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We study the dynamics of Uð1Þ gauged Q-balls using fully nonlinear numerical evolutions in
axisymmetry. Focusing on two models with logarithmic and polynomial scalar field potentials, we
numerically evolve perturbed gauged Q-ball configurations in order to assess their stability and determine
the fate of unstable configurations. Our simulations suggest that there exist both stable and unstable
branches of solutions with respect to axisymmetric perturbations. For solutions belonging to the stable
branch, the gauged Q-balls respond to the perturbations by oscillating continuously or weakly radiating
before returning to the initial configuration. For the unstable branch, the solutions are eventually destroyed
and can evolve in several ways, such as dispersal of the fields to infinity or fragmentation into smaller
gauged Q-balls. In some cases, we observe the formation of ringlike structures which we call “gauged
Q-rings.”We also investigate the stability of gaugedQ-balls when the gauge coupling is small, finding that
the behavior of these configurations closely resembles that of ordinary (nongauged) Q-balls.
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I. INTRODUCTION

Solitons are a fundamental prediction of many physical
theories. They are characterized as stable, localized solu-
tions to nonlinear field equations that behave in many ways
like particles. Broadly speaking, solitons can be classified as
either topological or nontopological. Topological solitons
owe their existence and stability to the specific topological
constraints of a given model. Nontopological solitons,
in contrast, can arise simply due to the balance of attractive
and repulsive self-interactions in the theory. In addition,
the stability of nontopological solitons is often associated
with the presence of conserved charges which emerge from
the theory’s underlying symmetries (though one can also
construct solitonic configurations in the absence of such
charges [1]).
Perhaps the simplest example of a nontopological soliton

in field theory is the Q-ball: a stable, localized solution of a
complex scalar field theory with a nonlinear attractive
potential and a global or gauge Uð1Þ symmetry. In recent
years, Q-balls have attracted significant attention due to
their prevalence in supersymmetric theories [2] and their
possible cosmological consequences. In particular, it has

been suggested that Q-balls may be relevant for baryo-
genesis [3,4], cosmological phase transitions [5,6], and the
dark matter problem [7,8]. The formation of Q-balls could
also lead to detectable gravitational wave signatures [9].
However, regardless of their physical applications, Q-balls
are also interesting from a theoretical perspective as stable,
particlelike objects that can be constructed from smooth
classical fields and that have vanishing topological charge.
The properties of Q-balls under a global Uð1Þ symmetry

have been studied extensively in the literature. Starting with
the work of Rosen [10], Q-ball solutions have been found
in a variety of physically motivated models using various
scalar field potentials (see [11] for a recent review).
For some special potentials, the equations can be solved
exactly [12–15], but in the general case one must use
approximations or numerical methods in order to determine
the characteristic features of Q-balls. Associated with each
solution in a given model, there is a conserved energy E and
a conserved Noether charge Q (from which the Q-ball gets
its name) corresponding to the particle number. Each
solution is also characterized by an internal oscillation
frequency ω which can be interpreted as the chemical
potential of the configuration [16]. In addition to ordinary
(ground state) Q-balls, one can construct excited Q-balls
which have additional radial nodes or nonzero angular
momentum [17–21]. The basic theory has also been
extended by coupling Q-balls to gravity [22–24], by
introducing a massless or massive gauge field [25–27],
and by considering nonspherical configurations such as
Q-tubes [28], Q-rings [29], and composite systems of
Q-balls [30].
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When the globalUð1Þ symmetry of the theory is gauged,
the Q-balls acquire an electric charge and are known as
gauged Q-balls [26]. Gauged Q-balls have properties that
can differ significantly when contrasted to their global
(nongauged) counterparts. The presence of a massless
gauge field introduces a long-range repulsive force that
can destabilize the solutions for large gauge couplings. This
repulsive force can give rise to novel scalar field configu-
rations such asQ-shells [31–33], but it can also place limits
on the maximum size and charge of gauged Q-balls for
some scalar field potentials [32,34]. The existence of this
maximal charge corresponds with the limits of the allowed
range of the frequency ω, and in general the gauged Q-ball
configurations cannot be uniquely characterized by the
value of ω [34]. Despite these differences, there exists a
correspondence which allows for the properties of gauged
Q-balls to be approximated from the properties of
nongauged (global) Q-balls, which are often much
simpler [35]. In addition, when the interaction between
the scalar field and gauge field is weak, gauged Q-balls are
expected to closely resemble their nongauged counter-
parts [36].
One of the essential properties of Q-balls relates to their

dynamical stability. In order to be physically viable,
solitons must be robust against perturbations. However,
the problem of establishing the stability of solitons is often
complicated by the nonlinear nature of the governing field
equations. In some cases, linear perturbation analyses and
stability theorems can be applied to determine the expected
regions of stability and instability.
For nongauged Q-balls, it has been shown that the

simple relation

ω

Q
dQ
dω

< 0 ð1Þ

serves as an effective criterion for establishing regions of
stability [17,37]. However, the case of gauged Q-balls is
more complicated due to the presence of the repulsive
gauge field. It was recently shown in Ref. [38] that the sign
of dQ=dω cannot be used to assess the stability of gauged
Q-balls in the general case. In the absence of such a
criterion, one can still analyze the stability of these
solutions using (among other alternatives) a numerical
approach: dynamically evolving perturbed configurations
through direct solution of the nonlinear equations of
motion. This method was applied in Ref. [38] to show
that gauged Q-balls in several models can be stable with
respect to spherical perturbations. However, it remains an
open question as to whether gauged Q-balls can be
classically stable against decay from more general pertur-
bations beyond spherical symmetry. In addition, the insta-
bility mode for nongaugedQ-balls is always spherical [39],
but it is not known whether gauged Q-ball decay can be
mediated by nonspherical modes.

In this paper, we make progress toward understanding
some aspects of gauged Q-ball dynamics by performing
fully nonlinear numerical simulations of the field equations
in axisymmetry. There are two main questions we shall
explore: (i) What is the range of stability of gauged Q-balls
in axisymmetry? And (ii), what is the final fate of those
configurations which are unstable? To answer these ques-
tions, we construct spherical gauged Q-ball initial data
using a numerical shooting technique. We then assess the
stability of these configurations by dynamically perturbing
the system and observing the subsequent behavior.
Numerical results presented below suggest that there

exist both stable and unstable branches of solutions in
axisymmetry. We find that stable gauged Q-balls, when
perturbed, can survive over timescales which are long
compared to the dynamical time with no evidence of
measurable growing modes which destroy the configura-
tion. These solutions respond to perturbation by oscillating
continuously or weakly radiating before returning to the
initial configuration. Unstable gauged Q-balls, in contrast,
are typically short lived and can decay in one of several
ways. Some unstable solutions break apart into many
smaller gauged Q-balls or shed scalar field until they relax
into a smaller stable configuration. Other unstable solutions
fragment into nonspherical ringlike structures which propa-
gate away from the axis of symmetry and can survive for
some time. In addition, for the case of a logarithmic
potential we observe that the maximum magnitude of
the scalar field can grow without bound. We interpret this
behavior as a consequence of the potential being
unbounded from below. Finally, we test the effect of the
gauge coupling strength on the stability, finding that
gauged Q-balls closely resemble their nongauged counter-
parts when the coupling is small.
This paper is organized as follows: In Sec. II, we present

the equations of motion of the theory. In Sec. III, we discuss
the procedure for obtaining axisymmetric initial data which
is used in the numerical evolutions. In Sec. IV, we briefly
discuss the types of perturbations that are applied to the
system. In Sec. V, we present the results for several
representative evolutions. We conclude with some final
remarks in Sec. VI.
Throughout this work, we use natural units where c ¼

ℏ ¼ 1 and employ the metric signature ð−;þ;þ;þÞ. We
focus on unexcited gauged Q-ball solutions (those for
which the scalar field modulus attains only one maximum).
For brevity, we will use the term “Q-ball” interchangeably
with “gauged Q-ball” when the distinction between the
gauged and nongauged solutions is obvious by context.

II. EQUATIONS OF MOTION

The Lagrangian density of the theory takes the form

L ¼ −ðDμϕÞ�Dμϕ − VðjϕjÞ − 1

4
FμνFμν; ð2Þ
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where ϕ is the complex scalar field, Fμν ¼ ∂μAν − ∂νAμ is
the electromagnetic field tensor for the Uð1Þ gauge field
Aμ, and Dμ ¼ ∇μ − ieAμ denotes the gauge covariant
derivative with coupling constant e. Here, VðjϕjÞ is a
Uð1Þ-invariant scalar field potential that permits Q-ball
solutions in the limit e → 0. In this work, we consider the
following scalar field potentials:

V logðjϕjÞ ¼ −μ2jϕj2 lnðβ2jϕj2Þ; ð3Þ

V6ðjϕjÞ ¼ m2jϕj2 − k
2
jϕj4 þ h

3
jϕj6; ð4Þ

where μ, β, m, k, and h are assumed to be positive,
real-valued parameters of the potentials. The potential (3)
has previously been studied in various forms in
Refs. [12,32,36,38–41] while potential (4) has been studied
in Refs. [16,18,19,21,26,35,42,43]. Further details about
the scalar potentials (3) and (4) will be discussed in the
sections that follow.
The evolution equations for the theory can be found by

varying the Lagrangian density (2) with respect to the scalar
and gauge fields to obtain

DμDμϕ −
∂

∂ϕ� VðjϕjÞ ¼ 0; ð5Þ

−∇μFμν − ieϕðDνϕÞ� þ ðieϕ�ÞDνϕ ¼ 0: ð6Þ

From (6) we identify the conserved Noether current

jμ ¼ −iðϕ�Dμϕ − ϕðDμϕÞ�Þ; ð7Þ

which corresponds with invariance of the theory under the
Uð1Þ transformations

ϕ → e−ieαðxÞϕ; ð8Þ

Aμ → Aμ − ∂μαðxÞ: ð9Þ

The conserved current (7) can be integrated to obtain a
conserved Noether charge Q ¼ R

j0d3x. Also associated
with the theory is the energy-momentum tensor

Tμν ¼ FμαFνβgβα −
1

4
gμνFαβFαβ

þDμϕðDνϕÞ� þDνϕðDμϕÞ�
− gμνðDαϕðDαϕÞ� þ VðjϕjÞÞ ð10Þ

and the corresponding conserved energy E ¼ R
T00d3x.

To solve the field equations of motion, we adopt the
usual cylindrical coordinates ðt; ρ;φ; zÞ and write the
spacetime line element as

ds2 ¼ −dt2 þ dρ2 þ ρ2dφ2 þ dz2: ð11Þ

In three spatial dimensions, computational constraints
would limit the range of possible field configurations that
could be explored. We therefore reduce the computational
complexity of the problem by imposing axisymmetry on
the system: No dependence of any of the fields on the
azimuthal angle φ is assumed. This results in a system of
six coupled nonlinear partial differential equations which
are described in Appendix A.
Evolution of the fields is subject to the constraints

∇ · E⃗ ¼ ρc; ð12Þ

∇ · B⃗ ¼ 0; ð13Þ

where E⃗ and B⃗ are the electric and magnetic fields,
respectively, and ρc is the electric charge density:

ρc ¼ ieðϕ�
∂tϕ − ϕ∂tϕ

�Þ þ 2e2A0ϕϕ
�: ð14Þ

Equation (13) will be trivially satisfied in axisymmetry
while Eq. (12) can be reexpressed in terms of the gauge
field components using the relation

Ei ¼ Fi0 ¼ ∂iA0 − ∂0Ai: ð15Þ

We also impose the Lorenz gauge condition

∇μAμ ¼ 0 ð16Þ

to simultaneously fix the gauge and simplify the equations.
It is expected that a numerical solution to the equations
of motion will also satisfy the constraint equations at a
given time.

III. INITIAL DATA

To generate suitable initial data, we make a spherically
symmetric ansatz for the scalar and gauge fields

ϕðt; x⃗Þ ¼ fðrÞeiωt; ð17Þ

A0ðt; x⃗Þ ¼ A0ðrÞ; ð18Þ

Aiðt; x⃗Þ ¼ 0: ð19Þ

Inserting this ansatz into the equations of motion yields the
following system of coupled equations:

f00ðrÞ þ 2

r
f0ðrÞ þ fðrÞgðrÞ2 − 1

2

d
df

VðfÞ ¼ 0; ð20Þ

A00
0ðrÞ þ

2

r
A0
0ðrÞ þ 2efðrÞ2gðrÞ ¼ 0: ð21Þ
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Here, VðfÞ is the scalar potential and gðrÞ ¼ ω − eA0ðrÞ.
This system constitutes an eigenvalue problem for the
parameter ω subject to the boundary conditions

lim
r→∞

fðrÞ ¼ f0ð0Þ ¼ 0; ð22Þ

lim
r→∞

A0ðrÞ ¼ A0
0ð0Þ ¼ 0; ð23Þ

which are required to ensure finiteness of energy and
regularity at the origin.
Gauged Q-ball solutions can be found by solving

the system of equations (20) and (21) using an iterative
shooting technique [44] to simultaneously determine fðrÞ
and A0ðrÞ. In this method, an initial choice is made for the
value of gð0Þ and a corresponding guess is made for fð0Þ.
The equations are then integrated on a uniform grid using a
fourth-order classical Runge-Kutta method out to a finite
radius r0. Depending on the asymptotic behavior of gðrÞ
and fðrÞ at r0, the value of fð0Þ is adjusted through iterative
bisection until the boundary conditions (22) and (23) are
approximately satisfied at large r. Once a solution is found,
the eigenvalue ω can be determined from the asymptotic
value of gðrÞ using the boundary condition (23) and A0ðrÞ
can be determined as A0ðrÞ ¼ ðω − gðrÞÞ=e.
One of the main computational challenges associated

with this procedure is the high numerical accuracy required
in order to find satisfactory solutions. Typically, the
number of digits required for convergence will exceed
the capacity of double-precision floating-point numbers.
To overcome this limitation, we employ the arbitrary-
precision arithmetic capabilities of MAPLE [45]. The
software precision is adjusted and the integration is
carried out until the asymptotic behavior of fðrÞ is
observed to decay exponentially at large r. At this point,
the value of fðrÞ is typically very small (one part in 108 or
smaller) and so the fields gðrÞ and fðrÞ approximately
decouple in Eqs. (20) and (21). In this asymptotic region,
we fit a 1=r tail to gðrÞ and an exponentially decaying
tail to fðrÞ [34] so that the solution is determined to an
arbitrarily large radius.
In Fig. 1, we present the results of our shooting

procedure for the logarithmic potential (3). For numerical
purposes, we find it convenient to set μ ¼ β ¼ 1 in the
model. The central scalar field value fð0Þ is plotted against
gð0Þ ¼ ω − eA0ð0Þ for various values of e. When the value
of e is small (representing weak gauge coupling), the curve
of solutions is monotonically decreasing and single valued,
closely resembling the behavior of nongauged Q-balls.
However, when e is increased, the curves are no longer
single valued and they begin to bifurcate with some curves
ending abruptly in the solution space. These distinct end
points generally correspond to the appearance of additional
radial nodes in the solution, representing excited gauged
Q-balls [17–21]. Also notable is the appearance of distinct
curves close to the horizontal axis where fð0Þ is very small.

These solutions correspond to Q-shells [31–33] which
attain their maximal field values away from r ¼ 0 and
resemble shell-like concentrations of the fields.
Plotted in Fig. 2 are the results of our numerical shooting

procedure for the polynomial potential (4) with m ¼ k ¼ 1
and h ¼ 0.2. In order to clearly distinguish the curves, and
following Ref. [42], we plot gð0Þ ¼ ω − eA0ð0Þ versus ω
for various values of e. We restrict our shooting to solutions
where ω ≤ 1, which is required in order to ensure that the
solutions have finite energy [26,34,42]. The case of e ¼ 0.0
(corresponding to nongauged Q-balls) is represented by a
linear line in the solution space. As e is increased, a
minimal value ωmin appears which separates each curve
into an upper and a lower branch. The value of ωmin
increases with e until ωmin > 1, at which point no gauged
Q-ball solutions can be found in the model. We note that
while Q-shell solutions are known to exist for the poly-
nomial potential [33], no such solutions are found for our
choice of the potential parameters.
As a basic check of our shooting procedure, we have

compared our numerical solutions to those reported in
previous publications on Uð1Þ gauged Q-balls in logarith-
mic and polynomial models [38,42]. We find good agree-
ment with the previously reported results.
In order to generate initial data that are suitable for

evolution in axisymmetry, we transform the spherical
solutions in (17)–(19) to cylindrical coordinates by per-
forming a fourth-order polynomial interpolation of the
spherical solution in the ρ − z plane. This provides axi-
symmetric initial data that will subsequently be used in our
numerical simulations.

FIG. 1. Shooting results for the logarithmic model (3) with
μ ¼ β ¼ 1. Plotted is the gauged Q-ball’s central scalar field
value fð0Þ versus gð0Þ ¼ ω − eA0ð0Þ for increasing values of e.
Note that only unexcited gauged Q-ball solutions are presented
here. The abrupt end points in the parameter space of curves with
e ≥ 0.7 correspond to the appearance of additional radial nodes in
the solution.
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IV. DIAGNOSTICS

Here we discuss several diagnostics which are useful in
characterizing the stability of each gauged Q-ball configu-
ration. For the purposes of this work, a configuration is
defined to be stable if small perturbations to the initial state
remain bounded during the course of the evolution.
Unstable configurations are those for which small pertur-
bations grow exponentially on top of the solution, even-
tually leading to the destruction of the Q-ball (such as
through fragmentation or dispersal of the fields). Note that
with this definition, we classify as stable those configura-
tions for which the fields may be weakly oscillating or
radiating but are not destroyed by the initial perturbation.
There are several physical quantities associated with the

scalar and gauge fields which are relevant when monitoring
the evolution of each configuration. Principal among these
are the conserved Noether charge Q and the total energy E.
The Noether charge is given by

Q ¼ 2πi
ZZ

dρdzρ½ϕðD0ϕÞ� − ϕ�ðD0ϕÞ� ð24Þ

and the total energy is given by

E ¼ 2π

ZZ
dρdzρ

�
F0αFα

0 þ
1

4
FαβFαβ þ VðjϕjÞ

þ ðDαϕÞðDαϕÞ� þ 2ðD0ϕÞðD0ϕÞ�
�
: ð25Þ

Both Q and E are time-independent quantities which are
expected to be conserved as long as the fields remain
localized within the simulation domain.
We will now discuss how we add small perturbations to

the stationary initial data. The solutions are perturbed in
two ways: (i) perturbation through the inherent numerical
truncation error of the finite-difference scheme and (ii) per-
turbation by an auxiliary scalar field designed to explicitly
excite all underlying modes of the configuration.

A. Perturbation by numerical truncation error

As a first test of the stability of our gauged Q-ball
configurations, we numerically evolve the fields forward
in time using the axisymmetric initial data described in
Sec. III. Upon evolution, the fields will be subject to small
numerical perturbations due to the finite-difference discre-
tization which is used to solve the evolution equations. This
can be understood from the observation that the discrete
solution of a uniform centered finite-difference scheme
admits a truncation error expansion around the continuum
solution in powers of the grid spacing [46]. While the exact
form of this expansion is generally not known (making the
perturbations effectively random), the magnitude of the
associated truncation error is tied closely to the numerical
resolution of the simulation and can therefore be indirectly
controlled. In the sections that follow, we will refer to
perturbations of this form as “type 0.”
One consequence of this type of perturbation is that any

potential instabilities will take longer to manifest for
higher-resolution simulations than for lower-resolution
ones. This is because the magnitude of the truncation error
becomes smaller at higher resolutions. It is therefore
necessary to evolve the configuration over sufficiently long
times in order to assess stability. The notion of a “suffi-
ciently long time” is difficult to make precise, but this
timescale can generally be estimated by observing the
oscillations of the scalar field modulus jϕjwhen subject to a
perturbation. Even for small perturbations, the maximum
value of jϕj will tend to oscillate at frequencies which
correspond to the underlying modes of the configuration.
The dynamical time can then be identified as the inverse
frequency of the longest mode. For the problem at hand, we
evolve each configuration with this timescale in mind so
that any slowly growing unstable modes have the oppor-
tunity to manifest. We find that this procedure provides an
adequate preliminary test of stability which can be further
verified using additional perturbation methods (to be
discussed immediately below).

B. Perturbation by an auxiliary scalar field

As a second test of stability, we dynamically perturb the
gauged Q-balls by simulating the implosion of an asym-
metric shell of matter onto the stationary configurations.
We do this by introducing a massless real scalar field
χðt; ρ; zÞ that couples to the complex Q-ball field ϕðt; ρ; zÞ

FIG. 2. Shooting results for the polynomial model (4) with
m ¼ k ¼ 1 and h ¼ 0.2. Plotted is gð0Þ ¼ ω − eA0ð0Þ versus the
eigenfrequencyω for various values of e. A linear dependence can be
observed for e ¼ 0.0 (representing nongauged Q-balls). For e > 0,
the curve bifurcates into an upper and lower branch. As the value of e
is increased, the range of the solutions decreases significantly.
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in the modified theory:

L ¼ −ðDμϕÞ�Dμϕ − VðjϕjÞ − 1

4
FμνFμν

− ∂μχ∂
μχ −Uðjϕj; χÞ; ð26Þ

where Uðjϕj; χÞ describes the interaction potential of the
fields ϕ and χ. We compute the modified equations of
motion from (26) to obtain

−∇μFμν − ieϕðDνϕÞ� þ ðieϕ�ÞDνϕ ¼ 0; ð27Þ

DμDμϕ −
∂

∂ϕ� VðjϕjÞ −
∂

∂ϕ� Uðjϕj; χÞ ¼ 0; ð28Þ

∇μ∇μχ −
1

2

∂

∂χ
Uðjϕj; χÞ ¼ 0: ð29Þ

One can see from (27)–(29) that by choosing an interaction
potential Uðjϕj; χÞ such that Uðjϕj; χÞ → 0 in the limit of
χ → 0, then the modified Eqs. (27) and (28) reduce to
Eqs. (5) and (6) [with (29) just representing an independent
wave equation for χ]. This means that χ and ϕ will elicit
some mutual influence when the fields overlap, but the
influence will disappear if the fields becomewell separated.
In this sense, χ can act as an external perturbing agent. We
initialize χ as an ingoing asymmetric shell of the form

χð0; ρ; zÞ ¼ A exp

2
64−

0
B@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðρ−ρ0Þ2

a2 þ ðz−z0Þ2
b2

q
− r0

δ

1
CA

2
3
75; ð30Þ

∂tχð0; ρ; zÞ ¼
χ þ ρ∂ρχ þ z∂zχffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρ2 þ z2
p ; ð31Þ

where A, a, b, δ, r0, ρ0 and z0 are parameters specifying the
characteristics of the initial pulse. If r0 is made large, the
field approximately vanishes in the vicinity of the gauged
Q-ball at the initial time and so χ can be considered an
external perturbation with a size controlled by A. Strictly
speaking, the notion of an “external” perturbation cannot be
made precise because gauged Q-balls do not have a finite
radius. However, since the scalar field decays exponentially
away from the center of the configuration, initializing the
auxiliary field sufficiently far away from the center will
serve as a good approximation to an external perturbation.
Note also that the auxiliary field couples only to the scalar
field so that the long-range behavior of the gauge field is
not a significant factor.
During the evolution, the massless scalar field implodes

toward the origin and collides with the gauged Q-ball. The
two fields temporarily interact before the massless field
passes through the origin and explodes outward to r → ∞,
leaving the gauged Q-ball perturbed at the origin. Due to

the asymmetry of the imploding pulse, the interaction of the
two scalars is expected to excite the underlying modes of
the system and induce the disruption of any unstable
configurations. For our purposes, we choose

Uðjϕj; χÞ ¼ cjϕj2χ2; ð32Þ

where c is a coupling constant that controls the coupling
strength between χ and ϕ. In the sections that follow, we
will refer to perturbations of this form as “type I.” This
technique resembles the methods of Ref. [47] to investigate
the stability of boson stars.
We note that configurations which are subject to per-

turbations of this type will inevitably also be perturbed by
the inherent truncation error of the numerical simulation
(type 0). However, since type 0 perturbations are typically
very small and effectively random, type I perturbations
provide an additional level of control in determining the
stability of a given configuration. For the results presented
here, the simulations are repeated for various values of the
type I perturbation parameters A and c. This is done to
verify that the response of the Q-ball field to the perturba-
tion (as measured, for example, by the magnitude of the
induced oscillations of the scalar field modulus jϕj)
remains in the linear regime: An increase of A or c leads
to a corresponding increase in the magnitude of oscillations
of the perturbed jϕj.

V. NUMERICAL RESULTS

Here we present results from the dynamical evolution of
gauged Q-balls in the potentials (3) and (4). For each
simulation, we numerically solve the evolution equations
using a second-order Crank-Nicolson finite-difference
scheme implemented using the Rapid Numerical
Prototyping Language (RNPL) framework [48]. Fourth-
order Kreiss-Oliger dissipation is applied as a mild low-
pass filter to damp poorly resolved and potentially prob-
lematic (from a numerical stability viewpoint) high-fre-
quency solution components. We implement a modified
Berger-Oliger adaptive mesh refinement (AMR) algorithm
via the PAMR/AMRD libraries [49] to increase the numerical
resolution of our simulations. In all examples presented
below, the base grid is taken to be 129 × 257 grid points in
fρ; zg and up to five additional levels of mesh refinement
are used with a refinement ratio of 2∶1. The domain is
taken to be finite with outgoing boundary conditions
imposed at the outer boundaries. Reflective (or antireflec-
tive) boundary conditions are imposed at the axis of
symmetry in order to ensure regularity of the fields. We
choose a Courant factor of λ ¼ dt=minfdρ; dzg ¼ 0.25
and evolve the configurations until at least t ≈ 1000 to
assess stability, though in many cases we evolve for longer
in order to observe the late-time dynamics. Further details
about the numerical implementation and code validation
are given in Appendix B.
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To illustrate the general behavior of stable and unstable
configurations, we focus on several specific solutions for
the potentials (3) and (4). These solutions are listed in
Table I. Configurations L1–L4 correspond to the logarith-
mic potential while configurations P1 and P2 correspond to
the polynomial potential. We note that besides L1–L4 and
P1 and P2, we have also performed hundreds of additional
evolutions along the solution curves of Figs. 1 and 2 in
order to determine the general regions of stability. This
stability investigation will be discussed below.

A. Vlog model

Here we consider the dynamical stability of gauged Q-
balls in the logarithmic model (3). Most relevant for this
work are the results of Ref. [38] which conducted numeri-
cal evolutions of gauged Q-ball configurations for e ¼ 1.1
in spherical symmetry. There it was found that both stable
and unstable gaugedQ-balls can exist in the model, though
the classical stability criterion (1) provides little informa-
tion about the stability of a given configuration in the
general case. Once again, we set μ ¼ β ¼ 1 for numerical
purposes. For brevity, and to facilitate comparison with
previous work, we focus on the case of e ¼ 1.1 where the
system is fully coupled.
The relevant properties of each of the configurations L1–

L4 are described in Table I along with the final result of
numerically evolving the configuration forward in time. In
Fig. 3, the location of each of these configurations in the
solution space is labeled with a dot. L1 corresponds to a
solution on the stable branch. L2 corresponds to an unstable
configuration which decays through dissipation of the
fields. L3 corresponds to an unstable Q-shell solution
which breaks apart into several smaller solitonic compo-
nents. Finally, L4 illustrates the case of an unstable solution
which responds to perturbation by growing without bound.
Here, only L1 is subject to the type I perturbation (to
illustrate the dynamical stability of the configuration) while
L2–L4 are all subject to type 0 perturbations only.
First let us discuss the evolution of configuration L1.

This evolution is run for 65 000 base-grid time steps up to a

final time of t ¼ 6400. To assess the stability, we apply a
type I perturbation with parameters c ¼ 0.1 and A ¼ 0.1.
Results for this evolution are shown in Fig. 4. The contour
lines in the figure represent the scalar field modulus jϕj
while the color map represents the perturbing field modulus
jχj. The imploding pulse, which is centered around the
point fρ ¼ 0.0; z ¼ 0.5g, interacts with the Q-ball starting
at t ≈ 20 (the second panel of the figure) and explodes
through the origin, leaving the simulation domain at t ≈ 70.
This induces small asymmetric distortions in the Q-ball
field which can be observed as changes of the contour lines
in the subsequent panels. This distortion also creates large
oscillations in the maximal value of jϕj which are plotted in
Fig. 5. Prior to the imploding pulse interacting with the
Q-ball, the oscillations of jϕj are very small and are sourced
by type 0 perturbations. After the pulse interacts with the
Q-ball at t ≈ 20, the amplitude of the oscillations grows
significantly as the imploding pulse transfers energy to the
configuration. It oscillates continuously around the sta-
tionary (unperturbed) solution before slowly returning
toward the original configuration.
If configuration L1 was unstable, one would expect that

the interaction between ϕ and χ would excite any unstable
modes underlying the solution. Once excited, these modes
should quickly grow and bring about the destruction of the
configuration. However, no such behavior is observed in
our numerical experiments using different values of c
and A. In addition, we have also analyzed the behavior
of the configuration when subject to type 0 perturbations
only, finding no evidence of instability. We therefore
conclude that L1 is stable.
Next we consider L2, which lies on the upper branch of

the solution curve in Fig. 3. We subject this configuration
only to a type 0 perturbation. The time evolution of L2 is
depicted in Fig. 6. The scalar field modulus retains its initial
shape for only a short time before quickly decaying and
spreading radially. As the evolution proceeds, the fields
continue to propagate toward the boundaries until no
significant remnant of the initial configuration remains
in the domain. As mentioned previously, the timescale over

TABLE I. Results for several representative gaugedQ-ball evolutions. The configurations L1–L4 correspond to solutions found using
the logarithmic potential (3). P1 and P2 represent configurations found using the polynomial potential (4). The second column indicates
the outcome of the numerical evolution. From left to right, the remaining columns give the initial central scalar field amplitude
ϕð0; 0Þ, the initial central gauge field value A0ð0; 0Þ, the electromagnetic coupling constant e, the eigenfrequency ω, the total integrated
energy E, the total Noether charge Q, the size of the simulation domain spanning fρ∶0 ≤ ρ ≤ dmaxg and fz∶ − dmax ≤ z ≤ dmaxg, the
type of perturbation used, and the perturbation parameters c and A (if applicable).

Configuration Result ϕð0; 0Þ A0ð0; 0Þ e ω E Q dmax Perturbation c A

L1 Stable 0.6461 1.383 1.1 2.522 52.08 −22.37 50 Type I 0.1 0.1
L2 Unstable 1.179 3.159 1.1 3.695 281.5 −94.34 50 Type 0 � � � � � �
L3 Unstable 2.448 × 10−13 0.9803 1.1 3.078 260.3 −92.76 75 Type 0 � � � � � �
L4 Unstable 1.539 2.254 1.1 2.680 95.18 −38.13 50 Type 0 � � � � � �
P1 Stable 1.973 2.515 0.17 0.9976 405.1 −387.5 50 Type I 0.1 0.1
P2 Unstable 1.904 46.94 0.02 0.9958 1.076 × 106 −1.480 × 106 150 Type 0 � � � � � �
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which the Q-ball survives before dissipating can be
extended by increasing the numerical resolution of the
simulation (thereby decreasing the size of the perturbation).
However, even with five additional levels of refinement, the
solution begins to decay within the first few oscillations of
the scalar field. Since the outcome of this evolution is the
total dispersal of the fields, we classify L2 as unstable.
Consider next L3, which lies on the lower branch of

Fig. 3, near the bottom axis. Notably, fð0Þ ≈ 0 near this
axis which results in jϕj attaining its maximal value away
from the origin. This configuration resembles a shell-like
distribution of matter and is therefore labeled a “gauged
Q-shell.” The evolution of this configuration subject to a
type 0 perturbation is shown in Fig. 7. At the initial time
(top panel), the shell-like nature of the solution is readily
apparent. As time evolves, the spherical symmetry of the
configuration is quickly broken as the Q-shell fragments
into several individual components which propagate away
in different directions. Two of these components remain
centered on the axis of symmetry and travel along this axis
toward the outer boundaries. These components remain
approximately spherical for the entirety of the evolution
(aside from oscillations and distortions induced by the
fragmentation process) and represent smaller “child”
gauged Q-balls of the initial configuration. In addition,
we observe that the field also fragments into several distinct
components which coalesce away from the axis of sym-
metry. In three dimensions, these resemble ringlike struc-
tures which we call “gauged Q-rings.” Those Q-rings
which are closest to the axis quickly collapse back into
spherical structures (child gauged Q-balls) which remain
on the axis of symmetry for the rest of the evolution.
However, those rings which are initially farthest away from
the axis of symmetry are observed to propagate outward
and can survive for some time. The bottom panel of Fig. 7
illustrates the behavior of the gauged Q-rings associated

with the decay of L3. The largestQ-ring reaches a maximal
distance from the origin of ρ ≈ 40 before turning around
and collapsing back onto the axis of symmetry by t ≈ 500.
We classify L3 as an unstable configuration. Moreover,

we find that all Q-shell solutions on the lower branch of
Fig. 3 are unstable. It is notable that this particular branch

FIG. 4. Magnitude jχj of the perturbative scalar field
interacting with a stationary gauged Q-ball (represented by
contours) corresponding to configuration L1 in Table I. The
contour lines represent the Q-ball field modulus jϕj in steps
of 0.1. The axis of symmetry is coincident with the top edge of
each panel. The simulation domain spans fρ∶0 ≤ ρ ≤ 50g and
fz∶ − 50 ≤ z ≤ 50g.

FIG. 3. Regions of stability and instability for gauged Q-balls
in the V log model with e ¼ 1.1. The points L1–L4 correspond
with the configurations listed in Table I. The solid black line
represents stable configurations while red lines represent regions
of instability. The dashed red line indicates regions where blowup
of the solutions is observed; see the main text for details.
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of solutions was reported to be stable in Ref. [38] under
spherical symmetry assumptions. However, the formation
of rings is obviously forbidden under spherical symmetry,
so our current results are not inconsistent with previous
findings.
The formation of gaugedQ-rings does not appear to be a

unique feature of the decay of L3. We observe a similar
phenomenon for other Q-shells on the lower branch of
Fig. 3 as well as for the decay of some unstable gauged
Q-balls on the upper branch (though the resulting rings may
differ in size and lifetime). We have not been able to find
any gauged Q-rings which can survive indefinitely. In each
case, the rings propagate outward some finite distance from
the axis of symmetry before collapsing back inward and
forming a gauged Q-ball. This behavior is similar to what
has been observed for nongauged Q-balls. In Ref. [50],
rings are formed through the high-energy collisions of
nongauged Q-balls which also collapse back inward at late
times. Q-ring solitons with semitopological origin have
also been considered in Ref. [29]. While the rings observed
here do not persist indefinitely, they appear to retain their
shape despite the relatively violent dynamics that occur
after the decay of L3 (until eventually collapsing onto the
axis of symmetry). Since these rings could potentially
survive long enough to interact with other structures and
produce dynamical effects, we conjecture that they may
represent a new type of nonspherical solution in the model.
Finally, let us discuss the evolution of L4. This con-

figuration lies on the upper branch of Fig. 3 above L2. This
configuration is subject only to the type 0 perturbation.
When evolved forward in time, we observe that the
modulus of the scalar field quickly grows without bound
until large field gradients are produced. These excessive
field gradients cannot be numerically resolved by our code
even with increasing adaptive mesh refinement, leading
to termination of the evolution due to computational

constraints. In Fig. 8, we plot a radial slice of the energy
density of the configuration at various points during the
evolution. At the initial time, the energy density of the
configuration is already negative near the origin. This is
likely a consequence of the logarithmic scalar field poten-
tial (3) being unbounded from below: When the value of jϕj
is large enough, the scalar potential term VðjϕjÞ in (10) can

FIG. 6. Evolution of the scalar field modulus jϕj for
configuration L2 subject to a type 0 perturbation. Upon evolution,
the gauged Q-ball rapidly decays until no significant remnant
of the initial configuration remains in the simulation domain.
The axis of symmetry is coincident with the top edge of
each panel. The simulation domain spans fρ∶0 ≤ ρ ≤ 50g and
fz∶ − 50 ≤ z ≤ 50g.

FIG. 5. Oscillations of the scalar field modulus jϕj for con-
figuration L1 subject to a type I perturbation with parameters
c ¼ 0.1 and A ¼ 0.1. Corresponding snapshots for the evolution
are given in Fig. 4. The perturbative field χ implodes upon the
Q-ball at t ≈ 20, causing large oscillations in jϕj. Over the full
timescale of the evolution, the Q-ball slowly returns toward the
original configuration.
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become negative. If VðjϕjÞ dominates locally over the other
energies in the system, then the energy density at a point in
space can also become negative (even while the total
integrated energy remains overall positive). When this
configuration is evolved forward in time, it may become
energetically favorable for the field in the negative region
to grow. At the same time, the field in regions of positive

energy density would have to grow to compensate and keep
the total integrated energy constant. This runaway process
results in the large field gradients and unbounded growth
(blowup) observed in Fig. 8.
While the decay process of L4 may be unphysical, it is

not entirely unexpected. Similar phenomena have been
observed in other Q-ball models where local energy
densities can attain negative values [51,52]. It is also
possible that the decay of L4 could manifest in a different
manner (such as dissipation of the fields, similar to L2) if
the sign of the initial perturbation to the system could be
precisely controlled. However, this level of control is not
possible with the type 0 perturbation, and the fields are
found to grow too quickly for type I perturbations to be
effective. In any case, the evolution of L4 results in the
destruction of the configuration, and we therefore classify
L4 as unstable.
Having discussed the specific configurations L1–L4, we

now turn to the general regions of stability and instability
depicted in Fig. 3. The black solid line on the bottom
branch indicates the regions of the solution curve which are
found to be stable under both type 0 and type I perturba-
tions. L1 lies in this region. At the leftmost edge of the
bottom branch, we observe a turning point where the
gauged Q-ball configurations suddenly become unstable.
As this turning point is approached from above, the stable
gauged Q-ball configurations become less robust: It
becomes possible for a sufficiently large type I perturbation
to “kick” the configuration to the unstable branch, though
the same configuration remains stable for smaller-sized
perturbations. Due to this effect, it is difficult to exactly
determine the location of the onset of instability. However,
our numerical experiments suggest that it corresponds with
the leftmost edge of the lower branch as depicted in the
figure. The region of the curve below this point, marked by

FIG. 7. Evolution of the scalar field modulus jϕj for configu-
ration L3 subject to a type 0 perturbation. Notable in this
evolution is the formation of nonspherical ringlike structures
which coalesce away from the axis of symmetry and can survive
for some time. The axis of symmetry is coincident with the top
edge of each panel. The simulation domain spans fρ∶0 ≤ ρ ≤
75g and fz∶ − 75 ≤ z ≤ 75g.

FIG. 8. Radial slices of the energy density E of L4 along z ¼ 0
at various times during the evolution. Initially, the energy density
is negative in a region surrounding the origin and positive
elsewhere. As the evolution proceeds, the energy density near
the origin grows; the positive region also grows to compensate.
Note that the total energy integrates to a positive quantity and is
conserved to within 1% over the timescales shown here.
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a red solid line, is found to be unstable. This region contains
L3 along with other Q-shell solutions. Lastly, all portions
of the curve along the upper branch (containing L2 and L4)
are found to be unstable. The solutions which are found to
exhibit the blowup behavior when subject to type 0
perturbations (including L4) are indicated by a red dashed
line along this curve.
To conclude this section, let us summarize the main

dynamical behaviors observed in the logarithmic model.
For the stable configurations, we find that small perturba-
tions remain bounded and the fields remain relatively close
to their initial values without any sign of significant growth
or decay. For the unstable configurations, we find the most
common outcome to be fragmentation into a small number
of “child” Q-balls which quickly propagate away along the
axis of symmetry. In some cases (such as L3), this process
is accompanied by the formation of Q-rings, while in other
cases (such as L2), no significant Q-ball or Q-ring
remnants are formed. At present, we have been unable
to identify a simple criterion which can predict these
changes in behavior. In general, the fragmentation of
gauged Q-balls appears to be a complicated nonlinear
process, with the only guarantee being the conservation of
four-momentum and charge.

B. V6 model

Here we consider the dynamical stability of gauged
Q-balls in the polynomial model (4). For illustrative
purposes, we select two configurations P1 and P2 whose
properties are listed in Table I. P1 represents an example of
a stable evolution for e ¼ 0.17 while P2 represents an
unstable evolution for e ¼ 0.02. For numerical purposes,
we set m ¼ k ¼ 1 and h ¼ 0.2 in all evolutions.
First we consider the evolution of P1. This configuration

lies on the shortest curve of Fig. 2 with e ¼ 0.17, which is
near the maximum allowable value of e ≈ 0.182 [42]. The
evolution of P1 is subject to a type I perturbation with
parameters A ¼ 0.1 and c ¼ 0.1 and runs for 65 000 base-
grid time steps up a final time of t ¼ 6400. The maximal
value of the scalar field modulus jϕj and the gauge field
component A0 for this evolution is shown in Fig. 9. The
perturbative scalar field hits the Q-ball at t ≈ 20 before
exploding outward and exiting the simulation domain.
After the collision, the Q-ball is left oscillating at the
origin around the stationary (unperturbed) configuration.
However, the magnitude of this oscillation rapidly decays
as the Q-ball quickly returns close to the original configu-
ration. Similar behavior to P1 is observed for all other
solutions tested on the e ¼ 0.17 branch depicted in Fig. 2.
We therefore conclude that P1 (as well as all other solutions
tested on this branch) is dynamically stable.
Finally, we consider the evolution of P2. This configu-

ration is distinctive in that it occupies a much larger volume
than any of the configurations previously considered. In
addition, the scalar field profile of P2 is relatively uniform

in the center of the Q-ball before dropping off rapidly to
zero at a radial distance r ≈ 65. In this sense it somewhat
resembles aQ-ball of the thin-wall type [16]. In Fig. 10, we
show the evolution of P2 subject to a type 0 perturbation.
The distinctive flattop shape of the configuration is appar-
ent in the first panel of the figure. By t ≈ 525 (second
panel), the original spherical shape of the configuration is
lost as the field content begins to concentrate away from the
axis of symmetry. At late times, these off-axis concen-
trations separate into two distinct Q-rings while a relic
region of Q-matter remains near the origin.
In Fig. 11, we plot the growth of the scalar field modulus

jϕj for configuration P2. Here, the difference Δjϕj ¼
jϕðt ¼ 0; ρ; zÞj − jϕðt ¼ 225; ρ; zÞj illustrates the growth
of the solution between the initial time and at a point
midway through the evolution (but before the dynamics
have entered the nonlinear regime). It is clear from the
figure that the growth occurs predominantly near the edge
of theQ-ball and resembles the pattern of the Y4;0 spherical
harmonic. This pattern becomes apparent in the evolution
by t ≈ 100 and grows exponentially in amplitude until
the Q-ball begins to break apart starting at t ≈ 500. As
mentioned previously, it is well known that the decay
of unstable nongauged Q-balls is always mediated by a
spherically symmetric mode [39]. However, it remains
an open question in the literature as to whether gauged
Q-balls can be destroyed by the growth of nonspherical
modes. Here we have found an example of an unstable
gauged Q-ball where the growth of the dominant unstable
mode appears to be nonspherical. Remarkably, this
occurs even for a small gauge coupling value of e ¼ 0.02.
This result is suggestive (though not conclusive) that
the destruction of gauged Q-balls can be mediated by
nonspherical modes, in contrast to their nongauged

FIG. 9. Oscillations of the scalar field modulus jϕj for con-
figuration P1 subject to a type I perturbation with parameters
c ¼ 0.1 and A ¼ 0.1. Also shown are the oscillations in the
maximal value of A0 (right axis). The perturbative field χ
implodes upon the Q-ball at t ≈ 20 and induces oscillations
which quickly decay. By t ≈ 60, the perturbedQ-ball has returned
very nearly to its original configuration.
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counterparts. However, we emphasize that we have not
made any attempt to perform a full stability analysis in
this work.
In Fig. 12, we plot the location of P2 on the e ¼ 0.02

curve in the solution space. The curve can be broken down
into several distinct branches: an upper unstable branch (I),
a stable branch (II), and a lower unstable branch (III) which
contains P2. Branch (III) is characterized by solutions

which are dominated by a large, nearly homogeneous
central region and have thin surface boundaries, similar
to P2. The radial extent of these solutions increases with ω
along branch (III). In most cases, the gaugedQ-balls on this
branch are found to decay slowly into smaller gauged
Q-balls or Q-rings, in contrast to the unstable branch (I)
where the instability quickly manifests via complete dis-
persal of the fields to infinity (similar to L2 in the
logarithmic model). However, for some configurations
along branch (III) which are close to the transition point
with branch (II), we also observe the development of large
oscillations in the Q-ball interior which significantly
disrupt the shape of the configuration but do not cause

FIG. 12. Regions of stability and instability for gauged Q-balls
in the V6 model with e ¼ 0.02. The point P2 corresponds with the
configuration listed in Table I. The dotted red line represents
unstable regions (I) and (III) while the solid black line (II)
corresponds with stable configurations. The blue circles indicate
the transition points between stability and instability as predicted
by the classical stability criterion for nongauged Q-balls (1).FIG. 10. Evolution of the scalar field modulus jϕj for configu-

ration P2 subject to a type 0 perturbation. As the evolution
proceeds, the Q-ball splits into two Q-rings which propagate
away from the axis of symmetry. The axis of symmetry is
coincident with the top edge of each panel. The simulation
domain spans fρ∶0 ≤ ρ ≤ 150g and fz∶ − 150 ≤ z ≤ 150g.

FIG. 11. Plot of the difference in the scalar field modulus
Δjϕj ¼ jϕðt ¼ 0; ρ; zÞj − jϕðt ¼ 225; ρ; zÞj for configuration P2
subject to a type 0 perturbation. Here, the growth of jϕj occurs
predominantly near the edge of the Q-ball and resembles the
pattern of the Y4;0 spherical harmonic. The corresponding plot for
the full evolution of jϕj is given in Fig. 10.
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the Q-ball to immediately break apart. These oscillations
are accompanied by the radiation of charge toward infinity.
Since these solutions lose their resemblance to the initial
configuration, we also classify them as unstable.
Before concluding, let us comment on the validity of the

classical stability criterion (1) for e ¼ 0.02. Since the gauge
coupling is very small for this case, one might expect that
the regions of stability should be well predicted by the
sign of dQ=dω. Indeed, we find this to be the case. The
unstable branches (I) and (III) in Fig. 12 approximately
correspond with ðω=QÞdQ=dω > 0 while solutions on
the stable branch (II) approximately correspond with
ðω=QÞdQ=dω < 0. In this sense the gauged Q-balls with
e ¼ 0.02 closely resemble their nongauged counterparts. In
contrast, we have found the entire space of solutions for
e ¼ 0.17 to be stable despite the fact that one can find
both ðω=QÞdQ=dω > 0 and ðω=QÞdQ=dω < 0 for these
solutions. This supports the finding that the sign of the
criterion (1) provides little information on the classical
stability of gauged Q-balls when the magnitude of the
gauge coupling is appreciable [38].

VI. CONCLUSION

We have performed fully nonlinear numerical evolutions
of Uð1Þ gauged Q-balls in axisymmetry to investigate their
stability and dynamics. We assessed this stability in two
ways: by perturbing the configurations using the inherent
truncation error of the numerical grid and by introducing an
auxiliary massless real scalar field which acts as a per-
turbing agent designed to explicitly excite any underlying
unstable modes. Our simulations suggest that both stable
and unstable gaugedQ-ball configurations can exist in both
the logarithmic and polynomial models. For those solutions
which are classified as stable, we observe no evidence of
growing modes on the timescales of our evolutions. These
solutions respond to perturbations by oscillating continu-
ously or weakly radiating before returning to the original
configuration. On the other hand, the decay of unstable
configurations can manifest in several different ways, such
as total dispersal of the solution, fragmentation into smaller
gauged Q-balls, or via the formation of nonspherical
ringlike structures which we call gauged Q-rings. These
structures appear to be similar in appearance and behavior
to the rings observed in previous studies of nongauged
Q-ball dynamics [50]. Additionally, for some solutions
governed by the logarithmic potential and which attain
large field values, we observe that the configurations
respond to perturbations by growing without bound.
This is similar to behavior observed in other Q-ball models
that permit a negative energy density and is interpreted as a
consequence of the scalar potential being unbounded from
below. For the polynomial potential, we have also inves-
tigated the dynamical behavior of gauged Q-balls when
the gauge coupling is small. In this case, we find that the

regions of stability and instability are well described by
the stability criterion (1).
One expected result from our study is that those

configurations which were known to be unstable with
respect to spherically symmetric perturbations [38] are
also unstable under axisymmetric ones. However, our
results indicate that axisymmetric perturbations can lead
to new regions of instability in the solution space.
Furthermore, we have found that some unstable gauged
Q-ball configurations can be destroyed by the growth of
modes which appear to be nonspherical. These results
suggest that the decay of some gauged Q-ball configura-
tions may be mediated by nonspherical modes, in contrast
to nongauged Q-balls.
While we have presented numerical evidence that

gauged Q-balls can be classically stable with respect to
axisymmetric perturbations, it is possible that more general
perturbations may eventually destroy any gauged Q-ball.
Addressing this issue might be accomplished with a fully
three-dimensional code. Future work may also focus
on trying to explicitly solve for the nonspherical gauged
Q-ring configurations and numerically evolving them in
order to assess their stability. Another interesting question
relates to the interaction of two stable gauged Q-balls,
which will be the subject of a future paper.
Lastly, we would like to emphasize that our results have

addressed only the classical stability of gauged Q-balls
(i.e., stability of the solutions with respect to small
perturbations of the fields). For a complete picture of
Q-ball behavior, one may also wish to consider quantum
effects. For example, aQ-ball may decay through collective
tunneling or by surface evaporation when coupled to
additional fields [53–56]. It is interesting to ask whether
the stability of gauged Q-balls is maintained once these
effects are considered, though such a question is beyond the
scope of the present work.
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APPENDIX A: EVOLUTION EQUATIONS IN
AXISYMMETRY

Here we present the full set of evolution equations for
our model, the boundary conditions used, and the regularity
conditions imposed on the axis of symmetry.
The evolution equations for the scalar and gauge fields

can be expressed in cylindrical coordinates as
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where the subscripts ft; ρ;φ; zg correspond to the space-
time coordinates and the subscripts f1; 2g correspond to the
real and imaginary parts, respectively, of the scalar field ϕ.
For numerical purposes, we find it convenient to define new
evolutionary variables

Π1 ¼ ∂tϕ1; Π2 ¼ ∂tϕ2;

Gt ¼ ∂tAt; Gρ ¼ ∂tAρ;

Gφ ¼ ∂tAφ; Gz ¼ ∂tAz: ðA7Þ

which are first order in time.
To complete our specification of the problem, we must

impose appropriate boundary conditions along the axis of
symmetry and at the outer domain boundaries ρ ¼ ρmax,
z ¼ zmin, and z ¼ zmax. For the outer boundaries, we apply
outgoing boundary conditions of the form

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ z2

q
∂tf þ f þ ρ∂ρf þ z∂zf ¼ 0; ðA8Þ

where f ¼ fðt; ρ; zÞ represents each of the evolved vari-
ables in (A1)–(A7). Strictly speaking, the condition (A8)
assumes the field f is massless and purely radially outgoing
at the domain boundary. For nonspherical pulses or massive
fields, the approximation can break down and lead to
unphysical reflections. However, these partial reflections
can be mitigated by taking the outer boundaries sufficiently
far away and by stopping the evolution when appreciable
field content reaches the boundaries. With these

considerations, we find condition (A8) to be sufficient
for the purposes of this work.
Along the axis of symmetry, we find it useful to define

the regularized variables

G̃ρ ¼
Gρ

ρ
; G̃φ ¼ Gφ

ρ2
: ðA9Þ

With this definition, we identifyGt, G̃ρ, G̃φ,Gz,Π1, andΠ2

as having even character as ρ → 0. We can therefore
demand that the radial derivative of these fields should
vanish in this limit, yielding appropriate regularity (boun-
dary) conditions along the axis of symmetry.

APPENDIX B: CODE VALIDATION

We have performed a number of tests in order to assess
the validity of our numerical code. For all calculations
presented in this appendix, we evolve generic Gaussian-like
initial data which are smooth everywhere. The fields ϕ1, ϕ2,
Π1, Π2, At, Ãρ, and Az are chosen to be arbitrary over-
lapping profiles of the form

fðρ; zÞ ¼ A exp

�
−
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðρ − ρ0Þ2 þ ðz − z0Þ2
p

δ

�2�
; ðB1Þ

where A, δ, ρ0 and z0 are real parameters which can be
different for each field. The fields Gt, G̃ρ, and Gz are
then found using a successive overrelaxation scheme [44]
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in order to approximately satisfy the constraints at the
initial time.
As a primary test, we evolve this generic Gaussian-like

data on a uniform grid at several different grid resolutions
in order to explicitly compute the rate of convergence of our
code. Let us define the convergence factor QcðtÞ as

QcðtÞ ¼
ku4h − u2hk
ku2h − uhk ; ðB2Þ

where h represents the spacing between points on the
numerical grid, un represents the solution computed with
grid spacing n, and k · k denotes the L2-norm. For a
second-order-accurate finite-difference scheme, it can be
shown that QcðtÞ → 4 as h → 0. In Fig. 13, we plot the
convergence factor resulting from our test for the constraint
equations and several representative fields. The rate
of convergence is found to be approximately second
order [corresponding toQcðtÞ ¼ 4] which is to be expected

for our second-order Crank-Nicolson finite-difference
implementation.
As a secondary measure, we have performed an inde-

pendent residual test [57] to verify that our discrete
numerical solution is converging to the true continuum
solution of the underlying system (A1)–(A6). For this test,
we substitute the numerical solution found via the second-
order Crank-Nicolson discretization into a separate first-
order forward discretization of the evolution equations.
Results of this test are shown in Fig. 14. The residuals are
found to approximately overlap when rescaled by factors of
2n, indicating the expected first-order convergence. For
brevity, only the (A1) residual is presented here—other
residuals are found to be similar.
In solving the equations of motion, we have used a free

evolution scheme wherein a solution to the evolution
equations is expected to solve the constraint equations at
the initial time [58]. However, it is possible for constraint
violation to grow during the course of the evolution,
indicating lack of convergence. The degree to which the
constraints are violated is therefore a relative measure of the
error in the numerical solution. In all of our simulations, we
monitor the L2-norm of the constraint residuals to ensure
that they do not grow significantly over the timescales
explored. For the results reported here, the L2-norm of the
constraint residuals remains within Oð10−4Þ. In addition,
we also monitor the integrated total energy E and the
charge Q during the course of the evolution to confirm
that these quantities remain approximately conserved to
within Oð1%Þ.

FIG. 14. Residual L2-norm values for the evolution equa-
tion (A1) computed at several different grid resolutions. The
L2-norm has been scaled by factors of 2n for increasing
resolutions. Overlapping of the curves indicates the expected
first-order convergence of the residuals.

FIG. 13. Convergence factorsQcðtÞ for the constraint equations
(top) and several first-order evolved variables Π1, Π2,Gt, G̃ρ, and
Gz (bottom). Here, QcðtÞ is computed using a three-level
convergence test at resolutions 257 × 513, 513 × 1025 and
1025 × 2049. In each case, the quantities are found to be
convergent at approximately second order until the fields hit
the boundaries, at which point first-order convergence is ob-
served. For the data shown here, the potential (4) is used with
parameters e ¼ 0.25, h ¼ 0.2, and m ¼ k ¼ 1.0.
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