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Multilevel methods have been
developed for...

Elliptic PDEs

Purely algebraic problems, with no physical grid; for
example, network and geodetic survey problems.

Image reconstruction and tomography

Optimization (e.g., the travelling salesman and long
transportation problems)

Statistical mechanics, Ising spin models.
Quantum chromodynamics.

Quadrature and generalized FFTs.
Integral equations.
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Model Problems

e One-dimensional boundary value problem:
-u"(x) +ou(x) =1(x) O0<x<], o>0

u(0) = u(l) =0

-Grid:h=N1, X, =th, 1=01,...N
Xx=0 x=1
)I(O)I<1)I<2I I I I I I )I(I I I I I I I I I I)<N

« Let Vi = U(X;) and Ti=T(Xj)for i =0,1,...N
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We use Taylor Series to derive
an approximation to u”’(x)

 We approximate the second derivative using
Taylor series:

h? h?

U(Xj+1) = U(Xp) +RU(x) + - u7(x) + - U (%) +0(h%)
h2 h3

U(Xi —1) =u(x) —hu(x) +—= u(x)—?u (x)+O(h)

e Summing and solving,

1+1) ~ 2u(X; -
(x) :U(X| 1) Ur(]:) +u(x; 1) + O(h?
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We approximate the equation
with a finite difference scheme

e \We approximate the BVP
—u"(x) +ou(x) =1f(x) O0<x<], o>0
u(0) = u(l) =0

with the finite difference scheme:

“Vie1 T2V T Vi

+GVi:fi i:1,2,...N_1
h2

Vg =vy =0

7 of 119



The discrete model problem

. T
o Lettlng V = (Vl’ V2, ""VN—l) and

:
= (f,fo o Froq)

we obtain the matrix equation AV = f where A
IS (N-1) x (N-1), symmetric, positive definite, and

2+ch?
-1

f

-1
2+0h?
-1

-1
2+0h? -1

~1 2+0h?

-1

-1
2+oh?
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Solution Methods

e Direct
— Gaussian elimination
— Factorization

e [terative
- Jacobi
— Gauss-Seidel
— Conjugate Gradient, etc.

 Note: This simple model problem can be solved
very efficiently in several ways. Pretend it can't,
and that it is very hard, because it shares many
characteristics with some very hard problems.
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A two-dimensional boundary value
problem

e Consider the problem:
—Uxx —Uyy +ou =f(x,y), 0<x<1 O0<y<l
u=0,x=0,x=1 y=0y=1 >0

« Where the grid is given: N4

1 1
hy =—  hy = —
*“mMm Y TN

(Xi,y;) = (ihx, ] hy)
O0<i <M
O0<)] <N
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Discretizing the 2D problem

» Let v; =u(x,y)and fij =T(xi,¥) . Again, using 2
order finite differences to approximate Uxxand uyy
we obtain the approximate equation for the
unknown u(x;,y;), for 71,2, .. M-1and j=1,2, .., N-1:

“Viegj A T Vieyp Vi1t Vi

+ +0Vij :f”

vi. =0, i=0,i=M, j=0 j=M

)

e Ordering the unknowns (and also the vector )
lexicographically by y-lines:
.
V=(Vy1, VL2 0 ViN-1 Y21, V220 V2 N-1 - YN-1, 1 YN-1,20 5 YN-1,N-1)
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Yields the linear system

 \We obtain a block-tridiagonal system Av = f .

A —ly
—ly Ay —ly

. . |
where /, Is a diagonal matrix with — on the

diagonal and

_|y

—ly An-2

_|y

AN -1

vy f1
Vo fo
V3 — f3
Vi —

N-1 fy o1

hy
_1
h#
1,1,, -1
he hi hg
't o
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lterative Methods for Linear
Systems

e Consider Au= fwhere Ais NxN and let vbe an
approximation to .

« Two Important measures:
— The Error: € = U—V, withnorms

N
lelbo = max [a]  llelp =\ S &?

_ TheResidual: I = f — AV with

[ (Sl
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Residual correction

e Since e=u-v, and r =1 — AV, we can write
AU =1 as
A(v+e) =T

which means that Ae = f — AV , which is the

Residual Equation:
e Residual Correction:
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Relaxation Schemes

e Consider the 1D model problem
—ui_1+2ui—ui+1:h2fi 1<i<sN-1 ug=uy =C

e Jacobi Method (simultaneous displacement): Solve
the /M equation forV; holding other variables
fixed:

vinew) — %( vold) 4+ y(old) + h2f ) 1<i<N-1
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In matrix form, the relaxation Is

e Llet A=(D-L-U) where Dis diagonal and L and U
are the strictly lower and upper parts of A.

« Then AU =T becomes
(D-L-U)u=f
Du=(L+U)u + f
u=D"YL+U)u + D

e Let R; =D _1(L +U), then the iteration is:

V(new) — RJ V(Old) + D_lf
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The 1teration matrix and the

error
From the derivation,
u=D"YL+U)u + Dt
U = RJ u+D _1f
the iteration is

V(nevv) — RJ V(Old) + D_lf

subtracting,
u-v(new =Ry +D 7 - (Ryv(od) +D 1)
or
u-vinew) = R;u - Ryv(0ld)

hence
e(new) — RJ g(old)
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Weighted Jacobi Relaxation

Consider the iteration:

vinew) _ (1-¢y v{old) +g(vi(glg) +v(od) + h7 )
Letting A = D-L-U, the matrix form is:
v(new) — {(1—oo)| + wD ~Y(L +U) JV(Old) + wh?D ~ 1

= Ruv(91d) + oh?D I

Note that
Ro=[(1-w | +twRy]

It is easy to see that if e= uy(exact) — u(@PProx),

then
e(new) = R, e(old)
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Gauss-Seidel Relaxation (1D)

Solve equation 7 for u; and update immediately.
Equivalently: set each component of rto zero.

Component form: for i =12 ..N-1 set

1 2
Vi «5(Vi-1*Vieg *h71)

Matrix form: A =(D-L-U)
(D-L)u=Uu +f

u :(D—L)_1Uu+(D—|_)_1f
Let Rg =(D-L) U
Then iterate v(new) _ R, v(old) +(D-L)

Error propagation: e("®) _ R e(0ld)
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Red-Black Gauss-Seidel

e Update the even (red) points

1 2
Vo —5(Va-1 * Vg +07T5)

e Update the odd (black) points

1 2
Va+1 = 5(Va +Vop ¥ h7T540)
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Numerical Experiments

« Solve AU = O, _Ui_l'l'zui — U 41 =0
e Use Fourier modes as initial iterate, with /N =64:

N

Ve = (V) :Sin(@j 1<i<N-1, 1<k<N-1
component mode

21 of 119



Error reduction stalls

e Weighted wzg Jacobi on 1D problem.
e Initial guess. V0=}(Sin£fj +sin£T) + sin{yjj
3 N N N

e Error

lell. plotted against iteration number:

10 20 30 40 50 60 70 80 90 100
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Convergence rates differ for
different error components

e Error, ||ell., In weighted Jacobi on Au = O for
100 iterations using initial guesses of v;, v and v,

1
0.9}
0.8}
0.7}
0.6
0.5}
0.4}
0.3}

0.2

0.1

0

0 20 40 60 80 100 120
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Analysis of stationary iterations

e Let vi™) = Rvldd +g The exact solution is
unchanged by the iteration, i.e., U = Ru + ¢

e Subtracting, we see that

e(new) — Re(old)

e Letting €9 be the initial error and e be the error
after the A" iteration, we see that after n
Iiterations we have

e(n) = R"e(0)
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A quick review of eigenvectors
and eigenvalues

e The number A is an eigenvalue of a matrix B, and w
its associated eigenvector, if Bw = Aw.

 The eigenvalues and eigenvectors are characteristics
of a given matrix.

e Eigenvectors are linearly independent, and if there is
a complete set of N distinct eigenvectors for an
NXN matrix, they form a basis; i.e., for any v, there
exist unique c, such that:

N
V = Z Cc Wi
k=1
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“Fundamental theorem of
Iteration”
« Ris convergent (thatis, R" -~ 0 as n - ) if and
only if p(R) <1, where
o(R) =max{ [ ALl Al oy [ Ay |}

therefore, for any initial vector 19, we see that
elN) , 0 as n- o jfand only if p(R) <1

« P(R) <1 assures the convergence of the iteration
given by Rand P(R) is called the convergence
factor for the iteration.
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Convergence Rate

e How many iterations are needed to reduce the
initial error by 1079 ?

le™M | w M -
< ||IR [] R 110
10| IR™I O (p(R))
d
e S0, we have M =
1
o) —
glo(p(R)j
 The convergence rate is given:
| 1 I . digits
rate = lo —— | = -lo
glO(p(R)j 910(P(R)) Iiteration
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Convergence analysis for
weighted Jacobi on 1D model
Rw = (1-w)1 +wD "XL +U)

= | —wD 1A
2 -1
-1 2 -1
Rw:I—%) -1 2 -1
o Uy
-1 2

AMRy) = 1 —g}\(A)

For the 1D model problem, he eigenvectors of the weighted
Jacobi iteration and the eigenvectors of the matrix A are

the same! The eigenvalues are related as well.
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Good exercise: Find the
eigenvalues & eigenvectors of A

e Show that the eigenvectors of A are Fourier

modes! 5 KTt J KTt
N (A) =4sin (ZN] Wi | —sm[ N j

N AN
VYAV i

LA

VT
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Eigenvectors of R, ,and A are the
same,the eigenvalues related

KTT
— — in2|
M (Rw) = 1-20wsin EZN)

Expand the initial error in terms of the

eigenvectors: N-1
e(O) = Z Ck Wk
k=1

After M iterations,
N-1 N-1
RMe(O) = Z CkRM Wk = Z Ck)\llylwk
k =1 k=1

The k™ mode of the error is reduced by A, at each

Iteration
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Eigenvalue

1,

0.8

0.6

0.4+

0.2

0

-0.2+

0.4}

-0.6 -

-0.8

-1

Relaxation suppresses
eigenmodes unevenly

e Look carefully at N (Rw) =1- 2®Si”2(lz(—,1\|T]

1 Note thatif Osw<1
1 then [ N(Rw)| <1 for
1 k=12 ...,N—-1

For O0<w < 1,
M = 1-2wsin? T
1 Sn [ZNj

=1- 2oosin2(T?]

=1-0(h%) =1
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Eigenvalue

1,

0.8

0.6

0.4+

0.2

0

-0.2+

0.4}

-0.6

-0.8F

-1

Low frequencies are undamped

e Notice that no value of w will damp out the long
(i.e., low frequency) waves.

1 What value of wgives
1 the best damping of
1 the short waves ?

N
— <k £N
2

1 Choose W such that

Aﬂ (Rw) — Ay (Ro)

2

=2
3
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The Smoothing factor

 The smoothing factor is the largest absolute value
among the eigenvalues in the upper half of the
spectrum of the iteration matrix

< k<N

: N
smoothing factor = max|A(R)| for 5

: 2 : .1
e For R, with w= , the smoothing factor is 3,

since

1

= || =35 and [N <% for g<k<N.

N

2
» But, |n]=1-Zk*h* for long waves (k “ij .
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Convergence of Jac

Unweighted Jacobi

0

0
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Wavenumber, k

100 -
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a0}
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obil on Au=0

Weighted Jacobi

0 10 20 30 40 50 60
Wavenumber, k

e Jacobi method on Au=0 with N=64. Number of
Iterations required to reduce to ||e]],, < .01

L1

N

 Initial guess : 'V, :Sin(—j
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Weighted Jacobi Relaxation
Smooths the Error

o (2my 1 (1T 1 (32m

{\ /\/\ /\/\ AA /\ Many relaxation
A\/ Vo | /\V schemes
\/ V\/ \/\/ \/ have the smoothing
property, where

1 1
N R O RPN

’ oscillatory
» Error after 35 iteration sweeps: | /70%€S 0; rghe error
2 eliminated

effectively, but
smooth modes are
damped
very slowly.

1 1
N = o -
T T T

| 0 : 350f 119



Other relaxations schemes may
be analyzed similarly

e Gauss-Seidel relaxation applied to the 3-point
difference matrix A (1D model problem):
Rg = (D-L) ‘U
e Good exercise: Show that

KTt jlz [ Jkm
)\k(RG) = COSZ(W\J Wk,j = (}\k) SII'](W\]

36 of 119



Convergence of Gauss-Seidel on
Au=0

e Eigenvectors of R; are not the same as those of A.
Gauss-Seidel mixes the modes of A.

100

90

80

70F

60

50

40t

30

20+

10+

10

20

30

40

50

60

Jacobi method on Au=0
with N=64. Number of
Iterations required to
reduce to ||e]], < .01

Initial guess : (Modes of

A) .
V,. :sin(Mj
9 N
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First observation toward
multigrid

e Many relaxation schemes have the smoothing
property, where oscillatory modes of the error
are eliminated effectively, but smooth modes
are damped very slowly.

 This might seem like a limitation, but by using
coarse grids we can use the smoothing property to
good advantage.

::::::::::::::::::Qh

I I I I I I I I I)(N QZh

« Why use coarse grids??
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Reason #1 for using coarse
grids: Nested Iteration

e Coarse grids can be used to compute an improved
Initial guess for the fine-grid relaxation. This is
advantageous because:

- Relaxation on the coarse-grid is much cheaper (1/2 as
many points in 1D, 1/4 in 2D, 1/8 in 3D)

— Relaxation on the coarse grid has a marginally better
convergence rate, for example

1- O(4h2) instead of 1 - O( h2)
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w Nested Iteration

Relax on Au=F on Q*to obtain initial guess van
Relax on Au=f on Q2hto obtain initial guess vh
Relax on Au=f on Qh to obtain ... final solution???

But, what is Au=Ff on QZh, Q4h L

What if the error still has smooth components
when we get to the fine grid Q"o
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Reason #2 for using a coarse
grid: smooth error iIs (relatively)
more oscillatory there!

e A smooth function:

1 ~

0 .5 |

0
-0 .5 | //
-1
0 0 .5 1

e Can be represented by linear
Interpolation from a coarser grid:

On the coarse grid, the
smooth error appears to
be relatively higher in
frequency: in the example
It is the 4-mode, out of
a possible 16, on the fine
grid, 1/4 the way up the
spectrum. On the coarse
grid, it is the 4-mode out
of a possible 8, hence it
Is 1/2 the way up the
spectrum.

Relaxation will be more
effective on this mode if
done on the coarser grid!
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For k=1,2,.N/2, the k" mode is
preserved on the coarse grid

Also, note that
Wi, - 0

on the coarse grid

k=4 mode, N=12 grid

k=4 mode, N=6 grid 42 of 119



For k > N/2, w. " is invisible on
the coarse grid: aliasing!!

 For k> N/2, the kth mode on
the fine grid is aliased and
appears as the (N-k)th mode
on the coarse grid: O T O T

(m&)a-—sm( N j | . | | |

| (Z’Tj(N—k)]
= —sin

k=9 mode, N=12 grid

N

. (T(N=K)]
- T

( WN k ) k=3 mode, N=12 grid
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Second observation toward
multigrid:

e Recall the residual correction idea: Let v be an
approximation to the solution of Au=f, where the
residual r=f-Av. The the error e=u-v satisfies
Ae=r.

e After relaxing on Au=f on the fine grid, the error
will be smooth. On the coarse grid, however, this
error appears more oscillatory, and relaxation will
be more effective.

e Therefore we go to a coarse grid and relax on the
residual equation Ae=r, with an initial guess of e=0.
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w Coarse-grid correction

 Relax on Au=f on Qh to obtain an approximation vh
. Compute I =f — AV
e Relax on Ae=r on Q2h to obtain an approximation

to the error, e,

e Correct the approximation v vl +edh

e Clearly, we need methods for the mappings

oh |:> Q& and QZhI:> Qh
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1D Interpolation (Prolongation)

 Mapping from the coarse grid to the fine grid:
h . A2h h
lop - Q7 - Q

e Letvh, v pe definedon Q" 0?2 Then

|3 v = yh

2 | _ N
. for 0<i < 5_1
V3 41 zé(ViZh +vA
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1D Interpolation (Prolongation)

e Values at points on the coarse grid map unchanged
to the fine grid

e Values at fine-grid points NOT on the coarse grid
are the averages of their coarse-grid neighbors

A

QZh
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The prolongation operator (1D)

 We may regard Igh as a linear operator from
[IN/2-1 wemp N-1

h
VvV
e eg., for N=8, /1 "
1 ‘2
12 12 viP v3
1 v3h = | v}
1/2 1/2 v2h vh
1 3 Jza f]
V6
1/2 %3 Vh
b

x1

o Igh has full rank, and thus null space {¢}
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How well does v2" approximate u?

e Imagine that a coarse-grid approximation v2" has
been found. How well does it approximate the
exact solutionu ? Think u =% error!

e If uis smooth, a coarse-grid interpolant of v2"
may do very well.
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How well does v2" approximate u?

 Imagine that a coarse-grid approximation v2" has
been found. How well does it approximate the
exact solutionu ? Think u =9 error!!

e If uis oscillatory, a coarse-grid interpolant of v2"
may not work well.
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Moral of this story:

 If uissmooth, a coarse-grid interpolant of v2"
may do very well.

e If uis oscillatory, a coarse-grid interpolant of v2"
may not work well.

e Therefore, nested iteration is most effective
when the error is smooth!
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1D Restriction by injection

 Mapping from the fine grid to the coarse grid:
12l L o®

e Let vN, v be definedon Q" 02, Then
where v&" = v |
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1D Restriction by full-weighting

. Let V1. v® pe defined on Q" Q2 Then
where

1
oh _ h h . uh
V; _Z(VZi—1+2V2i + V3 1)

o
; \///\.

V.
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The restriction operator R (1D)

 We may regard Iﬁh as a linear operator from
[IN-1 e ]N/2-1

e e.g., for N=8, v
h Zh
14 12 1/4 V3 Vi
[ 14 1/2 14 ) vil | = | vah
Va V2 Y47| b v
Vg
G

. Iﬁh has rank D%, and thus dim(NS(R)) O N
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Prolongation and restriction are
often nicely related

 For the 1D examples, linear interpolation and full-
weighting are related by:

1
121
1
2n [ 121 j

2
1
121

o
|
H
R N
-
[
Ny

R N

« A commonly used, and highly useful, requirement is
that

h _ ohy T
Ion = ¢ (Iy") | forcin ]
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2D Prolongation

VB 5 = VIZJh - 1 1 1 -
4 2 4
VEI|+1,2j - _( Vzh +V|h+1,j) L 1 1
2 2
VE, 2 +1 = (v2h +th+1) 1 1 1
4 4 2 4 L
Vi +1,2/+1 ~ Z( Vlj + V|h+1,j + V|h,j +1 7t V|h+1,j +1)
We denote the operator by
using a “give to” stencil, | [. *—o—0—
Centered over a c-point, @,
It shows what fraction of —0—0—
the c-point’'s value is
contributed to neighboring 0o
f-points, e@.
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2D Restriction (full-weighting)

‘H | - ;‘I—‘
‘H | ;‘H

|~ Al 0OF

I
=
(o))
=
(o))

I

We denote the operator by
using a “give to” stencil, [ ]. *—e
Centered over a c-point, @,
It shows what fractions of —0
the neighboring (@) f-points’
value iIs contributed to the
value at the c-point.

¢+
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Now, let’s put all these ideas
together

Nested lteration (effective on smooth error
modes)

Relaxation (effective on oscillatory error modes)
Residual equation (i.e., residual correction)

Prolongation and Restriction
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Coarse Grid Correction Scheme

v e (vh 1) ay, ay)

1) Relax a;times on AMuh =M on Q" with
arbitrary initial guess v".

2) Compute rh=f"-alyn

r2h =2 rh

3) Compute
4) Solve A%e? =2 gn Q&

5) Correct fine-grid solution vh o vh + Igh e
6) Relax a,times on AMuM =fMon Q" with initial

guess vh.
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Coarse-grid Correction

Relax onA"UN = fhh ]
Compute M=f"-AD
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What is A2h ?

e For this scheme to work, we must have A2h, a
coarse-grid operator._For the moment, we will
simply assume that A2h IS “the coarse-grid
version” of the fine-grid operator A" .

e We will return to the question of constructing AN
later.
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How do we “solve” the coarse-
grid residual equation? Recursion

O uh V(A £ u—u+e'@
2 12" - Ay & 1hu
@ - c'(AM M W v+ 1@
h (e DN
P I T =AU eh Dy
a1 Q uh-uh+et
e -Atuy ey
ua‘eGV(Aaq,faq)' O v+

gl = (A") ~1¢H 62 of 119



V-cycle (recursive form)
vh o mvvh, £

1) Relax aj;times on Ahuh - f,h initial v" arbitrary

2) If ths the coarsest grid, go to 4)
Else: §20 Igh(fh_Ath)
v 0
vah - My (v £

h

3) Correct V"< v + I3 v
: N h_—eh. .. h
4) Relax a,times on A U™ = f ' initial guess Vv
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Storage Costs: v and f' must
be stored on each level

e In 1-d, each coarse grid has about half | I | ' | I |

the number of points as the finer grid.

e In 2-d, each coarse grid has about one-
fourth the number of points as the finer

grid.

e In d-dimensions, each coarse grid has
about 29 the number of points as the
finer grid.

o Total storage cost: 2N9(1+27%+27 %4073 4 .4 o7 Mdy

less than 2, 4/3, 8/7 the cost of storage on the fine grid
for 1, 2, and 3-d problems, respectively.

1-27d
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Computation Costs

Let 1 Work Unit (WU) be the cost of one
relaxation sweep on the fine-grid.

Ignore the cost of restriction and interpolation
(typically about 20% of the total cost).

Consider a V-cycle with 1 pre-Coarse-Grid
correction relaxation sweep and 1 post-Coarse-
Grid correction relaxation sweep.

Cost of V-cycle (in WU):

(142794072 o= L omMdy o 2

1-2~d

Cost is about 4, 8/3, 16/7 WU per V-cyclein 1, 2,
and 3 dimensions.
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Convergence Analysis

e First, a heuristic argument:

— The convergence factor for the oscillatory modes of the
error (e.g., the smoothing factor) is small and
iIndependent of the grid spacing h.

N
smoothing factor = max |A(R)| for > <ksN

— The multigrid cycling schemes focus the relaxation on
the oscillatory components on each level.

Relax 1st coarse grid Relax on fine grid

smooth oscillatory
k=1 k=N/2 k=N

The overall convergence factor for multigrid

methods is small and independent of h!
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Convergence analysis, a little
more precisely...

Continuous problem: Au =1, u = u(x;)
Discrete problem: AMuh =N, yh=yh

Global error: E; =u(x;) —ul
lE|l < th (p=2 for model problem)

Algebraic error: € = ul = vt

Suppose a tolerance € is specified such that vh
must satisfy |u-vh| < ¢

Then this is guaranteed if
Ju-u| +luh=vh| = JEI +]el <¢
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We can satisfy the requirement
by imposing two conditions
1) lEl < % . We use this requirement to determine a
grid spacing h - from

€
2) | el < 5 which determines the number of
Iterations required.

€ P L
« Ifwe iterate until el < 5 = K(hD) on Qh then

we have converged to the level of truncation.
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Converging to the level of
truncation

Use a MV scheme with convergence rate y<1
Independent of h (fixed a; and 05 ).

Assume a d-dimensional problem on an NxXNx...xN

grid with h = N 71

The V-cycle must reduce the error from | el 0O(1)

to lel ohPy 0 o(N P

We can determine 0, the number of V-cycles
required to accomplish this.
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Work needed to converge to the
level of truncation

e Since B V-cycles at convergence rate y are
required, we see that

V¥ DO(N ™)
implying that 0 LJO( log N) .

e Since one V-cycle costs O(1) WU and one WU is
O(N9), we see that the cost of converging to the
level of truncation using the MV method is

O(Ndlog N)
e which is comparable to fast direct methods (FFT
based).
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A numerical example

e Consider the two-dimensional model problem (with
0=0), given by

—Uxx — Uyy = 2| (1-6x?) y?(1-y?) +(1-6y?) x?(1-x?) |
Inside the unit square, with u=0 on the boundary.

 The solution to this problem is
u(x,y) = (x2=x4) (y*-y?)

« We examine the effectiveness of MV cycling to
solve this problem on NxN grids [(N-1) x (N-1)
Interior] for N=16, 32, 64, 128.
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n =16 n =32

V-cycle lle™9a ratio elln ratio le" || ratio ltelln ratio
0 6.75e-+02 5.45c-01 2.60e+03 5.61le-01
1 4.01e+00 0.01 1.05e—02 0.02 | 1.97e4+01 0.01 1.38-02 002
2 1.1le-01 003 4.10e-04 004 | 532:—01 003 632-04 005
3 196e-03 004 1.05¢-04 026 } 2.06c—-02 004 44le-05 0.07
4 1.63e—04 004  1.03e—0G4 098" | 9.79—-04 0.05 2.59-05 059
5 7ASe—06 0.05  1.03e—04 1.00" | 5.20e—05 0.05 25805 1.00"
6 3.75e—07 005 1.03e—04 1.00* | 296e—06 0.06 2.58e—05 1.00"
7 208:—~08 (.06 1.03e—04 1.00* | 1.77e—07 006 25803 100"
8 1.24e—09 0.06 1.03e—04 1.00" | 1.10e—08 0.06 2.58:—05 1.00
9 7.74e-11 006 1.03e-04 1.00° | 7.16e—10 0.06 25805 1.00°
10 4.9%—12 006 1.03e—04 1.00* | 4.79c—11 007 258-05 1.00°
11 12713 007 1.03e—-04 1.00* | 3.29¢—-12 067 258e-05 1.00*
12 218e—14  0.07  1.03e—04 1.00" | 2.31e—13 007 2.58¢-05 1.007
13 2.33e—15 0.11 1.03e—04 1.00" | 1.80e—14 0.08 2.58e—03 1.00*
14 l1.0de—15 043 1.03e—04 1.00" | §A7e—15 0.36 2.58:-05 1.00"
15 6.6le—16 0.63 1.03e—04 1.00* | 5.1le—15 0.79 258—-05 1.00°

. = 641 n=128

V-cycle e’ 1z, ratio leiln ratio e[| ratio llelln ratio
0 1.06e+04 5.72e—01 4.16e+04 5.71e—01
1 7566401 001 1.3%—02 0.02 | 2.97¢+02 0.01 1.3%-02 0.02
2 2.07e4+00 0.03 6.87e—04 0.05 | 8.25¢+00 0.03 692-04 005
3 830c—-02 004 42le-05 006 | 3.37e—01 004 42205 0006
4 4.10e—03 .05  T.05e—06  0.17 1.65e—02 0.05 3.28¢—06 0.08
5 2.20e—04 0.06 6.45e—06 091" | 899c—04 005 1.63¢-06 050
6 1.39e—0n 0068 6.44e—06 1.00° | 529e—05 0.06 16le—06 099"
7 8.92:—07 006 6.44e—06 100" | 3.29¢—06 0.06 1.6le—06 1.00"
8 597e—08 007 6.44e—06 1.00° | 2.14e—07 006 L1.6le—0D6 1.00*
9 4.10c—09% 007 6.44e-06 100" | 1.43¢-08 0.07 1.6le-06 1.00"
10 2.8Te—10 007 6.44de—06 1.00° | 8.82e—10 0.07 1.6le—06 1.007
11 2.04e—11 007 6BA4e—068 1.00° | 6.81e—11 0.07  1.61e—06 1.00"
12 1.46e—12 007 6.44e—06 1.00" | 4.83e—12 007 L1.6le—06 1.00"
13 1.08e—13 007 6.44e—06 1.00" § 3.64e—13 008 1.61le—06 1.00"
14 260e—14 0.24 6.44e—06 100" | 1.03e—13 028 1.61e—06 1.007
15 2.300—14 0.88 6.44e—06 1.00* | 9.19-14 089 1.6le-06 1.00°

Numerical Results,
MV cycling

Shown are the results
of 16 V-cycles. We
display, at the end of
each cycle, the residual
norm, the error norm,
and the ratio of these
norms to their values at
the end of the previous
cycle.

N=16, 32, 64, 128
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L@@k again at nested Iteration

e Jdea: 1t's cheaper to solve a problem (i.e., takes
fewer iterations) If the initial guess is good.

e How to get a good initial guess:
— Interpolate coarse solution to fine grid.
- “Solve” the problem on the coarse grid first.

— Use interpolated coarse solution as initial guess on fine
grid.

e Now, let's use the V-cycle as the solver on each grid
level! This defines the Full Multigrid (FMG) cycle.
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The Full Multigrid (FMG) cycle
vh c FEMG (™)
fh ¢ ¢4 ¢H

Initialize

. -1
Solve on coarsest grid vH = (AF) “¢H

Interpolate initial guess

vah A
perform V-cycle v _ MVm(Vm, f 21)
interpolate initial guess vh Igh vZh

h h
perform V-cycle VAL VAVALYQVILIS Bl
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Full Multigrid (FMG)




FMG-cycle (recursive form)
vh c FEMG( M)

1) Initialize ", 4, %, . "

2) If Qh IS the coarsest grid, then solve exactly

Else: vZh _ FI\/lG(th)

3) Set initial guess h _ |£‘h y2h

4) vyh _ MV(vh,fh) , N times
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Cost of an FMG cycle

One V-cycle is performed per level, at a cost of

L_i_d] WU per grid (where the WU is for the

size grid involved).

The size of the WU for coarse-grid j is Z_jdtimes
the size of the WU on the fine grid (grid 0).

Hence, cost of the FMG(1,1) cycle is less than

[ 2-dj(1+2_d+2_2d+"') - i 2
1-2 (1-2"9

d=1: 8 WU; d=2: 7/2 WU d=3: 5/2 WU

77 of 119



How to tell If truncation error Is
reached with Full Multigrid (FMG)

e If truncation error is reached, lel 0O(h%) for each grid
level h. The norms of the errors at the “solution”
points in the cycle should form a Cauchy sequence and

‘ eZJh

ejh
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Cost to achieve convergence to
truncation by the FMV method

Consider usingzﬁhe FMV method, which solves the
problem onhQ to the level of truncation before
going to Q' i.e,,

e = |u2h - v2h| OK(2h)"

. We ask that | en| 0 Kh" = 27P] e which implies
that the algebraic error must be reduced by 2
on Q. Hence, 9;V-cycles are needed, where

thus 6, 0 O(1) and computational cost of the
FMV method O(N%).
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A numerical example

e Consider again the two-dimensional model problem
(with 0=0), given by

—Uxx =~ Uyy = 2| (1-6x?) y2(1-y?) + (1-6y?) x2(1-x?) |
Inside the unit square, with u=0 on the boundary.

e We examine the effectiveness of FMG cycling to
solve this problem on NXxN grids [(N-1) x (N-1)
Interior] for N=16, 32, 64, 128.

80 of 119



FMG results

comparison to MV cycle results.

e« Shown are results for three FMG cycles, and a

TFMG(1,0) FMG(1,1) FMG(2,1) FMGLD [ V2D T V2, 1)
N lel|n ratio lefl . ratio el ratio wU cycles | WU
2 . Bbhe-03 5.86e—03 5.86e—03
4 5.37e=03% 0917 | 24%—03 (424 | 2.03e—-03 0.347 7/2 3 12
8 2.78%—03 0.518 | 9.12e—04 0367 | 6.68e—04 0.328 T/ ! 16
16 1.19—03 0.427 | 2.52e—04 0.277 | 1.72e—04 0.257 T2 4 16
32 | 4.70e—04 0.395 | 6.00e—05 0.238 | 4.00e—05 0.233 T/2 5 20
64 1.77Te~-04 0377 | 1.36e—05 0227 | 9.36e—06 0.234 7/2 5 20
128 | 6.49e—05 (366 | 3.12¢—06  0.229 | 2.26e—06 0241 7/2 6 24
256 | 2.33e—05 0.359 } T.35e—07 (1.233 | 5.06e—07 0.246 T/2 7 25
512 | 8.26e—06 0.354 | 1.v7e—07 0.241 | 1.3Be~07 0,248 7/2 7 28
1024 | 2.60e—06 0.352 | 4.35¢—05 0,245 | 344e-08 0,249 T/2 8 a2
2048 | 1.02e—06  0.351 | 1.08e—08 0.247 | 8.58e—-09 0.250 772 e 36
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What iIs AN 2

e Recall the coarse-grid correction scheme:
- 1) Relax on AMuh =" 0" get VI
~ 2) Compute = |r%h( fh - Ath) .
— 4) Solve A2h62h =12 on QN

— 5) Correct fine-grid solution vh — vh + |2h e

. Assume that el Range(lgh). Then the
residual equation can be written

rh = Aheh = Ahlgh u2 for some u2 0 Q&
 How does Ah act upon Range(lgh) ?
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How does Aact on Range(lgh ) ?

=y

n

. | . < AhlghUZh

- Therefore, the odd rows of A" I2h are zero (in 1D
only) and ry+1 = 0. We therefore keep the even rows
of Ahlghfor the reS|duaI equations on Q%" These
rows can be picked out by applying restriction!

VAR u2h = b
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Building A~

The residual equation on the coarse grid is:

AN w2 = A

: . _ Zh
Therefore, we identify the coarse-grid operator A
as

Next, we determine how to compute the entries of
the coarse-grid matrix.
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Computing the i*" row of A%

e Compute A héiZh where € =(0,0
f”‘~\s
-’,” 1 : 1 ~~*'
I —1 i i +1
0 1 0
1 1

0 5 1 > 0
1 1 1
- O - O —_
2h? h 2h?
L 1 1
4h? 2h? Ah?

T

..,0,1,0,...,0)

~2h
=

I /\2h
2h €

/\2h
A I2h |

/\2h
A I2h |
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The it row of A% looks a
lot like a row of A" I
1
(2h)?
which is the Q2 version of Ah.

e The ith row of AZh is [ -1 2 -1]

 Therefore, IF relaxation on Qh leaves only error in
the range of interpolation, then solving

determines the error exactly!

e In general, this will not be the case, but this

argumeﬂ;t certainly leads to a plausible representation
for A-.
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The variational properties

. The definition for A% that resulted from the
foregoing line of reasoning is useful for both
theoretical and practical reasons. Together with
the commonly used relationship between
restriction and prolongation we have the following
“variational properties”:

(Galerkin Condition )

for cin
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Properties of the Grid

Transfer

Operators: Restriction

+ Full Weighting: |2": QN _, Q& or

Iﬁh: (N1 —> [JN/2-]
 For N=8,
121
|2 = 121
4
i 1211,
Ih has rank g—landanullspace N(I ) with
N
dimension 5
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Spectral properties of Iﬁh .

« How does Iﬁh act on the eigenvectors of A n ?

LY :
e Consider w{Q,j :sm(Nj , 1<k<N-1, 0 J< N

e Good Exercise: show that

2h . KTt
(15 W|Q)j = COSZKZNJW%}

= Ck Wﬁ,r}

forl <k <N/2.
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Spectral properties of Iﬁh (cont.).

2h
e ie,, Ip [kt mode on Qh] = ¢, [ kt" mode on QZh]

//\ Qh: N=8, k=2
S

|2h
h

IS
N

QN - N=4, k=2
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Spectral properties of Iﬁh (cont.).

N N
e Letk' =N-k for 1< k<E ,sothat§< k' <N

e Then (another good exercise!)
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Spectral properties of Iﬁh (cont.).

2h
I [(N-K)t mode on Qrﬁ = -s, [ kth mode on QZh]

e e,

QN : N=8, k=6
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Spectral properties of Iﬁh (cont.).

i Zh
e Summarizing: |Ip WE = Ck Wl%h 1<k<_
ZhWE' — _SkWI%h K’ —N K

h h o _
Iy W2 = C

e« Complementary modes:
W, = span{w, wp}

Irzthk AL
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Null Space of Iﬁh.

Observe that N( lh ) = Span(A & j where i is odd

and e is the it" unit vector. /\
h~h

Let ;= ATE . \/ \~

O 0 O -12 -10 O

While the n;look oscillatory, they contain all of
the Fourier modes of A, i.e

N-1
i = D, akW a # 0

All the Fourier modes of Ahare needed to
represent the null space of restriction! o4 of 119



Properties of the Grid Transfer
Operators: Interpolation

e Interpolation: Igh: 0% - ol or
n
|2h: [IN/2-1 —» []N-1

e For N=8,

RN

—
y
I

N |

R N P

1
2
1)

+ |3}, has full rank and null space {¢} .
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Spectral properties of Igh .

How does Igh act on the eigenvectors of A2h ?

(KT
Consider (W%h)j = Sm[l\l/Z] 1<k N/2-1,
O0< j< N/2

Good Exercise: show that the modes of AZhare
NOT preserved by Igh, but that the space Wy, is

preserved:
KTT KTT
2 _ qn2 ,
COS (ZNij sin (ZNjwp

h
| o W
h _ h
Ck Wk \.‘k Wkr
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Spectral properties of |Qh (cont.).
|£]h — Ck W{(] _Sler(]r

e Interpolation of smootl?1 QZh modes excites
oscillatory modes on Q.

N
e Note thatif k «5 ,

n k? k?

=~ w

h
o |2h IS second-order interpolation.
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h
The Range of |}, .

* The range of Igh Is the span of the columns of Igh

e Let ¢ be the ith column of Igh .

G -

r—r—e ———

n N-1
Ei — Z kalr(], bk¢0
k=1

. h
« All the Fourier modes of A  are needed to

represent Range( | gh )
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Use all the facts to analyze the

coarse-grid correctlon scheme
1) Relax O times on Qh. vh R 1yh

2) Compute and restrict residual f U Iﬁh( fh - Ahvh)

-1
3) Solve residual equation v = (AZ) &

4) Correct fine-grid solution vh — vh + IghVZh.
e The entire Process appears as
h o RYVDh + Igh(AZh) ! 2h(fh— ANRAyN)
 The exact solution satisfies

h C ROuh + 18 (AT “H A (£ - APRYYN)
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Error propagation of the coarse-
grid correction scheme

Subtracting the previous two expressions, we get
-1
eh — |1 =18 (A% T12 AN |RYeN

eh . CcGeh

e How does CG act on the modes of Ah? Assume

consists of the modes w and W fori<k < N/2
and K' = N—-Kk.
a h 2h 2hy ~1  h
« We knowhow R™, A", Iy , (A7) , Iy
acton W{ and W .
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Error propagation of CG

e For now, assume no relaxation a=0. Then
W, = span{wf, wp }
IS Invariant under CG.

CGW) = s W + s, W
CGWE: = Ck Wp T Cy Wpr

where
kTt . KTt
— 2 ™ME - 2 -
ck—cos[ZNj Sk = Sinh (ZNj
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CG error propagation for k << N

e Consider the case k << N (extremely smooth and
oscillatory modes):

(e ol

e Hence, CG eliminates the smooth modes but does
not damp the oscillatory modes of the error!
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Now consider CG with relaxation

 Next, include a relaxation sweeps. Assume that
the relaxation R preserves the modes of A
(although this is often unnecessary). Let Ay
denote the eigenvalue of R associated with w .
For k << N/2,

Wk —>)\E®Wk + )\E@Vk' Small!
Wy _’@Ck Wk +@Ckwk' Small!
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The cruclal observation:

e Between relaxation and the coarse-
grid correction, both smooth and
oscillatory components of the error
are effectively damped.

 This Is essentially the “spectral”
picture of how multigrid works. We
examine now another viewpoint, the
“algebraic” picture of multigrid.
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Recall the variational properties

e All the analysis that follows assumes that the
variational properties hold:

(Galerkin Condition )

for c iIn
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Algebraic Interpretation of
coarse-grid correction

 Consider the subspaces that make up Q" ana O

For therest of thistalk, ‘R()’

@) h refersto the Range of alinear
operator.
From the fundamental theorem
Ion of linear algebra:
Zh 2hy T
N(IR ") O R(C(lR) )
on or
Q

NC(IE™) O R(13)
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Subspace decomposition of Qh.

e Since Ah has full rank, we can say, equivalently,

h 2h AN
R(1z) O, N(IF'A™)

(where X L n Y means that (A"x,y ) =0),

e Therefore, any eh can be written as eh =sh + t"
where shOR(1%) and t"ON(IF"AM)

- Hence, Q" = R(14) O N(IF"AM)
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Characteristics of the subspaces

e Since s" = 15 g for some g2 0 Q2 , we
associate sh with the smooth components of e"
But, SN generally has all Fourier modes in it (recall

the basis vectors for |2h ). /\_‘

e Similarly, we associate N with oscillatory
components of e", although t 'generally has all
Fourier modes in it as well. Recall that N(lﬁh) B
spanned by n; = A"e therefore N( I N ) IS
spanned by the unit vectors eh = (0, 0 .00 ...,0)
for odd I, which “look” oscillatory.

T
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Algebraic analysis of coarse-grid
correction

Recall that (without relaxation)

-1
CG =115 (AT Tl

e First note that if shDR(IZh) then CGsh=0.
This follows since s" = |2h g for some g2 O Q
and therefore

-1
CGsh = {l — 13 ATy @A b g =0

A 2h by Galerkin property

« 1t follows that N(CG) = R(13), that is, the null
space of coarse-grid correction is the range of
Interpolation.

109 of 119



More algebraic analysis of
coarse-grid correction

e Next, note that if th N ( IﬁhAh)then

-1
cath = |1 -18 (AT T2 ARl |t
a_l
0

e Therefore CGth = ’[h

- CGis the identity on N ( IZ"A™)
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How does the algebraic picture
fit with the spectral view?

. h .
e We may view Q" in two ways:

0O h _ ) Low frequency modes B High frequency modes
1< k< N/2 N/2 < k< N

that is,

oM = L o H

or as

n n 2h A N
Q = R(IZh) N(Ih A )
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Actually, each view iIs just part
of the picture

The operations we have examined work on
different spaces!

While N ( IﬁhAh)is mostly oscillatory, itisnt H .
and while R ( Igh) is mostly smooth, it isn't L .

Relaxation eliminates error from H .

Coarse-grid correction eliminates error from R( |£‘h)
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How it actually works (cartoon)
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Relaxation eliminates H, but

increases the error in R(13).
H ANUﬁhAh)
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CG eliminates R( 13,) but

Increases the error In H.
H AN(H%hAh)
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Difficulties:

anisotropic operators and grids

» Consider the operator :__0%u _ 0%

—— - B— =f(x,
2 B oy2 (Xy)
e If a«pB then the GS-smoothing
factors in the x- and )~directions are ' 7

shown at right.

Note that GS relaxation does not
damp oscillatory components in the x-
direction.

« The same phenomenon
occurs for grids with much
larger spacing in one direction
than the other:

0.8

0.6

0.4

0.2

0

-100 -50

0

50 100
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Difficulties: discontinuous or
anisotropic coefficients

« Consider the operator : — [ (D(X,Yy) Lu)

where dq1(X,Y) dlz(X,Y))
d21(X,y) d22(X,Y)

e Again, GS-smoothing factors in the x- and y~directions
can be highly variable, and very often, GS relaxation does
not damp oscillatory components in the one or both
directions.

D(x,y) =£

e Solutions: line-relaxation (where whole gridlines
of values are found simultaneously), and/or semi-
coarsening (coarsening only in the strongly coupled

direction).
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For nonlinear problems, use
FAS (Full Approximation Scheme)

e Suppose we wish to solve: A(u) =f where
the operator Is non-linear. Then the linear
residual equation Ae = r does not apply.

Instead, we write the non-linear residual equation:
A(u+e) —A(u) =r
 This is transferred to the coarse grid as:

AT (U2 + ey = 127N -AN(uh))
» We solve for w2 = u? + e and transfer the
error (only!) to the fine grid:
h
Uh «— Uh + IZh(WZh _Ih u )
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Multigrid: increasingly, the right
tool!

e Multigrid has been proven on a wide variety of
problems, especially elliptic PDEs, but has also found
application among parabolic & hyperbolic PDEs,
Integral equations, evolution problems, geodesic
problems, etc.

o With the right setup, multigrid is frequently an
optimal (i.e., O(N)) solver.

e Multigrid is of great interest because it is one of the
very few scalable algorithms, and can be parallelized
readily and efficiently!

119 of 119



