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Abstract
We present a new numerical code designed to solve the Einstein field equations
for axisymmetric spacetimes. The long-term goal of this project is to construct a
code that will be capable of studying many problems of interest in axisymmetry,
including gravitational collapse, critical phenomena, investigations of cosmic
censorship and head-on black-hole collisions. Our objective here is to detail the
(2+1)+1 formalism we use to arrive at the corresponding system of equations
and the numerical methods we use to solve them. We are able to obtain stable
evolution, despite the singular nature of the coordinate system on the axis,
by enforcing appropriate regularity conditions on all variables and by adding
numerical dissipation to hyperbolic equations.

PACS numbers: 04.25.Dm, 04.40.−b, 04.70.Bw

1. Introduction

In this paper we introduce a numerical code designed to solve the Einstein field equations
for axisymmetric spacetimes. Even though the predominant focus in numerical relativity in
recent years has been to study situations of relevance to gravitational wave detection, and
hence lacking symmetries, there are still numerous interesting problems, both physical and
computational, that can be tackled with an axisymmetric code. The advantages of restricting
the full 3D problem to axisymmetry (2D) are that the complexity and number of equations are
reduced, as are the computational requirements compared to solving a similar problem in 3D.

Prior numerical studies of axisymmetric spacetimes include head-on black-hole collisions
[1–6], collapse of rotating fluid stars [7–11], the evolution of collisionless particles applied to
study the stability of star clusters [12] and the validity of cosmic censorship [13], evolution
of gravitational waves [14, 15], black-hole-matter–gravitational wave interactions [16–19],
and the formation of black holes through gravitational wave collapse [20] and corresponding
critical behaviour at the threshold of formation [21].
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Our goals for creating a new axisymmetric code are not only to explore a wider range of
phenomena than those studied before, but also to provide a framework to add adaptive mesh
refinement (AMR) and black-hole excision to allow more thorough and detailed investigations
than prior works.

The outline of the rest of the paper is as follows. In section 2 we describe the (2+1)+1
decomposition [22, 23] of spacetime that we adopt to arrive at our system of equations.
The (2+1)+1 formalism is the familiar ADM space+time decomposition (in this case 2+1)
applied to a dimensionally reduced spacetime obtained by dividing out the axial Killing
vector, following a method devised by Geroch [24]. In section 3 we specialize the equations
to our chosen coordinate system, namely cylindrical coordinates with a conformally flat 2-
metric. At this stage we do not model spacetimes with angular momentum, and we include a
massless scalar field for the matter source. In section 4 we discuss how we search for apparent
horizons during evolution. In section 5 we describe our numerical implementation of the set
of equations derived in section 3. A variety of tests of our code are presented in section 6,
which is followed by conclusions in section 7. Some details concerning our finite difference
approximations, solution of elliptic equations via the multi-grid technique and a spherically
symmetric code used for testing purposes are given in appendices A and B. Unless otherwise
specfied, we use the conventions adopted by Misner et al [25], and use geometric units, where
G = c = 1.

2. The (2+1)+1 formalism

The most common approach in numerical relativity is to perform the so-called 3+1, or ADM,
split of the spacetime that one would like to evolve. In this procedure, a timelike vector
field is chosen together with spatial hypersurfaces that foliate the spacetime. If axisymmetry
is assumed, it is usually incorporated once the ADM decomposition has been done, and is
reflected in the independence of the various metric and matter quantities on the ignorable,
angular coordinate, ϕ.

Our approach, which follows Geroch [24] and Nakamura et al [9], reverses this procedure.
We assume axisymmetry from the outset and perform a reduction of the spacetime based on
this assumption. Once we have projected out the symmetry, we perform an ADM-like split
(now a 2+1 split) of the remaining 3-manifold.

More specifically, we begin with a four-dimensional spacetime metric5 γ µν on our
manifold M. The axisymmetry is realized in the existence of a spacelike Killing vector

Xµ =
(
∂

∂ϕ

)µ
, (1)

with closed orbits. We define the projection operator gµν , allowing us to project tensors from
the four-dimensional manifold M with metric γ µν to a three-dimensional manifold M/S1

with metric gab, as

gµν = γµν − 1

s2
XµXν, (2)

where s is the norm of the Killing vector

s2 = XµXµ. (3)

With the definition of the vector

Yµ = 1

s2
Xµ, (4)

5 Note that we will use Greek letters to denote coordinates in the full 4-manifold and Latin letters to denote coordinates
in the reduced 3-manifold.
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the metric on the full, four-dimensional spacetime can be written as

γµν =
(
gab + s2YaYb s2Ya

s2Yb s2

)
. (5)

Projecting, or dividing out the symmetry amounts to expressing four-dimensional
quantities in terms of quantities on the 3-manifold. For instance, the connection coefficients
(4)�λµν associated with the four-dimensional metric are

(4)�λµν = (3)�λµν +�λµν

= (3)�λµν + 1
2 s

2gλσ [YνZµσ + YµZνσ − ∂σ (ln s2)YµYν] + 1
2Y

λ[∂µ(s2Yν) + ∂ν(s2Yµ)],

(6)

where (3)�λµν are the connection coefficients constructed from the 3-metric gµν , and we have
defined the antisymmetric tensor

Zµν = ∂µYν − ∂νYµ. (7)

Note that Zµν is an intrinsically three-dimensional object, in thatZµνXµ = ZµνX
ν = 0. With

some algebra, the Ricci tensor on the 4-manifold, (4)Rµν , can now be written as the Ricci
tensor on the reduced space, (3)Rµν , together with additional terms involving fields coming
from the dimensional reduction

(4)Rµν = (3)Rµν +Dλ�
λ
µν −Dµ�

λ
νλ +�λµν�

σ
λσ −�σµλ�

λ
νσ , (8)

where Dµ is the covariant derivative on the three-dimensional manifold. Expressed in terms
of s, Ya, Zab and (3)Rab, the components of (8) are

(4)Rϕϕ = 1

4
s4ZbcZ

bc − sDaDas, (9)

(4)Rϕa = 1

2s
Dc(s3Zac) + Ya

[
1

4
s4ZbcZ

bc − sDaDas

]
, (10)

(4)Rab = (3)Rab − 1

s
DaDbs − 1

2
s2ZacZb

c

− 1

s
Dc[s3Zc(a]Yb) + YaYb

[
1

4
s4ZbcZ

bc − sDaDas

]
. (11)

Taking the trace of (8), and using the definitions described above, gives the decomposition of
the Ricci scalar as

(4)R = (3)R − 2

s
DaDas − 1

4
s2ZbcZ

bc. (12)

The four-dimensional Einstein equations, with a stress–energy tensor Tµν , are
(4)Rµν − 1

2
(4)Rγµν = 8πTµν. (13)

Using equations (9)–(12), we can write the Einstein equations as

DaDas = −waw
a

2s3
− 8π

s

(
Tϕϕ − 1

2
s2Tλ

λ

)
, (14)

D[awb] = 8πsεabcTcϕ, (15)

(3)Rab = 1

s
DaDbs +

1

2
s2ZacZb

c + 8π

(
Tµνg

µ
ag

ν
b − 1

2
gabTλ

λ

)
, (16)
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where we have introduced the twist wµ of the Killing vector

wµ = s4

2
εµνλσ Y

νZλσ , (17)

and the four- and three-dimensional Levi-Civita symbols εµνλσ and εabc, respectively. The
twist vector wµ is intrinsically three-dimensional, i.e. wµXµ = 0. Furthermore, wa/s3 is
divergence free

Da
[wa
s3

]
= 0. (18)

At this point, the first reduction is essentially done. Equation (16) can be viewed as the
three-dimensional Einstein equations, coupled to the projection of the stress–energy tensor
Tµν and to induced ‘matter fields’ s andwa (or Zab). The equations of motion for s and wa are
given by (14) and (15) respectively; additional equations of motion will need to be specified
for whatever true matter fields one incorporates into the system. This procedure so far is
completely analogous to the Kaluza–Klein reduction from five to four dimensions, in which the
five-dimensional geometry becomes gravity in four dimensions coupled to electromagnetism
and a scalar field [27]. Here, however, the reduced 3-manifold has no dynamics and we have
the rather appealing picture of having ‘divided out’ the dynamics of the four-dimensional
gravitational system and reinterpreted the two degrees of freedom in the gravitational field as
scalar (s) and ‘electromagnetic’ (Zab, or wa) degrees of freedom6.

We now perform the ADM split of the remaining spacetime. This is done by first foliating
the three-dimensional spacetime into a series of spacelike hypersurfaces with unit, timelike
normal vector na . Then, similar to the dimensional reduction above, we decompose quantities
into components orthogonal and tangent to na , using the projection tensor hab

hab = gab + nanb. (19)

We now define the components of na , and the induced two-dimensional7 metric hAB , using
the following decomposition of the 3-metric

gab dxa dxb = −α2 dt2 + hAB(dxA + βA dt)(dxB + βB dt), (20)

where α is the lapse function and βA the shift vector. The gravitational equations now become
the evolution equations for the components of the 2-metric hAB and the 2-extrinsic curvature
KAB

∂thAB = −2αKAB +AβB +BβA (21)

∂tKAB = βCCKAB +KACBβ
C +KBCAβ

C + α[KKAB + (2)RAB ]

− 2αKACKBC −ABα − α(3)RAB, (22)

the Hamiltonian constraint equation
(2)R −KA

BK
B
A +K2 = (3)R + 2(3)Rabnanb (23)

and the ρ and z momentum constraint equations

AKB
A −AK = −(3)Rcdn

dhcB. (24)

In the above,A is the covariant derivative compatible with the 2-metric hAB,K ≡ KA
A, and

(2)RAB and (2)R are the two-dimensional Ricci tensor and Ricci scalar, respectively. Note that
because gravity in three dimensions has no propagating degrees of freedom, the constraint
6 Recall that the electromagnetic field in three dimensions has only a single degree of freedom as compared to the
two degrees of freedom in four dimensions.
7 We use upper-case Latin indices to denote two-dimensional tensor components.
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equations fix the three-dimensional geometry completely. Thus, if desired, one can use the
constraint equations (23), (24) instead of the evolution equations (21), (22) to solve for hAB .
The freely specifiable degrees of freedom of the 4-manifold are encoded in s and wa , which
are evolved using (14), (15) and (18). Note that (15) and (18) constitute four equations for
the three components of wa—the purely spatial have four equations for the three components
of wa . The purely spatial part of (15) is, in 3+1 language, the angular momentum constraint
equation and only needs to be solved at the initial time in a free evolution of wa . We note
that the restricted class of axisymmetric spacetimes having no angular momentum (rotation)
is characterized by the existence of a scalar twist, w, such thatwa ≡ w,a . In the vacuum case,
w generally represents odd parity gravitational waves, while s encodes even parity, or Brill
waves. We further note that this class includes the special case wa ≡ 0, which will be the
focus of our discussion below.

3. Coordinate system, variables and equations

In this section we describe a particular coordinate system and set of variables which, in the
context of the formalism described in the previous section, provides us with the concrete
system of partial differential equations that we solve numerically. We also detail the outer
boundary conditions we use, and the on-axis regularity conditions necessary to obtain smooth
solutions to these equations.

We only consider spacetimes with zero angular momentum, and no odd-parity
gravitational waves; therefore wa = 0. We choose a conformally flat, cylindrical coordinate
system for the 2-metric

hAB dxA dxB = ψ(ρ, z, t)4(dρ2 + dz2). (25)

This choice for hAB exhausts the coordinate freedom we have to arbitrarily specify the two
components of the shift vector—βρ(ρ, z, t) and βz(ρ, z, t). In order to maintain the form
(25) during an evolution, we use the momentum constraints, which are elliptic equations, to
solve for βρ and βz at each timestep. The Hamiltonian constraint provides a third elliptic
equation that we can use to solve for the conformal factor ψ . For a slicing condition, we use
maximal slicing of t = const hypersurfaces in the four-dimensional manifold—i.e. we impose
(3)K = 0, where (3)K is the trace of the extrinsic curvature tensor of t = const slices of γ µν.
This condition (specifically ∂(3)K/∂t = 0) gives us an elliptic equation for the lapse.

Instead of directly evolving the norm of the Killing vector, s, we evolve the quantity σ̄ ,
defined by

s = ρψ2 eρσ̄ , (26)

and furthermore, we convert the resultant evolution equation for σ̄ (14) to one that is first order
in time by defining the quantity �̄, which is a ‘conjugate’ variable to σ̄ , via

ρ�̄ = −2Kρρ −Kz
z

= −3

2
na(ln s),a +

βz,z − βρ,ρ

2α
. (27)

Part of the motivation behind using σ̄ and �̄ as fundamental variables is to simplify the
enforcement of on-axis regularity. Regularity as ρ → 0 implies that all variables exhibit
either even or odd Taylor expansions in ρ. In particular, σ̄ and �̄ must have leading order
behaviour of the forms σ̄ = σ̄1(z, t)ρ +O(ρ3) and �̄ = �̄1(z, t)ρ +O(ρ3) respectively, and
experience has shown it to be easier to enforce such conditions, than to enforce the leading
order behaviour of s (or its time derivative) near the axis, which is s = s2(z, t)ρ

2 +O(ρ4).
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As mentioned previously, the only matter source we currently incorporate is a massless
scalar field �(ρ, z, t), which satisfies the usual four-dimensional wave equation �� = 0.
We convert this equation to first-order-in-time form by defining a conjugate variable�

� ≡ ψ2na�,a. (28)

The stress–energy tensor for the scalar field is

Tµν = 2�,µ�,ν − γµν�
,µ�,µ, (29)

and note that we are using a definition which differs from the usual scalar field stress–energy
tensor by an overall factor of 2.

Using all of the above definitions and restrictions within the formalism detailed in the
previous section, we end up with the following system of equations that we solve with our
numerical code, described in the next section. The maximal slicing condition results in the
following elliptic equation for α

2(ρα,ρ),ρ2 + α,zz + α,ρ

(
2
ψ,ρ

ψ
+ (ρσ̄ ),ρ

)
+ α,z

(
2
ψ,z

ψ
+ (ρσ̄ ),z

)
− ψ4

2α

[(
βρ,ρ − βz,z

)2

+
(
βρ,z + βz,ρ

)2
]

− ψ4

6α

[
2αρ�̄ + βρ,ρ − βz,z

]2 = 16πα�2, (30)

where we have introduced the notation f,ρ2 ≡ ∂(f )/∂(ρ2). The Hamiltonian constraint gives
an elliptic equation for ψ

8
ψ,ρρ

ψ
+ 8

ψ,zz

ψ
+ 16

ψ,ρ2

ψ
+ 8(ρσ̄ ),ρ

ψ,ρ

ψ
+ 8(ρσ̄ ),z

ψ,z

ψ
+
ψ4

2α2

[(
βρ,ρ − βz,z

)2

+
(
βρ,z + βz,ρ

)2
]

+
ψ4

6α2

[
2αρ�̄ + βρ,ρ − βz,z

]2
= −16π

(
�2 +�,ρ

2 +�,z
2
)− 6(ρ2(ρσ̄ ),ρ),ρ3

− 2((ρσ̄ ),ρ)2 − 2(ρσ̄ ),zz − 2((ρσ̄ ),z)2. (31)

The ρ and z momentum constraints, which provide elliptic equations that we use to solve for
βρ and βz, are
2

3
βρ,ρρ + βρ,zz +

1

3
βz,zρ − 2αρ

3

[
6�̄
ψ,ρ

ψ
+ �̄,ρ + 3�̄(ρσ̄ ),ρ

]
− 8

3
α�̄− 2

3

[
α,ρ

α
− 6

ψ,ρ

ψ

]

× (
βρ,ρ − βz,z

)−
[
α,z

α
− 6

ψ,z

ψ
− (ρσ̄ ),z

] (
βρ,z + βz,ρ

)
= −32π

α

ψ2
�,ρ, (32)

and

βz,ρρ +
4

3
βz,zz − 1

3
βρ,zρ − 2αρ

3

[
6�̄
ψ,z

ψ
+ �̄,z + 3�̄(ρσ̄ ),z

]

+
4

3

[
α,z

α
− 6

ψ,z

ψ
− 3

2
(ρσ̄ ),z

] (
βρ,ρ − βz,z

)

+

[
2α

ψ6

(
ρψ6

α

)
,ρ2

+ (ρσ̄ ),ρ

] (
βρ,z + βz,ρ

) = −32π
α

ψ2
�,z. (33)

The definition of �̄ in equation (27) gives an evolution equation for σ̄ (where the overdot
denotes partial differentiation with respect to t)

˙̄σ = 2βρ (ρσ̄ ),ρ2 + βzσ̄,z − α�̄−
(
βρ

ρ

)
,ρ

. (34)
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The evolution equation for �̄ is

˙̄� = 2βρ(ρ�̄),ρ2 + βz�̄,z − 1

2αρ

(
βz,ρ

2 − βρ,z
2) +

1

ψ4

(
α,ρ

ρ

)
,ρ

+
α

ψ6

(
(ψ2),ρ

ρ

)
,ρ

− 2α

ψ4

(
4
ψ,ρ2

ψ
+ (ρσ̄ ),ρ2

)(
α,ρ

α
+

2ψ,ρ
ψ

)

− α

ψ4

[
σ̄,z

(
α,z

α
+

2ψ,z
ψ

)
+ ρσ̄,z

2 + σ̄,zz

]
+ 64π

α

ψ4
ρ(�,ρ2)2. (35)

We also have an evolution equation forψ , which we optionally use instead of the Hamiltonian
constraint (31) to update ψ

ψ̇ = ψ,zβ
z + ψ,ρβρ +

ψ

6

(
2βρ,ρ + βz,z + ρα�̄

)
. (36)

The definition of � and the wave equation for� give

�̇ = βρ�ρ + βz�z +
α

ψ2
�, (37)

and

�̇ = βρ�,ρ + βz�,z +
1

3
�
(
αρ�̄ + 2βρ,ρ + βz,z

)
+

1

ψ4

[
2(ραψ2�ρ),ρ2 + (αψ2�z),z

]
+
α

ψ2

[
(ρσ̄ ),ρ�ρ + (ρσ̄ ),z�z

]
. (38)

To complete the specification of our system of equations, we need to supply boundary
conditions. In our cylindrical coordinate system, where ρ ranges from ρ = 0 to ρ = ρmax

and z ranges from zmin to zmax, we have two distinct boundaries: the physical outer boundary
at ρ = ρmax, z = zmin and z = zmax; and the axis, at ρ = 0. Historically, the axis presented
a stability problem in axisymmetric codes. We solve this problem by enforcing regularity on
the axis, and, as described in section 5, adding numerical dissipation to evolved fields.

The regularity conditions can be obtained by inspection of the equations in the limit
ρ → 0, or more formally, by transforming to Cartesian coordinates and demanding that
components of the metric and matter fields be regular and single valued throughout [26].
Garfinkle and Duncan [14] have further proposed that in order to ensure smoothness on the
axis, one should use quantities that have either even or odd power series expansions in ρ as
ρ → 0, but which do not vanish faster than O(ρ). It is interesting that the quantities which
we found to work best also obey this requirement. As discussed earlier, the particular choice
of σ̄ and �̄ as fundamental variables was partly motivated by regularity concerns. The results
are

α,ρ(0, z, t) = 0 (39)

ψ,ρ(0, z, t) = 0 (40)

βz,ρ(0, z, t) = 0 (41)

βρ(0, z, t) = 0 (42)

σ̄ (0, z, t) = 0 (43)

�̄(0, z, t) = 0 (44)

�,ρ(0, z, t) = 0 (45)

�,ρ(0, z, t) = 0. (46)
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At the outer boundary, we enforce asymptotic flatness by requiring

lim
r→∞α(r, t) = 1 +

C(t)

r
+O(r−2) (47)

lim
r→∞ψ(r, t) = 1 +

D(t)

r
+O(r−2) (48)

lim
r→∞β

z(r, t) = E(t)

r
+O(r−2) (49)

lim
r→∞β

ρ(r, t) = F(t)

r
+O(r−2), (50)

for undetermined functions C(t),D(t), E(t), F (t) and r2 ≡ ρ2 + z2. These latter relations
are converted to mixed (Robin) boundary conditions (see appendix A for details) and then
are imposed at the outer boundaries of the computational domain: ρ = ρmax, z = zmax and
z = −zmax. We have also experimented with the use of Dirichlet conditions on α, βρ and βz

at the outer boundaries (specifically α = 1 and βρ = βz = 0 there), and have found that these
work about as well as the Robin conditions. For the scalar field, we assume that near the outer
boundary we can approximate the field as purely radially outgoing, and require

(r�),t + (r�),r = 0. (51)

For scalar field configurations far from spherical symmetry, this approximation suffers and
reflections are relatively large. However, in general, the reflections do not grow and are
somewhat damped. For the other two evolved quantities, σ̄ and �̄, we use this same naive
condition for lack of any better, more physically motivated conditions. While this condition
proves to be stable with damped reflections, a better condition is sought and this issue remains
under investigation.

For initial conditions, we are free to set (σ̄ (0, ρ, z), �̄(0, ρ, z),�(0, ρ, z),�(0, ρ, z)).
Once the free data are chosen, we then use the constraint and slicing equations to determine
(α(0, ρ, z), ψ(0, ρ, z), βz(0, ρ, z), βρ(0, ρ, z)). Specifically, we define a general pulse shape

GX(ρ, z) = AX exp


−

(√
(ρ − ρX)

2 + εX (z− zX)
2 − RX

X

)2

 (52)

characterized by six parameters (Ax, ρX, εX, zX,RX,X) and then choose initial data of the
form

σ̄ (0, ρ, z) = ρGσ̄ (ρ, z)

�̄(0, ρ, z) = ρG�̄(ρ, z)

�(0, ρ, z) = G�(ρ, z)

�(0, ρ, z) = 0.

(53)

For εX = 1, these pulses are Gaussian, spherical shells centred at (ρX, zX) with radiusRX and
pulse width X. For εX = 1 and (ρX, zX) = (0, 0), the pulses are spherical. The factor of ρ
in the initial data for σ̄ and �̄ ensures the correct behaviour on axis for regularity. We also
note that when ρX �= 0,GX is not formally an even function of ρ; in such cases, we always
set ρX � X so that GX(0, z) ≈ 0, and to well within the precision of our computations, the
regularity condition on GX is satisfied at the initial time. For the evolutions presented here,
we set �(0, ρ, z) = �̄(0, ρ, z) = 0, so that the initial configurations represent moments of
time symmetry. We note, however, that we are also able to generate and evolve approximately
ingoing initial data for the scalar field.
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4. Finding apparent horizons

In this section, we describe the equation and technique we use to search for apparent horizons
(AHs) within t = const spatial slices of the spacetime (see [7, 28, 29] for descriptions of some
of the methods available to find AHs in axisymmetry). We restrict our search to isolated,
simply connected AHs. In axisymmetry, such an AH can be described by a curve in the (ρ, z)
plane, starting and ending on the axis at ρ = 0. We define the location of the AH as the level
surface F = 0, where

F = r̄ − R(θ̄ ), (54)

and

r̄ ≡
√
ρ2 + (z − z0)2, (55)

r̄ sin θ̄ ≡ ρ, (56)

r̄ cos θ̄ ≡ (z− z0). (57)

The AH is the outermost, marginally trapped surface; hence, we want to find an equation for
R(θ̄) such that the outward null expansion normal to the surface F = 0, is zero. To this end,
we first construct the unit spatial vector sa , normal to F = const

sa = gabF,b√
gcdF,cF,d

. (58)

Then, using sa and the t = const hypersurface normal vector na , we construct future-pointing
outgoing (+) and ingoing (−) null vectors as

�a± = na ± sa. (59)

The normalization of the null vectors is (arbitrarily) �a+�−a = −2. The outward null expansion
θ+ is then the divergence of �a+ projected onto F = const

θ+ = (gab − sasb)∇b�+a. (60)

Using the definition of the extrinsic curvatureKAB , and substituting (59) into (60), we arrive
at the familiar form for the null expansion when written in terms of ADM variables

θ+ = sAsAKAB +As
A −K. (61)

Note that because the normalization of �a+ is arbitrary, so (to some extent) is that of θ+. The
above normalization is chosen so that θ+ measures the fractional rate of change of area with
time measured by an observer moving along na .

Substituting (54) and (58) into (61), and setting θ+ = 0, we are left with an ordinary
differential equation for R(θ̄). This equation takes the following form, where a prime ′

denotes differentiation with respect to θ̄

R′′(θ̄ ) +G(R′(θ̄ ), R(θ̄ ), gab, gab,ρ, gab,z) = 0. (62)

G is a rather lengthy function of its arguments, nonlinear in R and R′; for brevity we do not
display it explicitly. All of the metric functions and their gradients appearing in (62) are
evaluated along a given curve of integration, and hence are implicitly functions of θ̄ . θ̄ ranges
from 0 to π , and regularity of the surface F = 0 about the axis requires R′(0) = R′(π) = 0.
Integration of (62) therefore proceeds by specifying R at θ̄ = 0 (for instance), and then
‘evolving’ R until either θ̄ = π , or R diverges at some value of θ̄ < π . If an AH exists, and
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assuming z0 is inside the AH, then the AH can be found by searching for the (locally) unique8

initial value R(0) = R0 such that integration of (62) ends at R(π) = Rπ , with R′(π) = 0
and Rπ finite. For R(0) slightly larger than R0 (outside the AH), the integration will end at
θ̄ = π withR′(π) > 0, indicating an irregular point on the surface; similarly, forR(0) slightly
smaller than R0 (inside the AH) the integration will end with R′(π) < 0. Therefore, if we
can find a reasonable bracket about the unknown R0, we can use a bisection search to find R0.
Currently, we find a bracket to search by testing a set of initial points, equally spaced in z at
intervals of 3z. This seems to work well in most situations, and the search is reasonably fast.

We use a second-order Runge–Kutta method to integrate equation (62). The metric
functions appearing in G are evaluated using bilinear interpolation along the curve.

5. Implementation

In this section we describe the numerical code that we have written to solve the equations
listed in section 3. Some details are deferred to appendix A.

We use a uniform grid of size Nρ points in ρ by Nz points in z, with equal spacingρ =
z = h in the ρ and z directions. The value of a function f at time level n and location (i, j)
within the grid, corresponding to coordinate (ρ, z, t) = ((i − 1)ρ, (j − 1)z + zmin, nt),
is denoted by f ni,j . For the temporal discretization scale we use t = λh, where λ is the
Courant factor, which for the type of differencing we employ, should be less than one for
stability; typically we use λ = 0.3. The hyperbolic equations (34)–(38) are discretized using
a second-order accurate Crank–Nicholson-type scheme, whereby we define two time levels,
t and t + t , and obtain our finite difference stencils by expanding in Taylor series about
t = t + t/2. This gives the following second-order accurate approximation to the first
derivative of f with respect to time

f n+1
i,j − f ni,j

t
= ∂f (ρ, z, t)

∂t

∣∣∣∣
t=t+t/2

+O(t2). (63)

Second-order accurate approximations to functions and spatial derivative operators at t =
t +t/2 are obtained by averaging the corresponding quantity, Q, in time

Qn
i,j +Qn+1

i,j

2
= Q(t +t/2, ρ, z) +O(t2). (64)

Thus, after discretization of the evolution equations using (63) and (64), function values are
only referenced at times t and t + t , even though the stencils are centred at time t + t/2.
Specific forms for all the finite difference stencils that we use can be found in appendix A.

We add Kreiss–Oliger dissipation [30] to the evolution of equations of �,�, σ̄ and �̄
(in addition to ψ during partially constrained evolution), as described in appendix A. To
demonstrate that this is essential for the stability of our numerical scheme, we compare in
figure 1 the evolution of σ̄ from simulations without and with dissipation, but otherwise
identical.

The elliptic equations (30)–(33) are solved using Brandt’s FAS multigrid (MG) algorithm
[32, 33], described in some detail in appendix A. There are no explicit time derivatives
of functions in these equations, and we discretize them at a single time level n (i.e. we
do not apply the Crank–Nicholson averaging scheme for the elliptics). We use either a
fully constrained evolution, solving for α, βρ, βz and ψ using the constraint equations and
slicing condition, or a partially constrained evolution where instead of using the Hamiltonian
8 In a general collapse scenario, multiple inner horizons could be present, which would also satisfy (62) augmented
with the conditions R′(0) = R′(π) = 0. We want the outermost of these surfaces.
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Figure 1. The metric variable σ̄ from two sample Brill wave evolutions, demonstrating the
effectiveness of dissipation. Both simulations were run with identical parameters, except the
simulation displayed on the left was run without dissipation, while that shown on the right was
run with a dissipation parameter ε = 0.5 (see appendix A). The simulation without dissipation
crashed at around t = 10, while the run with dissipation was stopped after several light crossing
times, without showing any signs of instability. (Note: the computational domain used for these
evolutions was ρ = [0, 10], and z = [−10, 10]; in the plots above we only show a subset of this
domain. Also, the grid lines drawn are for visual aid only; the size of the mesh visible in each
frame is 64 × 128.)

constraint to update ψ , we use the evolution equation (36). Partially constrained evolution
has proven to be useful due to the occasional failure of the MG solver in the strong-field
regime (i.e. close to black-hole formation). Use of the evolution equation for ψ (rather than
the Hamiltonian constraint) circumvents this problem in many instances; however, in certain
Brill-wave dominated spacetimes, free evolution of ψ is not sufficient to ensure convergence
of the MG process. We are currently working to make the MG solver more robust in these
situations.

The code is written in a combination of RNPL (Rapid Numerical Prototyping Language
[31]) and Fortran 77. The hyperbolic equations are implemented in RNPL, which employs a
pointwise Newton–Gauss–Seidel iterative relaxation scheme to solve these equations, while
the MG solver is implemented in Fortran (see appendix A for more MG details). A pseudo-
code description of the time-stepping algorithm used is as follows:



1868 M W Choptuik et al

a) As an initial guess to the solution at time t + dt, copy variables from
t to t+dt

b) repeat until (residual norm < tolerance) :

1 : perform 1 Newton−Gauss−Seidelrelaxation sweep of the evolution
equations, solving for the unknowns at time t + dt

2 : perform 1 MG vcycle on the set of elliptic equations, discretized
at time t + dt

end repeat

Note that during the Crank–Nicholson phase of the iteration (step 1), the elliptic variables
at time t + dt are held fixed and treated as known functions; conversely, during the vcycle
phase (step 2), the non-elliptic variables at time t + dt are treated as known functions. For the
residual norm used to terminate the iteration we use the infinity norm of the residuals of all
unknowns. Thus, after the iteration is complete, we have a set of variables at times t and t + dt
that satisify the hyperbolic difference equations at time t + dt/2, and the elliptic difference
equations at time t + dt (and time t from the solution obtained at the previous timestep, or
initial time if t = 0) to within the desired tolerance.

6. Tests

In this section, we describe some of the tests we have performed to check that we are solving
the correct set of equations. The first test consists of checking the equations against those
derived with a computer algebra system9. By inputting the metric and coordinate conditions,
the computer-derived equations can then be subtracted from our equations and simplified. By
finding that the differences simplify to 0, we can conclude that two sets of equations agree.

For diagnostic purposes and as tests of the equations and of their discretization, we
compute several quantities during the numerical evolution. The first is the ADM mass [25]

MADM = 1

16π
lim
r→∞

∫ (
Ha

b;a −Ha
a;b
)
Nb dA, (65)

where the integral is evaluated on a flat 3-space, i.e. with metric ds2 = dρ2 + dz2 + ρ2 dφ2.
The spatial 3-metricHab is that from our curved space solution, but has its indices raised and
lowered with the flat metric. Integrating around the boundaries of our numerical grid, the
normal vectors 	N are ±∂/∂z and ∂/∂ρ. After some algebra, the ADM mass becomes

MADM = 1

2

∫
zmax

ρψ4

[
−ψ,z
ψ

− e2ρσ̄

(
ψ,z

ψ
+

1

2
(ρσ̄ ),z

)]
dρ

− 1

2

∫
zmin

ρψ4

[
−ψ,z
ψ

− e2σ

(
ψ,z

ψ
+

1

2
(ρσ̄ ),z

)]
dρ

+
1

2

∫
ρmax

ρψ4

[
−ψ,ρ
ψ

− e2σ

(
ψ,ρ

ψ
+

1

2
(ρσ̄ ),ρ +

1

4ρ

)
+

1

4ρ

]
dz. (66)

A second set of quantities we calculate are the �2-norms of the residuals of the evolution
equations for the extrinsic curvature (22), which we denote by E(K̇AB). Because we do not
directly evolve individual components of the extrinsic curvature, these residuals will not be
zero; however, they should converge to zero in the limits as the discretization scale h → 0,
and the outer boundary positions ρmax, zmax,−zmin → ∞. Note that we include these last

9 We use Waterloo Maple along with a tensor package written by one of the authors (MWC).
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Figure 2. Tests of spherically symmetric scalar collapse. The sequence of frames are from the
evolution of an initial pulse in � of the form (52) with A� = 0.02, ε� = 1, R� = 7.0, � = 1.0,
(ρ�, z�) = (0, 0). Shown are the functions r� and −r2∂ψ/∂r . The output of the explicitly
spherically symmetric code (with 210 radial grid points) is shown with solid curves, while the
output of the axisymmetric code (Nρ = Nz/2 = 28) is shown with dashed (a (ρ = 0, z > 0) slice)
and dotted curves (a z = 0 slice).

conditions because it is only in the limit r → ∞ that our outer boundary conditions are fully
consistent with asymptotic flatness.

The convergence properties of our code are measured by computing the convergence
factor,Qu, associated with a given variable, u, obtained on grids with resolution h, 2h and 4h
via

Qu = ‖u4h − u2h‖2

‖u2h − uh‖2
. (67)

In particular, for the case ofO(h2) (second order) convergence, we expectQu → 4 as h → 0.
The first set of tests we present here are comparisons of � and ψ from the evolution of

spherically symmetric initial data to the corresponding functions computed by a 1D spherically
symmetric code, the details of which are presented in appendix B. In general, the results
from the two codes are in good agreement. A sample comparison is illustrated in figure 2
which shows the scalar field obtained with the 1D code as well as two radial slices of the
corresponding solution calculated using the axisymmetric code. Note, however, that we do
not expect exact agreement in the limit h → 0 for a fixed outer boundary location, as the
‘rectangular’ boundaries of the axisymmetric code are, in general, incompatible with precise
spherical symmetry.

In the second series of tests, we examine evolutions of Brill waves and non-spherical
scalar pulses. Figures 3–6 show results from two typical initial datasets, each computed using
two distinct outer boundary positions. Each figure plots (a) the ADM mass MADM, (b) the �2-
norm of the residual of the ρρ component of the evolution equation for the extrinsic curvature
E(K̇ρρ), and, (c) the convergence factorQψ ofψ , as functions of time (the convergence factor
Q for other functions exhibits similar behaviour as Qψ , and so for brevity we do not show
them). Here, one expects to see an improvement of the results—namely trends towards mass
conservation early on, a zero residual, and a convergence factor of 4—in the limits h → 0
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Figure 3. Tests of Brill collapse using a initial pulse profile for σ̄ (0, ρ, z) of the form (52) with
Aσ̄ = −3.0, Rσ̄ = 0,σ̄ = 1, εσ̄ = 1, and (ρσ̄ , zσ̄ ) = (0, 0). The evolution shown here
corresponds to four crossing times and ρmax = zmax = 10. The top frame shows the calculated
ADM mass MADM. As the resolution increases, so does the level of mass conservation at early
times, before energy has reached the outer boundary. The middle frame shows E(K̇ρρ), the �2-
norm of the residual of the ρρ component of the evolution equation for the extrinsic curvature (22).
At early times, before energy reaches the outer boundary, the residual decreases as the resolution
increases. The bottom frame shows the convergence factor computed for the field ψ .

Figure 4. Tests of Brill collapse with the same initial data and grid resolutions as those in figure 3,
but with ρmax = zmax = 20, and for only two crossing times. Note the improvement in the
behaviour of the residual and mass aspect when energy reaches the outer boundary, as compared
to the ρmax = zmax = 10 case above.
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Figure 5. Tests of an oblate, scalar pulse evolution with A� = 0.15, R� = 0,� = 3 ε� = 3
and (ρ�, z�) = (0, 0). The tests are shown for four crossing times with ρmax = zmax = 10. The
results are similar to the tests for the Brill wave shown in figure 3, though note that the scale of the
residual E(K̇ρρ) is about two orders of magnitude smaller than that of the Brill wave case.

Figure 6. Tests of an oblate, scalar pulse evolution with the same initial data and grid resolutions
as those in figure 5, but with ρmax = zmax = 20, and for two crossing times. Again, as with the
Brill wave example, it is evident that there are two factors that contribute to a non-zero residual
E(K̇ρρ)—the closeness of the outer boundary, and the discretization scale h.

and (ρmax, zmax) → ∞. After energy has reached the outer boundary, and to a lesser extent
before (as is evident in the scalar field example in figures 5 and 6), we fail to get consistency
with the evolution equation (22) as h → 0, for fixed (ρmax, zmax). This is a measure of the
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Figure 7. The ADM mass estimate MADM of the spacetime and area–mass estimate Marea =√
A/16 of the black hole (left), where A is the area of the apparent horizon, and the natural

logarithm of the minimum value of lapse (right) during a scalar field collapse simulation. The
initial scalar field profile,�(0, ρ, z) is of the form (52) withA� = 0.35, R� = 0,� = 1, ε� = 1
and (ρ�, z�) = (0, 0). The outer boundary is at ρmax = zmax = −zmin = 10, and the size of the
numerical grid is 256×512. An apparent horizon was first detected at t ≈ 4, hence theMarea curve
only starts then. At intermediate times (between roughly t = 2 and t = 7) we see an exponential
‘collapse’ of the lapse (the minimum of which is at (ρ, z) = (0, 0)); at later times this behaviour
ceases in the simulation, as a consequence of increasingly poor resolution in the vicinity of the
black hole caused by ‘grid-stretching’—see figure 8. This also adversely affects the accuracy of the
area–mass estimate (it actually begins to decrease at late times) as the coordinate region occupied
by the AH shrinks.

inaccuracy of our outer boundary conditions (47)–(50); though the trends suggest that we do
achieve consistency in the limit (ρmax, zmax) → ∞.

Finally, we show some results of a simulation of black-hole formation from the collapse
of a spherically symmetric distribution of scalar field energy. Again, by looking at spherically
symmetric collapse we can compare with the 1D code (obtaining the same level of agreement
as seen in the example in figure 2). However, here we want to show the behaviour of
our coordinate system (in particular the maximal slicing) in the strong-field regime, which
demonstrates the need to incorporate black-hole excision techniques and/or adaptive mesh
refinement (AMR) before attempting any serious investigation of physics with this code.
Figure 7 shows plots of the ADM mass estimate (65), an estimate of the black-hole mass
Marea ≡ √

A/16π , where A is the area of the apparent horizon, and the minimum value of
the lapse as a function of time from the simulation. Figure 8 shows the conformal factor ψ at
several times, in the central region of the grid.

Maximal slicing is considered singularity avoiding because, as the singularity is
approached in a collapse scenario, the lapse α tends to 0, as demonstrated in figure 7. This
effectively freezes the evolution inside the black hole, though it causes a severe distortion
in the t = const slices as one moves away from the black hole. This particular coordinate
pathology is evident in figure 8. Recall from the 2-metric (25) thatψ2 determines proper length
scales in the ρ and z directions; thus the rapid growth with time of ψ shown in figure 8 means
that a given coordinate area represents increasing proper area. Furthermore, the increase in
magnitude ofψ in the strong-field regime (which happens even when black holes do not form,
and in non-spherical scalar field and Brill wave evolution, though not to the same extent as
shown in figure 8) implies that our effective numerical resolution decreases in those regions,
as some feature of the solution with a given characteristic size will span less of the coordinate
grid. Thus, in the end, even though maximal slicing may prevent us from reaching a physical
singularity, the ‘grid-stretching’ effect is just as disastrous for the numerical code, preventing
any long-term simulation of black-hole spacetimes. For these reasons we will add black-hole
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Figure 8. The conformal factor ψ near the origin, at four different times from the simulation
described in figure 7. The height of the surfaces represents the magnitude of ψ , and the scale
of each image is the same. The smallest value of ψ shown in each frame is ≈1.5, while at
t = 15, ψ reaches a maximum of ≈5.8 at the origin. The 2-metric has the form ψ4(dρ2 + dz2),
hence the larger ψ is, the larger the physical area represented by a given coordinate cell (the lines
drawn here are coincident with the actual grid lines of the simulation). This implies that the
effective resolution of a given coordinate patch decreases as ψ increases. The net result is that
as gravitational collapse proceeds, central features of the solution become very poorly resolved
within the grid, adversely affecting the accuracy of the solution. This is quite evident at t = 15,
where noticeable asymmetries have developed in ψ (recall that this is collapse from spherically
symmetric initial data).

excision techniques and AMR before exploring physics with this code; our efforts in this
regard are well underway, and will be described elsewhere.

7. Conclusion

We have described a (2+1)+1 gravitational evolution model which evolves axisymmetric
configurations of gravitational radiation and/or a scalar field. A thorough battery of tests
confirms that the correct equations are being solved. In particular, we have provided evidence
that the code is second-order convergent, consistent and conserves mass in the limit where
the outer boundary position goes to infinity. Furthermore, we have shown that using proper
regularity conditions on the axis for all variables, together with adding dissipation to hyperbolic
equations, removes related stability problems. This is similar to what was found by Garfinkle
and Duncan [14] in their axisymmetric code, although we note that in contrast to that work,
our discrete domain includes gridpoints on the z-axis. The ‘Cartoon’ method presented in
[15], and used successfully in [10, 11], offers a completely different approach to stabilizing
the axis, by effectively evolving a slab of a Cartesian grid. All of these works demonstrate
that it is not an insurmountable problem to create stable codes that address a wide range of
physical problems in axisymmetry.
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The unigrid code described here is the first step towards our long-term goal of studying a
range of interesting theoretical and astrophysical phenomena in axisymmetry. These include
gravitational collapse of various matter sources and gravitational waves, the corresponding
critical phenomena at the threshold of black-hole formation, head-on black-hole collisions
and accretion disks. To this end, we need to include support for angular momentum and
additional matter fields in the code,as well as to add additional computational and mathematical
infrastructure—adaptive mesh refinement, black-hole excision and the capability of running
in parallel on a network of machines. All of these projects are under development, and results
will be published as they become available.

Another goal of this project is to provide a platform from which to develop computational
technology for 3D work. In particular, we see development of AMR in axisymmetry as a
precursor to its incorporation in 3D calculations. Likewise, accurate and stable treatment of
boundary conditions presents a continual challenge in numerical relativity, and it is possible
that we can develop an effective treatment of boundaries in axisymmetry that will generalize
to the 3D case.
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Appendix A. The elliptic solver and finite difference approximations

In this appendix we briefly mention some aspects of our multigrid (MG) routine, and list the
set of finite difference approximations that we use.

The constraint equations (30)–(33) are four elliptic equations which, for a fully constrained
system, must be solved on every time slice (i.e. spatial hypersurface). As such, it can be
expected that the time taken by a given evolution will be dominated by the elliptic solver and
hence we look for the fastest possible solver.

Currently, multigrid methods are among the most efficient elliptic solvers available, and
here we have implemented a standard full approximation storage (FAS) multigrid method with
V-cycling (see [32, 33]) to solve the four nonlinear equations simultaneously. (When using
the evolution equation for ψ in a partially constrained evolution, we use the same multigrid
routine described here, except we only solve for the three quantities α, βρ and βz during the
V-cycle; ψ is then simply considered another ‘source function’.)

A key component of the MG solver is the relaxation routine that is designed to smooth
the residuals associated with the discretized elliptic equations. We use pointwise Newton–
Gauss–Seidel relaxation with red-black ordering (see figure 9), simultaneously updating all
four quantities (α, βρ, βz, ψ) at each grid point during a relaxation sweep. In addition to its
use for the standard pre-coarse-grid-correction (pre-CGC) and post-CGC smoothing sweeps,
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rho

z

Figure 9. Diagram illustrating the order in which relaxation occurs. Shown here is a 5 × 9 grid
spanning ρ × z with the grid points represented by filled circles. The Xs denote ‘red’ (interior)
points which are visited first. The Os denote ‘black’ (interior) points which are visited next.
Finally, the triangles denote boundary points which are visited last.

the relaxation routine is also used to solve problems on the coarsest grid. We use half-weighted
restriction to transfer fields from fine to coarse grids and (bi)linear interpolation for coarse to
fine transfers. We generally use three pre-CGC and three post-CGC sweeps per V-cycle, and
likewise normally use a single V-cycle per Crank–Nicholson iteration.

One complicating factor here is the treatment of the boundary conditions (39)–(42) and
(47)–(50). In accordance with general multi-grid practice, we view the boundary conditions as
logically and operationally distinct from the interior equation. The outer boundary conditions
can generally be expressed as

rX ≈ constant, (A1)

where X ∈ {1 − α, 1 − ψ, βz, βρ}. Taking the derivative of (A1) with respect to r, we arrive
at the differential form that is applied on the outer boundaries of the computational domain
(ρ = ρmax, z = zmax, z = −zmax)

X − ρX,ρ − zX,z = 0. (A2)

On the z-axis (ρ = 0), conditions (39)–(42) take one of the following two forms

Ai,ρ = 0 (A3)

or

Ai = 0. (A4)

Equations of the former form are discretized using an O(h2) backwards difference
approximation to the ρ derivative.

The interior and boundary differential equations are solved in tandem via the multigrid
approach:

1. The residual is smoothed using some number of relaxation sweeps. For the interior,
equations (30)–(32) are relaxed using red-black ordering as discussed above. After each
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Table 1. Finite difference operators and their correspondence to differential operators. Here, Ani
is an arbitrary grid function defined via Ani ≡ A(xmin + (i − 1)h, tmin + (n − 1)(λh)), where h
and λh are the spatial and temporal grid spacings, respectively. x denotes either of the two spatial
coordinates ρ or z, with the dependence ofAni on the other suppressed. The parameter ε represents
a user-specifiable ‘amount’ of Kreiss–Oliger dissipation.

Operator Definition Expansion

xAi (Ai+1 − Ai−1)/(2h) A,x |i +O(h2)


f
x Ai (−3Ai + 4Ai+1 −Ai+2)/(2h) A,x |i +O(h2)

bxAi (3Ai − 4Ai−1 +Ai−2)/(2h) A,x |i +O(h2)

xxAi (Ai+1 − 2Ai +Ai−1)/(h
2) A,xx |i +O(h2)

xxxxAi xx(xxAi) = (Ai+2 − 4Ai+1 + 6Ai − 4Ai−1 +Ai−2)/h
4 A,xxxx |i +O(h2)

x2Ai (Ai+1 − Ai−1)/
(
x2
i+1 − x2

i−1

)
A,xx |i +O(h2)

x(Ai/x) 2(xi−1Ai+1 − xi+1Ai−1)/
(
x2
i+1 − x2

i−1

)
/xi (A/x),x |i +O(h2)

x [(xAi)/x] 16[xi−1/2Ai+1 − 2xiAi + xi+1/2Ai−1]/
(
x2
i+1 − x2

i−1

)2
(A,x/x),x |i +O(h2)

µtA
n (An+1 +An)/2 A|n+1/2 +O(λ2h2)

tA
n (An+1 − An)/(λh) A,t |n+1/2 +O(λ2h2)

εt A
n tA

n + εh3/(16λ)xxxxAni A,t |n+1/2 +O(λ2h2)

call of this relaxation routine, a second routine that ‘relaxes’ the boundary points is
called10.

2. For quantities restricted from a fine to a coarse grid, discrete forms of (A3) and (A4) are
applied during the V-cycle. At the other boundaries, straightforward injection is used.

The key idea here is to ensure that the boundary relaxation process does not substantially
impact the smoothness of the interior residuals, because it is only for smooth residuals that a
coarsened version of a fine-grid problem can sensibly be posed.

Finally, in table 1, we show all of the difference operators we use to convert the differential
equations listed in III to finite difference form, using the Crank–Nicholson scheme described
in section 5. We use Kreiss–Oliger dissipation [30] to maintain smoothness in the evolved
fields. Specifically, this involves replacing the Crank–Nicholson time difference operator t

in hyperbolic evolution equations of the form

tA
n = µtf

n(. . .) (A5)

with the operatorε
t

ε
t A

n = µtf
n(. . .). (A6)

Empirically, we find that a value of ε = 0.5 generally keeps our fields acceptably smooth. For
the discretization of spatial derivatives, at all interior grid locations we use the ‘centred’
difference operators (x,xx, . . .), while at grid boundaries we use forwards

(

f
x

)
or

backwards
(
b
x

)
operators where appropriate, so as not to reference points outside the

computational domain. Furthermore, for σ̄ and �̄, in addition to enforcing the on-axis
regularity conditions σ̄ (ρ = 0, z, t) = 0 and �̄(ρ = 0, z, t) = 0, we set σ̄ (ρ = h, z, t)

and �̄(ρ = h, z, t) by linear interpolation; i.e. σ̄ (ρ = h, z, t) = σ̄ (ρ = 2h, z, t)/2 and
�̄(ρ = h, z, t) = �̄(ρ = 2h, z, t)/2.

10 A subtle point here concerns the ‘relaxation’ occurring on the boundaries. The finite difference equations on the
boundary yield algebraic equations which determine the given fields there ‘exactly’. The subtlety arises because these
algebraic conditions couple neighbouring boundary points and thus, despite the fact that we solve these equations
exactly, the residual (as computed after the entire boundary is ‘relaxed’) will not be identically zero. We find this
procedure suffices to keep residuals sufficiently smooth over both interior and boundary domains.
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Appendix B. The spherically symmetric model

One simple test of the code compares the results for spherically symmetric initial data with the
output of a code which explicitly assumes spherical symmetry. Here we present the equations
for this 1D code. The spacetime metric is

ds2 = −(α2 − ψ4β2) dt2 + 2ψ4β dt dr + ψ4(dr2 + r2 d�2), (B1)

where α, β and ψ are functions of r and t, d�2 is the line element on the unit 2-sphere, and β
is the radial component of the shift vector (i.e. βi = (β, 0, 0)). Adopting maximal slicing to
facilitate direct comparison with the axisymmetric code, we have

Ki
j = diag

(
Kr

r(r, t), 0, 0
)
. (B2)

Then a sufficient set of equations for the coupled Einstein-massless-scalar system is [34]

ψ ′′ +
2ψ ′

r
+ 2π[�2 +�2]ψ +

3

16

(
Kr
r

)2
ψ5 = 0 (B3)

(
Kr

r

)′
+ 3

(rψ2)′

rψ2
Kr

r +
16π

ψ2
�� = 0 (B4)

[(rψ)2α′]′

(rψ)2
−
[

16π�2 +
3

2
ψ4(Kr

r

)2
]
α = 0 (B5)

(
β

r

)′
= 3αKr

r

2r
(B6)

�̇ = β� +
α

ψ2
� (B7)

�̇ =
(
β� +

α

ψ2
�

)′
(B8)

�̇ = 1

r2ψ4

[
r2ψ4

(
β� +

α

ψ2
�

)]′
−
[
αKr

r + 2β
(rψ2)′

rψ2

]
�. (B9)

Here dot and prime denote derivatives with respect to t and r, respectively.
The evolution equations (B7)–(B9) are discretized using an O(h2) Crank–Nicholson

scheme. Equations (B3) and (B4) are similarly discretized using O(h2) finite difference
approximations, then solved iteratively for ψ and Kr

r at each timestep. Once �,�,ψ
and Kr

r have been determined, α and β are found from O(h2) finite difference versions of
equations (B5) and (B6). The code is stable and second-order convergent.
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