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ABSTRACT
We develop a numerical hydrodynamics code using a pseudo-Newtonian formulation that uses
the weak-field approximation for the geometry, and a generalized source term for the Poisson
equation that takes into account relativistic effects. The code was designed to treat moderately
relativistic systems such as rapidly rotating neutron stars. The hydrodynamic equations are
solved using a finite volume method with high-resolution shock-capturing techniques. We
implement several different slope limiters for second-order reconstruction schemes and also
investigate higher order reconstructions such as the piecewise parabolic method, essentially
non-oscillatory method (ENO) and weighted ENO. We use the method of lines to convert the
mixed spatial-time partial differential equations into ordinary differential equations (ODEs)
that depend only on time. These ODEs are solved using second- and third-order Runge–Kutta
methods. The Poisson equation for the gravitational potential is solved with a multigrid method,
and to simplify the boundary condition, we use compactified coordinates which map spatial
infinity to a finite computational coordinate using a tangent function. In order to confirm the
validity of our code, we carry out four different tests including one- and two-dimensional shock
tube tests, stationary star tests of both non-rotating and rotating models, and radial oscillation
mode tests for spherical stars. In the shock tube tests, the code shows good agreement with
analytic solutions which include shocks, rarefaction waves and contact discontinuities. The
code is found to be stable and accurate: for example, when solving a stationary stellar model
the fractional changes in the maximum density, total mass, and total angular momentum per
dynamical time are found to be 3 × 10−6, 5 × 10−7 and 2 × 10−6, respectively. We also
find that the frequencies of the radial modes obtained by the numerical simulation of the
steady-state star agree very well with those obtained by linear analysis.

Key words: gravitation – hydrodynamics – relativistic processes – methods: numerical.

1 I N T RO D U C T I O N

It is necessary to take into account both special and general relativis-
tic effects in the studies of the dynamics of compact astrophysical
objects such as neutron stars and black holes. Some pulsars produce
pulses of up to 1 KHz, corresponding to rotation speeds at the sur-
face of around 0.2c. Their typical sizes and masses are known to be
around 10 km and 1.4 ∼ 2 M�, respectively, giving compactness,
GM/Rc2 = 0.2 ∼ 0.3. Therefore, a Newtonian approach cannot
properly describe neutron stars, even for the non-rotating case.

�E-mail: jinho@astro.snu.ac.kr (JK); khi@astro.snu.ac.kr (HIK); chop-
tuik@phas.ubc.ca (MWC); hmlee@snu.ac.kr (HML)
†Canadian Institute for Advanced Research Cosmology, and Gravity Pro-
gram Fellow.

In general relativity, the dynamics of gravity (or space–time)
can be studied by solving the Einstein equations. The equations of
motion for the matter are given, in part, by the conservation law of
the energy momentum tensor which itself sources the gravitational
field. Computational approaches for solving general relativistic field
equations constitute the field of numerical relativity.

Over the past few decades, many general relativistic hydrody-
namic codes have been developed, starting with Wilson (1972)
who proposed a 3+1 Eulerian formulation (see also Wilson &
Mathew 2003). Although Wilson’s numerical approach was widely
used to study problems such as core collapse and accretion discs,
it produced large errors when fluid flows became ultrarelativistic
(Centrella & Wilson 1984; Norman & Winkler 1986). In order to
avoid these excessive errors, a new formulation was proposed by
Marti, Ibanez & Miralles (1991). This formulation makes it possi-
ble to use existing numerical techniques based on characteristic ap-
proaches for Newtonian hydrodynamics. In particular, these include
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high-resolution shock-capturing (HRSC) methods that reduce the
order of accuracy near shocks, but minimize the amount of numer-
ical dissipation. This dissipation is very unnatural and can result in
non-physical effects in the numerical results. Marti’s formulation
was extended to the general relativistic case by the Valencia group
(Font et al. 2000), and this last work forms the basis for most re-
cent general relativistic hydrodynamical codes. Recent reviews of
the formulation and numerical methods can be found in Martı́ &
Müller (2003) and Font (2008).

However, when working in multiple spatial dimensions, it still
requires a lot of computational resources to treat fluid dynamics in
concert with the evolution of the general relativistic gravitational
field. In addition, numerical relativity simulations have frequently
encountered instabilities which are often associated with violations
of the Hamiltonian and momentum constraints. [However, with the
development of new formulations that cast the Einstein equations
in appropriate hyperbolic forms, as well as the use of constraint-
damping techniques, significant progress has been made on this
front: see Sarbach & Tiglio (2012) for a very recent review on this
subject.] For these reasons, simulations using Newtonian gravity
are still used even though they are not applicable to very compact
objects.

The aim of this paper is (1) to introduce a new formulation that
applies a pseudo-Newtonian approach (Kim, Kim & Lee 2009) to
the study of moderately relativistic objects; and (2) to describe a nu-
merical implementation of this method. In our pseudo-Newtonian
approach, which was introduced by Kim et al. (2009) for steady-
state models, the gravitational field is treated by a weak-field ap-
proximation, but special relativistic effects are correctly taken into
account. Specifically, the Newtonian gravitational potential that ap-
pears in the weak-field metric satisfies a Poisson equation, but the
mass density that appears as a source term for that equation is mod-
ified to include relativistic effects. Of course, this method cannot be
applied to highly relativistic systems, but Kim et al. (2009) showed
that the pseudo-Newtonian formulation is valid for the modelling of
mildly compact objects, such as rotating neutron stars having sur-
face rotation velocity up to ∼0.2c and compactness ∼0.2 (Kim et al.
2009). In this paper, we extend the pseudo-Newtonian approach to
hydrodynamical systems where the flows can be ultrarelativistic and
gravity can be moderately strong.

Our method is very efficient in studying dynamics involving
moderately relativistic compact objects such as neutron stars be-
cause of the relatively small computational resource requirement
and accurate calculations with better stability compared to the fully
relativistic codes. Possible application areas include: (1) stability of
rapidly rotating compact objects; (2) excitation and decay of normal
mode oscillations in neutron stars; (3) core collapse of protoneu-
tron stars; and (4) accretion discs around neutron stars and induced
jets.

The remainder of this paper is structured as follows. In Sec-
tion 2, we present the formulation and governing equations for our
system, while the numerical techniques employed in our study are
given in Section 3. We discuss various numerical tests of our code’s
treatment of hydrodynamics for the case of shock tubes in Sec-
tion 4, and for stationary stars in Section 5. A test that compares
radial pulsation mode frequencies for polytropic stars determined
through dynamical evolution to those computed in linear theory is
detailed in Section 6. We conclude with a summary and discussion in
Section 7.

Throughout this paper, we use units in which c = G = M� =
1: these correspond to unit time = 4.92 × 10−3 ms, unit length =
1.47 km and unit mass = 1.99 × 1033 g.

2 F O R M U L AT I O N

Our pseudo-Newtonian method was first discussed in the steady-
state context by Kim et al. (2009). We assume the weak-field metric

ds2 = gμνdxμdxν

= −(1 + 2�) dt2 + (1 + 2�)−1δij dxi dxj , (1)

where gμν is the space–time metric and � is the Newtonian gravita-
tional potential. With this metric, we neglect all higher order effects
such as frame dragging and describe gravity using only a single
gravitational potential, just as in the Newtonian case. The gravi-
tational potential satisfies a Poisson equation with the active mass
density, ρactive, providing the source

∇2� = 4πρactive. (2)

The active mass density is computed from the relativistic definition
of energy. For a perfect fluid, the energy momentum tensor can be
expressed as

T μν = ρ0 huμuν + Pgμν, (3)

where the specific enthalpy is defined by

h = 1 + ε + P

ρ0
. (4)

The active mass density is then given by

ρactive = T − 2T 0
0 = T i

i − T 0
0 = ρ0 h

1 + v2

1 − v2
+ 2P . (5)

In equations (3), (4) and (5), ρ0 is the rest-mass density which is
proportional to the number density of baryons of the fluid, P is
the pressure, uμ is the 4-velocity of a fluid element with respect
to an Eulerian observer, ε is the specific internal energy, T is the
trace of the energy momentum tensor (T = gμνTμν), and v is the
three-dimensional fluid velocity. Unlike the Newtonian case, ρactive

includes all sources of energy.
The equations governing the motion of the fluid matter can be

derived from the conservation laws for the energy momentum tensor
and the fluid’s matter current, that is, ∇μTμν = 0 and ∇μJμ = 0.
In the Arnowitt, Deser & Misner (1962) decomposition of space–
time, the metric (gμν) can be expressed in the following form by
considering the foliation of space–time using three-dimensional
hypersurfaces defined by t = constant:

ds2 = −α2dt2 + γij

(
dxi + βidt

) (
dxj + βj dt

)
. (6)

Here γ ij is the spatial metric, defined on each hypersurface, while
α and β i are known as the lapse and shift vector, respectively, and
encode the four-fold coordinate freedom of general relativity.

Flux-conservative formulations of hydrodynamics have been ap-
plied very successfully in computational fluid dynamics. To cast the
fluid equations in flux-conservative form, we first define so-called
conservative variables (q) in terms of the original hydrodynamic
variables (so-called primitive variables, w),

q =

⎛
⎜⎝

D

Si

τ

⎞
⎟⎠ =

⎛
⎜⎝

ρ0W

ρ0 hW 2vi

ρ0 hW 2 − P − D

⎞
⎟⎠ , w =

⎛
⎜⎝

ρ0

vi

P

⎞
⎟⎠ , (7)

where W = 1/
√

1 − γij vivj . With these definitions, and with the
metric (equation 6), we can then write the Euler equation as (Font
et al. 2000)

∂
(√

γ q
)

∂t
+ ∂

(√−gf i
)

∂xi
= √−g�, (8)
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where the fluxes f i and the sources � are given by

f i =

⎡
⎢⎢⎢⎢⎣

D
(
vi − βi

α

)

Sj

(
vi − βi

α

)
+ Pδi

j

τ
(
vi − βi

α

)
+ Pvi

⎤
⎥⎥⎥⎥⎦ ,

� =

⎡
⎢⎣

0

T μν
(
∂μgμj − λ

μνgλj

)
α

(
T μ0∂μ (ln α) − 0

μνT
μν

)

⎤
⎥⎦ .

(9)

Here
√

γ and
√−g are the determinants of γ ij and gμν , respectively,

and are related by
√−g = α

√
γ . It is well known that for a perfect

fluid, the system of equations derived from the conservation laws is
not closed: the number of dynamical equations is always less than
the number of unknowns.

As is also well known, the equation of state (hereafter EoS) for
the fluid provides an additional equation, but in the general case
it also introduces other unknowns. In order to completely close
the hydrodynamical equations, an energy-balance equation is often
used. However, under certain circumstances, we can adopt rather
simple EoSs that do not introduce any further variables: adiabatic
and isothermal EoSs provide specific examples.

Realistic EoSs are usually determined by theoretical calcula-
tions and experimental measurements. However, there are physical
regimes where our understanding of the nature of the matter is quite
incomplete. Specifically, in the case where the matter density is sig-
nificantly above nucleon density, there remain large uncertainties in
the correct EoS. Thus, for example, the EoS at the core of neutron
stars is still not very well understood. Here we ignore these diffi-
culties, and for the purpose of testing our code, we use two types of
very simple EoS. The first is the ideal gas EoS which can be written
in the following form:

P = ( − 1) ρ0ε, (10)

and corresponds to the isothermal EoS. We use this EoS in the
shock tube tests described in Section 4. The second EoS results
from the isentropic assumption, whereby equation (10) becomes
the polytropic EoS:

P = Kρ
1+ 1

N
0 . (11)

Here K and N are the polytropic constant and index, respectively.
The polytropic EoS is the generalized form of the adiabatic one; a
fluid which is governed by it does not generate entropy, and shock
formation is thus generically prohibited. We use this EoS in the
pulsation mode test (Section 6 and Appendix A).

Using the above formulation, we are now ready to describe in
detail the pseudo-Newtonian hydrodynamical equations used in our
code. We limit our study here to axisymmetric systems, and adopt
cylindrical coordinates (R, Z, φ) such that

ds2 = −(1 + 2�) dt2 + 1

1 + 2�

(
dR2 + dZ2 + R2dφ2

)
. (12)

The lapse function and shift vector are thus given by α = √
1 + 2�

and β i = 0, respectively. In addition, we enforce the equatorial
symmetry at z = 0. In this coordinate system, the conservative and

primitive variables are

q =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

D

SR

SZ

Sφ

τ

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

ρ0W

ρ0 hW 2vR

ρ0 hW 2vZ

ρ0 hW 2vφ

ρ0 hW 2 − P − D

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, w =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

ρ0

vR

vZ

vφ

P

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (13)

The final form of the hydrodynamical equations then becomes

∂
(√

γ q
)

∂t
+ ∂

(√−gf R
)

∂R
+ ∂

(√−gf Z
)

∂Z
= √−g� , (14)

where

f R =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

DvR

SRvR + P

SZvR

SφvR

τvR + PvR

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

f Z =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

DvZ

SRvZ

SZvZ + P

SφvZ

τvZ + PvZ

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

� =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0

− ρactive
1+2�

∂�
∂R

+ Sφvφ

R
+ P

R

− ρactive
1+2�

∂�
∂Z

0

− (
SR

∂�
∂R

+ SZ
∂�
∂Z

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (15)

Using equation (12) we have
√

γ = R (1 + 2�)−3/2, and
√

g =
R (1 + 2�)−1. In obtaining the expressions in equation (15), we
have used the assumption of slow changes of the potential relative
to the gradients ( ∂�

∂t
� ∂�

∂R
or ∂�

∂Z
). Recently, Nagakura et al. (2011)

used a similar method in the context of jet propagation in a uniform
medium, but adopted a slightly different linear momentum equation
from ours (see equation 15 and compare with equations 2 and 3 in
Nagakura et al. 2011).

Finally, the gravitational Poisson equation in our coordinate sys-
tem is

1

R

∂

∂R

(
R

∂�

∂R

)
+ ∂2�

∂Z2
= 4πρactive. (16)

Note that the second component of � contains terms which,
individually, become singular on the axis of symmetry (R = 0).
In addition, there are other terms in the equations of motion that
need to be treated carefully as R → 0. This is done by demanding
regularity at the axis, and by considering the parity of each function,
with respect to R, in that limit. In particular, ρ0, vZ , vφ , P, D, SZ ,
Sφ and τ are all even functions of R as R → 0, while vR and SR are
odd. Taking this into account, equation (14) and � in equation (15)
become

∂
(√

γ ′q
)

∂t
+ 2

∂
(√−g′f R

)
∂R

+ ∂
(√−g′f Z

)
∂Z

=
√

−g′� (17)
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and

� =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0

0

− ρactive
1+2�

∂�
∂Z

0

−SZ
∂�
∂Z

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (18)

where
√

γ ′ = (1 + 2�)−3/2 and
√−g′ = (1 + 2�)−1. The coeffi-

cient of
∂(√−gf R)

∂R
in equation (17) becomes 2 instead of 1, while

the other variables, such as q, f R and f Z , remain unchanged from
equation (15).

Finally, using L’Hopital’s theorem at R = 0, the singular term
R−1∂�/∂R in the Poisson equation (16) is replaced by ∂2�/∂R2.

3 N U M E R I C A L M E T H O D S

In this section, we describe our numerical methods for solving the
coupled hydrodynamical and Poisson equations. We mainly use a
finite volume method for the hydrodynamical equations and a finite
difference approach for the Poisson equation. In the finite volume
method, each grid cell represents volume-averaged hydrodynamic
quantities, that is, q̄ = 1

�V

∫
q dV . After applying the finite volume

method, our hydrodynamical equations can be reduced to Riemann
problems which consider the time-evolution of initial conditions
given by two distinct states that adjoin at some interface (so that
there are, in general, discontinuities across one or more physical
quantities at the interface). A very important property of the finite
volume method is that it maintains the local conservation properties
of the flow in the computational grid.

In the dynamics of compressible fluids, we inevitably encounter
discontinuous behaviours such as shocks, rarefactions or contact
discontinuities. To treat such discontinuities without introducing
numerical instabilities or spurious oscillations, we use HRSC tech-
niques that generically reduce the order of accuracy of the nu-
merical scheme near discontinuities or when one or more of the
fluid variables are at a local maximum. A key ingredient to the
success of the HRSC methods is the calculation of fluxes through
cell boundaries. To compute these fluxes, we need approximate
values for the primitive variables at the cell boundaries. We have
implemented second-order slope limiters such as minmod (van Leer
1979), monotonized central difference (hereafter MC, van Leer
1977) and superbee (Roe 1985), as well as a third-order slope lim-
iter proposed by Shibata (2003) and which is based on the minmod
function (hereafter 3minmod). Other reconstruction methods such
as the third-order piecewise parabolic method (PPM, Colella &
Woodward 1984), essentially non-oscillatory method (ENO, Harten
et al. 1987) and weighted ENO (WENO, Liu, Osher & Chan 1994;
Jiang & Shu 1996), which has an arbitrary order of accuracy, were
also implemented.

In the implementation of HRSC schemes, it is not efficient to
exactly solve the Riemann problems which arise since an exces-
sively large amount of computational resources per cell are then
needed to calculate the fluxes. Thus, an approximate calculation of
fluxes is performed. We implemented the following three schemes:
Roe (Roe 1981), Marquina (Donat & Marquina 1996; Donat 1998)
and HLLE (Harten, Lax & van Leer 1983; Einfeldt 1988; Einfeldt
et al. 1991) approximations. The Roe approximation is based on
the Rankine–Hugoniot jump condition and Marquina’s approach
generalizes Roe’s scheme. The HLLE algorithm comes from a very
simple two-wave approximation and produces the most dissipa-

tive and stable results. We have mainly used HLLE for reducing
computational cost but found that our results were not significantly
influenced by the type of flux approximation used.

In order to solve the Poisson equation (which is elliptic) for the
gravitational potential, we use the multigrid method, which can
quickly reduce low-frequency error components in the solution by
adopting hierarchical grid levels (Brandt 1977). One of the difficul-
ties we often encounter with the Poisson equation is in the proper
implementation of the boundary conditions. For example, one of the
natural boundary conditions is � = 0 at ∞, but in the coordinates
adopted in the previous section the computational domain cannot
reach spatial infinity. We thus now refer to our previous coordinates
as (r, z) and introduce new coordinates (R, Z) which compactify
the spatial domain, mapping the infinities in each spatial direction
to finite coordinate values. Specifically, we choose the same type
of compactification for both r and z coordinates, namely a tan-
gent function, but allow a certain portion of the domain to remain
‘uncompactified’:

r =
⎧⎨
⎩

R if R ≤ r0

r0 + r1 tan
(

R−r0
r1

)
if R > r0

, (19)

z =
⎧⎨
⎩

Z if Z ≤ z0

z0 + z1 tan
(

Z−z0
z1

)
if Z > z0

. (20)

Here, the four parameters z0, z1, r0 and r1 control the compactifica-
tion, and we chose this specific form for the coordinate transforma-
tion since it guarantees that the compactified coordinates smoothly
transition to the original ones near the origin. We note that we
solve the hydrodynamical and gravitational equations on separate
spatial domains: [0 : r0, 0 : z0] for the hydrodynamic calculations
and

[
0 : r0 + 2

π
r1, 0 : z0 + 2

π
z1

]
for the computation of the grav-

itational potential. Their ranges correspond to [0 : r0, 0 : z0] and
[0 : ∞, 0 : ∞], respectively, in the original cylindrical coordinates
(r, z). In the compactified coordinates, the Poisson equation is writ-
ten as

1

rf (R)

∂

∂R

(
r

f (R)

∂�(R, Z)

∂R

)

+ 1

g(Z)

∂

∂Z

(
1

g(Z)

∂�(R,Z)

∂Z

)
= 4πρactive, (21)

where f (R) and g(Z) are given by

f (R) = dr

dR
=

⎧⎨
⎩

1 if R ≤ r0

sec2
(

R−r0
r1

)
if R > r0,

(22)

g(Z) = dz

dZ
=

⎧⎨
⎩

1 if Z ≤ z0

sec2
(

Z−z0
z1

)
if Z > z0

. (23)

As just noted, the domain for the hydrodynamical calculation is
finite, that is, we do not solve the hydrodynamical equations on the
full compactified domain, and we thus must be careful to choose
values of r0 and z0 large enough so that there is no outflux of
matter through the r = r0 and/or z = z0 boundaries. In our code,
we set r0 = z0 = ηre, where η is a free parameter and re is the
equatorial radius of the rotating star as obtained from the procedure
we use to calculate the initial stellar model. For the pulsation mode
test described in Section 6, a typical choice is η = 2. This means
that the hydrodynamical computational domain extends twice the
distance of the stellar radius in both the R and Z directions: this
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choice is found to be sufficient for our study. The values of r1 and
z1 are automatically determined by requiring the multigrid domain
to be two times larger than the size of the hydrodynamic domain in
compactified coordinates, that is, r1 = π

2 r0 and z1 = π
2 z0.

In our multigrid algorithm, we use line relaxation for our ba-
sic smoother, whereby all grid point values given by R = con-
stant or Z = constant are updated simultaneously (constant-R and
constant-Z sweeps are alternated). We cannot use point-wise re-
laxation since, as is well known, such a technique is not a good
smoother when there is significant anisotropy in the coefficients of
the second derivative terms in the elliptic operator being treated.
This is the case in our compactified coordinate system, particularly
near the domain boundaries. We have used second- and fourth-order
finite-difference approximations to the Poisson equation, and these
lead to tridiagonal and pentadiagonal linear systems, respectively,
that must be solved to implement the line relaxations. We use the
routines DGTSV (tridiagonal) and DGBSV (banded/pentadiagonal)
from LAPACK to find these solutions.

In order to integrate the discretized hydrodynamical equations,
we use the method of lines, transforming our partial differen-
tial equations in time and space to ordinary differential equations
(ODEs) with respect to time. To solve these ODEs, we then employ
second- and third-order Runge–Kutta methods, which are known to
have the total variation diminishing property.

4 SH O C K T U B E T E S T S

In order to verify the accuracy and convergence of our numeri-
cal code, we first carry out rigorous tests using initial configu-
rations having analytic solutions. In this section, we present the
results of such tests for the case where there is no self-gravity (i.e.
pure hydrodynamics). Another test of the entire code – including
our treatment of the gravitational field – is described in the next
section.

Shock tube tests are Riemann problems where the initial con-
figuration of the fluid is given by two states having, in general,
different densities, pressures and velocities, on the left- and right-
hand halves of the tube. Three possible distinct features emerge
from the subsequent evolution: a shock, a rarefaction fan, and a
contact discontinuity. We carried out one- and two-dimensional nu-
merical simulations with three different parameter sets previously
used by Zhang & MacFadyen (2006). These parameters are listed
in Table 1, where the superscripts ‘R’ and ‘L’ represent the fluid
states in the right-hand and left-hand halves, respectively, of the
tube.

4.1 One-dimensional test in Cartesian coordinates

We first present the results of our one-dimensional tests. In these
tests, we carefully examine how the distinct features predicted by
the analytic solutions are reproduced by different methods, and

Table 1. Initial values of the physical quantities for the shock
tube tests (Riemann problem).

Problem  ρL
0 ρR

0 vL vR PL PR

1 5/3 10.0 1.0 0.0 0.0 13.33 10−8

2 5/3 1.0 1.0 0.0 0.0 1000.0 10−2

3 4/3 1.0 1.0 0.9 0.0 1.0 10.0

measure the accuracy and convergence rate of the various solutions
obtained.

In problem 1, the initial discontinuity gives three different types
of solutions (shock, rarefaction and contact discontinuity). Fig. 1
shows the results at t = 0.4 obtained using four different methods
of reconstruction: minmod (top left-hand panel), MC (top right-
hand panel), 3minmod (bottom left-hand panel) and PPM (bottom
right-hand panel). We observe that the minmod method is quite
dissipative, yielding rather smooth solutions that cannot accurately
describe the shockwave. We also find that at low resolution the
height of the shock is not well reproduced if we use the minmod
method. MC and 3minmod give almost similar results, while PPM
shows the best behaviour near the shock.

The second test problem (problem 2) is the so-called blast wave
test which produces a very sharp and thin shell in density between
the shock and contact discontinuity. Generally, numerical codes are
not able to perfectly resolve this very thin shell because it can span
only a few grid cells, even in very high resolution calculations. None
the less, this test provides insight into how well a code can handle
such a feature. As shown in Fig. 2, PPM again gives the best results,
although it still shows large errors at the shock.

The third problem generates a strong reverse shock but the numer-
ical solution has oscillatory features near the shock front. Generally
speaking, the oscillation can be easily damped out if the numerical
scheme is significantly dissipative. Numerical dissipation also tends
to weaken the sharpness of the discontinuity. In Fig. 3, one can see
that the minmod methods, which, as already noted, is the most dis-
sipative of the techniques we use, gives relatively small amplitude
oscillations, except near the discontinuity. The more non-dissipative
methods describe the shock features well, but produce rather large
amplitude oscillatory behaviour.

To quantify the deviation of our numerical results from the an-
alytic solutions, we use the L1 norm of the errors, defined by
L1 = ∑N

i=1 �xi |qi − q(xi)|, where q(xi) is the value of the ana-
lytic solution at point xi. We summarize the results in Table 2. The
convergence rate (log2

[
L2h

1 /Lh
1

]
) in the table should be close to 1,

which corresponds to the first-order nature of the HRSC scheme
near the shock where most of the L1-norm error occurs. However, it
can deviate from that value due to the oscillatory features near the
shock.

Fig. 4 shows the L1 norms and convergence rates for each problem
when the grid resolution is N = 512. Although no single method
stands out in our one-dimensional shock tube tests, we conclude
from the values of the L1 error norms and convergence rates that
PPM gives the most promising results.

4.2 Two-dimensional test in cylindrical coordinates

Since the cylindrical coordinate system we have adopted is curvilin-
ear, one-dimensional shock tube tests are not sufficient for assess-
ing our code’s accuracy and convergence. In Cartesian coordinates,
fluxes between cells which have the same state cancel out. For ex-
ample, if we carry out the shock tube test in the x-direction, then
the fluxes in the y- and z-directions are identical in every grid cell,
meaning that the net flux is 0. Therefore, one-dimensional shock
tube tests performed with codes that use two- or three-dimensional
Cartesian coordinates produce exactly the same results as a one-
dimensional code. However, in cylindrical coordinates, fluxes do
not cancel in this way, but rather are balanced by source terms. This
difference may give additional non-physical effects, especially near
discontinuities.

C© 2012 The Authors, MNRAS 424, 830–842
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Axially symmetric pseudo-Newtonian hydrodynamics code 835

Figure 1. One-dimensional shock tube test of problem 1 at t = 0.4 with different reconstruction methods: minmod (top left-hand panel), MC (top right-hand
panel), 3minmod (bottom left-hand panel) and PPM (bottom right-hand panel). The initial discontinuity is at x = 0.5. We use 512 uniform grid points. The
numerical results are shown in three different colours: rest-mass density (pink), pressure (red) and velocity (blue). The solid lines show the analytic solutions.

Figure 2. Same as Fig. 1 for problem 2.

Therefore, we carried out the first of the shock tube tests listed
in Table 1 in cylindrical coordinates, where we placed the discon-
tinuity on the Z = 0 plane. Fig. 5 shows the resulting solution on
the Z-axis. If we use the minmod method, the two-dimensional re-
sults are similar to the one-dimensional ones. In addition, although
PPM produces better results than minmod, it cannot produce the
sharp features of the shock seen in the one-dimensional test: this

is due to the dissipation caused by the imbalance between the net
flux and the source term. We can also see that 3minmod and PPM
yield quite similar results. We checked the differences in solutions
at different z = constant planes and found that they are negli-
gibly small (∼10−13) compared to the truncation errors. Overall,
however, although the two-dimensional results show more dissipa-
tion than the one-dimensional ones, the relative differences in the
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Figure 3. Same as Figs 1 and 2 for problem 3.

Table 2. The L1 norm of the error and its convergence rate for each of the test problems using
different resolutions and different reconstruction schemes.

N
64 128 256 512 1024 2048

minmod
L1 norm (× 10−2) 25.7 16.5 9.48 5.02 2.66 1.49
Convergence rate – 0.64 0.80 0.92 0.91 0.84

MC
– 15.3 9.43 5.25 2.79 1.46 0.830

Problem 1
– – 0.70 0.85 0.91 0.93 0.82

3minmod
– 17.8 11.0 5.82 2.99 1.51 0.816
– – 0.69 0.92 0.96 0.98 0.89

PPM
– 12.3 6.55 3.43 1.74 0.877 0.431
– – 0.91 0.93 0.98 0.99 1.0

–
– 30.1 21.0 20.1 15.8 10.9 6.93
– – 0.52 0.061 0.34 0.54 0.65

–
– 27.8 18.2 14.9 10.4 6.28 3.77

Problem 2
– - 0.61 0.29 0.52 0.73 0.74

–
– 28.3 17.9 13.7 8.84 5.05 2.72
– – 0.66 0.39 0.63 0.81 0.89

–
– 29.5 17.9 12.7 7.79 3.73 2.13
– – 0.73 0.49 0.71 1.1 0.81

–
– 15.5 10.0 6.19 3.65 2.37 1.58
– – 0.63 0.69 0.76 0.63 0.59

–
– 14.9 7.73 5.40 2.72 1.64 1.04

Problem 3
– – 0.95 0.52 0.99 0.73 0.66

–
– 13.0 6.97 4.40 2.25 1.35 0.867
– – 0.90 0.66 0.97 0.74 0.63

–
– 7.26 3.93 2.41 1.08 0.547 0.393
– – 0.89 0.70 1.16 0.98 0.47
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Axially symmetric pseudo-Newtonian hydrodynamics code 837

Figure 4. The L1 norm (top panel) and convergence rate (bottom panel)
when the number of grid points is 512 with different reconstruction meth-
ods. Three different shock tube problems are shown with different colours
(problem 1: blue; problem 2: red; problem 3: sky blue).

Figure 5. The solution on the axis at t = 0.4 in problem 1 in Section 4.1.
The three different reconstruction methods (minmod: blue; 3minmod: sky
blue; PPM: magenta) are shown.

solutions are not significant (for our purposes). In particular, both
agree acceptably with the analytic forms.

5 STAT I O NA RY STA R T E S T

The tests just reported did not involve the effects of the gravitational
field. In this section, we test our treatment of the Poisson equation
for the gravitational potential as well as the hydrodynamics.

With an ideal code, the evolution of a stationary star should
also be stationary. However, in practice, all codes that dynamically
evolve stationary states show some level of fluctuation due to finite
grid resolution and intrinsic errors in the numerical scheme used. In
this section, we show the time-evolution of the physical quantities
of non-rotating and rotating stars, and investigate the dependence of
this time behaviour by changing the resolution of the simulations.

Specifically, we use three different grid resolutions: 65 × 65, 129 ×
129 and 257 × 257, where half of the grid points span the star at
the equator.

Our initial models of rotating stars are generated using Hachisu’s
self-consistent field (Hachisu 1986a,b) method – details of the pro-
cedure are described in Kim et al. (2009). In order to generate equi-
librium models, we choose: (1) the maximum rest-mass density,
ρmax

0 ; (2) the rotation parameter, A, which describes the differential
rotation; and (3) the axial ratio which determines how fast the star is
rotating. We must also specify the EoS in our construction of the ini-
tial model. Here, we used the polytropic EoS (31) with K = 100 and
N = 1. We choose a maximum density value of ρmax

0 = 1.28×10−3,
which, with this EoS, produces a 1.4-M� star in the non-rotating
case. For the rotating models, we only consider rigid body rotation,
which is obtained when we choose a very large value of A. The
axial ratio is specified to be 0.75, resulting in an orbital frequency
of 611 Hz.

Even with our use of the multigrid technique – which is generally
an efficient method for solving elliptic equations – we find solutions
of the Poisson equation for the gravitational potential to be compu-
tationally expensive. We thus calculate � only every 40 time-steps
to reduce the time spent in the Poisson solver, and find that this pro-
duces results that are nearly equivalent to those obtained when the
Poisson equation is solved at each time-step. However, we use time-
extrapolated values for the gravitational potential at the time-steps
between solutions of the Poisson equation in order to avoid dis-
continuities in the primitive variables, when abrupt changes of the
gravitational potential occur. We find that these discontinuities give
rise to very unnatural dissipative effects in the simulation, resulting,
for example, in a rapid decay in the amplitude of radial oscillations,
even when radial perturbations are explicitly introduced.

Fig. 6 shows the time-evolution of the relative changes of the max-
imum density ([ρmax

0 (t) − ρmax
0 (0)]/ρmax

0 (0) for non-rotating (left-
hand panel) and rigidly rotating (right-hand panel) stars. For the
stationary stars, we use the Cowling approximation, which assumes
the gravitational potential is fixed. This gives efficient evolution of
the stars, and can also be used as a testbed for fully coupled evolu-
tions. The results computed using the Cowling approximation are
shown in the top figures. The maximum density slowly increases
with time for the rotating star, while it decreases for the non-rotating
star. For grid resolutions greater than 65 × 65, the rate of change is
almost independent of resolution for the spherical star, but a slow
decrease with resolution is seen for the rotating star. We define the
following dimensionless rate of change:

R =
∣∣∣∣tdyn

d ln ρmax
0

dt

∣∣∣∣ , (24)

where we use tdyn = 1/
√

ρmax
0 for simplicity. We use this quantity

– as computed from the highest resolution simulations – as a label
in the figures. The values of R are within 3 × 10−7 for non-rotating
stars and are about 10 times larger for rotating stars, again with a
maximum resolution of 257 × 257. The inverse of R can be inter-
preted as the time (in units of the dynamical time) for which the
simulation can be carried out until the results deviate from the true
solution by O(1). Our results indicate that the error would become
∼1 per cent in 30 000 and 3000 dynamical times for non-rotating
and rotating stars, respectively. We also carried out very long time
simulations and found that R becomes smaller even though it ap-
pears to be almost constant in the figures. From these results, we
conclude that we can use the code to evolve stellar configurations
for several thousand or more dynamical times.
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838 J. Kim et al.

Figure 6. The time-evolution of the maximum rest-mass density changes {[ρmax
0 (t) − ρmax

0 (t = 0)]/ρmax
0 (t = 0)} with different resolutions (65 × 65: red;

129 × 129: dark blue; 257 × 257: sky blue). The upper row shows results when we fix the metric (Cowling approximation), while the lower row shows the case
where we consider the fully coupled dynamics. In the left-hand column, we show the figures for a spherical (non-rotating) star, while the right-hand column
shows the corresponding figures for a rigidly rotating star with axial ratio = 0.75, which give a rotational frequency of 611 Hz.

It is also very important to check the constancy of the conserved
quantities with respect to simulation time. In our formulation, we
have two conserved quantities: the total rest mass, M0, and the total
angular momentum, J, which are computed using

M0 =
∫

D dV (3) = 2π

∫
ρ0W

(1 + 2�)3/2 R dR dZ, (25)

J =
∫

Sφ dV (3) = 2π

∫
ρ0 hW 2vφ

(1 + 2�)5/2 R3 dR dZ, (26)

respectively, and where dV (3) denotes the three-dimensional volume
element. Fig. 7 shows the time-evolution of these two conserved
quantities: total rest mass (upper panel) and total angular momen-
tum (lower panel). We show the results only from the rotating star
since there is, of course, no angular momentum for non-rotating
stars. The deviation of the total rest mass from the initial value
has two features: short-term fluctuations and long-term average be-
haviour. The short-term fluctuations depend on the grid resolution,
but the average slopes are almost independent of the resolution.
We label the graphs with RM and RJ in a manner analogous to
equation (24) and Fig. 6, and use these quantities to measure the
long-term stability of the code. Their measured values are consis-
tent with the ones for the central density (R). The behaviour of RM

is quite similar for the three different grid resolutions, but RJ shows
considerable dependence on the grid resolution. We have seen above
(see Fig. 6) that the central density fluctuation is significantly depen-
dent on grid resolution only for the rotating models. We conclude
that the main reason for this resolution-sensitive behaviour is the

Figure 7. The deviation of total rest mass (upper panel) and angular mo-
mentum (lower panel), which should remain constant, from their initial
values with time, for the same models as shown in Fig. 6. Results computed
with three different resolutions (65 × 65: red; 129 × 129: dark blue; 257 ×
257: sky blue) are shown.
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Axially symmetric pseudo-Newtonian hydrodynamics code 839

fact that angular momentum conservation is sensitive to grid res-
olution. Therefore, simulations for rotating stars require high grid
resolution; otherwise, angular momentum conservation will fail,
and other stationary properties of the star (such as central density)
will also show substantial, and non-physical, time-evolution.

6 R A D I A L P U L S AT I O N F R E QU E N C Y T E S T

Even without any explicitly added perturbations, it is natural for our
numerical simulation of stationary stars to give rise to normal mode
oscillations due to intrinsic numerical errors. These errors occur for
a variety of reasons, including: (1) the truncation error due to the
discretization scheme; (2) the artificial atmosphere (floor) whereby
the primitive variables (pressure, density) are restricted from falling
below minimum values to avoid code-crashes (the sound velocity
becomes unbounded when vacuum is encountered in the numerical
calculations); and (3) the numerical limitation in describing the
stellar surface. Furthermore, the artificial atmosphere is known to
excite higher overtone modes.

The frequencies of various modes depend only on the structure
of a given star, and can be calculated by various methods. As ex-
plained above, our stationary models oscillate even when we do not
explicitly introduce external or internal perturbations. We attempted
to compare the frequencies of the modes excited in our models with
those obtained by normal mode analysis. The fundamental-mode
(F-mode) frequency is very closely related to the dynamical time
(∼1/

√
ρ) and the associated overtones have frequencies of similar

order.
Although using calculations based on cylindrical coordinates is

not an efficient way to compute radial pulsations, our code should
still be able to approximately compute the correct pulsation frequen-
cies. The detailed perturbation formulations and numerical methods
we use for investigating the radial pulsations are described in Ap-
pendix A. For initial conditions, we use a non-rotating equilibrium
star with a baryon mass 1.4 M�. We performed the test with and
without the Cowling approximation, and in order to obtain the mode
frequency from the simulations, we analysed the fluctuation of the
maximum density with time.

Specifically, we carried out Fourier transformation on the maxi-
mum density using the FFTW package (Frigo & Johnson 2005). To
obtain better resolution in the frequency domain, we use the zero-
padding method which adds additional zeros at the end of the time-
series data, effectively using interpolation between points following
the basic Fourier transformations. During the process of obtaining
a frequency having a maximum sinusoidal amplitude, leakage may
also cause additional errors. To reduce the effects of this leakage,
we multiply the time-series by a window function. Here we used
the Hamming window function defined by

wj = 0.54 + 0.46 cos

(
2πj

N

)
, (27)

where j is the index of the grid points and N is the total number of
points, prior to zero-padding (Harris 1978).

Although, as described above, some modes are excited simply due
to numerical error, their amplitudes are too small to be accurately
extracted from the simulation. We therefore introduce an explicit
perturbation that can more strongly excite the radial modes. The
perturbation that we used is

δρ0 = Bs sin

(
π

r

rs

)
, (28)

where Bs is the perturbation amplitude which we set to Bs = 0.001.

Figure 8. The mode amplitudes of maximum density as a function of fre-
quency of the star with a baryon mass 1.4 M�. The vertical red dotted lines
show the frequency of the radial pulsation modes computed using the per-
turbation method. The top panel shows the result when we use the Cowling
approximation, where the gravitational potential is assumed to be fixed. In
the bottom figure, we obtain the gravitational potential every few time-steps.
In both panels, the three curves show results obtained using three different
grid resolutions (sky blue: 257 × 257; dark blue: 129 × 129; red: 65 × 65).

Fig. 8 shows the result after Fourier transformation of the time-
series data given by the differences in maximum density relative to
the initial time [ρmax

0 (t) − ρmax
0 (t = 0)], and using calculations at

different resolutions. For comparison purposes, the vertical red lines
show the results computed from linear analysis. The mode labelled
as F is the fundamental mode, while Hn denotes the nth overtone
radial modes. The results shown in the figure can be summarized as
follows:

(i) The most excited mode with the perturbation given by equa-
tion (28) is the F mode. By changing the nature of the perturbation,
we could make one of the overtones the most highly excited.

(ii) At low resolution, the code cannot identify high-frequency
modes. The reason for this is the lack of spatial, not temporal, res-
olution. The eigenfunctions describing higher overtones have large
gradients near the surface which cannot be accurately represented
in the low-resolution calculations.

(iii) The frequency increases when we use the Cowling approx-
imation. This is a well-known phenomenon irrespective of whether
Newtonian or general relativistic gravitation is used. This issue is
discussed in more detail in the appendix.

Table 3 shows the mode frequencies computed from linear analy-
sis as well as the numerical simulations. Again, the stellar model is a
non-rotating spherical star of mass 1.4 M�. The relative difference
between the linear and full numerical results is listed in the last
row. Here the numerical simulations have been carried out using
the highest resolution (257 × 257), and we list results computed
with and without the Cowling approximation. The frequencies we
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Table 3. Comparison of mode frequencies obtained by numerical simula-
tion (2πf ) and by linear analysis (σ ).

Mode F H1 H2 H3

f /
√

ρmax
0 0.190 0.482 0.734 0.974

σ/2π/
√

ρmax
0 0.190 0.482 0.733 0.974

Error (per cent) 0.000 0.000 0.136 0.000

|2πf − σ |/σ

obtained from the numerical simulation with 257 × 257 grid res-
olution have relative differences from those computed from linear
analysis of at most 0.1 per cent. We thus conclude that the radial
mode frequencies computed from our code agree very well with the
ones calculated from linear theory. The largest difference of 0.1 per
cent was found in the second overtone (mode H2), while for other
modes we did not find any measurable difference.

7 SU M M A RY A N D D I S C U S S I O N

We have developed a new hydrodynamical code that adopts a
pseudo-Newtonian treatment of the gravitational field. This code
uses the so-called ‘Valencia formulation’ for the hydrodynamical
equations. From the computational perspective, the code is modu-
lar and includes many reconstruction schemes such as slope lim-
iting techniques (minmod, MC, 3minmod, etc.), PPM and ENO
(WENO). In one-dimensional shock tube tests, we assessed code
accuracy relative to analytic solutions and computed convergence
rates of the errors. We found that the minmod method gives the
most diffusive results, smoothing out complex features near discon-
tinuities. As a result it cannot be used to accurately describe stellar
surfaces, which are characterized by stiff density changes. The MC
method gives the most promising result in the shock tube test and
has second-order accuracy. It can capture discontinuities very well
in the pulsation mode test, but also yields additional non-physical
effects such as the excitation of the higher order overtones near
the stellar boundary. The 3minmod and PPM methods can provide
higher order accuracy and we have found that they can also describe
the stellar surface well.

In the code, we also implemented three different flux approxima-
tion schemes: Roe, Marquina and HLLE. Although the results in
this paper were all computed using the HLLE approach – which is
the most dissipative of the three – we have also found that for the
simulations we have considered all produce very similar results.

In the multigrid module for computing the gravitational poten-
tial, we have implemented both second- and fourth-order finite-
difference discretizations. The actual value of the gravitational po-
tential is slightly different if we change the order of accuracy. How-
ever, the changes of maximum density in time show very little
sensitivity to the order of approximation, and we consider the dif-
ference between the use of the second- or fourth-order method to
be insignificant.

In the stationary star test which is described in Section 5, we
evolve equilibrium solutions describing both non-rotating and ro-
tating stars using our code. Our code shows stable long-time be-
haviour of the maximum density and conserved quantities. Based
on the rates of change in the maximum density, total mass and total
angular momentum, we estimate that our code can be used to study
evolution in excess of 3000 dynamical times with 1 per cent error.

In the radial mode test described in Section 6, modes are ob-
tained from the Fourier transformation of the maximum density
fluctuations. We also computed normal modes by linear analysis
(see Appendix A) and found that the mode frequencies generated
by our code agree with the results from linear analysis almost per-
fectly (less than 0.14 per cent).

This code can be applied to the following astrophysical scenarios:

(i) Phenomena associated with isolated rotating neutron stars,
such as axisymmetric pulsations. Since our approach can be applied
to mildly compact stars, it is very useful to determine the amplitudes
and frequencies of the radial and non-radial modes.

(ii) Core collapses of protoneutron stars. During these processes,
the collapsing fluid velocity can reach up to ∼0.2c, while the grav-
itational field is relatively weak. Therefore, the pseudo-Newtonian
approach is suitable.

(iii) Accretion discs around a neutron star or black hole. It is not
sufficient to treat a disc around a compact object using Newtonian
gravity, since the gravitational field is not weak there. In addition,
because the rotational velocity of the disc and the fluid motion
of the jet induced by accretion are a significant fraction of c, we
should also take into account special relativity in our treatment of
hydrodynamics. Our code can be a very good tool for accretion disc
studies.
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A P P E N D I X A : P E RT U R BAT I O N E QUAT I O N

The eigenfrequencies and eigenfunctions of the radial pulsation of
stars are well known in Newtonian hydrodynamics as well as in
the general relativistic case. However, the corresponding formula-
tion has not been previously presented for our pseudo-Newtonian
approach. Here, we describe the linearized equations that can be
used to obtain eigenfrequencies and eigenfunctions of the normal
modes of spherical stars using this approximation, and following
the general relativistic framework described in Misner, Thorne &
Wheeler 1973 (hereafter MTW). First, to describe stellar oscilla-
tions – such as those occurring on the surface – it is much more
practical to use a Lagrangian description rather than the Eulerian
one adopted in Section 2. The relation between the Eulerian and
Lagrangian perturbations is (see e.g. Cox 1980)

�f (t, r) = δf + f ′
0ζ, (A1)

where ζ is a Lagrangian variation in space. The law of baryon
number conservation [∇μ(nuμ) = 0] gives

�n = −n0

[
r−2α3

0

(
r2α−3

0 ζ
)′

− 3α−1
0 δα

]
, (A2)

where α = √
1 + 2�, n is the baryon number density and ′ denotes

differentiation with respect to r (see equation 26.7 in MTW). The
relation between n in equation (A2) and ρ0 is ρ0 = mbn, where mb

is baryon mass and the subscript 0 denotes the unperturbed state.
Another perturbation equation comes from the adiabatic EoS

which offers a much easier way to find the pressure variation:

 = n

P

dP

dn
. (A3)

Since the Lagrangian variations commute with total differentiation
(denoted by ‘d’), equation (A3) becomes

 = n

P

�P

�n
. (A4)

In addition, equations (A1), (A2) and (A4) give the following pres-
sure variation equation:

δP = −P0

[
r−2α3

0(r2α−3
0 ζ )′ − 3α−1

0 δα
]

− ζP ′
0. (A5)

The energy conservation equation (uμ∇νTμν) gives

�ρ = ρ0 + P0

n0
�n. (A6)

Note that ρ0 is the energy density in the unperturbed state, rather
than the rest-mass density used in the main text. Combining this
with equation (A2), we obtain the equation for the energy density
variation

δρ = −(ρ0 + P0)
[
r−2α3

0(r2α−3
0 ζ )′ − 3α−1

0 δα
]

− ζρ ′
0. (A7)

The main difference here relative to the general relativistic case
arises in the computation of the perturbation of the gravitational

potential. The Poisson equation gives

2

r
(α0δα)′ + (α0δα)′′ = 4π(δρ + 3δP ). (A8)

Note that we should use only the Eulerian variation in this equation
since Lagrangian variation does not commute with partial differen-
tiation. Equation (26.16) in MTW involves only first-order differen-
tial equations, that is, the second-order differentiations are rewritten
in terms of the first-order differentiations. On the other hand, in our
case, we cannot find any equations that can be used to eliminate the
second-order differentiation. That means we need to find one more
boundary condition to solve this equation.

Finally, the equation of motion of the fluid is obtained from the
4-acceleration (aμ = uν∇νuμ)

(ρ0 + P0)α−4
0 ζ̈ = −δP ′ − (δρ + δP )α−1

0 α′
0

−(ρ0 + P0)
(
α−1

0 δα′ − α−2
0 α′

0δα
)
. (A9)

Under the assumption of the adiabatic nature of the oscillation,
normal modes are standing waves, and thus space and time variables
can be separated as follows:

ζ (r, t) = ξ (r)eiσ t . (A10)

Then, we can rewrite the equations A5, A7 and A9 using ξ and σ ,

δP = −P0

[
r−2α3

0(r2α−3
0 ξ )′ − 3α−1

0 δα
]

− ξP ′
0 , (A11)

δρ = −(ρ0 + P0)
[
r−2α3

0(r2α−3
0 ξ )′ − 3α−1

0 δα
]

− ξρ ′
0 , (A12)

(ρ0 + P0)α−4
0 σ 2ζ = δP ′ + (δρ + δP )α−1

0 α′
0

+ (ρ0 + P0)
(
α−1

0 δα′ − α−2
0 α′

0δα
)
. (A13)

To solve equations (A11)–(A13), we need to impose appropriate
boundary conditions. The first condition is that ξ /r should be regular
at the origin, and the second one is that the pressure variation at the
surface must vanish, that is,

ξ

r
= finite at r = 0, (A14)

�P (r = rs) = 0. (A15)

Unlike the general relativistic case, we cannot substitute δα and
δα′ with other variations such as δρ and δP. Therefore, we need
an additional boundary condition for equation (A8). We use the
properties of the gravitational potential to obtain extra conditions.
First, from the condition that the gravitational potential should be
regular at the centre, we obtain

δα′ = 0 at r = 0. (A16)

Secondly, because the gravitational potential should fall off as 1/r
beyond the stellar surface, we have

δ�′ + δ�

r
= 0. (A17)

When we apply the above equation at the stellar boundary (r = rs),
we get

δα′ = − δα2 − 1

2rδα
at r = rs. (A18)

Since equations (A11)–(A13) and (A8) are coupled, we use an
iterative method to solve them.
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Figure A1. Radial pulsation eigenfunction of a 1.4-M� star. The EoS that we use is a polytropic one with K = 100 and N = 1. In this figure, ξ̃ = ξ/r and
ξ̃s = ξ̃ (r = rs), where rs is the surface radius. The dashed and solid lines represent the results with and without the Cowling approximation, respectively.
Each panel shows different modes [top left-hand panel: (F); top right-hand panel: (H1); middle left-hand panel: (H2); middle right-hand panel: (H3); bottom
left-hand panel: (H4); and bottom right-hand panel: (H5)] which have different oscillation frequencies.

For the case of the Cowling approximation, which assumes that
the gravitational potential is fixed (δα = 0), the equations simplify
considerably:

δP = −P0

[
r−2α3

0(r2α−3
0 ξ )′

]
− ξP ′

0 , (A19)

δρ = −(ρ0 + P0)
[
r−2α3

0(r2α−3
0 ξ )′

]
− ξρ ′

0 , (A20)

(ρ0 + P0)α−4
0 σ 2ζ = δP ′ + (δρ + δP )α−1

0 α′
0 . (A21)

If we compare the above equations with equations (A11)–(A13),
we observe that every coefficient of δα is negative: therefore, as

mentioned in the main text, σ increases when we apply the Cowling
approximation.

We show the solution for ξ /r for the 1.4-M� star with K =
100 and N = 1 with and without the Cowling approximation in
Fig. A1. The σ values corresponding to each mode are summarized
in Table 3 which appears in the main text.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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