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fact that angular momentum conservation is sensitive to grid res-
olution. Therefore, simulations for rotating stars require high grid
resolution; otherwise, angular momentum conservation will fail,
and other stationary properties of the star (such as central density)
will also show substantial, and non-physical, time-evolution.

6 R A D I A L P U L S AT I O N F R E QU E N C Y T E S T

Even without any explicitly added perturbations, it is natural for our
numerical simulation of stationary stars to give rise to normal mode
oscillations due to intrinsic numerical errors. These errors occur for
a variety of reasons, including: (1) the truncation error due to the
discretization scheme; (2) the artificial atmosphere (floor) whereby
the primitive variables (pressure, density) are restricted from falling
below minimum values to avoid code-crashes (the sound velocity
becomes unbounded when vacuum is encountered in the numerical
calculations); and (3) the numerical limitation in describing the
stellar surface. Furthermore, the artificial atmosphere is known to
excite higher overtone modes.

The frequencies of various modes depend only on the structure
of a given star, and can be calculated by various methods. As ex-
plained above, our stationary models oscillate even when we do not
explicitly introduce external or internal perturbations. We attempted
to compare the frequencies of the modes excited in our models with
those obtained by normal mode analysis. The fundamental-mode
(F-mode) frequency is very closely related to the dynamical time
(∼1/

√
ρ) and the associated overtones have frequencies of similar

order.
Although using calculations based on cylindrical coordinates is

not an efficient way to compute radial pulsations, our code should
still be able to approximately compute the correct pulsation frequen-
cies. The detailed perturbation formulations and numerical methods
we use for investigating the radial pulsations are described in Ap-
pendix A. For initial conditions, we use a non-rotating equilibrium
star with a baryon mass 1.4 M�. We performed the test with and
without the Cowling approximation, and in order to obtain the mode
frequency from the simulations, we analysed the fluctuation of the
maximum density with time.

Specifically, we carried out Fourier transformation on the maxi-
mum density using the FFTW package (Frigo & Johnson 2005). To
obtain better resolution in the frequency domain, we use the zero-
padding method which adds additional zeros at the end of the time-
series data, effectively using interpolation between points following
the basic Fourier transformations. During the process of obtaining
a frequency having a maximum sinusoidal amplitude, leakage may
also cause additional errors. To reduce the effects of this leakage,
we multiply the time-series by a window function. Here we used
the Hamming window function defined by

wj = 0.54 + 0.46 cos

(
2πj

N

)
, (27)

where j is the index of the grid points and N is the total number of
points, prior to zero-padding (Harris 1978).

Although, as described above, some modes are excited simply due
to numerical error, their amplitudes are too small to be accurately
extracted from the simulation. We therefore introduce an explicit
perturbation that can more strongly excite the radial modes. The
perturbation that we used is

δρ0 = Bs sin

(
π

r

rs

)
, (28)

where Bs is the perturbation amplitude which we set to Bs = 0.001.

Figure 8. The mode amplitudes of maximum density as a function of fre-
quency of the star with a baryon mass 1.4 M�. The vertical red dotted lines
show the frequency of the radial pulsation modes computed using the per-
turbation method. The top panel shows the result when we use the Cowling
approximation, where the gravitational potential is assumed to be fixed. In
the bottom figure, we obtain the gravitational potential every few time-steps.
In both panels, the three curves show results obtained using three different
grid resolutions (sky blue: 257 × 257; dark blue: 129 × 129; red: 65 × 65).

Fig. 8 shows the result after Fourier transformation of the time-
series data given by the differences in maximum density relative to
the initial time [ρmax

0 (t) − ρmax
0 (t = 0)], and using calculations at

different resolutions. For comparison purposes, the vertical red lines
show the results computed from linear analysis. The mode labelled
as F is the fundamental mode, while Hn denotes the nth overtone
radial modes. The results shown in the figure can be summarized as
follows:

(i) The most excited mode with the perturbation given by equa-
tion (28) is the F mode. By changing the nature of the perturbation,
we could make one of the overtones the most highly excited.

(ii) At low resolution, the code cannot identify high-frequency
modes. The reason for this is the lack of spatial, not temporal, res-
olution. The eigenfunctions describing higher overtones have large
gradients near the surface which cannot be accurately represented
in the low-resolution calculations.

(iii) The frequency increases when we use the Cowling approx-
imation. This is a well-known phenomenon irrespective of whether
Newtonian or general relativistic gravitation is used. This issue is
discussed in more detail in the appendix.

Table 3 shows the mode frequencies computed from linear analy-
sis as well as the numerical simulations. Again, the stellar model is a
non-rotating spherical star of mass 1.4 M�. The relative difference
between the linear and full numerical results is listed in the last
row. Here the numerical simulations have been carried out using
the highest resolution (257 × 257), and we list results computed
with and without the Cowling approximation. The frequencies we

C© 2012 The Authors, MNRAS 424, 830–842
Monthly Notices of the Royal Astronomical Society C© 2012 RAS

 at T
he U

niversity of B
ritish C

olom
bia L

ibrary on O
ctober 18, 2014

http://m
nras.oxfordjournals.org/

D
ow

nloaded from
 

http://mnras.oxfordjournals.org/


840 J. Kim et al.

Table 3. Comparison of mode frequencies obtained by numerical simula-
tion (2πf ) and by linear analysis (σ ).

Mode F H1 H2 H3

f /
√

ρmax
0 0.190 0.482 0.734 0.974

σ/2π/
√

ρmax
0 0.190 0.482 0.733 0.974

Error (per cent) 0.000 0.000 0.136 0.000

|2πf − σ |/σ

obtained from the numerical simulation with 257 × 257 grid res-
olution have relative differences from those computed from linear
analysis of at most 0.1 per cent. We thus conclude that the radial
mode frequencies computed from our code agree very well with the
ones calculated from linear theory. The largest difference of 0.1 per
cent was found in the second overtone (mode H2), while for other
modes we did not find any measurable difference.

7 SU M M A RY A N D D I S C U S S I O N

We have developed a new hydrodynamical code that adopts a
pseudo-Newtonian treatment of the gravitational field. This code
uses the so-called ‘Valencia formulation’ for the hydrodynamical
equations. From the computational perspective, the code is modu-
lar and includes many reconstruction schemes such as slope lim-
iting techniques (minmod, MC, 3minmod, etc.), PPM and ENO
(WENO). In one-dimensional shock tube tests, we assessed code
accuracy relative to analytic solutions and computed convergence
rates of the errors. We found that the minmod method gives the
most diffusive results, smoothing out complex features near discon-
tinuities. As a result it cannot be used to accurately describe stellar
surfaces, which are characterized by stiff density changes. The MC
method gives the most promising result in the shock tube test and
has second-order accuracy. It can capture discontinuities very well
in the pulsation mode test, but also yields additional non-physical
effects such as the excitation of the higher order overtones near
the stellar boundary. The 3minmod and PPM methods can provide
higher order accuracy and we have found that they can also describe
the stellar surface well.

In the code, we also implemented three different flux approxima-
tion schemes: Roe, Marquina and HLLE. Although the results in
this paper were all computed using the HLLE approach – which is
the most dissipative of the three – we have also found that for the
simulations we have considered all produce very similar results.

In the multigrid module for computing the gravitational poten-
tial, we have implemented both second- and fourth-order finite-
difference discretizations. The actual value of the gravitational po-
tential is slightly different if we change the order of accuracy. How-
ever, the changes of maximum density in time show very little
sensitivity to the order of approximation, and we consider the dif-
ference between the use of the second- or fourth-order method to
be insignificant.

In the stationary star test which is described in Section 5, we
evolve equilibrium solutions describing both non-rotating and ro-
tating stars using our code. Our code shows stable long-time be-
haviour of the maximum density and conserved quantities. Based
on the rates of change in the maximum density, total mass and total
angular momentum, we estimate that our code can be used to study
evolution in excess of 3000 dynamical times with 1 per cent error.

In the radial mode test described in Section 6, modes are ob-
tained from the Fourier transformation of the maximum density
fluctuations. We also computed normal modes by linear analysis
(see Appendix A) and found that the mode frequencies generated
by our code agree with the results from linear analysis almost per-
fectly (less than 0.14 per cent).

This code can be applied to the following astrophysical scenarios:

(i) Phenomena associated with isolated rotating neutron stars,
such as axisymmetric pulsations. Since our approach can be applied
to mildly compact stars, it is very useful to determine the amplitudes
and frequencies of the radial and non-radial modes.

(ii) Core collapses of protoneutron stars. During these processes,
the collapsing fluid velocity can reach up to ∼0.2c, while the grav-
itational field is relatively weak. Therefore, the pseudo-Newtonian
approach is suitable.

(iii) Accretion discs around a neutron star or black hole. It is not
sufficient to treat a disc around a compact object using Newtonian
gravity, since the gravitational field is not weak there. In addition,
because the rotational velocity of the disc and the fluid motion
of the jet induced by accretion are a significant fraction of c, we
should also take into account special relativity in our treatment of
hydrodynamics. Our code can be a very good tool for accretion disc
studies.
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A P P E N D I X A : P E RT U R BAT I O N E QUAT I O N

The eigenfrequencies and eigenfunctions of the radial pulsation of
stars are well known in Newtonian hydrodynamics as well as in
the general relativistic case. However, the corresponding formula-
tion has not been previously presented for our pseudo-Newtonian
approach. Here, we describe the linearized equations that can be
used to obtain eigenfrequencies and eigenfunctions of the normal
modes of spherical stars using this approximation, and following
the general relativistic framework described in Misner, Thorne &
Wheeler 1973 (hereafter MTW). First, to describe stellar oscilla-
tions – such as those occurring on the surface – it is much more
practical to use a Lagrangian description rather than the Eulerian
one adopted in Section 2. The relation between the Eulerian and
Lagrangian perturbations is (see e.g. Cox 1980)

�f (t, r) = δf + f ′
0ζ, (A1)

where ζ is a Lagrangian variation in space. The law of baryon
number conservation [∇μ(nuμ) = 0] gives

�n = −n0

[
r−2α3

0

(
r2α−3

0 ζ
)′

− 3α−1
0 δα

]
, (A2)

where α = √
1 + 2�, n is the baryon number density and ′ denotes

differentiation with respect to r (see equation 26.7 in MTW). The
relation between n in equation (A2) and ρ0 is ρ0 = mbn, where mb

is baryon mass and the subscript 0 denotes the unperturbed state.
Another perturbation equation comes from the adiabatic EoS

which offers a much easier way to find the pressure variation:


 = n

P

dP

dn
. (A3)

Since the Lagrangian variations commute with total differentiation
(denoted by ‘d’), equation (A3) becomes


 = n

P

�P

�n
. (A4)

In addition, equations (A1), (A2) and (A4) give the following pres-
sure variation equation:

δP = −
P0

[
r−2α3

0(r2α−3
0 ζ )′ − 3α−1

0 δα
]

− ζP ′
0. (A5)

The energy conservation equation (uμ∇νTμν) gives

�ρ = ρ0 + P0

n0
�n. (A6)

Note that ρ0 is the energy density in the unperturbed state, rather
than the rest-mass density used in the main text. Combining this
with equation (A2), we obtain the equation for the energy density
variation

δρ = −(ρ0 + P0)
[
r−2α3

0(r2α−3
0 ζ )′ − 3α−1

0 δα
]

− ζρ ′
0. (A7)

The main difference here relative to the general relativistic case
arises in the computation of the perturbation of the gravitational

potential. The Poisson equation gives

2

r
(α0δα)′ + (α0δα)′′ = 4π(δρ + 3δP ). (A8)

Note that we should use only the Eulerian variation in this equation
since Lagrangian variation does not commute with partial differen-
tiation. Equation (26.16) in MTW involves only first-order differen-
tial equations, that is, the second-order differentiations are rewritten
in terms of the first-order differentiations. On the other hand, in our
case, we cannot find any equations that can be used to eliminate the
second-order differentiation. That means we need to find one more
boundary condition to solve this equation.

Finally, the equation of motion of the fluid is obtained from the
4-acceleration (aμ = uν∇νuμ)

(ρ0 + P0)α−4
0 ζ̈ = −δP ′ − (δρ + δP )α−1

0 α′
0

−(ρ0 + P0)
(
α−1

0 δα′ − α−2
0 α′

0δα
)
. (A9)

Under the assumption of the adiabatic nature of the oscillation,
normal modes are standing waves, and thus space and time variables
can be separated as follows:

ζ (r, t) = ξ (r)eiσ t . (A10)

Then, we can rewrite the equations A5, A7 and A9 using ξ and σ ,

δP = −
P0

[
r−2α3

0(r2α−3
0 ξ )′ − 3α−1

0 δα
]

− ξP ′
0 , (A11)

δρ = −(ρ0 + P0)
[
r−2α3

0(r2α−3
0 ξ )′ − 3α−1

0 δα
]

− ξρ ′
0 , (A12)

(ρ0 + P0)α−4
0 σ 2ζ = δP ′ + (δρ + δP )α−1

0 α′
0

+ (ρ0 + P0)
(
α−1

0 δα′ − α−2
0 α′

0δα
)
. (A13)

To solve equations (A11)–(A13), we need to impose appropriate
boundary conditions. The first condition is that ξ /r should be regular
at the origin, and the second one is that the pressure variation at the
surface must vanish, that is,

ξ

r
= finite at r = 0, (A14)

�P (r = rs) = 0. (A15)

Unlike the general relativistic case, we cannot substitute δα and
δα′ with other variations such as δρ and δP. Therefore, we need
an additional boundary condition for equation (A8). We use the
properties of the gravitational potential to obtain extra conditions.
First, from the condition that the gravitational potential should be
regular at the centre, we obtain

δα′ = 0 at r = 0. (A16)

Secondly, because the gravitational potential should fall off as 1/r
beyond the stellar surface, we have

δ�′ + δ�

r
= 0. (A17)

When we apply the above equation at the stellar boundary (r = rs),
we get

δα′ = − δα2 − 1

2rδα
at r = rs. (A18)

Since equations (A11)–(A13) and (A8) are coupled, we use an
iterative method to solve them.
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Figure A1. Radial pulsation eigenfunction of a 1.4-M� star. The EoS that we use is a polytropic one with K = 100 and N = 1. In this figure, ξ̃ = ξ/r and
ξ̃s = ξ̃ (r = rs), where rs is the surface radius. The dashed and solid lines represent the results with and without the Cowling approximation, respectively.
Each panel shows different modes [top left-hand panel: (F); top right-hand panel: (H1); middle left-hand panel: (H2); middle right-hand panel: (H3); bottom
left-hand panel: (H4); and bottom right-hand panel: (H5)] which have different oscillation frequencies.

For the case of the Cowling approximation, which assumes that
the gravitational potential is fixed (δα = 0), the equations simplify
considerably:

δP = −
P0

[
r−2α3

0(r2α−3
0 ξ )′

]
− ξP ′

0 , (A19)

δρ = −(ρ0 + P0)
[
r−2α3

0(r2α−3
0 ξ )′

]
− ξρ ′

0 , (A20)

(ρ0 + P0)α−4
0 σ 2ζ = δP ′ + (δρ + δP )α−1

0 α′
0 . (A21)

If we compare the above equations with equations (A11)–(A13),
we observe that every coefficient of δα is negative: therefore, as

mentioned in the main text, σ increases when we apply the Cowling
approximation.

We show the solution for ξ /r for the 1.4-M� star with K =
100 and N = 1 with and without the Cowling approximation in
Fig. A1. The σ values corresponding to each mode are summarized
in Table 3 which appears in the main text.
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