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Outline
• Model Problems
• Basic Iterative Schemes

– Convergence; experiments
– Convergence; analysis

• Development of Multigrid
– Coarse-grid correction
– Nested Iteration
– Restriction and Interpolation
– Standard cycles: MV, FMG

• Performance
– Implementation
– storage and computation costs

• Performance, (cont)
– Convergence
– Higher dimensions
– Experiments

• Some Theory
– The spectral picture
– The subspace picture
– The whole picture!

• Complications
– Anisotropic operators and grids
– Discontinuous or anisotropic

coefficients
– Nonlinear Problems: FAS
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Multilevel methods have been
developed for...

• Elliptic PDEs
• Purely algebraic problems, with no physical grid; for

example, network and geodetic survey problems.
• Image reconstruction and tomography
• Optimization (e.g., the travelling salesman and long

transportation problems)
• Statistical mechanics, Ising spin models.
• Quantum chromodynamics.
• Quadrature and generalized FFTs.
• Integral equations.
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Model Problems

• One-dimensional boundary value problem:

• Grid:

• Let                          and                     for
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We use Taylor Series to derive
an approximation to u’’(x)

• We approximate the second derivative using
Taylor series:

• Summing and solving,
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We approximate the equation
with a finite difference scheme

• We approximate the BVP

    with the finite difference scheme:
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The discrete model problem

• Letting                                              and

    we obtain the matrix equation                   where
is (N-1) x (N-1), symmetric, positive definite, and
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Solution Methods
• Direct

– Gaussian elimination
– Factorization

• Iterative
– Jacobi
– Gauss-Seidel
– Conjugate Gradient, etc.

• Note:  This simple model problem can be solved
very efficiently in several ways.  Pretend it can’t,
and that it is very hard, because it shares many
characteristics with some very hard problems.
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A two-dimensional boundary value
problem

• Consider the problem:

• Where the grid is given:
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Discretizing the 2D problem

• Let                     and                     . Again, using 2nd

order finite differences to approximate       and
we obtain the approximate equation for the
unknown             , for i=1,2, … M-1 and j=1,2, …, N-1:

• Ordering the unknowns (and also the vector f )
lexicographically by y-lines:
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Yields the linear system
• We obtain a block-tridiagonal system Av = f :

    where Iy  is a diagonal matrix with      on the
diagonal and
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Iterative Methods for Linear
Systems

• Consider Au = f where A is NxN and let v be an
approximation to u.

• Two important measures:
– The Error:                        with norms

– The Residual:                                  with

vue ,−=
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Residual correction

• Since                    and                      , we can write
                   as

    which means that                            , which is the
Residual Equation:

• Residual Correction:
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Relaxation Schemes

• Consider the 1D model problem

• Jacobi Method (simultaneous displacement): Solve
the ith equation for    holding other variables
fixed:
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In matrix form, the relaxation is

• Let                         where D is diagonal and L and U
are the strictly lower and upper parts of A.

• Then                   becomes

• Let                            , then the iteration is:
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The iteration matrix and the
error

• From the derivation,

• the iteration is

• subtracting,

• or

• hence
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Weighted Jacobi Relaxation
• Consider the iteration:

• Letting A = D-L-U,  the matrix form is:

                                                            .
• Note that

• It is easy to see that if                                        ,
then
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Gauss-Seidel Relaxation (1D)
• Solve equation i for ui and update immediately.
• Equivalently: set each component of r to zero.
• Component form: for                      set

• Matrix form:

• Let
• Then iterate

• Error propagation:
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Red-Black Gauss-Seidel
• Update the even (red) points

• Update the odd (black) points
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Numerical Experiments
• Solve                ,
• Use Fourier modes as initial iterate, with N =64:
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Error reduction stalls
• Weighted           Jacobi on 1D problem.
• Initial guess:

• Error        plotted against iteration number:
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Convergence rates differ for
different error components

• Error,  ||e||∞∞∞∞ , in weighted Jacobi on Au = 0 for
100 iterations using initial guesses of v1, v3, and v6
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Analysis of stationary iterations

• Let                            . The exact solution is
unchanged by the iteration, i.e.,                  .

• Subtracting, we see that

• Letting e0 be the initial error and ei be the error
after the ith iteration, we see that after n
iterations we have

gvRv )()( dlowen +=

guRu +=

eRe )()( dlowen =

eRe )()( nn = 0
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A quick review of eigenvectors
and eigenvalues

• The number     is an eigenvalue of a matrix B, and w
its associated eigenvector, if  Bw =    w.

• The eigenvalues and eigenvectors are characteristics
of a given matrix.

• Eigenvectors are linearly independent, and if there is
a complete set of N distinct eigenvectors for an
NxN matrix, they form a basis; i.e., for any v, there
exist unique ck such that:

λ
λ

wcv = � kk
N

k = 1
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“Fundamental theorem of
iteration”

• R is convergent (that is,         as       ) if and
only if                , where

    therefore, for any initial vector v(0), we see that
                                      if and only if               .

•                assures the convergence of the iteration
given by R and           is called the convergence
factor for the iteration.

R n→0 n ∞→
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Convergence Rate
• How many iterations are needed to reduce the

initial error by        ?

• So, we have                               .

• The convergence rate is given:
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Convergence analysis for
weighted Jacobi on 1D model
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For the 1D model problem, he eigenvectors of the weighted
Jacobi iteration and the eigenvectors of the matrix A are
the same! The eigenvalues are related as well.



29 of 119

Good exercise:  Find the
eigenvalues & eigenvectors of A

• Show that the eigenvectors of A are Fourier
modes! �
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Eigenvectors of Rωωωω and A are the
same,the eigenvalues related

• Expand the initial error in terms of the
eigenvectors:

• After M iterations,

• The kth mode of the error is reduced by λk at each
iteration
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Low frequencies are undamped
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• Notice that no value of     will damp out the long
(i.e., low frequency) waves.

ω

What value of    gives
the best damping of
the short waves ?

Choose      such that
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The Smoothing factor

• The smoothing factor is the largest absolute value
among the eigenvalues in the upper half of the
spectrum of the iteration matrix

• For Rω, with          , the smoothing factor is   ,
since

                                   and                for               .

• But,                           for long waves             .
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Convergence of Jacobi on Au=0

• Jacobi method on Au=0 with N=64.  Number of
iterations required to reduce to ||e||∞ < .01

• Initial guess :
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Weighted Jacobi Relaxation
Smooths the Error

• Initial error:

• Error after 35 iteration sweeps:
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have the smoothing
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very slowly.
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Other relaxations schemes may
be analyzed similarly

• Gauss-Seidel relaxation applied to the 3-point
difference matrix A (1D model problem):

• Good exercise:  Show that
ULDRG )−(= −1
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Convergence of Gauss-Seidel on
Au=0

• Eigenvectors of RG are not the same as those of A.
Gauss-Seidel mixes the modes of A.
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• Many relaxation schemes have the smoothing
property, where oscillatory modes of the error
are eliminated effectively, but  smooth modes
are damped very slowly.

• This might seem like a limitation, but by using
coarse grids we can use the smoothing property to
good advantage.

• Why use coarse grids??

First observation toward
multigrid

x0 xN

x0 xN
2

Ωh

Ω2h
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Reason #1 for using coarse
grids: Nested Iteration

• Coarse grids can be used to compute an improved
initial guess for the fine-grid relaxation.  This is
advantageous because:

– Relaxation on the coarse-grid is much cheaper (1/2 as
many points in 1D, 1/4 in 2D, 1/8 in 3D)

– Relaxation on the coarse grid has a marginally better
convergence rate, for example

                                       instead of 1 )(− hO 241 )(− hO 2
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Idea!  Nested Iteration

• …
• Relax on Au=f on         to obtain initial guess
• Relax on Au=f on         to obtain initial guess
• Relax on Au=f on         to obtain … final solution???

• But, what is Au=f on         ,            ,  … ?

• What if the error still has smooth components
when we get to the fine grid        ?
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Reason #2 for using a coarse
grid: smooth error is (relatively)

more oscillatory there!
• A smooth function:

• Can be represented by linear
interpolation from a coarser grid:
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On the coarse grid, the 
smooth error appears to
be relatively higher in 

frequency: in the example
it is the 4-mode, out of
a possible 16, on the fine
grid, 1/4 the way up the
spectrum.  On the coarse 
grid, it is the 4-mode out
of a possible 8, hence it
is 1/2 the way up the 

spectrum.

Relaxation will be more
effective on this mode if
done on the coarser grid!!



42 of 119

For k=1,2,…N/2, the kth mode is
preserved on the coarse grid
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For k > N/2, wk
h is invisible on

the coarse grid: aliasing!!
• For k > N/2, the kth mode on

the fine grid is aliased and
appears as the (N-k)th mode
on the coarse grid:
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Second observation toward
multigrid:

• Recall the residual correction idea:  Let v be an
approximation to the solution of Au=f, where the
residual r=f-Av.  The the error e=u-v satisfies
Ae=r.

• After relaxing on Au=f on the fine grid, the error
will be smooth.  On the coarse grid, however, this
error appears more oscillatory, and relaxation will
be more effective.

• Therefore we go to a coarse grid and relax on the
residual equation Ae=r, with an initial guess of e=0.
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Idea!  Coarse-grid correction

• Relax on Au=f  on         to obtain an approximation
• Compute                     .
• Relax on Ae=r on          to obtain an approximation

to the error,       .
• Correct the approximation                              .

• Clearly, we need methods for the mappings
                                    and

Ω2h

Ωh vh

Ω2hΩh

vAfr −= h

e2h

evv hhh +← 2

ΩhΩ2h



46 of 119

1D Interpolation (Prolongation)

• Mapping from the coarse grid to the fine grid:

• Let     ,         be defined on      ,       .  Then

where

vh v2h Ωh Ω2h

vv 2
2

h
i

h
i =

vvv 2
1

2
12

h
i

h
i

h
i ++ )+(=

2
1
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2
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I 2
2
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vvI 2
2
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h =
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1D Interpolation (Prolongation)

Ωh

Ω2h

• Values at points on the coarse grid map unchanged
to the fine grid

• Values at fine-grid points NOT on the coarse grid
are the averages of their coarse-grid neighbors
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The prolongation operator  (1D)

• We may regard        as a linear operator from
ℜ N/2-1          ℜ N-1

• e.g., for N=8,

•         has full rank, and thus null space
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How well does v2h approximate u?

• Imagine that a coarse-grid approximation v2h has
been found.  How well does it approximate the
exact solution u ?  Think u         error!!

• If u is smooth, a coarse-grid interpolant of v2h

may do very well.
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How well does v2h approximate u?

• Imagine that a coarse-grid approximation v2h has
been found.  How well does it approximate the
exact solution u ?  Think u         error!!

• If u is oscillatory, a coarse-grid interpolant of v2h

may not work well.
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Moral of this story:

• If u is smooth, a coarse-grid interpolant of v2h

may do very well.

• If u is oscillatory, a coarse-grid interpolant of v2h

may not work well.

• Therefore, nested iteration is most effective
when the error is smooth!
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1D Restriction by injection
• Mapping from the fine grid to the coarse grid:

• Let     ,         be defined on      ,       .  Then

    where               .
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h
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1D Restriction by full-weighting

• Let     ,         be defined on      ,       .  Then

    where

vh v2h Ωh Ω2h

vvvv h
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h
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h
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h
i 12212
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The restriction operator R (1D)

• We may regard        as a linear operator from
ℜ N-1          ℜ N/2-1

• e.g., for N=8,

•         has rank       , and thus dim(NS(R))
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Prolongation and restriction are
often nicely related

• For the 1D examples, linear interpolation and full-
weighting are related by:

• A commonly used, and highly useful, requirement is
that

                                                           for c in ℜIcI 2
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2D Prolongation
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We denote the operator by
using a “give to” stencil, ]  [.
Centered over a c-point,    ,
it shows what fraction of

the c-point’s value is
contributed to neighboring

f-points,    .
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2D Restriction (full-weighting)

We denote the operator by
using a “give to” stencil, [  ].
Centered over a c-point,    ,
it shows what fractions of

the neighboring (  ) f-points’
value is contributed to the

value at the c-point.
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Now, let’s put all these ideas
together

• Nested Iteration  (effective on smooth error
modes)

• Relaxation (effective on oscillatory error modes)

• Residual equation (i.e., residual correction)

• Prolongation and Restriction



59 of 119

Coarse Grid Correction Scheme

• 1)  Relax     times on                   on      with

arbitrary initial guess     .

• 2) Compute                       .

• 3) Compute                .

• 4) Solve                      on        .

• 5) Correct fine-grid solution                           .

• 6) Relax     times on                  on       with initial

guess     .

fuA hhh = Ωh

vh

fuA hhh = Ωh

vh

fvGCv hhh )α,α,,(← 21

α1

α2

vAfr hhhh −=

reA 222 hhh = Ω2h

rIr 22 hh
h

h =

eIvv hh
h

hh +← 2
2
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Coarse-grid Correction

Relax on fuA hhh =
uAfr hhhh −=Compute

rIr 22 hh
h

h =
Restrict

Solve reA 222 hhh =
rAe 2122 hhh )(= −

Correct

eIe hh
h

h ≈ 2
2

Interpolate

euu hhh +←
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What is       ?

• For this scheme to work, we must have       , a
coarse-grid operator.  For the moment,  we will
simply assume that        is “the coarse-grid
version” of the fine-grid operator       .

• We will return to the question of constructing
later.

A 2h

A 2h

A 2h

A 2h

A h
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How do we “solve” the coarse-
grid residual equation? Recursion!

uIe hh
h

h← 2
2

uIe 42
4

2 hh
h

h←

uIe 84
8

4 hh
h

h←

fAGu hhh ),(← ν

fAGu 222 hhh ),(← ν

fAGu 444 hhh ),(← ν

fAGu 888 hhh ),(← ν

uAfIf 22 hhhh
h

h )−(←

uAfIf 2224
2

4 hhhh
h

h )−(←

uAfIf 4448
4

8 hhhh
h

h )−(←

euu 888 hhh +←

euu 444 hhh +←

euu 222 hhh +←

euu hhh +←

fAe HHH )(= −1
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V-cycle (recursive form)

1) Relax     times on                 ,   initial      arbitrary

2) If       is the coarsest grid, go to 4)
  Else:

3) Correct

4) Relax     times on                 ,   initial  guess

fvVMv hhhh ),(←

α1 fuA hhh = vh

Ωh

vAfIf 2
2 hhhh

h
h )−(←

v2h ← 0

fvVMv 2222 hhhh ),(←

vIvv hh
h

hh +← 2
2

α2 fuA hhh = vh
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Storage Costs:    and     must
be stored on each level

●   In 1-d, each coarse grid has about half
   the number of points as the finer grid.

●  In 2-d, each coarse grid has about one-
   fourth the number of points as the finer 
   grid.

●  In d-dimensions, each coarse grid has 
   about         the number of points as the 
   finer grid.

2− d
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222212
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N

d

d
dMdddd
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−
−−−− 32

●  Total storage cost:
    less than 2, 4/3, 8/7 the cost of storage on the fine grid
    for 1, 2, and 3-d problems, respectively.

vh f h
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Computation Costs
• Let 1 Work Unit (WU) be the cost of one

relaxation sweep on the fine-grid.
• Ignore the cost of restriction and interpolation

(typically about 20% of the total cost).
• Consider a V-cycle with 1 pre-Coarse-Grid

correction relaxation sweep and 1 post-Coarse-
Grid correction relaxation sweep.

• Cost of V-cycle (in WU):

• Cost is about 4, 8/3, 16/7 WU per V-cycle in 1, 2,
and 3 dimensions.
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Convergence Analysis

• First, a heuristic argument:
– The convergence factor for the oscillatory modes of the

error (e.g., the smoothing factor) is small and
independent of the grid spacing h.

– The multigrid cycling schemes focus the relaxation on
the oscillatory components on each level.

2
rofxamrotcafgnihtooms ≤≤)(λ= k Nk

N
R

smooth
k=1

oscillatory
k=Nk=N/2

Relax on fine gridRelax 1st coarse grid

The overall convergence factor for multigrid
methods is small and independent of h!
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Convergence analysis, a little
more precisely...

• Continuous problem:
• Discrete problem:

• Global error:
                                                  (p=2 for model problem)

• Algebraic error:

• Suppose a tolerance    is specified such that
must satisfy

• Then this is guaranteed if

xuufuA )(=,= ii
uvfuA hhhhh ≈,=

uxuE h
iii −)(=

hKE ≤
p

vue h
i

h
ii −=

ε vh

vu ε≤− h

eEvuuu ε≤+=−+− hhh
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We can satisfy the requirement
by imposing two conditions

1)                 .  We use this requirement to determine a
grid spacing       from

2)                ,  which determines the number of
iterations required.

• If we iterate until                                 on            then
we have converged to the level of truncation.

h ∗
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Converging to the level of
truncation

• Use a MV scheme with convergence rate
independent of h (fixed      and       ).

• Assume a  d-dimensional problem on an NxNx…xN
grid with             .

• The V-cycle must reduce the error from
to

• We can determine θ, the number of V-cycles
required to accomplish this.

<γ 1
α1 α2

Nh = −1

Oe )(∼ 1

NOhOe )(∼)(∼
pp −
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Work needed to converge to the
level of truncation

• Since θ V-cycles at convergence rate γ are
required,  we see that

   implying that                           .

• Since one V-cycle costs O(1) WU and one WU is
O(Nd), we see that the cost of converging to the
level of truncation using the MV method is

• which is comparable to fast direct methods (FFT
based).

)(∼γ
−θ NO p

)(∼θ NO gol

NNO )( d gol
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A numerical example

• Consider the two-dimensional model problem (with
σ=0), given by

    inside the unit square, with u=0 on the boundary.
)−()−(+)−()−(=−− xxyyyxuu yyxx 1611612 222222

• The solution to this problem is

• We examine the effectiveness of MV cycling to
solve this problem on NxN grids [(N-1) x (N-1)
interior] for N=16, 32, 64, 128.

yyxxyxu )−()−(=),( 2442
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Numerical Results,
 MV cycling

Shown are the results
of 16 V-cycles.  We
display, at the end of
each cycle, the residual
norm, the error norm,
and the ratio of these
norms to their values at
the end of the previous
cycle.

N=16, 32, 64, 128
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Look again at nested iteration
• Idea: It’s cheaper to solve a problem (i.e., takes

fewer iterations) if the initial guess is good.

• How to get a good initial guess:
– Interpolate coarse solution to fine grid.
– “Solve” the problem on the coarse grid first.
– Use interpolated coarse solution as initial guess on fine

grid.

●   Now, let’s use the V-cycle as the solver on each grid
     level! This defines the  Full Multigrid (FMG) cycle.
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The Full Multigrid (FMG) cycle

• Initialize

• Solve on coarsest grid

•  interpolate initial guess

• perform V-cycle

• interpolate initial guess

• perform V-cycle

ffff Hhhh ,...,,, 42

fAv HHH )(=
−1

vIv 42
4

2 hh
h

h←

vIv hh
h

h← 2
2

fvVMv 2222 hhhh ),(←

fvVMv hhhh ),(←

fGMFv hh )(←
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Full Multigrid (FMG)
• Restriction
• Interpolation
• High-order Interpolation
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FMG-cycle (recursive form)

1) Initialize

2) If        is the coarsest grid, then solve exactly

Else:

3) Set initial guess

4)                                 ,    η times

Ωh

ffff Hhhh ,...,,, 42

fGMFv hh )(←

vIv hh
h

h← 2
2

fGMFv 22 hh )(←

fvVMv hhh ),(←
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Cost of an FMG cycle
• One V-cycle is performed per level, at a cost of
                  WU per grid (where the WU is for the

size grid involved).
• The size of the WU for coarse-grid j is        times

the size of the WU on the fine grid (grid 0).
• Hence, cost of the FMG(1,1) cycle is less than

• d=1:  8 WU;        d=2:  7/2  WU      d=3:   5/2  WU
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How to tell if truncation error is
reached with Full Multigrid (FMG)

• If truncation error is reached,                  for each grid
level h.  The norms of the errors at the “solution”
points in the cycle should form a Cauchy sequence and

hOe )(∼ 2

e

e2

hj

hj

∼
4
1
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Cost to achieve convergence to
truncation by the FMV method

• Consider using the FMV method, which solves the
problem on        to the level of truncation before
going to     , i.e.,

• We ask that                                        which implies
that the algebraic error must be reduced by
on        .  Hence,      V-cycles are needed, where

   thus                   and computational cost of the
FMV method            .

Ω2h

Ωh

hKvue 222 phhh )(∼−= 2
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A numerical example

• Consider again the two-dimensional model problem
(with σ=0), given by

    inside the unit square, with u=0 on the boundary.
)−()−(+)−()−(=−− xxyyyxuu yyxx 1611612 222222

• We examine the effectiveness of FMG cycling to
solve this problem on NxN grids [(N-1) x (N-1)
interior] for N=16, 32, 64, 128.
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FMG results
• Shown are results for three FMG cycles, and a

comparison to MV cycle results.
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What is      ?
• Recall the coarse-grid correction scheme:

– 1)  Relax on                       on        to get     .

– 2) Compute                                         .

– 4) Solve                             on         .

– 5) Correct fine-grid solution                                 .

• Assume that                              .  Then the
residual equation can be written

                                                     for some

• How does          act upon                       ?

fuA hhh = Ωh

reA 222 hhh = Ω2h
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2
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How does    act on              ?

• Therefore, the odd rows of            are zero (in 1D
only) and                .  We therefore keep the even rows
of          for the residual equations on        . These
rows can be picked out by applying restriction!
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Building    .

• The residual equation on the coarse grid is:

• Therefore, we identify the coarse-grid operator
as

• Next, we determine how to compute the entries of
the coarse-grid matrix.
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Computing the ith row of    .

• Compute                where
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• The ith row of           is                                 ,

    which is the         version of       .

• Therefore, IF  relaxation on        leaves only error in
the range of interpolation, then solving

    determines the error exactly!

• In general,  this will not be the case,  but this
argument certainly leads to a plausible representation
for        .

The ith row of     looks a
lot like a row of     !
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The variational properties
• The definition for         that resulted from the

foregoing line of reasoning is useful for both
theoretical and practical reasons.  Together with
the commonly used relationship between
restriction and prolongation we have the following
“variational properties”:

IAIA 2
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Properties of the Grid Transfer
Operators: Restriction

• Full Weighting:                                or

                                              ℜ N-1         ℜ N/2-1

• For N=8,

•        has rank          and a null space                with
dimension      .

I hhh
h

22 Ω→Ω:
I h
h
2 :

I h
h

73

2 =
121

121
121

4
1

×

N
1

2
−I h

h
2 IN )( h

h
2

N
2



89 of 119

Spectral properties of      .

• How does         act on the eigenvectors of         ?

• Consider                             ,  1 ≤ k ≤ N-1,  0 ≤  j ≤  N

• Good Exercise:  show that

   for 1 ≤ k ≤ N/2.
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Spectral properties of      (cont.).

• i.e.,         [kth mode on       ]  =  ck [ kth mode on         ]

                                                              :  N=8,  k=2

                                                               : N=4,  k=2
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Spectral properties of      (cont.).

• Let                 for                     , so that

• Then  (another good exercise!)
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Spectral properties of      (cont.).

• i.e.,         [(N-k)th mode on       ]  =  -sk [ kth mode on         ]

•                                                             : N=8,  k=6

•                                                              : N=4,  k=2
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Spectral properties of      (cont.).

• Summarizing:

• Complementary modes:
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Null Space of      .

• Observe that                                     where i is odd
and        is the ith unit vector.

• Let                   .

• While the     look oscillatory, they contain all of
the Fourier modes of     , i.e.,

• All the Fourier modes of      are needed to
represent the null space of restriction!
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Properties of the Grid Transfer
Operators: Interpolation

• Interpolation:                                  or

                                            : ℜ N/2-1         ℜ N-1

• For N=8,

•        has full rank and  null space         .
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Spectral properties of      .

• How does         act on the eigenvectors of         ?

• Consider                             ,  1 ≤ k ≤ N/2-1,
                                                 0 ≤  j ≤  N/2

• Good Exercise:  show that the modes of        are
NOT preserved by       , but that the space        is
preserved:
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Spectral properties of       (cont.).

• Interpolation of smooth         modes excites
oscillatory modes on      .

• Note that if             ,

•       is second-order interpolation.
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The Range of       .

• The range of          is the span of the columns of

• Let       be the ith column of        .

• All the Fourier modes of        are needed to
represent   Range(       )
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Use all the facts to analyze the
coarse-grid correction scheme
1)  Relax       times  on         :

2) Compute  and restrict residual

3) Solve residual equation

4) Correct fine-grid solution                                 .

• The entire process appears as

• The exact solution satisfies
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Error propagation of the coarse-
grid correction scheme

• Subtracting the previous two expressions, we get

• How does  CG act on the modes of      ?  Assume
consists of the modes        and        for
and                    .

• We know how
    act on       and        .
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Error propagation of CG
• For now, assume no relaxation         .  Then

    is invariant under CG.

    where
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CG error propagation for  k << N

• Consider the case k << N (extremely smooth and
oscillatory modes):

• Hence, CG eliminates the smooth modes but does
not damp the oscillatory modes of the error!
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Now consider CG with relaxation

• Next, include      relaxation sweeps.  Assume that
the relaxation     preserves the modes of
(although this is often unnecessary).   Let
denote the eigenvalue of       associated with       .
For k < < N/2,

α
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R wk
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The crucial observation:

• Between relaxation and the coarse-
grid correction, both smooth and
oscillatory components of the error
are effectively damped.

• This is essentially the “spectral”
picture of how multigrid works.  We
examine now another viewpoint, the
“algebraic” picture of multigrid.
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Recall the variational properties

• All the analysis that follows assumes that the
variational properties hold:
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Algebraic interpretation of
coarse-grid correction

• Consider the subspaces that make up          andΩh Ω2h
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For the rest of this talk, ‘R( )’
refers to the Range of a linear
operator.

From the fundamental theorem
of linear algebra:

or
IRIN ))((⊥)( Th
h

h
h

22

IRIN )(⊥)( h
h

h
h 2
2



107 of 119

Subspace decomposition of    .
• Since          has full rank, we can say, equivalently,

   ( where                    means that                      ).

• Therefore, any       can be written as
    where                   and                         .

• Hence,
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Characteristics of the subspaces

• Since                     for some                  , we
associate       with the smooth components of    .
But,      generally has all Fourier modes in it (recall
the basis vectors for        ).

• Similarly, we associate        with oscillatory
components of     , although     generally has all
Fourier modes in it as well.  Recall that           is
spanned by               therefore                   is
spanned by the unit vectors
for odd i, which “look” oscillatory.
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qIAIAIIsGC hh
h

hh
h

hh
h

h )(−= 2
2

212
2

−

Algebraic analysis of coarse-grid
correction

• Recall that (without relaxation)

• First note that if                   then                   .
This follows since                        for some
and therefore

• It follows that                             , that is, the null
space of coarse-grid correction is the range of
interpolation.
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More algebraic analysis of
coarse-grid correction

• Next, note that if                         then

• Therefore                             .

• CG is the identity on
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How does the algebraic picture
fit with the spectral view?

• We may view         in two ways:

           =

     that is,

    or as

Ωh

Low frequency modes
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Actually, each view is just part
of the picture

• The operations we have examined work on
different spaces!

• While                  is mostly oscillatory, it isn’t      .
and while               is mostly smooth, it isn’t      .

• Relaxation eliminates error from      .

• Coarse-grid correction eliminates error from
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How it actually works (cartoon)
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Relaxation eliminates H, but
increases the error in       .
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CG eliminates         but
increases the error in H.
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Difficulties:
anisotropic operators and grids

• Consider the operator :

• The same phenomenon
occurs for grids with much
larger spacing in one direction
than the other:
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Difficulties: discontinuous or
anisotropic coefficients

• Consider the operator :
where

• Solutions:  line-relaxation (where whole gridlines
of values are found simultaneously), and/or semi-
coarsening (coarsening only in the strongly coupled
direction).

●  Again, GS-smoothing factors in the x- and y-directions
can be highly variable, and very often, GS relaxation does
not damp oscillatory components in the one or both
directions.
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For nonlinear problems, use
 FAS (Full Approximation Scheme)

• Suppose we wish to solve:                          where
the operator is non-linear.  Then the linear
residual equation               does not apply.

• Instead, we write the non-linear residual equation:

• This is transferred to the coarse grid as:

• We solve for                            and transfer the
error (only!) to the fine grid:
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Multigrid: increasingly, the right
tool!

• Multigrid has been proven on a wide variety of
problems, especially elliptic PDEs, but has also found
application among parabolic & hyperbolic PDEs,
integral equations, evolution problems, geodesic
problems, etc.

• With the right setup, multigrid is frequently an
optimal (i.e., O(N)) solver.

• Multigrid is of great interest because it is one of the
very few scalable algorithms, and can be parallelized
readily and efficiently!


