r ) ~holding the positionr 0 and widthD

FIG. 2. Exchange of energy between the real and complex sc
fields. For this simulation, initial data from family I was used, wi
f0(0)50.043A4p, r 0540 andD58. The solid line shows the
mass of the complex field, shifted upward on the graph
0.21M Pl

2 /m. The long-dashed line shows the mass of the real fi
shifted upward by 0.55M Pl

2 /m. The massDM exchanged from the
massless field to the massive field in this simulation is nea
0.0053, or about 2.5% of the mass of the real field~9% of the boson
star mass!. The amount~and percentage! of mass transfer goes t
zero as we consider boson star initial data approaching the tra
tion to instability ~see, e.g. Fig. 7!. The dotted line near the top o
the graph shows the total mass enclosed withinr 5100. Throughout
the simulation, both the total massM5MC1MR and the particle
numberN ~of the complex field! are conserved to within a few
hundredths of a percent.
10402
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constant! using a bisection search, until the resulting soluti
is arbitrarily close~i.e. within some specified precision! to
the point of unstable equilibrium between dispersal a
black hole formation.

Figure 1 shows a series of snapshots from a typical sim
lation in which the parameterp (p[A), is slightly below the
critical valuep!, for a boson star on the stable branch with
mass ofM50.59M Pl

2 /m ~where M Pl is the Planck mass!.
The shell of massless field, a member of initial data family
implodes through the boson star and explodes back out f
the origin, and the gravitational interaction between the fie
forces the boson star into a new state, a ‘‘critical solution
We see from this animation, and from Fig. 3, that disper
from the critical state does not mean that the boson star
turns to its original stable configuration, but rather that t
star becomes strongly disrupted and ‘‘explodes.’’ That is
say, if we were to follow the evolution beyondt5475, the
massive field would continue to spread toward spatial in
ity. At some late time, after a large amount of scalar rad
tion has been emitted, the end state would probably b
stable boson star with very low mass.

The gravitational interaction between the two fields
sults in an exchange of energy from the massless field to
massive field, as shown in Fig. 2. Figure 3 shows some tim
like slices through the simulation data, giving a plot of t
maximum value ofa, the value ofufu at the origin, and the
radiusR95 as functions of time. These are given to help e
cidate the point that the critical solution oscillates abo

lar

y
,

y

si-

FIG. 3. Quantities describing a near-critical solution. Here
show timelike slices through the data shown in Fig. 1, an evolut
that ends in dispersal. Top: Maximum value of the metric funct
a ~for each spacelike hypersurface parameterized byt). The local
maximum att.40 is due to the presence of the pulse of massl
field. Middle: Central valueuf(t,0)u of the massive field. Bottom:
RadiusR95 which contains 95% of the mass energy in the comp
field. Again, we see evidence that after remaining in the criti
regime for a while, the star can ‘‘explode,’’ leaving a diffuse rem
nant with low mass.
4-6
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some local equilibrium, before dispersing or forming a bla
hole. The lifetime of the critical solution increases monoto
cally asp→p!. Figure 4 shows that the scaling law expect
for type I transitions is exhibited by these solutions.

Figure 5 shows the mass vs radius for some critical so
tions along with the equilibrium curve for boson stars. W
notice that there are great similarities, at least for relativ
high mass configurations, between the critical solutions
unstable boson stars in the ground state.~We do not perform
studies involving boson stars with much lower masses,
cause of the dynamic range required for the spatial resolu
of the finite difference code. Also, for a given numeric
error tolerance, the time-averaged properties of such l
mass critical solutions are more difficult to compute ac
rately, since they have much shorter lifetimes than larg
mass solutions.! When we include nearly all of the complex
scalar mass in our comparisons, as shown in Fig. 5~a!, we see
that the time-averaged properties of the critical solutio
with lower masses, i.e. those further from the transition
instability, deviate from the curve of equilibrium configur
tions, and that the deviation increases as mass decre
When we consider only the bulk of the boson star, howev
we see very good agreement between the dynamically
erated critical solutions and the unstable boson stars, c
puted from the staticansatz, as shown in Fig. 5~b!. The com-
parison between low-mass critical solutions and boson s
shown in Fig. 5, can be further illuminated by looking at
profile of the mass distribution as shown in Fig. 6.

We see that there is a small halo near the outer edge o
solution (r 58), and it is this which throws off our measure
ment ofR95 used for Fig. 5. Despite the effect this has on t

FIG. 4. Lifetimet vs lnup2p!u for a typical set of near-critica
solutions. Using super-critical solutions for family I~with r 0530,
D58!, we measuret to be the time fromt50 until black hole
formation. Assuming the near-critical solutions are~approximately!
static and one-mode unstable, we expectt;2g lnup2p!u, and for
the data shown in this graph we haveg.9.2. The value ofg can be
related to the imaginary part of the Lyapunov exponents of the
unstable mode (;eigt) by Im(s)51/g.0.109. This value com-
pares favorably with the value obtained from a linear perturba
analysis of the specific boson star to which we believe this confi
ration is asymptoting~see Sec. V A!.
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measurement of the radiusR95 of the star, we can still obtain
a good fit of a boson star to the interior of the critical so
tion in the low-mass regime. We provide further discuss
of these halos in Sec. V in the context of critical solutio

n
-

FIG. 5. Mass vs radius for equilibrium configurations of bos
stars~solid line!, initial data for the complex field~triangles!, and
critical solutions~squares!. Arrows are given to help match initia
data with the resulting critical solutions. Points on the solid line
the left of the maximum massMmax.0.633M Pl

2 /m correspond to
unstable boson stars, whereas those to the right of the maxim
correspond to stable stars. If one takes time averages of prope
such as mass, central densityuf(t,0)u and radiusR95 during the
critical regime, one finds values which match the profile of a bos
star on the unstable branch. The squares show the time avera
each critical solution during the oscillatory phase. Graph~a! shows
massM versusR95 the radius containing 95% ofM, whereas graph
~b! showsM versus the radius containing (12e21) M . The agree-
ment between the critical solutions and boson stars shown in g
~a! deteriorates with decreasing mass, however the compar
shown in graph~b!, which neglects the ‘‘tail’’ of the critical solu-
tions and boson stars, shows much better agreement for all ma
~We show the tail region in Fig. 6.!
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SCOTT H. HAWLEY AND MATTHEW W. CHOPTUIK PHYSICAL REVIEW D62 104024
with higher total mass.
It is also worth noting that the critical solution best co

responds to a boson star in the ‘‘ground state,’’ i.e., with
any nodes in the distribution of the fieldsf1 or f2. Boson
stars in excited states~i.e., havingnodes inf1 andf2) have
mass distributions which differ significantly from the critic
solutions we obtain@20#.

We wish to explain these simulation results in terms
the quasi-normal modes of boson stars. Previous work
critical phenomena@1–8,24# leads us to surmise that there
a single unstable mode present in the system which is exc
when the boson star moves into the critical regime. The
cillatory behavior during the critical regime may be expla
able in terms of the superposition of a stable oscillat

FIG. 6. Comparison of highly unstable~low-mass! critical solu-
tion and boson star. Squares show a critical solution resulting f
a boson star havingf0(0)50.263A4p. ~The data has been re
duced for graphing purposes; the actual spatial resolution in
simulation is four times finer than that shown in the figure.! The
solid line shows a ‘‘best fit’’~unstable! boson star we constructe
by finding the time average ofuf(t,0)u in the critical solution and
using this as the value forf0(0) in the ordinary differential equa
tion ~ODE! integration routine which solves for the equilibrium
~boson star! solutions. We see that there is a small halo near
outer edge of the solution (r 58). The halo has the same relativ
magnitude when viewed in terms of the particle number distribut
]N/]r . We discuss the halo phenomena further in Sec. V.
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mode with the unstable mode. In the next section, we atte
to confirm these hypotheses by means of perturbation the

IV. BOSON STAR STABILITY STUDY VIA LINEAR
PERTURBATION THEORY

We follow the work of Gleiser and Watkins@16#. For the
perturbation calculations, we find it helpful to define the fo
lowing metric functions:

en(t,r )[a2

el(t,r )[a2

and to rewrite the complex fieldf(t,r ) as

f~ t,r !5@c1~ t,r !1 ic2~ t,r !#e2 ivt, ~4.1!

wherec1 and c2 are real.@Note that this is a different de
composition of the fieldf than Eq.~2.7!, the one used in the
previous sections.#

In these variables, the equilibrium quantities are

l~ t,r !5l0~r ! ~4.2!

n~ t,r !5n0~r ! ~4.3!

c1~ t,r !5f0~r ! ~4.4!

c2~ t,r !50. ~4.5!

For the perturbation, we expand about the equilibriu
quantities by first introducing four perturbation fields—
dl(t,r ), dn(t,r ), dc1(t,r ) anddc2(t,r )—and then setting

l~ t,r !5l0~r !1dl~ t,r ! ~4.6!

n~ t,r !5n0~r !1dn~ t,r ! ~4.7!

c1~ t,r !5f0~r !„11dc1~ t,r !… ~4.8!

c2~ t,r !5f0~r !dc2~ t,r !. ~4.9!

These expressions are substituted into the relevant ev
tion and constraint equations~details in Appendix C!, after
which the resulting system can be reduced to the follow
system of two coupled second-order ordinary differen
equations fordf1 anddl:

m

e

e

n

dc1952S 2

r
1

n082l08

2 D dc182
dl8

rf0
2

1el02n0dc̈12Ff08

f0
S n082l08

2
1

1

r D 1S f08

f0
D 2

1
12rl08

r 2f0
2

1el02n0v22el0Gdl

12el0F11e2n0v21e2l0S f08

f0
D 2

1rf0f08Gdc1 ~4.10!

dl952
3

2
~n082l08!dl81F4f08

21l091
2

r 2 2
~n082l08!2

2
2

2n081l08

r Gdl1el02n0dl̈24~2f0f082rel0f0
2!dc18

24F2f08
22rel0f0

2S 2
f08

f0
1

2n081l08

2 D Gdc1 . ~4.11!
4-8
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BOSON STARS DRIVEN TO THE BRINK OF BLACK . . . PHYSICAL REVIEW D 62 104024
To perform the stability analysis~normal-mode analysis!, we
assume a harmonic time dependence, i.e.,

dc1~ t,r !5dc1~r ! eist

dl~ t,r !5dl~r ! eist.

Note that Eqs.~4.10! and~4.11! contain only second deriva
tives with respect to time, and because there are good
sons to assumes2 is purely real@14,16#, we only need to
determine whethers2 is positive or negative to determin
stability or instability, respectively.

Using the method described in Appendix C, we find t
distribution for the squared frequencys0

2 of the fundamental
mode, with respect tof0, which is shown in Fig. 7.

Superposed with the fundamental mode, we may h
other modes at higher frequencies. Figure 8 shows the r
tion between first harmonic frequencies andf0(0).

V. COMPARISON OF PERTURBATION ANALYSIS AND
SIMULATION DATA

We wish to compare the results of our perturbation the
calculation with the oscillations of stable boson stars. T
differences exist between the conventions used in the pe
bation theory calculation and those used in the boson
simulation data. The first difference is in the choice of t
time coordinate. In the perturbation theory code, we choo
lapse of unity at the origin, whereas in the simulations we
the lapse to unity at spatial infinity. Thus we have the f
lowing mapping from the perturbation theory calculations
the simulations:

s2U
perturbative

→ s2

a2U
simulation

.

The other significant difference is in the way the comp
field f(t,r ) is decomposed into constituent real fields. Th
we cannot directly comparef1 and c1, for example. We
can, however, compare the modulusufu of the field. For the
simulation data, the perturbation inufu can be taken directly
from (f1

21f2
2)1/2. For the data obtained from perturbatio

theory, the perturbation inufu will be, to first order,f0dc1.
Before proceeding to the comparisonsper se, we wish to

point out that determining the unstable mode via numer
simulation of the fullnonlinearsystem was very easy to d
in comparison to thelinear perturbation theory calculations

A. Unstable modes

To measure the unstable mode, we again perform a se
of simulations in which we allow a Gaussian pulse from
addition real, massless Klein-Gordon field to impinge on
stable boson star.

By tuning the amplitude of this pulse~holding constant
the width of the pulse and its initial distance from the bos
star!, we can generate a family of slightly different nea
critical solutions depending on the amplitude of the init
10402
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Gaussian pulse, and can tune down the initial magnitude
the unstable mode. By subtracting these slightly differ
near-critical solutions, we obtain a direct measurement of
unstable mode.

Considering a specific example, we start with a sta
boson star which has at the origin an initial field value
f0(0)50.043A4p. By driving it with a Gaussian pulse
tuned to within the machine precision of 1 part in 1016, we

FIG. 7. Mode frequencies of boson stars: fundamental mo
This plot shows a graph ofs0

2, the squared frequency of the funda
mental mode, versus the value off0 at the origin. Note that, as the
inset shows,s0

2 crosses zero whenf0(0).0.27, which corresponds
to a boson star with the maximum possible mass.~The circles show
actual values obtained, and the solid line simply connects th
points.!

FIG. 8. Mode frequencies of boson stars: first harmonic mo
This plot shows a graph ofs1

2, the squared frequency of the firs
harmonic mode, versus the value off0 at the origin. Note that, as
the inset shows,s1

2 crosses zero whenf0(0).1.15, which corre-
sponds to the first local minimum on the unstable branch of
mass vs radius curve~see Fig. 5!. ~The circles show actual value
obtained, and the solid line simply connects these points.!
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SCOTT H. HAWLEY AND MATTHEW W. CHOPTUIK PHYSICAL REVIEW D62 104024
can cause this stable star to become a critical solution w
persists for very long times, oscillating about a local equil
rium. The average value ofuf(t,0)u is ^uf(t,0)u&.0.463.
We measure the unstable mode by subtracting data of a
which contained a Gaussian pulse with an amplitude
differed by 10214 from that of the pulse tuned to machin
precision. We can then measure the growth factor of
unstable mode by taking theL2 norm of this difference at
various times, taking the logarithm, and fitting a straight li
to it. From this, we obtains.0.109i , or s2.20.0118. Be-
cause of the differences in time coordinate between the si
lations and perturbation theory calculations, we need to c

FIG. 9. Fundamental mode of unstable boson star.~a! The solid
line showsf0dc1 from the perturbation theory calculations. Th
squares shows the difference betweenufu for two simulations for
which the control parameterp differs by 10214. ~The data has been
reduced for graphing purposes; the actual spatial resolution in
simulation is four times finer than what is shown in the figur!
Differences between the simulation data and perturbation the
results are below 1.1310215. If a line were drawn connecting th
squares, it would be indistinguishable, to the eye, from the per
bation theory line. The second graph,~b!, shows the actual differ-
ences between the two data sets, normalized by the maximum v
of dufu.
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pute s2/a2 in order to compare with the perturbatio
calculations. We find the average value of 1/a(t,0)2 for the
times listed above to bê1/a(t,0)2&.3.80, and thus we find
s2/a2.20.0450. We choose to compare the perturbat
theory results with data from a time in the simulation f
which the difference in field values~for the two evolutions
tuned slightly differently! is Duf(t,0)u.8.4310213. We use
this value in the perturbation theory solver and arrive ats2

.20.045, in good agreement with the value from the sim
lation. In Figs. 9 and 10, we compare the graphs of the
lutions for the unstable mode. In Fig. 11 we show a comp
son between the squared frequency values obtained from
linear perturbative analysis and those as measured in
simulations.

he

ry
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lue

FIG. 10. Fundamental mode of unstable boson star.~a! The
solid line shows the perturbation to the metric functiona, as found
from the perturbation theory calculations. The squares shows
difference between the metric functiona for two simulations for
which the control parameterp differs by 10214. ~In the simulations,
the spatial resolution was four times that shown in the figure.! ~b! A
plot of the difference between the mode obtained from the sim
tion and the mode obtained via perturbation theory, where the s
is relative to the maximum value ofda.
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B. Oscillatory modes

We can also look at the oscillatory mode during the cr
cal regime. We study the behavior of such a mode using
same technique we used to examine the fundamental m
of the unstable boson star: we subtract the data at one in
of time from the data at all other instants. Again, as a spec
example, we use the same initial boson star as that use
the previous section. During the critical portion of the ev
lution, we notice an oscillation period of aboutT.38.4, and
thus we obtains52p/T.0.0261. During this period, the
average value of 1/a2(t,0) is about 3.80, and thus we fin
s2/a2.0.102. We take data from a moment in the middle
the oscillation period, and subtract it from the data at ot
times. We can then compare the perturbation theory res
with simulation data at a local peak of the oscillation. For t
local peak we chose at timet5tp , the difference in the
modulus of the field wasDuf(tp,0)u.0.0197. Inserting this
value into the perturbation theory code, we finds2.0.102
for this configuration. Thus we again find excellent agre
ment between the squared oscillation frequencies comp
in perturbation theory and via simulation.

In Figs. 12 and 13, we compare the functions obtain
from the perturbation theory calculation with those from t
simulation. The agreement between the perturbation the
and the simulation data is good at smaller radii, but agr
ment deteriorates beyondr .6, a region occupied by a halo
In this region, the difference between the two data s
shown in Fig. 12~b!, is similar to the halo in terms of size

FIG. 11. Comparison of squared frequencies~Lyapunov expo-
nents! for unstable modes. The circles show a subset of the pe
bation theory data displayed in Fig. 7. The squares show the m
surements obtained from our simulations.~The solid line simply
connects the circles.! We note that the agreement between the t
sets is good even for the more unstable, low-mass solutions.
also point out that the measurements of our simulations were
formed alongr 50, i.e., in the interior of the halo found in th
low-mass solutions, which seems to strengthen the remarks a
end of Sec. III, namely that, aside from the halo at the exterio
the critical solution, the critical solutions~of all masses! seem to
correspond to unstable boson stars.
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shape, and location. It is our contention that the halo is
part of the critical solution, which appears to correspond
an unstable boson star. Thus the fields in the region cont
ing the halo are not well described in terms of oscillati
modes of a boson star. In the following section, we w
discuss the halos further.

Finally, we must remark that we have been unable, us
the fundamental and first harmonic modes of an unsta
boson star, to construct a solution possessing a halo sim
to that shown in Fig. 6. We donot expect higher modes to b
of any use here, because the halo is observed to oscillate
the same~single! frequency as the rest of the star. Since,

r-
a-

e
r-

he
f

FIG. 12. First harmonic of an unstable boson star.~a! The solid
line showsf0dc1 from the perturbation theory calculations. T
obtain the squares, we took the simulation data and subtracted
Klein-Gordon field att.438 ~a local equilibrium point of the os-
cillation! from the data att.512 ~a local maximum of the oscilla-
tion!. ~The data in the simulations had a spatial resolution fo
times finer than what is shown in the figure.! ~b! The squares show
the difference between the mode obtained via simulation and
mode obtained via perturbation theory. The lack of agreement
yond r .6 is directly correlated to the presence of a halo seen inufu
from the simulation, shown by triangles.
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SCOTT H. HAWLEY AND MATTHEW W. CHOPTUIK PHYSICAL REVIEW D62 104024
we described at the end of Sec. III, the halo seems to
radiated away over time, we might not expect it to be d
scribed by the quasinormal modes~which conserve particle
number! we have constructed.

VI. HALOS

We have strong evidence that the critical solutions co
spond to unstable boson stars, but the principal point of
agreement is the existence of a ‘‘halo’’ of massive fie
which resides in the ‘‘tail’’ of the solution. It is our conten

FIG. 13. First harmonic of an unstable boson star.~a! The solid
line shows the perturbation toa as found from perturbative calcu
lations. To plot the squares, we took the simulation data and
tracted the metric functiona at one instant of time from the data a
another instant.~The spatial resolution in the simulation was fo
times finer than what is shown in the figure.! ~b! The squares show
the difference between the simulation data and the results of li
perturbation theory, scaled relative to the maximum value ofda.
The close fit between these results indicates that the oscillat
observed in the critical solutions correspond to stable oscilla
modes in an unstable boson star.
10402
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tion that this halo is not part of the true critical solution, b
rather, is an artifact of the collision with the massless fie

In particular, the halo seems to be a remnant of the or
nal ~stable! boson star which is not induced to collapse w
the rest of the star to form the true critical solution. We fi
that such a halo is observable in nearly all but the m
massive~least unstable! critical solutions we have consid
ered, and that its size tends to increase as less massive~more
unstable! solutions are generated. The fact that the halo t
decreasesas we approach the turning point only mak
sense—a stable boson star very close to the turning p
needs very little in the way of a perturbation from the ma
less field to be ‘‘popped’’ over to the unstable branch, a
the final, unstable configuration, will, of course, be ve
close to the initial state.

Additionally, we note that in all cases we have examin
the field comprising the halo oscillates with nearly the sa
~single! frequency as the rest of the solution. This indica
that the halo is not explainable in terms of additional high
frequency modes.

As one might expect, the properties of the halo are
universal, i.e., they are quite dependent on the type of in

b-

ar

ns
y

FIG. 14. Evolution ofr 2dMC /dr for two different sets of initial
data. Both sets contain the same initial boson star, but the mas
field f3 for one set is given by a ‘‘Gaussian’’ of family I~solid
line! with r 0530, andD58 whereas for the other setf3 is given
by a ‘‘kink’’ of family II ~dashed line! with r 0535 andD53. The
variableA is varied ~independently for each family! to obtain the
critical solution.~Note that aftert.60, the massless field has com
pletely left the domain shown in the figure.! We have multiplied
dMC /dr by r 2 to highlight the dynamics of the halo; thus the ma
body of the solution appears to decrease in size as it moves to lo
values ofr. The kink data produces a larger and much more
namical halo, but interior to the halo, the two critical solutio
match closely—and also match the profile of an unstable boson
Thus, the portion of the solution which is ‘‘universal’’ correspon
to an unstable boson star.
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BOSON STARS DRIVEN TO THE BRINK OF BLACK . . . PHYSICAL REVIEW D 62 104024
data used. In contrast, the critical solution interior to the h
is largely independent of the form of the initial data. T
demonstrate this, we use two families of initial data, giv
by a ‘‘Gaussian’’ of family I in Table I and a ‘‘kink’’ of
family I I. A series of snapshots from one such pair of ev
lutions is shown in Fig. 14. We find different amounts
mass transferred from the massless to the massive field
the kink and Gaussian data, as shown in Fig. 15, yet
central values of the field oscillate about nearly the sa
value at nearly the same frequency. Both calculations s
with identical boson stars withuf(0,0)u50.043A4p. In the
critical regimes, this becomeŝuf(t,0)u&50.1303A4p for
the solution obtained from the Gaussian data, a
^uf(t,0)u&50.1353A4p for the kink data. As already noted
the oscillation periods are also quite similar, differing
about 3%, and the masses interior to the halo are also q
comparable. In particular, it seems quite remarkable that
differences in mass interior to the halo for the two famili
are much smaller than the mass transferred from the real
in either case.

If we consider the inner edge of the halo to be whe
]ufu/]r 50 at some finite radius~e.g., r .5 in Fig. 6!, and
look at the data betweenr 50 and the inner edge of the halo
we find good agreement between this data and the profil
a boson star. This can be seen in both Figs. 6 and 16.

We suspect that the halo is radiated over time~via scalar
radiation, or ‘‘gravitational cooling’’@23#! for all critical so-
lutions. We find, however, that the time scale for radiation
the halo is comparable to the time scale for dispersal or b
hole formation for each~nearly! critical solution we con-
sider. Thus, while we see trends which indicate that the h

FIG. 15. MC vs time for the two evolutions shown in Fig. 14
Mass transfer from the real to the complex field occurs fromt
.30 to t.60, i.e., while the supports of the fields overlap. There
more mass transferred using the kink data, and yet the mass fal
rapidly. The mass of the kink data acquires a value very close to
mass of the Gaussian data, which is itself decreasing slowly w
time. We see that, beyondt.250, the difference in mass betwee
the two solutions is very small compared with the amount of m
transferred from the real field.
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is indeed radiating, we are not able to demonstrate this c
clusively for a variety of scenarios. With higher numeric
precision, one might be able to more finely tune out t
unstable mode, allowing more time to observe the beha
of the halo before dispersal or black hole formation occu

VII. CONCLUSIONS

We have shown that it is possible to induce gravitatio
collapse and, in particular, type I critical phenomena
spherically-symmetric boson stars in the ground state,
means of ‘‘perturbations’’ resulting from gravitational inte
action with an in-going pulse from a massless real sca
field. Through this interaction, energy is transferred from
real to the complex field, and complex field is ‘‘driven’’ an
‘‘squeezed’’ to form a critical solution. The massless field
not directly involved in the critical behavior observed in th
complex massive field; the critical solution itself appears
correspond to a boson star, which, at any finite distance f
criticality in parameter space, exhibits a superposition
stable and unstable modes.

Specifically, for initial data consisting of a boson star wi
nearly the maximum possible mass ofMmax.0.633M pl

2 /m,
the resulting critical solution oscillates about a state wh

off
e

th

s

FIG. 16. Mass vŝ uf(t,0)u&, the time average of the centra
value of the field for equilibrium configurations of boson sta
~solid line!, initial data ~triangles! and critical solutions~open and
filled squares!. Arrows are given to help match initial data with th
corresponding critical solution. Points on the solid line to the left
the maximum massMmax.0.633M Pl

2 /m correspond to stable boso
stars, whereas those to the right of the maximum correspon
unstable stars. The data is the same as that used for Fig. 5, with
from one further evolution added at the bottom of the mass ran
The open squares show the time average of the mass anduf(t,0)u of
some critical solutions, and the filled squares show the same q
tities evaluated betweenr 50 and the inner edge of the halo, de
fined to be the point where]ufu/]r 50 for finite r. The mass of the
critical solution is in general greater than the mass of the ini
data, however the mass inside the halo of the critical solution is
than the mass of the initial data.
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has all the features of the corresponding unstable boson
in the ground state, having the same mass as the initial
This result is reminiscent of the study by Bradyet al. @8#,
who found that the type I critical solutions for a real mass
scalar field corresponded to the oscillating soliton stars
Seidel and Suen@18#. For boson stars with a mass somewh
less thanMmax, e.g., 0.9Mmax or less, however, we find les
than complete agreement between the simulation data an
unstable boson star of comparable mass. This is eviden
by the presence of an additional spherical shell or ‘‘halo’’
matter in the simulation data, located in what would be
tail of the corresponding boson star. Interior to this halo,
find that the critical solution compares favorably with t
profile of an unstable boson star. Additionally, we ha
shown that the halo details depend on the specifics of
perturbing massless field, and we conjecture that, in the
finite time limit, the halo would be radiated away.

In order to extend the comparison between the criti
solutions and boson stars, we have verified and applied
linear perturbation analysis presented by Gleiser
Watkins @16#, extending their work by providing an algo
rithm to obtain modes with nonzero frequency. We ha
used this algorithm to give quantitative distributions of mo
frequency vs central density of the boson star for the first
modes, as well as to solve for the modes to compare with
simulation results. We have found that the unstable mod
the critical solutions have the same growth rate as the
stable mode of boson stars, and that the mode shapes
compare quite favorably. We noted that the unstable mod
these boson stars was determinedmuch more easilyby solv-
ing the full nonlinear set of evolution equations, rather th
via linear perturbation theory. The oscillations observed
the critical solution also indicated agreement with first h
monic mode obtained via perturbation theory, for the reg
interior to the halo observed in the simulation data.

Future work may include simulations of the critical sol
tions of low mass using higher numerical precision to furth
tune away the initial amplitude of the unstable mode, th
allowing more time to observe the the small halo~i.e.,
whether it is in fact being radiated away!. We would also
hope to obtain better agreement between simulation and
turbation theory for the first harmonic mode of the fieldufu,
perhaps using a more sophisticated method of extrac
modes from the simulation. Another direction worthy of no
would be to begin the simulation with a pulse of the comp
field ~instead of specifically a boson star! tune the height of
the pulse to find the critical solutions via interpolation, a
then compare the resulting critical solutions with our resu
obtained by perturbing boson stars.

Finally, we find it worthwhile to investigate similar sce
narios for neutron stars. While there have been studies
garding the explosion of neutron stars near the minim
mass~e.g., @33,34#!, we would like to see whether neutro
stars ofnon-minimal masscan be driven to explode via dis
persal from a critical solution. This may take the form of
neutron star approaching the onset of instability via sl
accretion, or by being driven across the stability graph
violent heating from some other matter source, in a man
10402
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similar to the perturbations of boson stars we have con
ered in this paper.

ACKNOWLEDGMENTS

This research was supported by NSERC and by N
PHY9722068. Some computations were carried out on
vn.physics.ubc.ca Beowulf cluster which was funded by
Canadian Foundation for Innovation. Other calculations w
performed using the Cray T3E at the Texas Advanced Co
puting Center. S.H.H. wishes to thank E.W. Hirschmann a
S.L. Liebling for helpful discussions.

APPENDIX A: BOSON STAR MODE FREQUENCIES

In this appendix we have tabulated some sample va
from the perturbation theory calculations. The values a
uncertainties expressed in the table captions~see Tables II
and III! were determined by integrating~4.10! and ~4.11! to

TABLE II. Shooting parameters: Fundamental mode. The v
ues off0(0) are exact. Other quantities are given within an unc
tainty of 61 in the last significant digit.

f0(0) v dl9(0)/dc1(0) s2

6.0E31022 1.04173100 1.6831021 0.2831023

1.031021 1.07273100 0.293100 0.6731023

1.431021 1.10673100 0.433100 1.1131023

1.831021 1.14403100 0.593100 1.4131023

2.231021 1.18493100 0.773100 1.3131023

2.631021 1.22993100 0.983100 0.4531023

2.731021 1.24193100 1.043100 0.0531023

2.831021 1.25423100 1.103100 20.4331023

3.031021 1.27963100 1.243100 21.7131023

4.031021 1.42813100 2.083100 21.8431022

5.031021 1.62153100 3.453100 27.0931022

6.031021 1.87773100 5.793100 22.1131021

TABLE III. Shooting parameters: First harmonic mode. T
values off0(0) are exact,v is given within an uncertainty of61
in the last significant digit, and the other quantities are given wit
an uncertainty of62 in the last significant digit.

f0(0) v dl9(0)/dc1(0) s2

6.0031021 1.87773100 0.633101 0.223100

7.0031021 2.22303100 1.133101 0.323100

8.0031021 2.69633100 2.093101 0.433100

9.0031021 3.35363100 4.113101 0.533100

1.003100 4.27143100 0.843102 0.543100

1.103100 5.54713100 1.773102 0.423100

1.123100 5.85553100 2.073102 3.0531021

1.143100 6.18423100 2.413102 1.4631021

1.153100 6.35663100 2.593102 4.3031022

1.163100 6.53463100 2.803102 28.1131022

1.173100 6.71843100 3.023102 22.2831021

1.183100 6.90833100 3.263102 24.0131021
4-14
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various maximum radii, for a range of error tolerances in
integration routines. The values and uncertainties given
the tables were chosen to express the variation in our res

APPENDIX B: FINITE DIFFERENCE ALGORITHM

We approximate the continuum field quantiti
$a,a,P1 ,P2 ,P3 ,F1 ,F2 ,F3 ,f1 ,f2 ,f3% by a set ofgrid
functions, quantities which are obtained via the solution
finite difference approximations to the partial different
equations~2.8!, ~2.11!–~2.14! on a domain which has bee
discretized into a regular mesh~i.e. lattice! with mesh spac-
ing Dr in space andDt in time. For a grid functionu, we
denote the value of the grid function in the mesh locationj in
space andn in time by uj

n , e.g,

a j
n.a„nDt,~ j 21!Dr …,

wherea„nDt,( j 21)Dr … is the corresponding value for th
continuum solution.

The initial data is obtained via ‘‘shooting,’’ a standa
method of solving ordinary differential equations, in a w
essentially the same as that found in@12#. The numerical
method used for evolving the system of equations is aleap-
frog scheme, which is an explicit scheme requiring data
two previous time steps,n andn21, to compute a value a
the next time stepn11. Given a discretization of scale o
order h in time and space, the leapfrog scheme isO(h2)
accurate. Throughout the mesh, the ratiolCFL[Dt/Dr is
kept at a constant value, which must be less than unity du
the stability requirements of the leapfrog scheme, and
choice of coordinates in which the local light speedc5a/a
satisfiesc<1.

To aid in the presentation of the difference equations,
define the following operators@26#:

D0
t uj

n5
uj

n112uj
n21

2Dt

D0
r uj

n5
uj 11

n 2uj 21
n

2Dr

D1
r uj

n5
uj 11

n 2uj
n

Dr

D3
r uj

n53
uj 11

n 2uj 21
n

~r j 11!32~r j 21!3
.

We also define the averaging operator

m1
r uj

n5
1

2
~uj 11

n 1uj
n!,

which takes precedence over other algebraic operations,

m1
r S f g2

h D5
m1

r f j
n~m1

r gj
n!2

m1
r hj

n
.
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The evolution equations, which are applied to each fi
$F i ,P i ,i 51,2,3% can then be written as

D0
t F j

n5D0
r S a

a
P D

j

n

~B1!

D0
t P j

n5D3
r S r 2a

a
F D

j

n

22~aaf! j
n ~B2!

where the last term in the evolution equation forP is not
applied to the massless field.

Our boundary conditions are as follows: First, by regul
ity at the origin, we have

F1
n50

for all n. To obtainP1
n11 we employ a ‘‘quadratic fit’’ at the

advanced time,

P1
n115

4P2
n112P3

n11

3
, ~B3!

which is based on the regularity condition, limr→0P(t,r )
5P0(t)1r 2P2(t)1 ••• .

A significant challenge in the numerical solution of the
equations is the problem of the outer boundary condition
the massive field. Numerous authors have proposed met
to handle this. Having tried various methods including fi
order expansions of the dispersion relation@18#, sponge fil-
ters @27#, and operator splitting@28#, we were unable to ob-
tain a scheme which produced results superior to the sim
Sommerfeld condition one uses for massless fields@29#.
Since, however, the Sommerfeld condition is still inadequ
for massive fields, we have chosen to run our simulations
a grid large enough that the outer boundary is out of cau
contact with the region of interest for the time the simulati
runs. So, for example, if we are interested in a region 0<r
<50 and times 0<t<400, then we place the outer bounda
r J>450. ~While unbounded phase velocities are a feature
the Klein-Gordon equation, we can argue on physi
grounds as well as see quite clearly in simulations that i
the group velocity which is the important quantity in th
numerical evolutions, and this is sub-luminal.! Recent work
using a shifted coordinate system, with a shift vector tha
vanishing in some region nearr 50 but increases to unity a
r→r J , shows promise as a means of handling the challe
of the boundary condition for the massive field@30#, and this
method may be employed in future work. Thus the ou
boundary condition we employ is@31#

FJ
n115S 3

Dt
1

3

Dr
1

2

r J
D 21S 4FJ

n2FJ
n21

Dt
1

4FJ21
n112FJ22

n11

Dr D
~B4!

and an analogous equation is used for eachP variable.
After these evolved variables are obtained at then11

time step, we apply a form of numerical dissipation adv
cated by Kreiss and Oliger@25#. This is applied to bothF j

n11

andP j
n11 in the same manner. So, for instance we set
4-15
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F j
n11

ªF j
n112

e

16
~F j 12

n2124F j 11
n2116F j

n21

24F j 21
n211F j 22

n21!, ~B5!

wheree (0,e,1) is an adjustable parameter: typically, w
usee50.5.

The preceding equations describe the ‘‘evolution’’ asp
of the code. The other variables are evolved in a ‘‘co
strained’’ manner, i.e. they are obtained on the space
hypersurfacen11 after the fieldsF j

n11 andP j
n11 have been

calculated. The field valuesf j
n11 are obtained by updating

the value at the outer boundaryj 5J according to

D0
t fJ

n5S a

a
P D

j

n

~B6!

and then integratinginward from j 5J to j 51 along the
spatial hypersurface atn11:

D1
r f5m1

r F j . ~B7!

The Hamiltonian constraint~2.11! can be solved at eac
time step once all the field variables have been computed
the advanced time step. We use the variableA[ ln a to avoid
loss of precision near the origin in the following finite di
ference approximation, which is evaluated at the advan
time stepn11:

D1
r Aj5m1

r S 12eA

2 r
1

r

2
@P1

21P2
21P3

21F1
2

1F2
21F3

21eA~f1
21f2

2!# D
j

. ~B8!

This equation is solved using apointwiseNewton itera-
tion, i.e., given a value ofAj

n11 ~such asA1
n1150 at the

origin!, we find the next valueAj 11
n11 outward along the spa

tial hypersurface by solving Eq.~B8! via Newton’s method.
The slicing condition can be solved once the field va

ables and the metric functiona have been obtained at th
advanced time step, using the following linear algebraic
lation:

a j 11
n115a j

n11 ~1/Dr !1Z

~1/Dr !2Z
, ~B9!

where

Z[m1
r S a221

2r D
j

1
D1

r aj

m1
r aj

2m1
r @ra2m2~f1

21f2
2!# j .

APPENDIX C: DETAILS OF LINEAR STABILITY
ANALYSIS

Following Gleiser and Watkins@16#, we write the most
general time-dependent, spherically-symmetric metric as

ds252en(t,r )dt21el(t,r )dr21r 2dV,
10402
t
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and decompose the complex massive fieldf(t,r ) via

f~ t,r !5@c1~ t,r !1 ic2~ t,r !#e2 ivt, ~C1!

wherec1 andc2 are real.
In these variables, the Hamiltonian constraint and slic

condition can be written as

l85
12el

r
1r „el2n@~ḟ11vc2!21~ḟ22vc1!2#

1c18
21c28

21el~c1
21c2

2!… ~C2!

n85l812
el21

r
22rel~c1

21c2
2! ~C3!

where a prime (8) denotes]/]r and an overdot~•! denotes
]/]t.

The Klein Gordon equation yields

c191S 2

r
1

n82l8

2 Dc181el~e2nv221!c12el2nc̈1

1el2n
ṅ2l̇

2
~ ċ11vc2!22el2nvċ250 ~C4!

and

c291S 2

r
1

n82l8

2 Dc281el~e2nv221!c22el2nc̈2

1el2n
ṅ2l̇

2
~ ċ22vc1!12el2nvċ150. ~C5!

Another equation we will find useful isGu
u58pGTu

u ,
which evaluates to

e2lS n82l8

2r
1

1

2
n91

1

4
n822

1

4
n8l8D

2e2nS 1

2
l̈1

1

4
l̇22

1

4
ṅ l̇ D

5e2n~ḟ1
21ḟ2

212v~ḟ1c22ḟ2c1!1v2~c1
21c2

2!!

2e2l~c18
21c28

2!2~c1
21c2

2!. ~C6!

We use Eqs.~C2! through~C4! to obtain the equilibrium
solutions, by setting

l~ t,r !5l0~r ! ~C7!

n~ t,r !5n0~r ! ~C8!

c1~ t,r !5f0~r ! ~C9!

c2~ t,r !50. ~C10!

The equilibrium equations are then given by
4-16
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l085
12el0

r
1r @el0~v2e2n011!f0

21f08
2# ~C11!

n085
el021

r
1r @el0~v2e2n021!f0

21f08
2# ~C12!

f0952S 2

r
1

n082l08

2 Df082el0~v2e2n021!f0 . ~C13!

We now introduce four perturbation fields—dl(t,r ),
dn(t,r ), dc1(t,r ) and dc2(t,r )—and expand about th
equilibrium configuration by writing
l~ t,r !5l0~r !1dl~ t,r ! ~C14!

n~ t,r !5n0~r !1dn~ t,r ! ~C15!

c1~ t,r !5f0~r !„11dc1~ t,r !… ~C16!

c2~ t,r !5f0~r !dc2~ t,r !. ~C17!

These last expressions are substituted into Eqs.~C2!,
~C3!, ~C4! and~C6! to obtain the following equations for th
perturbed quantities:
ith
~re2l0dl!85r 2@2f0
2dc12e2n0v2f0

2dn12e2n0v2f0
2dc122e2n0vf0

2dċ2

12e2l0f08~f08dc11f0dc18!2e2l0f08
2dl# ~C18!

dn82dl85S n082l081
2

r D dl24rel0f0
2dc1 ~C19!

dc191S 2

r
1

n082l08

2
12

f08

f0
D dc181

f08

f0
S dn82dl8

2 D1el0~v2e2n021!dl2el02n0v2dn2el02n0dc̈122el02n0vdċ250

~C20!

2dle2l0S n082l08

2r
1

1

2
n091

1

4
n08

22
1

4
n08l08D 1e2l0S dn82dl8

2r
1

1

2
dn91

1

2
n08dn82

1

4
n08dl82

1

4
l08dn8D2

1

2
e2n0dl̈

52@e2n0v2f0
2dn2e2n0~22vf0

2dċ212v2f0
2dc1!2e2l0f08

2dl

1e2l0~2f08
2dc112f0f08dc18!12f0

2dc1#. ~C21!

The four equations above can be manipulated such that two variables,dn anddc2 are eliminated, leaving us with only two
equations in two unknowns. To obtain the first of these two equations, we subtract~C18! from ~C20! to get

dc1952S 2

r
1

n082l08

2 D dc182
dl8

rf0
2

1el02n0dc̈12Ff08

f0
S n082l08

2
1

1

r D 1S f08

f0
D 2

1
12rl08

r 2f0
2

1el02n0v22el0Gdl

12el0F11e2n0v21e2l0S f08

f0
D 2

1rf0f08Gdc1 . ~C22!

To obtain the other equation, we differentiate Eq.~C19! with respect tor, and substitute the resulting expression, along w
Eqs.~C18! and ~C19!, into Eq. ~C21! to get

dl952
3

2
~n082l08!dl81F4f08

21l091
2

r 22
~n082l08!2

2
2

2n081l08

r Gdl1el02n0dl̈24~2f0f082rel0f0
2!dc18

24F2f08
22rel0f0

2S 2
f08

f0
1

2n081l08

2 D Gdc1 , ~C23!

where, differentiating Eq.~C11! with respect tor we have

l095
el021

r 2
2

el0l08

r
1@el0~v2e2n011!f0

21f08
2#1r @2n08v

2el02n0f0
21el0~v2e2n011!~l08f0

212f0f08!12f08f09#.

~C24!

104024-17
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@Note that Eq.~C22! omits a factor of exp(l0) which one
finds in the;dl/(r 2f0

2) term of Eq.~34! in @16#.# For the
stability analysis, we assume a harmonic time depende
i.e.,

dc1~ t,r !5dc1~r !eist

dl~ t,r !5dl~r !eist.

Note that Eqs.~C23! and ~C24! contain only second deriva
tives with respect to time. There are good arguments
assumings2 is purely real@14,16#, so we can determine
instability by simply looking for instances wheres2,0.

As a further consideration, we note that the boson s
system admits a conserved Noether current,

Jm5
i

8p
gmn~f]nf* 2f* ]nf!, ~C25!

for which the corresponding charge or ‘‘particle number’’

N5E d3xA2gJt

5E
0

`

drr 2e(l2n)/2
„ċ1c22ċ2c11v~c1

21c2
2!….

~C26!

Conventional stability analysis~see, e.g.,@32#! demands
that we consider only perturbations for which the to
charge is conserved. Thus we compute the variation in
charge,dN, and work to ensuredN50. In practice, since we
cut off the grid at finite radius, it makes sense to consider
function dN(r ), the total charge enclosed in a sphere w
surface area 4pr 2. This quantity is

dN~r !5
1

vE0

r

dr̃ r̃ 2e(n02l0)/2f0
2H dl8

2r̃f0
2

1
1

2

3 Fel02n0v21S f08

f0
D 2

1
12 r̃l08

r̃ 2f0
2 Gdl2

f08

f0
dc18

2F2el02n0v21S f08

f0
D 2

1el0Gdc1J , ~C27!

where primes denote]/] r̃ . @Note that Eq.~C27! contains a
term involvingdc18 , which was not included in Eq.~35! of
@16#.# We then demand thatdN→0 asr→`.

The boundary conditions are as follows:

At r 50:

l050

n050

f0850
10402
e,

r

r

l
e

e

f0952
1

3
~v221!f0 ~C28!

dc195
1

3 F2
3dl9

2f0
2

1„2~v211!2s2
…dc1G ~C29!

dl50

dl850.

As r→`:

dN→0

dc1→0

dl→0.

To solve the system~C23! and~C24! subject to the above
boundary conditions, for a given value off0(0), weresort to
the method of ‘‘shooting,’’ first for the equilibrium solutions
then for the perturbed quantities. Specifically, we choos
value forv and solve the equilibrium equations numerica
by integrating outward fromr 50. We do this repeatedly
performing a ‘‘binary search’’ onv ~as described in@12#!
until the boundary conditions for the equilibrium quantiti
are satisfied.

Due to the linearity of the problem, we can choo
dc1(0) arbitrarily. We then have two parameters le
namelys2 and dl9(0). To make matters easy at first, w
consider perturbations very close to the transition betw
stability and instability. At the transition point,s2 is zero.
Thus for boson stars near the transition point, we cho
s250 and shoot on the parameterdl9(0) until the boundary
conditions are satisfied. As Gleiser and Watkins@16# note,
the transition point occurs at the maximum boson star m
so we can take two slightly different equilibrium solution
near the maximum mass and subtract them to generate
tions which should agree with those obtained from the p
turbation problem. We use this method to obtain a trial va
of dl9(0), andalso as a way of checking the final solutio
we obtain from the perturbation analysis.

For more general configurations (s2Þ0), we choose a
value of s2 and shoot ondl9(0) until we find dN at the
outer boundary of the grid to be less than some tolera
value. Then we use the fact~gleaned from experience! that if
s2 is too large~too positive!, dN will have a local minimum,
the value of which will be less than zero@i.e.,dN(r ) will dip
below zero and then turn back up at larger radii#. If s2 is too
low there will be no such local minimum. We use these tw
criteria to select the value ofs2 via a binary search. Thus ou
two-dimensional eigenvalue-finding algorithm consists si
ply of two ~nested! binary searches, one in each directio
For each value ofs2 tried, a full binary search on the pa
rameterdl9(0) is performed to drivedN(r max)→0. Then
the solution ofdN(r ) is examined for the behavior describe
above, and a new value ofs2 is selected, and so on unt
bothdl9(0) ands2 have been found to some desired pre
sion.
4-18
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