intgl.

Intel® [tanium(TM) Assembler

User’'s Guide

2000 - 2002
Order Number: 712173-004
World Wide Web: http://developer.intel.com

Table of Contents

RS o =1 1= SRRSO 5
OVERVIEW ... 6
ADOUL ThiS DOCUMENTeiiiiiie ettt e et te et e e st e e e saae s s steeesteeesateesssneeenreeens 6
SYSLEM ENVIFONIMENL ... oeiiiiie ettt et e et e s e e s tt e e e te e e s abeeeasseesteeesnseeeaseeasseeennrens 6
Related PUBIICALIONS........ccociic et e e e e sabe e e snreeanreas 7

N o1 2= (o g N @XeT01Y7= o (]0] 1S SRR 7
GETTING STARTED ... 8
01V (0] 101 o | USSR 8
INVOKING TAS ...ttt e e e e et e e st e e et te e e taeeaataeesseeeaabaeeanteeeasteaassneeanraeens 8
COMMAND-LINE OPTIONS ... 10
11 0T 1071 o] o TSRS 9

L LN e (1T 0T SRR 10
ComPIlatioN MOGEooiiiec e e e et e s e e e s b e e e naeeesnree e e 10
o g = TaTo T o PP RPP 11
O QN = B o (o TP 12
ACVANCED SECLION ...ttt e et e e et e e st e e e s ab e e e ste e e snbeeeaateesnseeesnreas 12
DEPENDENCY VIOLATIONSAND ASSEMBLY MODES.........ccoooiiiiiiiieieeeeee, 15
ASSEMDIY MOOES ...t e st e e e s tb e e s ta e e eabe e e aateeanreeesnreas 14
MOOE EXAIMPIES ...ttt et e et e st e e st e e e ate e e abee e e te e e snbeeessteeetaeeanreeennes 16
Serialize and Memory Syncronization INStrUCLIONS..........c.ueeecieeiiiee e s 17
AVOIdING FalSE REPOIS......eiiiiie et et rre e e b e e sare e e snreeenes 17
Predicate REAON ANAIYSIS........ooiiiieiiie ettt et re e e nb e e sbe e saae e e sree e e 18
COMPAE INSITUCHIONS.....eeveeeieeciee et e st stee et e e et e e st e e sate e s te e aate e e sbeeesaeeesateesnteesnteeanseeesnreessenans 19
Mutex Form of the .pred.rel ANNOLALIONcoocieeieccee e e e snee s 19
Implication Form of the.pred.rel ANNOLELION.occviiiii e 20
Clear Form of the .pred.rel ANNOLAiONcvvi e srae e snee e 20
Mutex Relation Not Created with a SImple COMPAre.........ccocveiieeiieiieese s se e see e see e 21
Ingtructions Separated by a Predicated Branch.............coovvevie e 21

S = A 10755 O PSR 22
INAIrect ACCESStO REGISLEN FIl€....c..eiiiiie et e st e et e e nreeesnee s 22
st8.spill and 1d8.fill in the SamME INSTUCtiON GIOUPcccvvveiiieeiie et e 23

FEATURES s 25

ASSEMDIY LaNQUAGE FEBLUIES........ceeiiee e cieeecttee et stee et et e st e et a e e s te e e ente e e saneesrneenaneas 24
INSIFUCTION SBL ...ttt ettt et e bt e n e et e bt et e e be e beenbeebe e beenbeenee 24

2T T T o SRR 24
TS TN o Ko g I 00 0SS 25

D= = W AN | Lo o= (oo PSSR 25
AssemMbly Language DIFECLIVES.........cccuee ettt se e st e et srae e snee e snbe e s re e e nraeennnes 25
B4-Dit ACQGrESS SPBCE ... eeieeeitie et e e st s e et e e e st e e s ee e s e e st e e e ste e e saeeesateesnteesteeenreeeanreeareeans 26

N o 12T 0| SR 26
ASSIGNMENT SEALEMENES. ... eieciieeeee e e e e e e e e st e e see e ete e e seeessseesnseeenseeeneeesnseesseeesnnes 26

N =S 1o S 26
Arithmentic EXpression HandliNg..........coieeieeriie e et snee e snae e e e snnees 27
CoMPIEMENLANY FEAIUIES........cccuiie ettt s et e st e st te e st e e s be e e atre e s abeeesnteeessaeeanreeeanns 28
IA-32 JMPE INSITUCKION.....eeieiie et ee e s e e s be e st e e st e e e stee e sneeesnbeesnteeeteeesneeesnres 28
INSEENC PSEUAO-TNSITUCTION. ...ttt et et ettt ettt e nte e nbeenbe e 28

IS o = 0= o o PSS 29
Line Information for DebuggiNg TOOIS.cccuieiiiiir e snee s 30

LT AT I o] oo o SRS 30
Predefined SYMIBOIS.oi e e e e e aa e sare e nnre s 31

A AT (0 C = o TES (= £ A o o= o o 1R 32
ALLOCAEE REGISLEN'S. ...ttt et h bbbt et s ae e s bt e st e sae e b e e st e sb e e sbeesbesaeenbeenrens 32

DEClArE VaT@hIES......ceeeeece e e e bbbt b e 33

Undefine and REJEfINE REGISIENS.eiiiiieeeie ettt et st e st e snn e e nes 33

Branch Target ANNOLBLIONc..eeiiiieiieeie ettt st s b et sae e bt et sae e s be et e saeesbesneesaeennas 34

REGIStEr VAl UE ANNOLBIION ..ottt et s b e sb e be e st e saeesbeeneesaeenas 35

Bank REgiSLEr ANNOLALIONeetiiiiiitieie ettt sttt ettt ettt e e bt e e e b e sbeenbeebeenbeenbeeneesaeeneas 35

Unwind INfOrmation GENEFAiON..........coiuiiiiieiieieeieeee ettt et e be e 35
DIAGNOSTIC MESSAGES. ... s 38
DiagNOoSstiC MESSAGE TYPES...eecuiieiiieectee sttt ettt e st e e s te e e st ee e st e e sate e e sseeeanteeesnbeeessteeentaeeanreeennns 37
DiagnostiC MESSAGE SYMEBX........ueeicieieiireeecieeeetieesteeeste e e stte e s stee e steeesseeeanteeesbeeessteeanseeesreeennns 37
Fatal EFTOr MESSAgES.eeeiueeeiieie ittt e stee sttt e s etee e st e e s teeeatee e s staeeanteeeasteaeateeesntaeesnteeeaseeeenseeenans 38
ETOr MESSA0ES ... vveee ettt ettt ettt e e st e e e st e e e st e e e s sat e e e e e annte e e e aanteeeesanneeeeeannreeeennnees 40
T g T o V=SS o =SSR 56
RETURN VALUES e 61
SPECIFICATIONS 62
PREDICATE ANALY SIS L e
U =g L= T Lo o SRS 63
IMPIY RE@LION ...t e e s be e s sabe e e be e e sate e e snreeaneeas 64
Predicate REGHON SCOPE.......ccciiiiiiie it ce ettt sa e e snae e ere e e sare e e sareeenns 64

Predicate Relation Scope Exceptions
Analysis of Combinations................

GLOSSARY . s

Disclaimer

Information in this document is provided in connection with Intel products. No license,
express or implied, by estoppel or otherwise, to any intellectual property rightsis granted
by this document. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS
OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY
WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS
INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A
PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY
PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. Intel
products are not intended for use in medical, life saving, or life sustaining applications.

This Intel® Itanium(TM) Assembler User's Guide as well as the software described in it
is furnished under license and may only be used or copied in accordance with the terms
of the license. The information in this manual is furnished for informational use only, is
subject to change without notice, and should not be construed as a commitment by Intel
Corporation. Intel Corporation assumes no responsibility or liability for any errors or
inaccuracies that may appear in this document or any software that may be provided in
associ ation with this document.

Except as permitted by such license, no part of this document may be reproduced, stored
inaretrieval system, or transmitted in any form or by any means without the express
written consent of Intel Corporation.

Designers must not rely on the absence or characteristics of any features or instructions

marked "reserved" or "undefined." Intel reserves these for future definition and shall have
no responsibility whatsoever for conflicts or incompatibilities arising

from future changes to them.
Intel, Pentium, Pentium Pro, Itanium, MM X, Xeon, Celeron, and VTune are trademarks
or registered trademarks of Intel Corporation or its subsidiaries in the United States

and other countries.

* Other names and brands may be claimed as the property of others.

Overview

This document describes how to use the Intel® Itanium(TM) Assembler (IAS) on
Windows NT* or Linux systems.

To gain the most from this guide, you should be familiar with the Itanium architecture
and assembly language. This User’s Guide documents the features specific to the Intel
Itanium assembly tool. See the Related Publications section for references to relevant
documents.

The lAS User's Guide provides the information you need to write an Itanium architecture
assembly language program assembling on IAS. It describes the IAS usage and features.
In addition, this user's guide provides detailed information on all IAS diagnostic
messages.

IASisacross-platform assembler; it runs on 32-bit systems and Itanium-based systems,
and produces Itanium architecture object files. IAS does not assemble | A-32 assembly
language programs.

About This Document

This document contains the following sections:

* Thissection lists related publications and describes the notation conventions used
in this manual.

* Getting Started describes |AS and its place in application development, and
provides the IAS command-line syntax.

¢ Command-line Options explains the command-line options.

* Dependency Violations and Assembly Modes explains working with automatic
and explicit code.

* Features describesthe |AS features that complement the features defined in the
assembly language.

* Diagnostic Messages liststhe IAS error and warning messages.

* Return Vaues explains the values that |AS returns upon termination.
* Specifications lists IAS specifications.

* Predicate Analysis describes how |AS performs predicate analysis.

System Environment

Hardware requirements. The recommended hardware is at least an Intel® Pentium® 1
processor with 256 MB memory. For extremely large input files (more than one million
lines of assembly code), a 1 GB swap area is recommended.

Software requirements: Use IAS with Windows NT 4.0 or Linux.

Related Publications

The following documents provide additional information. Some of them are available at
http://devel oper.intel .com.

DVLoc for Scheduling Library, document number 748283

Intel® Itanium(TM) Architecture Assembly Language Reference Guide, document
number 243801.

Intel® Itanium(TM) Architecture Software Developer’s Manual

Volume 1: Application Architecture, order number 245317-001

Volume 2: System Architecture, order number 245318-001

Volume 3: Instruction Set Reference, order number 245319-001

Volume 4: Itanium Processor Programmer’s Guide, order number 245320-001

Softwar e Conventions and Runtime Architecture Guide, order number 245256-
002

The following documents are available from Microsoft Corporation:

Microsoft* Developer Sudio, Visual C++* User's Guide, LINK Reference,
Version 4.2

Microsoft* Portable Executable and Common Object File Format Specification,
Version 4.1

Notation Conventions

This guide uses the following conventions:
This type style Indicates an element of syntax, areserved word, keyword, a

filename, computer output, or part of a program example. The
text appearsin lowercase, unless uppercase is significant.

This type style Indicates the text you enter as input.

This type style Indicates a placeholder for an identifier, an expression, a
string, asymbol or avalue. Substitute one of these items for
the placeholder.

This type style Indicates a placeholder for an identifier in a diagnostic
message.

[item] Indicates optional el ements.

[item | item] Indicate the possible choices. A vertical bar (|) separates the
items. Choose one of the items enclosed within the brackets.

This type style Indicates a default or a usage example.

Getting Started

The Intel® Itanium(TM) Assembler (IAS) is an assembler for the Itanium architecture
assembly language. It enables full use of the architecture. It is possible to work on a
Windows NT* host to create UNIX-compatible object files.

This section illustrates the place of IAS in your application development environment,
and explains how to use IAS. The subsections include:

® Environment
® Invoking IAS

Environment

Figure below shows how IAS fits into your application development environment. IAS
assembles Itanium(TM) architecture assembly language files, generated by an assembly
language programmer, or acompiler. IAS generates an object file and, possibly, a
diagnostics listing. The diagnostics listing includes all the error and warning messages
IAS generates during assembly.

Application Development

FPezembly
Programmer
O Fesembly
High-lewel File File
Languag e
Programmer

See the Software Conventions and Runtime Architecture Guide for information on
combining C and assembly language code in one executable file.

Ea cutt-
able
File

Invoking IAS

Toinvoke IAS, use the command line:
ias [options] filenane [options]

where:

options Represent the command-line options described in the following
sections. Y ou can place any option both before and after the file
name.

filenanme Specifies an assembly language input file.

Command-line Options

This section describes the IAS command-line options. The options are categorized into
these sections:

information

file handling
compilation model
error handling
UNIX ABI
advanced

Note:

Y ou do not have to type a space between the first |etter and the letters that follow.
Spaces are included here for clarity.

Information

The information command-line options control the data displayed on the screen and
written to the diagnosticsfile.

[-H | -h] IAS displays a short description of all the command-line options.
IAS then terminates. All other command-line options are ignored.
Default: Option descriptions are not displayed.
Example: ias -h

-N so IAS does not place the sign-on message with information about IAS
in the generated diagnosticsfile or display it on the screen.
Default: Sign-on appearsin the diagnostics file or on the screen.
Example: ias -N so ny file.s

-Qy AS adds the sign-on message containing information about IAS to
the .comment section of the object file.
Default: In ELF format the message is written, and in COFF format
it is not written.
Example: ias -Qy ny file.s

-S nops IAS displays severd figures:

* the number of nopsit inserted into the code during assembly
® the number of instructions before assembly

* the percentage of nops of the total number of instructions

Default: Numbers are not displayed.
Example: ias ny file.s -S nops

-V IAS prints IAS version information. Lists al libraries.
Default: The version information is not printed.
Example: ias ny file.s -v

-V Prints the signon message, which is the default. Kept for backward
compatibility.
File Handling

The file handling command-line options define the input and output files.

-F OWF This option defines the Object Module Format (OMF) of the object
file. Valuesfor OMF are COFF32 for Windows NT, and ELF32 or
ELF64 when the targeted operating system is UNIX.
Default for Windows NT: COFF32
Default for UNIX: ELF64
Example: ias -F COFF32 ny file.s

-1 pat hnane AS adds pat hnarme to an included input file search path list. This
option may be repeated to add more paths to the search list. The
paths are searched in the order listed.

Default: Searches for thefilein the current directory only.

Example: ias -1 c:\tenp\ny_path ny file.s

-0 fnane IAS creates fname as the object file.
Default: input file name with an .obj extension.
Example: ias -o nmy file.o ny file.s
By default IAS createsmy _fi | e. obj

Compilation Model

The compilation model options change the default compilation values.

-M il p_nodel This option defines the address model that IAS uses. Values for
i | p_nodel are
i1 p64 | |1 p64 | p64 —Default. Setsthe address size to 64
bits. Integer and long sizes have no effect.
i 1 p32 — Setsthe address size to 32 bits, relevant for COFF32
file format.
Default for WindowsNT: i | p64
Example: ias ny file.s -Mil p64

10

-M byt e_order

-N pi

-N
close fcalls

-p 32

This option sets the global default of the byte order of data
alocation statements. Vauesfor byt e_or der are: | e (little-
endian) and be (big-endian). Usethe. | sb and . nsb directivesto
et little or big-endian byte order for a specific section,
respectively.

Default: -M | e

Example: ias -Mbe ny file.s

IAS rejects privileged instructions. Use this option to ensure that
your code does not contain privileged instructions.
Default: Privileged instructions are accepted.

Example: ias -N pi ny file.s

IAS does not resolve global function calls. Instead you may want to
use another procedure by the same name that is defined el sewhere.
Default: Function calls are not resolved.

Example: ias -N close fcalls ny file.s

IAS enables defining 32-bit elements as rel ocatable data elements.
Kept for backward compatibility.

Error Handling

The error options define how 1AS handles diagnostic messages.

-e fnane

- E max_num

IAS creates f nane asthe diagnosticsfile. Error and warning
messages are sent to thisfile.

Default: Errors appear on the screen (st derr).

Example: ias -e nmy_err.txt nmy _file.s

|AS terminates when the number of errors |AS detects
reaches max_num

Default: - E 30

Example: ias -E 3 ny_file.s

-Wwar ni ng_l evel |ASdisplaysdifferent levels of warnings. Values for

war ni ng_| evel are

0 do not display warnings

1 display severe warnings

2 display warnings

3 display moderate warnings
4 display all warnings

11

X treat all warnings as errors and do not create object file if
any errors detected.

Default: 3
Example: ias -W1 ny file.s

UNIX ABI Section

The following section describes command-line options specific to UNIX ABI, for
restricting the floating-point register range, and defining the kernel mode calling
convention. They must be used in conjuction with the- F ELF64 option.

-Mrfp AS redtricts floating-point registersto therange F6 - F11.
Thisresultsin less register saves and restores when entering and
exiting the kernel, thereby reducing system time. Attemptsto
use other floating-point registers cause an error.

Default: All floating-point registers can be used.

Example: ias -F ELF64 -Mrfp ny _file.s

-M const _gp IAS setsthe single global pointer (GP) model in the object file.
The kernel isthen considered a single model, with one GP.
Default: No additional flags are set in the object file.
Example: ias -F ELF64 -M const _gp ny file.s

- M no_pl abel IAS sets the model in the object file to single GP and no
function descriptors (plabels). Aswiththe- M const _gp
opt i on, the kernel isthen considered a single GP and doesn’t

use plabels.
Default: No additional flags are set in the object file.

Example: ias -F ELF64 -M no_pl abel ny file.s

Advanced Section

The following section describes some advanced options that change the assembly mode
and permit virtual register allocation.

-X explicit IAS changes the default initial assembly mode from automatic to
explicit.
Default: 1AS assembles in automatic mode.
Example: ias -X explicit nmy _file.s
For more information on dependency violations see
Dependency Violations and Assembly Modes.

- X vral IAS invokes the register allocation engine (virtual register
alocation), which allows the use of symbolic names instead of

12

- X unw nd

-d debug

-a
i ndi rect=br_tar
get

-N us

actual register names. 1A S creates afile with the suffix . vr a
that lists the results of all register allocations.

Default: Vral isnot active, so the Vral syntax is not recognized.
Example: ias -X vral ny file.s

IAS invokes the unwind generation utility. IAS builds unwind
information for all procedures in the file and ignores al unwind
directives.

Default: Unwind information is not generated.

Example: ias - X unwind ny file.s

IAS creates Code View debug and line information for COFF32
objects. Y ou can then use the symbolic debugger to single-step
on code lines and view symbols.

Default: No debug and line information is created.

Example: ias -F COFF32 -d debug ny file.s

This command-line option indicates to IAS the default branch
target for indirect unannotated branches. It isrelevant for virtual
register allocation. Valuesfor br _t ar get are:

exi t exitisassumed to be the branch target

| abel s any label isassumed to be the branch target
Default: Exit isassumed.

Examples:

-ias -X explicit -a indirect=labels
ny file.s

or-ias -a indirect=exit ny file.s

This option enables an extended range of numbers, unifying both
signed and unsigned numbers. |AS accepts the numbers between
-64 and +127, as 7 hitslong.

Default: The range of a 7-bit number is either between -64 and

+63, or between 0 and +127.

Example: ias -N us ny file.s

13

Dependency Violations and
Assembly Modes

This section describes dependency violations and how the Intel® Itanium(TM) assembler
(IAS) helpsyou avoid them in your code.

A violation of data dependency results from two instructions within an instruction group
accessing the same Itanium architecture resource, including resources that appear as
implicit operands. Dependency violations result in architecturally undefined behavior.
The assembler can detect and eliminate dependency violations that occur within
instruction groups, depending on its mode.

Y ou can write code in explicit mode, thereby taking responsibility for bundling and stops
(;;)- You can aso use automatic mode where |AS automatically bundles your code ands
add stops to solve dependency violations. |AS allows you to mix modesin the onefile.
For an explanation of bundles and stops, see the Intel® Itanium(TM) Architecture
Assembly Language Reference Guide or the Features section in this document.

When you choose to write code in explicit mode, |AS reports any dependency violations
it encounters. The easiest way to solve them is by inserting a stop. Some reports may not
be accurate, in which case you have at your disposal arange of annotations and
commands, explained later in this section.

For a complete description of data dependencies, see the Intel® Itanium(TM)
Architecture Software Developer’ s Manual and the DV Loc for Scheduling Library.

This section includes:
® Assembly Modes
® Mode Exmples
® Serialize and Memory Synchronization Instructions
® Avoiding False Reports
® Predicate Relation Analysis

Assembly Modes

IAS reads and processes assembly code in one of two modes. explicit or automatic. Use
explicit mode if you are an expert user with profound knowledge of Itanium(TM)
architecture and performance is important. Use automatic mode if you are a novice user
or performance is not important.

Automatic Mode

Automatic mode is appropriate for implementation of non-performance-critical code.

In this mode, you can write linear code without specifying bundle boundaries and without
worrying about architectural dependencies. IAS bundles the code and inserts stops (;;)
when needed. |AS ignores al your stops and dependency violations-related annotations.

14

Automatic mode is the default initial mode. Theinitial mode can be changed to explicit
mode with the command-line option - X explicit.

IASissues an error if it encounters a curly bracket after the mode directive .auto.
IAS strives to insert a minimal number of stops.

Note:
In automatic mode, the assembler ignoresthe . pr ed. r el annotation.

Explicit Mode

Explicit mode is suitable when writing performance-critical code.

In thismode, you must avoid dependency violations by inserting stops and annotations in
the code. IAS checks the correctness of this code for dependency violations and returns
an error if it detects potential or certain problems.

Y ou can set explicit mode in the following ways:

insert curly brackets ({, }) signifying bundle boundaries, while in default automatic
mode (Note that a curly bracket following a .auto directive causes an error.)

insert the directive . expl i ci t

use the command-line option - X expl i ci t, which changes the default mode from
automatic to explicit.

When you enter a new code section, |AS sets the mode back to the default.

If you write explicit code without bundle boundaries, |AS adds them. However, you are
responsible for stops and annotations. Annotations define relations between predicate
registers and other run-time values. See Avoiding False Reports.

Behavior of IAS

Y ou can mix code from both modesin the onefile. IAS provides you with several ways
to switch between the modes:

® usethe command-line option - X explicit
® usethe modedirectives: . aut o, . explicit,and. def aul t

® when theinitial default mode is automatic, allow |AS to switch according to code
syntax

If there are no bundles, I1AS bundles the code, adds nops for correct bundling, and add
stops to avoid dependency violations.

Thedirectives. expl i cit and. aut o overridetheinitial default mode for the current
code section.

Thedirective. def aul t returnslASto theinitial default mode.

If IAS encounters a mode directive within an explicit bundle, IAS issues an error.

IAS automatically inserts a stop when it switches between modes.

For an explanation of how to write Itanium architecture code and avoid dependency
violations, see Avoiding False Reports.

15

Mode Examples

Explicit Mode

When IAS encounters the following code in explicit mode, it registers a dependency
violation error.

Thedirective. def aul t causes the mode to switch to the default initial mode defined in
the command line; which in this case is automatic.

.explicit
(pl)rmov rl =r4
’(|’o’2)m)v re =r2

| df ps f4,f5 = [r4]
fabs f4 = f7 ; WAWerror on f4
| AS inserts a stop when the node sw tches
.defaul t
add r5 =0, r7

Automatic Mode

In automatic mode, using similar code to the previous example, IAS ignores existing
stops and inserts stops between dependent instructions, as in the following example:

.auto
(pl)rmov rl =r4

; IAS ignores this stop

(p2)mov r6 =r2

| df ps f4,f5 = [r4]

; IAS inserts a stop to avoid WAWerror on f4
fabs f4 = {7

Initial Default is Automatic Mode

In the following example, the default mode is automatic:
(pl)nmov rl =r4

; IAS inserts a stop here

(p2)mov rl =r2

{ ; ITAS inserts a stop here

; IAS treats this code as explicit

| df ps f4,f5 = [r4]

fabs f4 =17 // wite-after-wite error

}

16

Serialize and Memory Syncronization Instructions

The serialize (sr | z) and memory synchronization (sync) instructions have the
following constraints regarding instruction groups:
* Theseridizeingtruction(srl z.i orsrl z. d) must belocated in the
instruction group following the operation to be serialized.
® QOperations dependent on the serialization must be in an instruction group after the
srlz.i.
® QOperations dependent on the serialization must follow the sr | z. d, but they can
be in the same instruction group asthe sr | z. d.
* Thesync. i ingtruction and previous Flush Cash operation must be in separate
instruction groups.
For safety’s sake, |AS in automatic mode inserts stops beforesr | z. d and sync. i
instructions, and both before and after the srlz.i instruction. In explicit mode |AS does not
indicate errors when stops are missing.

Avoiding False Reports

In some cases, when in explicit mode IAS falsely reports a dependency violation. IAS
cannot calculate all the properties of the code when information is lacking.

The simplest way to avoid false register dependency errorsis by using stops. Place a stop
(; ;) between the two instructions causing the violation dependency. This approach is
simple and always works, but might result in performance degradation.

Use the following annotations to assist IAS in analysis of dependency violations to solve
false reports, without sacrificing performance:

* .pred.rel

* .regq.val
* _nmem of fset
Note:

Annotations supply additional information that assists IAS’ analysis of apparent
dependency violations.
For a description of annotations' syntax, see the Intel® Itanium(TM) Architecture
Assembly Language Reference Guide.
The examples that follow show some typical situations where adding annotations helps
avoid false reports.

17

Predicate Relation Analysis

IAS analyzes predicate relations to determine dependency violations between pairs of
predicated instructions. The following example displays a write-after-write dependency

violation:
(pl) add r5 = 8, r6
(p2) add r5 =r7, r0

To understand how IAS performs predicate analysis, see Predicate Analysis.
The compare instructions define predicate register values and may result in definition of

predicate relations.

To pass on information about predicate relations, use the predicate relation annotation

.pred.rel.

The annotation .pred.rel takes the following forms:

“mut ex” The mutex form defines a mutually exclusive relation.

“i mply” The imply form defines an implication relation.

“clear” The clear form removes mutex and imply relations, as described
below.

When conflicting instructions follow an entry point, IAS ignores
all existing predicate relations defined before the entry point.

An entry point is any of the following:

alabel, whether local, global, or temporary

the address of the bundle followinga br. cal | instruction
the target of adirect branch

Use the predicate relation annotation to define the relations between predicates and
prevent dependency violation errors.

This section includes;

18

Compare Instructions

Mutex Form of the. pr ed. r el Annotation

Implication Form of the . pr ed. r el Annotation

Clear Formof the. pr ed. r el Annotation

Mutex Relation Not Created with a Single Compare

I nstructions Separated by a Predicate Branch

Safe Across Calls

Indirect Accessto Register File

st8.spill andl d8.fill inthe Same Instruction Group

Compare Instructions

The compare instructions (cnp, tbit,fcl ass, andf cnp) define predicate values.
They precede the predicated instructions. The compare instructions indicate to the
assembler that the named predicate registers are mutually exclusive. They override any
other defined mutex relations between the destination predicate registers and other
predicate registers.

These examples all show the use of the cnp instruction for smplicity. Usethet bi t ,
fcl ass, and f cnp ingtructions for the same effect.

In the example below, the cnp instruction states that P1 and P2 cannot both be true at the
same time, thereby avoiding a violation dependency error.

np. 1t pl, p2 =r13, rO0;;

(pl) dd r5 8, r6

(p2) dd r5 r7, ro0

The cnp instruction overrides the mutex relation between the destination predicate
registers and all the other predicate registers. For example:

np. 1t pl,p2 =r13,r0;;

; pl and p2 are nutually excl usive

np. 1t pl,p3 =rl12,r1l;;

; the nutex relation between pl and

; p2 is destroyed by cnp

(pl) dd r5 =8, r6

(p2) add r5 =r7, rO0O// WAWerror

Mutex Form of the .pred.rel Annotation

Format: . pred.rel “nutex” pl, p2 [, & dots;]

where

pl, p2 ... arepredicateregisters

pred. rel “nmutex” informsthe assembler that only one of the specified predicate

registersistrue, or al are false. For example:

.pred.rel “nmutex”, pl, p2, p3
; pl, p2, and p3 are nmutually exclusive or all zero

kpl)add r5 =8, r6
(p2)add r5 =7r7, r0
(p3)add r5 =r14, rO0

The mutex form is unordered, meaning that the order in which the predicates appear is
not important.

The mutex form does not override predefined mutex relations between the destination
predicate registers and other predicate registers. For example:

.pred.rel “nmutex”, pl, p2

.pred.rel “nmutex”, pl, p3

.pred.rel “nmutex”, p2, p3

; pl,p2 and p3 are nutex

(pl)mov r4=r5

(p2) mov r4=r6

(p3)nmov r4=r7 // no WAWerror is reported

19

Implication Form of the .pred.rel Annotation

Format:

.pred.rel “inmply” pl, p2
where

pl, p2 are predicate registers

The. pred. rel annotation of theform “i npl y” informs the assembler that if the first
predicate is true then the second one is aso. No assumptions are made when the first
predicate is false; the second predicate s value is undetermined. The implication form is
ordered, meaning that the order of the predicates isimportant.
In the next example, if PListrue, then P2 isalso true.
.pred.rel “inmply”, pl, p2

(pl)mov r4=r5

(p2) br. cond. dpnt . few b0

nmov r4=r5

WAWon r4 is not reported as pl inplies p2

The implication form isatransitive relation. If P1 implies P2 and P2 implies P3, so P1
also implies P3.

Clear Form of the .pred.rel Annotation

The. pred. rel annotation of theform “ cl ear” erases predicates relations. If you
specify the predicate register P1, IAS erases all the mutex relations containing P1, and all
the implication relations in which P1 is the implicating predicate register. If you do not
specify any predicate registers, |AS takes this as a shortcut to naming all the predicate
registers.

Format:

.pred.rel “clear” [pl[,p2[, & dots;]]]

where

pl, p2 arepredicateregisters

For example:

.pred.rel “clear” pl ; clears all the pl relations
.pred.rel “clear” ; clears all predicate relations

The following example uses both mutex and implication relations. The form “ cl ear”
has different effects depending on the relations.

.pred.rel “nmutex”, pl, p2

.pred.rel “nmutex”, p3, pl

.pred.rel “inply”, pl, p4

.pred.rel “inmply”, p5, pl
.pred.rel “clear”, pl

clears the two nutex relations

and the first inplication form
(pl) nov rl=r2 ; => WAWon rl is reported
(p2) nov rl=r2

20

(pl) nov r2=r3

(p3) nov r2=r3 ; => WAWon r2 is reported
’(|’ol) nov r3=r4

(p4) br.cond. sptk.few b0

nov r3=r4 ; => WAWon r3 is reported

/1 WAW woul d not have been reported if pl -> p4

(p5) nov r4=r5
(pl) br.cond. sptk.few b0
nov r4=r5 ; WAWIis not reported.
; p5 ->plis still valid

Mutex Relation Not Created with a Simple Compare

In the following code, P1, P2, and P3, are mutex since R10 can have only one value at a
time. IAS failsto interpret the inherently mutex relation and reports three WAW
dependency violations.
cnp.eq pl=1,r10
cnp. eq p2=2,r10
cnp. eq p3=3,r10;
(pl) nov r4=r1l
(p2) nmov r4=r2
(p3) nov r4=r3
To resolve this, use the .pred.rel annotation of the “mutex” form:
cnp.eq pl=1,r10
cnp. eq p2=2,r10
cnp. eq p3=3,r10;
.pred.rel “mutex”, pl, p2, p3
(pl) nov r4=r1l
(p2) nmov r4=r2
(p3) nov r4=r3

Instructions Separated by a Predicated Branch

In the following example, there are no dependency violations due to the unconditional
compare. The instructions are numbered #1 through #6 for clarity.

The apparent WAW on R1 can never happen since instruction #2 and instruction #5
never execute in parallel. That is, instruction #2 executes (P2 true) implying that
instruction #4 executes (P2 implies P1), and the code execution branchesto L without
reaching instruction #5.

The apparent WAW on R2 can only happen if instruction #4 does not execute and
instruction #6 does. Since execution of instruction #6 (P3 true) implies execution of
instruction #4 (P3 implies P1), the WAW never happens.

#1 (pl) cnp.eq.unc p2,p3=rl,r2;;

#2 (p2) nov rl=r10

#3 nov r2=r1l1l

#4 (pl) br.cond.dpnt.few L

#5 nov rl=r12

#6 (p3) nov r2=r13

To avoid false reporting of WAW errorson R1 and R2, insert the“ i npl y” form of the
. pred. r el annotation:

21

(pl) cnp.eq.unc p2,p3=rl,r2;;

.pred.rel “inmply”, p2,pl ; if p2is true, plis true
.pred.rel “inmply”, p3, pl ; sane as above, with p3
(p2) nov ri1=r10

mov r2=rll

(pl) br.cond.dpnt.few L

mov rl=r12

(p3) nov r2=r13

Safe Across Calls

The annotation .pred.safe_across_calls allows predicate relations to be retained, even
after callsto other procedures. Use this annotation to specify which predicates should
have their relations preserved. The scope of the annotation is within the current procedure
or module.

Y ou can specify several individual predicates and arange of predicates, all in the one
statement.

Format:
.pred. safe_across_calls pl, p2,
where P1, P2, etc. can represent specific predicate registers or ranges of registers.

In the following example, if the .pred.safe_across_calls annotation is not included,
IAS reports a dependency violation between two last instructions, as procedure foo may

change the predicate values.
.pred. safe_across_calls p2-p6, pl0, pll
.pred.rel “nutex“, p3, p4
br.call bil=foo
(p3) nov r5=r32
(p4) add r5=8, r32
To clear the predicate relations defined by the annotation .pred.safe_across_calls, use
asfollows:
.pred.safe_across_calls "clear”

Indirect Access to Register File

The existence of dependency violations may depend on general register values; for
example, when accessing register filesindirectly. In the following example, two different
registers are accessed indirectly. IAS does not have information about the values of the

index registers, so it reportsa WAW error on pmd.
mov r1=2

nmov r2=4;;

mov pnd[rl]=rll

mov pnd[r2]=r12

To resolve this, use the .reg.val annotation to inform IAS that the two writes to pmd

access different registers:

nmov rl=2

nmov r2=4;;
.reg.val rl1,2

mov pnd[rl]=rll
.reg.val r2,4

nmov pnd[r2]=r12

22

st8.spill and1d8.fill inthe Same Instruction Group

Theingruction st 8. spi | | writesto a specific bit in the UNAT application register,
according to the accessed address in memory. Theinstruction| d8. fi |l | readsa
specific bit of the UNAT application register, according to the accessed address in

memory. For more details see the Intel® Itanium(TM) Architecture Software Developer’s
Manual.

IAS cannot know the address of the accessed memory, so where no annotations are
provided, it reports the following dependency violations:

* WAW for every pair of st8.5pill instructions

* RAW for every |d8.fill instruction that appears after st8.spill in the same instruction
group
In the following code, one WAW and two RAW dependency violations are reported,
although the code assures that the accessed UNAT bits are different:
add r2=r1,8
add r3=r1, 16; ;
st8.spill [rl]=rl1
st8.spill [r2]=rl1
1 d8.fill rl2=[r3]
To avoid this false report, use a.mem.offset annotation beforeeach st 8. spi | | and
| d8. fill instruction. The annotation must state the memory address location relative
to some local arbitrary memory region, such as the current stack:
LOCAL_STACK | NDEX=0
add r2=8,r1
add r 3= 16 ri;;
.mem of fset 0, LOCAL_STACK | NDEX
st 8. spill [rl]—rll
.mem of f set 8, LOCAL_STACK | NDEX
.st8.spill [r2]=rl1
.mem of f set 16, LOCAL_STACK | NDEX
d8.fill r12=[r3]

For further explanation of the. mnem of f set annotation, see the Intel® Itanium(TM)
Architecture Assembly Language Reference Guide.

To understand how IAS performs predicate analysis, see Predicate Analysis.

23

Features

This section describes the following Intel® Itanium(TM) Assembler (1AS) features:

® Assembly Language Featuresin brief, which are fully defined in the Intel®
[tanium(TM) Architecture Assembly Language Reference Guide

® Complementary Features specific to the Intel© Itanium architecture assembly
tool.

Assembly Language Features

IAS supports these Itanium(TM) architecture assembly language specification features:
Instruction Set

* Bundling

® Instruction Groups

e DataAllocation

* Assembly Language Directives

* 64-bit Address Space

e Alignment

* Assignment Statements

* Aliasing

* Arithmetic Expression Handling
The following sections provide a short description of these features. See the Intel®

[tanium™ Architecture Assembly Language Reference Guide for the full explanation of
these features.

Instruction Set

IAS supports the full Itanium(TM) architecture instruction set, defined in the Intel®
[tanium(TM) Architecture Software Developer’s Manual.

Bundling

[tanium(TM) processors execute instructionsin bundles. A bundle contains up to three
instructions, and an associated template. The template defines which type of execution
unit processes each instruction in the bundle.

|AS enables several levels of bundle definition:

® Explicit bundling and template definition. Y ou define the bundle boundaries and
the bundle templ ate.

® Explicit bundling without template definition. Y ou define the bundle boundaries;
IAS chooses the best fitting bundle template.

24

® Implicit bundling. IAS chooses bundle boundaries and the bundle template by
selecting the optimal code size arrangements.
At all the bundle definition levels |AS inserts required NOPs.

The bundling feature is fully defined in the Intel® Itanium(TM) Architecture Assembly
Language Reference Guide.

Instruction Groups

Itanium(TM) processors execute several instructionsin parallel. Instructions that are
allowed to execute in parallel are organized in instruction groups. An instruction group is
a set of consecutive instructions that should have no interdependencies. The instruction
group isterminated by astop (; ;). IAS supports explicit stops as defined in the Intel®
[tanium(TM) Architecture Assembly Language Reference Guide.

IAS checks for data dependencies in instruction groups. An example of a data

dependency is awrite instruction following aread instruction to the same register. For
more details on dependency violations, see Dependency Violations and Assembly Modes.

Data Allocation

IAS enables allocating and initializing space in memory. |AS supports these data types:

® integers 1, 2, 4, or 8 byteslong

® floating-point numbers % 8 10 0r 16 bytesiong

® rings up to 1024 bitslong

Data allocation is fully defined in the Intel® Itanium(TM) Architecture Assembly
Language Reference Guide.

Assembly Language Directives

IAS supports al Itanium architecture assembly language directives except local label
directives, which are described in the Intel® Itanium(TM) Architecture Assembly
Language Reference Guide. The supported directives include the following operations or
information:

® section control

® symbol control

® fileinclusion

® bundle template selection
® debug information

® unwind information

25

64-bit Address Space

I|AS supports 64-bit address space.
When using the - i | p32 command-line option (thisisthe default for COFF32 output
file format), symbolic addresses are limited to 32-bit allocation (dat a4). IAS displaysan
error message when you attempt to use relocatable expressions at 64-bit allocations

(dat a8).

Thisfeatureisfully defined in the Intel® Itanium(TM) Architecture Assembly Language
Reference Guide.

Alignment

By default, IAS aligns bundles on 16-byte boundaries, and data elements according to
their size.

IAS aligns each section according to the largest alignment request in the section.
Bundles, data elements, or an . al i gn directive create alignment requests.

The object file format limits section alignment. COFF32 object file format limits section
alignment boundaries to 8 KB. The actual limitation depends on the linker alignment
policy. See the Microsoft* Developer Sudio, Visual C++* User's Guide, and LINK
Reference for more information on the linker.

To disable automatic alignment in data allocation statements, add a. ua completer to
the data allocation statement. For example:

dat a8. ua 0x855

Alignment isfully defined in the Intel® Itanium(TM) Architecture Assembly Language
Reference Guide.

Assignment Statements

Assignment statements enable the programmer to define a symbol by assigning it avalue.
This value may be areference to another symbol, register name, or expression. See the
Intel® Itanium(TM) Architecture Assembly Language Reference Guide for more
information.

Aliasing

IAS supports aliasing of symbol names and section names. Aliasing isimplemented as
follows:

symbol names Aliased by an .al i as directive. The alias name appearsin the
symbol table of the output file.

section names Aliased by a. secal i as directive. The alias name appearsin the
symbol table of the output file. See the .secalias Directive section
for more information.
Aliasing isfully defined in the Intel® Itanium(TM) Architecture Assembly Language
Reference Guide.

26

Arithmentic Expression Handling

IAS supports the use of arithmetic expressions for constants and addresses, using
standard arithmetic notation. Arithmetic expressions can include symbols, numeric
constants, and operators.

|AS supports expressions that access linker tables during run-time, through the use of
several link-relocation operators. See the Intel® Itanium(TM) Architecture Assembly
Language Reference Guide for more information on link-rel ocation operators.

Input file constants are internally represented as signed 128-bit numbers. IAS makes al
integer calculations with 128-bit precision, and floating point calculations (real numbers)
in extended precision (I ong doubl e).

Complementary Features

IAS has several additional features not documented in the Intel® Itanium(TM)
Architecture Assembly Language Reference Guide:

*]A-32jmpe Instruction

* instenc Pseudo-instruction

® String Equation

* .secalias Directive

* Linelnformation for Debugging Tools
* #line Support

* Predefined Symbols

* Virtua Registers Allocation

* Unwind Information Generation

27

IA-32 | npe Instruction

IAS supports |A-32 to Itanium(TM) architecture transition instructions (jmpe) from
within Itanium architecture assembly language files. When you assemble an Itanium
architecture file with ajmpe instruction, 1AS creates an | A-32 jmpe instruction, enabling
the transition from 1A-32 code to Itanium architecture code.

The following directives are available:
j mpe. next Jumps to the next 16-byte aligned address.

j npe. abs addr ess Jumps to the specified address, as a number
or as arelocatable expression.

j mpe. | A-reg32 Takes an indirect jump to the address
specified in the |A-32 register. For example:
j npe. eax.

I nst enc Pseudo-instruction

This pseudo-instruction enables you to enter a 41-bit immediate number to adot ina
bundle. Thisimmediate number may be recognized by the Itanium(TM) processor as an
instruction. However, IAS does not check that the immediate number correspondsto a
valid Itanium architecture instruction.

This pseudo-ingtruction is useful when you want to create executable code containing
instructions that your current assembler version may consider illegal.

Syntax

i nstenc. conpl eter i Mmul

where:

conpl et er Defines the role of the instruction in the bundle.
These are thisinstruction’s compl eters:
aALU instruction
m memory instruction
| integer instruction
b branch instruction
f floating-point instruction

i mdl Is the immediate number corresponding to an

[tanium instruction.

28

Example

This example inserts a floating-point instruction into the bundle.

add rl1 =r2, r3
i nstenc.f Ox1F423C02DA9

}
String Equation

The equation statement (==) that equates a symbol to avalue or aregister, can aso
equate a symbol to a string. For example:

save file_nane == @il enane
or, . .
source file == "ny file.s"

Y ou cannot forward-reference a string equation statement.
. secal i as Directive

The. secal i as directive defines an alias for a section name. . secal i as doesfor
section nameswhat . al i as doesfor symbol names. See Aliasing section for more
information.

Within the input file you reference the section by the section name. In the output file the
section isreferenced with its alias. Typical use of this directiveisto identify a section
with aname that isnot alegal assembly identifier.

Note

Y ou must define the section before you use .secaliasto dliasiit.
Syntax
.secalias section_name, "output-section_name"

where:

section_nane Is the name of the section in the input file.
out pyt - Is the name of the section in the output
section_nane file.

Example

This example shows the use of the. secal i as directive to alias a section name.

.section secl, "ax",
"progbits”
.secal i as secl, "secH++"
. text
. xdat a secl, 5

29

Line Information for Debugging Tools

Debug directives create line information used to create debug information in the object
file. Each line information directive creates a debug record. The debug record points to
the position of the code generated by the instruction following it. Two debug records
cannot point to the same location. Therefore, make sure there are lines of code between
two debug directives.

The line information reference in the debug record refers to the exact instruction dot in
the bundle.

If youusethe-d debug command-line option, IASignoresthe. bf , .I n,and. ef
directives.

Use this general template to produce line information:

.file "source-file-nane"

:b?oc entry [,...]
entry:
. bf entry, source-line-no

; prol ogue code

.l n source-line-no
; assenbly code
.l n source-line-no

; assenbly code

.l n source-line-no

; assenbly code

.ef entry, source-line-no, procedure-size

; epilogue code
.endp [entry]
#l i ne Support

The#l i ne directives define the line number of the next code line, and can a so replace
the file name for the object file. Y ou can explicitly enter the#l| i ne directives, or they
may be inserted by the preprocessor.

The#l i ne definition impacts the diagnostic messages and assembly-level line
information created whenthe-d | i ne option is specified in the command-line option.
See Compilation Model for more information.

30

These arethe #l i ne directives |AS recognizes.

#line |line-no IAS treatsthe next lineasthel i ne- no linein the
current file, regardless of the serial count.

#line line-no "file- IAS treats the next line asthe |l i ne- no linein

nane” "fi | e- nane"; thisfile name replaces the previous

object file name.

This directive may also contain a comma between the
operands.

Predefined Symbols
IAS provides three predefined symbols. Use them in the assembly language file:

@ine isan integer specifying the current line number.
Usage example:
data8 @i ne

@il enane jsastring specifying the current file name.
Usage example:

stringz @il enane

@il epat h isastring specifying the current path and filename.
Usage example:
stringz @il epath

Virtual Registers Allocation

Virtual registers allocation (Vral) allows use of symbolic names instead of register
names. This feature replaces registers or groups of registers with meaningful names,
making code

® simpler to write
® faster to read
® casier to maintain

When VRAL is activated, the assembler analyzes control flow and data flow, buildslife
ranges for each register, and replaces symbolic names with the user-allocated registers.

With one directive, VRAL can assign one name to a group of registers, allowing the
assembler to handle the use of individual registers within the group. VRAL isthen
responsible for ensuring safe reuse of registers.

To alocate symbolic names to registers, use these directives:
® _vreg.allocatable

® _vreg.safe across calls
To declare register variables, use these directives:

® _vreg.var Famly, Xcounter

® _vreg.famly LocalIntFamly, reg range

31

To undefine or redefine variables, use these directives:
® _vreg.undef Xcounter

® _vreg.redef Xcounter
The following annotations are useful when using Vral:

® _br.target annotation
® _entry annotation

® bank switch annotation
This section includes;

® Allocate Registers

® Declare Variables

® Undefine and Redefine Registers
® Branch Target Annotation

® Register Vaue Annotation

® Bank Register Annotation

Allocate Registers

The .vreg.allocatable directive assigns registers for allocation, thereby making them
available for VRAL from this point in this procedure. There can be more than one
allocation directive in each procedure. Values of these registers are not ensured preserved
across calls. Thisdirective has the following syntax:

.vreg. al |l ocatabl e reg_range

where

reg_range can be asingleregister, arange of registers, or both.

In the following example, integer registers 14 through 26, and register 30 are assigned:
.vreg. all ocat abl e r14-26, r305

Alternatively, the .vreg.safe_across_calls directive informs the assembler that the
named registers are preserved across calls. This directive assurs the assembler that
branches to external procedures following this directive do not access or corrupt the

named registers. The directive has the following syntax:
.vreg.safe_across_calls reg _range

where
reg_range isnot restricted to the registers allocated in the .vreg.allocatable directive.

Example:
.vreg.safe _across _calls f16, f18-f21

32

Declare Variables

Use the following syntax to declare register variables:
.vreg.var Family, Xcounter

or

.vreg.var predef, Xcounter

where

Fam |y |'s the user-defined family name of the new
variable.

Xcounter |sanew register variable name.

predef Isone of four predefined families, below.

Each variable belongs to a single register family. Use the following syntax to define
families:
.vreg.fanmly LocalIntFamly, reg_range

where

Local I nt Fam | |sthe user-defined family name.

y

reg_range Can be asingleregister, arange of registers,
or both.

Examples:

.vreg.fanmly MyLocal Fanmily, |o0c0O-1o0c3
.vreg.fanm |y FpUsedRegi sters, f17-f25

A register may belong to more than one family. Each family may contain registers of
only onetype (i nt, fl oat, etc.).

There are four predefined families in the assembler syntax:

@ nt al registersfrom rl to r127

@ | oat al registers from f1 to f127

@ranch 4l registersfrom b0 to b7

@r ed al registersfrom p1 to p63

Undefine and Redefine Registers

VRAL directives can be used only within the procedure, between the directives. pr oc
and . endp. The variables declared by the directives are valid from their declaration till
the end of the procedure or until they are undefined or redefined.

Use the following syntax to undefine variables, so the variable names can be used again
within the procedure:

.vreg. undef Xcount er

Use the following syntax to redefine variables, with no need for undefining. Notice there
is no opportunity to specify a different family:

.vreg. redef Xcounter

An example of the Virtual Registers Allocation (VRAL) directives usage is shown as
follows.

33

Virtual Registers Allocation Example

.proc foo

.vreg.allocatable r19-r21, r27
.vreg.safe_across_calls r20, r21, p5-p6
.vreg.var @red, H.1, L1H, HL2, L2H, HX, XH
.vreg.famly Myd obals, r19-r20

. Vreg. var Myd obal s, High, Lowl, Low2

f 00:

alloc 10cO = 3,1,1,0

| d8 Hi gh = [inO0]

| d8 Lowl = [inl];;

cnp.gt HL1, L1H = Hi gh, Lowl
(L1IH) br. cond. sptk.few LE
sub out0 = High, Lowl

GI: add r22 = 32, rb5;;

END:

cnp.eq HX, XH = Hi gh, r22

(HX) br.call.spnt.nmany rp = bar;;
(XH) st8 [r23] = High
br.ret.sptk.clr b2

LE: 1d8 Low2 = [in2] ;;

cnp.gt HL2, L2H = Hi gh, Low2
(HL2) sub outO0 = High, Low2
(HL2) br.cond.sptk.few GT ;;

mov outO0 = O

br.ébhd.sptk END
.endp foo

Branch Target Annotation

The branch target annotation .br.target precedes an indirect branch and explicitly
provides the assembler with the branch target address for the branch instruction. This
annotation applies only to the branch instruction that immediately follows the annotation.
The .br.target annotation has the following syntax:
.br.target 	 	 	 t arget 1[=prob1] [, target2[=prob2]...]

where:

target Specifiesthe targets of the next indirect branch
instruction. May be one of the following:

prob A real number that indicates the probability that the
associated branch target is taken.

The following examples illustrates a branch target annotation.

Using the Branch Target Annotation 1
.br.target a=0.6, b, @allthrough=0.2, @xternal =
Using the Branch Target Annotation 2

br.target Target 002
(p4) br. cond. spt k. many. bl

where

Tar get 002 Isthe name of alabel in the procedure.
Register Value Annotation

The register value annotation .reg.val informs the assembler of the contents of aregister.
It isused for dependency violations detection.

The annotation has the following syntax:
.reg.val reg, va

where:

reg Represents any integer register from r0 to
r127.

val Is any real number.

Example below illustratesa. r eg. val annotation.

Using the Register Value Annotation
.reg.val r5,3

Bank Register Annotation

By default, the assembler assumes that the register bank at the entry point isbank 1. To
overwrite this default use the .bank directive. It is necessary only for procedures that
contain a bsw instruction, for VRAL.

This annotation makes it clear to the assembler to which bank of registers the instructions
refer.

The .bank switch annotation has the following syntax:
. bank n

where:
n represents O or 1.

Example that follows illustrates a .bank annotation.

Using the Bank Switch Annotation
.proc A /lentry annotation

. bank 0
bsw. 1
bsw. 0
_endp
Unwind Information Generation

IAS applies static analysis to procedure code to automatically generate unwind records.
Use this feature when a procedure as an intermediate element must provide safe
propagation of the stack unwinding process from the called function to the unwind
handler in the caller procedure.

The assembler builds unwind information for al proceduresin thefile, starting from the
procedure’ s first entry point and continuing through to . endp.

When the static analysisis not complete; for example, an indirect branch is

35

unaccompanied by branch target annotation, |AS sends a warning message and then
attempts to simplify the analysis by assuming that the procedure has one prologue and
multiple epilogues. This approach worksin most cases. If thisis not successful, IAS
ISSues an error message.

The unwind generator is based upon the Itanium(TM) architecture software conventions.
See the Software Conventions and Runtime Architecture Guide. Invoke unwind
generation using the - X unwi nd command-line option. When you use thisflag, IAS
ignores all unwind directives and issues a warning.

36

Diagnostic Messages

When |AS encounters suspicious or incorrect input, or fails at some operation, it provides
adiagnostic message. Y ou can receive the diagnostic messages either on the screen, or
send them to afile. See Error Handling for more information.

This section describes the syntax of diagnostic messages, and describes the diagnostic
messages in humeric order.
Note:

IAS displays diagnostic messages according to the order of their corresponding
lines in the source code. This order is not necessarily the order in which they were
detected. Therefore, a diagnostic message of the derivative error may appear
before the diagnostic message from the original error.

This section includes:
® Diagnostic Message Types
® Diagnostic Message Syntax
® Fatal Error Messages
® Error Messages
® Warning Messages

Diagnostic Message Types

IAS sends these types of diagnostic messages.

fatal error messages IAS detected incorrect input that causes termination. |AS does
not produce an object file. Fatal error message numbers have
thisformat: A1xxx.

error messages IAS detected incorrect input. Execution continues. However,
IAS does not produce an object file. Error message numbers
have this format: A2xxx.

warning messages IAS detected legal, but suspicious input. Execution continues
and IAS produces an object file. Warning message numbers
have this format: A3xxx.

Diagnostic Message Syntax

A diagnostic message specifies the location of the error, its type, and a short description
of the error, as described below and shown in the Figure that follows the table.

37

Location The file name and line number information helps to locate the
exact part of the code that needs correction. In some cases the
location shows the detection of a derivative error.

Severity Thisinformation indicates the severity of the error.

Message number |AS message numbers are prefixed by an A. Use the message
number to locate its description.

Message text Thistext provides a one line explanation of the incorrect or
suspicious input.

Figure below shows an example of an error message, and specifies the message elements.

Diagnostic M essage Syntax Example

Massage
Lacation Saverily riLmibear Message texi
| |
— I RN A .
wmy file.asm (3) error A2035: invalid token:

Filamarms Lirse: mrmier

Diagnostic M essage For mat
Thisisthe format of the diagnostic message descriptions:

Message Number Text of the message
Additional description of the message.

Fatal Error Messages

This section describes fatal error messages. A fatal error causesimmediate IAS
termination without creating an object file. These are the fatal error messages IAS may

display:

(T T T T
A1012 cannot open input file file

IAS could not open thisfile. Thisfatal error message is usually due to an incorrect file

name or path.
(T T T T

A1013 cannot open input file file included fromfile (line)

IAS could not open thisfile. Thisfatal error message is usually due to an incorrect file

name or path in the .include directory.
(T T T T

A1014 cannot open registers allocation log file file

IAS could not open the file that lists the results of virtual registers allocations. Check that
the file name with a suffix . vr a isnot in use. Delete any read-only files with the suffix
.Vra.

38

(T
A1015 creation of section section failed: reason

The assembler could not create the section, for the reason specified.
(T T T T

A1018 too nmany errors: nunber

The maximum permitted number of errors was exceeded, so execution terminated. You

can configure the number of permitted errors with the - E n command-line option.
(T T T T

A1020 section stack underfl ow

The .popsection directive operates on an empty stack. See the Intel® Itanium(TM)

Architecture Assembly Language Reference Guide for more information on this directive.
(T T T T

A1021 unable to open file as an error file

IAS could not open the file designated in the command-line as the diagnostics file. A file
with an identical name may be locked by another procedure.

(T T T T
A1022 conmand-line option is mssing an argunment Usage
nmessage

This command-line option is missing an argument. This fatal error message a so provides
the IAS command-line usage message. See Command-line Options for more information
on IAS command-line usage.

(T T T T
A1025 unknown command-1ine option option Usage nessage

IAS does not recognize this command-line option. This fatal error message also provides

the IAS command-line usage message. See Command-line Options for more information.
(T T T T

A1026 option command-line option is inconpatible with sub-

argunment sub-argunment usage nessage

The specified sub-argument is not valid for this command-line option. This fatal error

message al so provides the IAS command-line usage message. See Command-line

Options for more information on the command-line options and their sub-arguments.
(T T T T

A1027 .include directive has illegal placing/formt

This .include directive isincorrect. Thisfatal error message may be caused by entering a
file name operand that is not a string. See the Intel® Itanium(TM) Architecture Assembly
Language Reference Guide for more information on this directive.
An example of code that generates this message:
.include data.s

(T T T T

A1050virtual register allocation failed: not enough
al l ocatabl e registers fromfamly famly

IAS needs more registers than have been allocated by the virtual register alocation
directives.

39

(T T T T
A1099 nesting | evel (nunmber) of .include directive exceeded
for included file file
This. i ncl ude directive is nested beyond the IAS nesting limit. IAS allows up to 20
nested levels.

Error Messages

This section describes the error messages. An error does not terminate |AS execution.
However, it does prevent object file production. These are the error messages |AS may

display:

(T T T T
A2000t oo | ong synbol nane

The symbol name may not be longer than 4096 characters.
(T T T T

A2023 there should be a prol ogue region in the function

This directive requires a prologue code region in the function.
(T T T T

A2024 the personality routine is not defined for the

| anguage specific data

This directive requires defining a personality routine definition before the directive. Add
a.personality directive before the .handlerdata directive. See the Intel® Itanium(TM)
Architecture Assembly Language Reference Guide for more information on these

directives.
(T

A2025 directive ".proc" is not allowed within section
".xdata."

You cannot put a. pr oc directiveinan. xdat a section.

(T T T T
A2026 section switch is not allowed w thin handl erdata
regi on
Y ou cannot switch sectionsin a handlerdata region.

(T T T T

A2027 debug directive points outside the function

An operand of the debug directive points outside the current function.
(T T T T

A2028 directive is allowed only within an explicit bundle

Thisdirectiveislegal only when specified within an explicit bundle. Place this directive

in between the two curly brackets" {" and "} ".
(T T T T

A2029 directive is not allowed within an explicit bundle

Thisdirectiveis not legal when specified within an explicit bundle. Make sure this
directive is not placed between the two curly brackets™ {" and"}".

A2030 mi spl aced or missing '}’

Thereisacurly bracket mismatch. Check preceding bundle’s curly bracket structure.

(T T T T
A2031 Uncl osed parenthesis at start-of-statenent

This statement starts with an open parenthesistoken " (" . However, the close parenthesis

") " ismissing. This statement may have an unclosed qualifying predicate.
(T T T T

A2032 Unexpected el ement instead of predicate register
Something other than a predicate register is specified in the location reserved for the

predicate register.

An example of correct usage:

(p62) add r2 =r3, r6

In this example P62 is the predicate register.

An example of code that generates this error message:
(p64) add r2 =r3, r6

The predicate registers range is PO - P63.

(T T T T
A2033 Unexpected el enent instead of tag
Something other than atag is specified in the location reserved for tags.
An example of correct usage:
.save pr, r3, T
[T:] mov r3=pr
(T T T T
A2034 Unexpected token at end-of-statenment: token
The statement ends with an unexpected token. Delete or change the token.
An example of code that generates this error message:
add ri1=r2,r3,

(T
A2035 i nval id token: token
Thistoken isinvalid.

An example of code that generates this error message:
add r1=r2,r3!

(T T T T
A2036 illegal usage of reserved register: register
Thisregister isareserved register. Use adifferent register.

An example of code that generates this error message:
nmov r5=ar 8
(T T T T

A2037 Unexpected token at start-of-statenent: token

Thistoken is not valid at the start of the statement. Delete or move the token.

An example of code that generates this error message:
Jadd rl=r2,r3

41

This error message may also be the result of a misspelled mnemonic. An example of a
misspelled mnemonic that generates this error message:
br.cal b5=L
L:
(T T T T
A2038 synbol / section already aliased as nane

This symbol or section cannot be aliased at this stage, since it isalready aliased as

something else.
(T T T T

A2039 | abel already defined: |abel

Thislabel cannot be defined at this stage, since it is aready defined elsewhere. Use anew
label for this definition.

A2040 Unexpect ed t oken token
The specified token is not expected in this location.

(T T T T
A2042 synbol synbol for definition type is already defined
This symbol is already defined elsewhere. Use a new name for this definition.
An example of code that generates this error message:
L:
L=8
(T T T T
A2047 unexpected character character in string hexa-escape-
sequence
The hexa-escape sequence contains an unexpected character. Hexa-escape sequences can
contain digits 0-9 and/or letters A-F.

Examples of correct hexa-escape sequences are: \ xa, or \ xD9.
(T T T T

A2048 il |l egal bundle brace in automatic node

IAS encountered a curly bracket ({) or (}) while in automatic assembly mode. Automatic
mode was specified with the . aut o directive.

(T T T T
A2049 rel ocat abl e expressi ons based on synbols synbol and
synbol fromdifferent sections cannot be subtracted

These relocatable expressions are from different sections. To subtract two relocatable
expressions, they must originate in the same section.

(T T T T
A2050 cannot subtract rel ocatabl e expressions based on an
external or conmon synbol

To subtract two rel ocatable expressions, they must be based on symbols defined in the
same section. One or both of these rel ocatable expressionsis probably based on an
external or common symbol.

42

(T T T T
A2051 wrong operand parenthesis structure
The operand parenthesis structure is incorrect.

An example of code that generates this error message: nop ((5+3)
(T T T T

A2052 wrong operand bracket '[‘’]’ structure
The operand bracket structure isincorrect.

An example of code that generates this error message:
1d8 r6 = [r4]]

(T T T T
A2055 il | egal argunent [argument-type] for unary-operator
operator, or m splaced/ m ssing operator
This argument-type is not legal for the specified unary operator.
An example of code that generates this error message:
and r3=r2, +r5
(T T T T
A2056 m ssi ng argunents for binary-operator: operator
This binary-operator is missing arguments.
An example of code that generates this error message:

mov rr[] =r6
(T T T T

A2057 illegal argument-pair [left: argunent right: argunent]
for binary-operator operator, or msplaced/ m ssing operator

These arguments cannot operate together. A typical mistake causing this error message is
the use of abinary operator with at least one operand that is not valid for this operator.

An example of code that generatesthiserror message: or r4 = dbr[f4], r6

(T T T T
A2061 a sequence of unary-operator operator and elenent is
i1l egal
This unary-operator cannot follow the specified element. An example of code that
generatesthiserror message: add r1 = ~, r2

(T T T T
A2063 a sequence of binary-operator operator and operands
operandl and operand2 is ill egal

This binary-operator cannot follow the specified elements.

There may be amisplaced operator, for example: or r3 = 4 5+, r6 instead of the
intended: or r3 = 445, r6

(T T T T
A2065 wrong operand synt ax
The operand syntax of this code line isincorrect.

In some cases, you may receive this error message when the cause isillegal operand
combination. See error messages A2069 and A2070 for more information.

(T T T T
A2066 m ssing operator [possibly intended binary +/- taken
as unary]
An operator ismissing. There may be a misplaced operator, for example: 2*-3 5
instead of the intended: 2* 3- 5
Another possibility is amissing comma between operands, for example:
add r1 = r2 r3instead of theintended code: add r1 = r2, r3.
(T T T T

A2067 incorrect tag usage: tag [m ght need to use | abel
i nst ead]

Thistag isincorrect. Try replacing the tag with alabel.

A2068 val ue of operand operand nunber for elenent is not
avai | abl e when needed
This operand value is not available at the stage when it is needed. IAS cannot make
forward references of thiskind.
An example of code that generates this error message:
.skip L1-L2

L1: data8 1

L2:

(T T T T

A2069 il | egal operand conbination for el enent
Thereisamismatch between the mnemonic and the operands of thisinstruction. Several
causes for this error message are: a missing operand, an incorrect operand type, aninvalid

register name that is interpreted as a symbol, or an incorrect choice of mnemonic.
(T T T T

A2070 il | egal operand operand for el enent

This operand is not suitable for the specified element.
(T T T T

A2072 invalid section attribute: attribute

This section attribute is not valid. Section attributes depend on the Object Module Format
(OMF). Severa valid attributes are: a, w, X and s.

(T T T T
A2073 nore than one condat section flag defined: flag

A comdat section can have only one comdat-flag defined. These are some of the possible

flag definitions. D, S, E or Y. The flags are case-sensitive.
(T T T T

A2074 condat flag is only applicable for condat section

This comdat flag is defined for a non-comdat section.
(T T T T

A2075 condat section flag not defined

A comdat section must have one comdat-flag defined. These are some of the possible flag
definitions. D, S, E or Y. The flags are case-sensitive.

A2076 condat section section associative synbol is not
defi ned

The comdat section must have at |east one |abel.
(T

A2077 invalid section type: type

This section type is not valid. These are the possible section types. pr ogbi t s,
nobi t s, condat and not e.
(T T T T

A2078 absol ute sections section [address to address] and
section [starting at address] overlap

Thereis an overlap between the two specified absolute sections.
(T T T T

A2079 absol ute section section [starting at address] exceeds
the 64-bit limt by val ue

This absolute section exceeds the 64-bit address space limit. The specified value indicates

how far the limit is exceeded.
(T

A2080 rel ocat abl e expression for elenment requires -p32 or -M
i1 p32 command-1ine options
This relocatable expression conflicts with the current compilation model command-line

option. See Compilation Model for more information.
(T T T T

A2081 nobits section section cannot be witten to

Thereisan attempt to write to thisnobi t s section. Y ou cannot writeto nobi t s

sections. To correct this, do one of the following: delete the datain the nobi t s section,

change the section type to pr ogbi t s, or replace the datawith a. ski p directive.
(T T T T

A2082 nobits section section contains data

Thenobi t s sections cannot contain data. To correct this, do one of the following:
delete the datain the nobi t s section, change the section type to pr ogbi t s, or replace
the datawith a. ski p directive.

(T T T T
A2083 i nt eger constant token does not fit in nunber bits:
t oken

Thisinput number token contains more bits than permitted in an integer constant.
(T T T T

A2084 i nteger nunber does not fit in nunber bits: nunber

This number istoo big for thisinstruction. This number may be the result of an internal

calculation.
(T

A2086 al i gnment request is too big: alignnent
Alignment requests are limited to 232-1.

(T T T T
A2087 al i gnment request is not a power of 2: alignnent

An alignment request must be a power of 2.
(T T T T

A2088 synbol synbol is undefined

This symbol does not appear in the object file symbol table. A global or weak symbol
must be either defined or declared. A local symbol must be defined.

(T T T T
A2089 il | egal gl obal declaration of assigned symbol: synbol

A declared symbol that appears in the object file symbol table cannot be assigned. Y ou
can use an equate (==) statement instead.

An example of code that generates this error message:

B =28
.gl obal B
(T T T T

A2090 assi gned/ equat ed synbol synbol cannot be used in
st at enent

The use of this symbol in this statement conflicts with the symbol assignment or
equation.

An example of code that generates this error message:

A==1L
L:
.weak A =S
S:
(T

A2091 synbol synbol is undefined
The symbol is not defined.

(T T T T
A2092 synbol size of synbol exceeds 32-bit word size

The size of the common symbol exceeds the 64-bit limit.
(T T T T

A2093 synbol synbol is already bound as binding
This symbol’s binding is already declared. Y ou cannot redefine a symbol’s binding.

(T T T T
A2094 synbol size of synbol is already set to size

This symbol’s size is aready declared. Y ou cannot redefine a symbol’s size.
(T T T T

A2095 synbol type of synbol is already set to type
This symbol’s type is aready declared. Y ou cannot redefine a symbol’s type.

(T T T T
A2096 type is an illegal type for synbol synbol

Thistype is not one of the possible symbol types. @ ot ype, @bj ect and
@ unction.

46

(T T T T
A2097 instruction cannot be predicated
Thisinstruction cannot be predicated. See the Glossary for explanation.

(T T T T
A2098 there is no tenplate for this combination of
instructions in a bundle

Y ou must rearrange the instructions so that they fit in templates, or use implicit bundling.
(T T T T

A2100 one and only one operand nust follow an
assi gnnent/ equati on sign

Make sure assignment or equation signs are followed by one operand.
(T T T T

A2101 invalid section nane: section
A section name can be any valid identifier. You may use the .secalias directive to
produce section names in the object file section table.

This error message may be the result of missing attributes and/or flags when defining a

new section.
(T

A2103 synbol synbol is already defined as a section nane

A section name conflicts with a symbol name. Do not choose identical names for a

section and a symbol.
(T T T T

A2104 invalid operand i mmedi ate val ue: val ue
Thisimmediate value is not valid for thisinstruction operand. See the Intel®
[tanium(TM) Architecture Software Developer’s Manual for more information.
An example of code that generates this error message:
fetchadd4.acq r3 = [r4], 7
(T T T T
A2105t hi s rel ocat abl e expression does not fit in nunber bits

Thisrelocatable expression istoo long for thisinstruction. See the Intel® Itanium(TM)
Architecture Software Developer’s Manual for more information.

(T T T T
A2107 requested register stack frame size size exceeds
register stack limt limt

The requested register stack frame size islarger than 96. The register stack frame sizeis

the sum of input, local and output registers.
(T T T T

A2108 i nput stack register cannot exceed i nxx

The requested input register is not within the current input register frame xx. The register

frames are defined in apreviousal | oc instructionor . r egi st er directive.
(T T T T

A2109 | ocal stack register cannot exceed | ocxx

The requested local register is not within the current local register frame xx. The register
frames are defined in apreviousal | oc instructionor . r egi st er directive.

47

(T T T T
A2110 out put stack regi ster cannot exceed out xx

The requested output register is not within the current output register frame xx. The

register frames are defined in apreviousal | oc instructionor . r egi st er directive.
(T T T T

A2111 The requested nunber of rotating-registers nunber is

not a multiple of 8

The number of rotating registers must be a multiple of 8.
(T T T T

A2112 The requested nunber of rotating-registers nunber is
| arger than the register stack frame size nunber
The number of rotating registers cannot exceed the total register stack frame. The register

stack frame is the sum of input, local and output registers.
(T T T T

A2113 Loop dependency is detected in equate expression for
synbol synbol

The specified symbol’ s equation expression has aloop dependency. Check for a
backward or recursive reference.

An example of code that generates this error message as a result of a backward reference:
X==
y::

(T T T T
A2114 invalid operand type: synbol

This operand type is not valid for this statement.
(T T T T

A2115 stop (;;) for enpty instruction group
This stop creates an instruction group without instructions. Delete the stop.
An example of code that generates this error message:

,édd ri=r2,r3

(T T T T
A2116 bundl e content contradicts tenplate request

The bundle contents require a different template. Choose a different template, or omit the
template directive. An example of code that generates this error message:

-
.mi
nop. m’ 0’
nop.f 2
nop.i 1
}

A2117 sane register type register [register] cannot be used
for both destinations

Thisinstruction cannot write to the same two destinations.

A2118 cannot use the sane registers for base and destination
in the post-increment formformof the | oad instruction
A post-increment load instruction requires different registers for the base and destination.
An example of code that generates this error message:
ld8 r9 =[r9], r4
(T T T T
A2121 alias nanme nane[nunber] is not defined in .rotX
directive
Define the rotating registersin aprevious. rotr, . rot f, or. r ot p instruction.
(T T T T
A2122 constant integer string does not conformto
style/radi x style
The format of thisinteger string does not conform to the current style, defined by a
previous. r adi x directive.
(T T T T
A2124 previous procedure is not yet ended

A new procedure cannot start before the current procedure ends. Usethe . endp directive

to end the current procedure.
(T T T T

A2126 there is an open procedure in section: section

Thereis an open procedure in this section. Use the . endp directive to end the procedure.
(T T T T

A2128 |ine entry is valid only in type section

The current section type does not accept debug information directives.
(T T T T
A2129 of fset operand for el enent nust be greater or equal to
current |ocation counter
This offset operand must specify an address higher than the current location.
An example of code that generates this error message:
L:
.skip 5
.org L
(T T T T
A2130 sonewhere, synbol synbol is equated to an inconpatible
type
This symbol is equated to an incompatible symbol type. IAS cannot determine the exact
location of the equation, only the fact that the equation isinvalid.
This error message may also be the result of anillegal cyclic definition. An example of
code that generates this error message:
B==1r5
.gl obal B

49

(T T T T
A2131 equation of synbol synbol is based on undefined synbol
synbol

IAS cannot resolve this equation since one of the symbols on the right hand side is not
declared.

(T T T T

A2132 il |l egal register val ue nunber

The register number isinvalid. The valid register numbers depend on the register type.
(T T T T

A2133 reference synbol synbol is not defined in the current
section

This symbol must be defined in the current section.
(T T T T

A2134 el enent is supported for COFF32 object file formt
only
This element is not supported in file formats other than COFF32.

(T T T T
A2135 there is no open debug function
The. ef and. | n directives require opening a debug function, using the . bf directive.
See Intel® Itanium(TM) Architecture Assembly Language Reference Guide for more
information on this directive.

(T T T T
A2136 symbol symbol does not match the current debug function

A line entry must reference the current procedure symbol.
(T T T T

A2137 previous debug function is not yet ended

The current attempt to open a debug function with a. bf directive is unsuccessful
because the previous . bf directiveisstill active. Usethe. ef directiveto end the

previous debug function.
(T T T T

A2138 two debug directives pointing to the same instruction

A . | n directive pointsto the nearest following instruction. An instruction cannot be
preceded by more than one . | n directive.

(T T T T
A2139 there is an open debug function in section section

This section contains an open . bf directive. Usethe. ef directive to end the previous
debug function.

(T
A2140 source file is not defined

To use debug information directives, a source file must be defined. Usethe . fil e
directive to define a sourcefile.

50

A2141 unwi nd directive cannot be placed in the | ocation

This unwind directive cannot be placed in the specified location. See the Intel®
[tanium(TM) Architecture Assembly Language Reference Guide for more information on
this directive.

A2142 unwi nd directive directive is not within a function

This unwind directive is not within a procedure. Use the . pr oc directive to open a

procedure.
(T T T T

A2143 tag operand tag in the unwind directive is not defined
within the current region

This specified unwind directive operand tag refers to an instruction outside the current
unwind region (prologue or body regions).

(T T T T
A2144 unwi nd directive points outside the current region

This unwind directive refersto an instruction outside the current unwind region (prologue
or body regions).

(T T T T
A2145 the first unwi nd directive nust point to the procedure
procedure entry point

Thereisan ingtruction between the first unwind directive and the procedure entry point.
Delete or move thisinstruction, so that the first unwind directive points to this
procedure’s entry point address.
An example of code that generates this error message:
.proc foo

. prol ogue 0Ox1, r1l

nop O

foo::

.endp
To correct the code, write the .prologue directive immediately before the foo:: entry
point.

(T T T T

A2146 unwi nd directive interrupts unconpl eted set of spill
i nstructions

A set of contiguous spill instructions, defined by the previous .save directive is cut off by
another unwind directive.

(T T T T

A2148 directive directive with no spill is invalid

Y ou cannot define zero as the number of spill arguments in an unwind directive.
(T T T T

A2149 duplicate spill of the sanme register type register is
invalid
An unwind region may contain only one spill area for a specified register type.

51

(T T T T
A2150 unwi nd directive directive is already specified in the
current procedure

Thisdirectiveis alowed only once in a procedure.
(T T T T

A2152 explicit enpty bundle is illegal

An explicit bundle must contain at least one instruction.
(T T T T

A2153 no type registers are allowed within current register
stack frane

Thisregister stack frame has zero registers of the specified type.
(T T T T

A2154 vral directive dirnane is not within a function

Virtual register alocation (Vral) directives are only meaningful when contained in a

procedure.
(T T T T

A2173 both destination fp registers refer to the sane
regi ster bank
The destination registers must specify one odd floating-point register and one even
floating-point register.

(T T T T
A2180 regi ster regi ster dependency violation with |ine

The specified line contains a register dependency. Try to relocate one of the lines such

that this dependency is avoided. Place astop (; ;) between the two dependent elements.
(T T T T

A2181 instruction nmust be position in an instruction group

This error message originates with the IAS dependency violation feature. Place this

instruction according to its requirements; whether first or last in an instruction group.
(T T T T

A2186 statenent elenent is not allowed after statenent
el enent st at enent
This combination of consecutive statement elementsis not allowed.

An example of code that generates this error message: f oo: . radi x C
(T T T T

A2187 alias for synmbol type "synbol nanme" is already defined
The specified symbol nameis aready used as the alias for another symbol.

(T T T T
A2192 synbol nane used in @ptr operator nust be a function

An operator followingan @ prt operand must be afunction.
(T T T T

A2194 the directive: directive is not supported in this

configuration

The specified directive is not supported when running IAS with the current command-
line options. See Command-line Options for more information.

52

(T
A2197 Radi x stack underfl ow

Theradix stack isempty. A pop operation on an empty stack is not possible.
(T T T T

A2198 operand no. nunber: relocation’s addend doesn’'t fit in

size bits

The specified relocation addend is too large. Make sure the addend is not larger than the
specified size.

A2199 privileged instruction instruction rejected

The current 1A S setting specifies that privileged instructions be rejected. Thisinstruction
is privileged, and therefore rejected.
(T T T T
A2200 | i ne group size value exceeds 32 bits word size or
| ess than actual size

The third parameter of the . EF directive (the code size) isillegal.
(T T T T

A2201 d obal | abel cannot begin wth dot

A global label cannot begin with adot . " character. Y ou can correct this problem by
ensuring alabel isindicated, changing the label, or replacing the global definition with a

symbol name definition.
(T T T T

A2202 Di vi sion by zero

The denominator of an expression is zero. The result is undefined.
(T T T T

A2203 invalid register type for regi ster range operand
Registers range operand can be constructed only by integer, float, branch, or predicate
register pair.

(T T T T
A2205 virtual register has al ready been defined

Within a procedure, the directive .. vr eg. var has aready been specified for this
register, without an . vr eg. undef directive.
(T T T T

A2207 inconsi stent request for allocation of even/odd
floating point registers
The floating-point virtual register received contradictory requirements for evenness on
the same life range.
An example of code that generates this error message:
.vreg.var @l oat, vfp

fand vip = f8,f9

(p2) l|dfps vip, f4

[r3] // vfp should be odd

(p2) Idfps vip, f5
for f12 = vfp, f12

[r4] /1 vfp should be even

53

(T T T T
A2208 an anbiguity in register bank setting

Two . bank annotations conflict for some instructions, usually because of a branch
instruction.
(T T T T

A2209 tenporary | abel can not be aliased

Thedirective. al i as should not be written to atemporary label.
(T T T T

A2210 More than one tenplate selection directive for current
bundl e

The current bundle has more than one template assigned. Choose the most suitable, and
delete the rest.

A2211 Tenpl ate selection directive allowed only as first
statenent in explicit bundle

Place the template selection directive right after the curly bracket “{ “ that opens a
bundle.

(T T T T
A2212 Synbol synbol nanme was not defined | ocation
The specified symbol was not defined in this procedure.

A2213 feature has different syntax in COFF32 object file formt

The specified feature uses the syntax for an incorrect file format. See the Intel®
Itanium(TM) Architecture Assembly Language Reference Guide for more information.

A2214 The right-hand expression of the assignnent contains

forward reference

The right-hand expression of the assignment cannot contain a forward reference.
(T T T T

A2215 Somewher e, synbol assignnment synbol is assigned to

expression that contains forward reference to synbol

undefi ned synbol

An assignment symbol may not contain a forward reference to an undefined symbol.
(T T T T

A2216 M ssing the right-hand operand of the assignnent

Theline of code is not complete. Add the right-hand operand of the assignment.
(T T T T

A2217 Synbol synbol nanme was not defined within procedure

The specified symbol name must be defined in the procedure. An example of code that
generates this warning:
. proc A
mov rl=r2
.endp
A

(T T T T
A2219 Invalid usage of an undefined synbol w th addend

An undefined symbol with addend can not be used here. The relocation cannot be

resolved.
(T

A2221 sonewhere, synbol synbol is equated to a val ue/ of f set
of fset out of positive size bit range

A directive puts the specified symbol in a symbol table. This symbol is assigned a value

larger than permitted. Make sure that the assigned value is within the permitted range.
(T T T T

A2222 synbol sym nane is unknown, add alias is anbiguous in
vral node

Using the add alias with an unknown immediate as the second operand, and a virtual
register as the third operand may confuse the assembler and cause allocation failure.

To fix, equate an immediate before the add instruction, or explicitly write adds or addl
instead of add.

In the following example of code that generates this warning, the assembler cannot
determineif Aissmall enough to choose adds. If so, there are no restrictions on Vr 1
alocation. Otherwise, add| ischosen and Vr 1 isrestricted to the range RO - R3.

add r6 = A Wl

A==25

To fix:

adds r6 = A Vrl
or

A==25

add r6 = A W1l

(T T T T
A2223 invalid syntax of Register File operand
The syntax of the register file operand isincorrect.
An example of code that generates this warning:
nov dbr=r5
An example of correct syntax:
nov dbr[r6]=r5
(T T T T

A2225 illegal instruction

Theindicated instruction isillegal in Itanium(TM) architecture syntax.
(T T T T

A2226 il |l egal usage of register in RFP nodel
When the command-line option - M r f p isinvoked, the available set of floating-point

registersis reduced to the range F6 - F11. Attempts to access other floating-point
registers cause thiserror. (ELF64 only).

55

(T T T T
A2227 Associ ative condat section sec_nane nust have an
associ ated section

Y ou must indicate an associated section for a comdat section of type A (associative).
(T T T T

A2228 synbol nane sym nane contains period, not allowed in
t he COFF32 format

The COFF32 format table does not allow symbolsto contain a period.

Warning Messages

Warning messages report legal but suspicious assembly language code. |AS execution
and output file production is not disrupted by warnings. These are the warnings |AS may
display.
A3100 unexpect ed usage of tag tag in el enent
Thistag isused in an unexpected way. This can often be corrected by replacing the tag
with alabel.

(T T T T
A3102synbol is a synbol and al so an alias nane

This name is defined as both a symbol and an alias name. The output file contains two

different symbols with the same name.
(T T T T

A3103 regi ster regi ster dependency violation with |ine
The specified line contains a register dependency violation. Try to relocate one of the
lines such that this dependency is avoided. Place astop (; ;) between the two dependent

elements.
(T

A3105 synbol nane defined in a TLS section can’'t be
referenced this way

The specified symbol name must be referenced as an operand of a secrel operator of an
addl instruction. See the Intel® Itanium(TM) Architecture Assembly Language Reference
Guide for more information.

An example of code that generates this warning:

addl r3 = @prel (sym, r3

An example of acorrect symbol reference:
addl r3 = @ecrel (sym), r3

A3106 synbol synbol is undefined

This symbol does not appear in the object file symbol table. A global or weak symbol
must be either defined or declared. A local symbol must be defined.

(T T T T
A3200 32-bit relocatable expression in el enment

The model address size assumption is 32 bits. This does not correspond to the specified
element.

56

A3201 al i gnnent operand of synbol synbol is relation than the
si ze operand

The COFF32 output file format has no symbol aignment field. At link-time, the linker
assumes the alignment is equal to the size operand, which is different from the requested

alignment.
(T T T T

A3202 alignnment is greater than 64, the section alignnment is
restricted to 64

In COFF32 output file format, the section alignment request cannot exceed 64 bytes.
Some linkers might not align sections on boundaries larger than 64 bytes. The actual

alignment depends on the linker policy.
(T T T T

A3203 synbol synbol aliased to nane does not appear in the

object file synbol table

This symbol is not defined. Thereforethe . al i as directive will have no effect. Y ou can

correct this by defining the symbol usinga. gl obal , .| ocal or. weak directive.
(T T T T

A3204 i nt eger nunber does not fit in nunber bits: nunber

This number istoo big for thisinstruction. This number may be the result of an internal

calculation.
(T

A3205 i nval id operand i mmedi ate val ue: val ue
Thisimmediate value is not valid for thisinstruction operand. See the Intel®
Itanium(TM) Architecture Software Developer’s Manual for more information.
An example of code that generates this error message:
fetchadd4.acq r3 = [r4], 7
(T T T T

A3300 .| conm .comon directive for defined synbol synbol is
i gnor ed
When defining asymbol using an . | conmor a. conmon directive, use arelative
address definition. Y ou can use a specific location for definition of alocal or global
symbol. However, when you combinea. | commor . conmon directive with a specific
location definition, the specific location isignored. An example of specific location
definition:
L:

.size L, 16
An example of relative location definition:
.lcommlL, 16, n

.lcommlL, 4,n

In this example the linker chooses the largest size definition.

57

(T T T T
A3301 .comon directive for synbol synbol overrides the
| ocal common decl arati on
This symbol is defined both as local-common (. | comm) and as common (. conmmon).

The. conmon directive isthe overriding definition.
(T T T T

A3302 size setting for undefined synbol: synbol

This symbol is not defined. Therefore, the . si ze directive will have no effect. You can
correct this by defining the symbol usinga. gl obal , .| ocal or.weak directive.
(T T T T

A3303 dangerous use of a synbolic address [can exceed nunber
bi t s]
This symbolic address may exceed thisinstruction’s limit. There are safer options for
loading symbolic addresses.

* Useanovl! instruction. For example,
nmovl r2 = <address>

* Useanindirect load from a memory table. For example,

add r3 = @prel (synbol), gp
|d8 rd4 = [r3]

A3304 Reference to current |ocation in assignnent directive
may be incorrectly resolved when it appears w thin open
bundl e

When using implicit bundling, the specified assignment directive may provide an
incorrect value when placed in an open bundle.

An example of code that generates this warning:

nop 5

A=%+5

(T T T T

A3305 Bundl e was cl osed to resolve current |ocation
reference

Thiswarning is generated in implicit bundling mode when the “current-location” special

symbol (“$” or “. ") isreferenced in a statement. |AS closes the bundle to resolve the
ambiguity.
An example of code that generates this warning:
L::
nop.i O

.size L, $ - L

To correct the code, put alabel or temporary label immediately before the reference to

the “current-location” special symbol.
(T T T T

A3306 | abel is undefined | abel nane
The label referred to in IAS annotation is undefined. |AS ignores the annotation.

58

(T T T T
A3307 | abel is not defined in the current section | abel nane
Thelabel in IAS annotation is defined in another section. 1AS ignores the annotation.

To correct the code, check for syntax errors, or move the annotation to the section with
the label.

(T T T T
A3308 annotation is ignored

Thistype of directive or operands combination is not supported.
(T T T T

A3309 branch target is specified for non-branch instruction

. br. target must appear before a branch instruction.
(T T T T

A3310 branch target is not specified for branch instruction

. br.target doesnot precede anindirect branch instruction.
(T T T T

A3311 vral directive is ignored. Use -X vral flag

In order to use the virtual register allocation directives, you must specify —X vral in
the command line.

(T T T T
A3312 explicit usage of allocatable register register

Explicit use of thisregister causes |AS to remove it from the set of allocatable registers.
(T T T T

A3313 This predicate relationship is currently ignored

Thedirective. pred. r el cannot be used with this operand combination.
(T T T T

A3315 Code is present in the non-executable section sec_nane

Code in non-executabl e sections does not execute.
(T T T T
A3316 Directive unwind directive is ignored in the unw nd
generati on node
Unwind directives are ignored when using the - X unwi nd command-line option.
(T T T T
A3401 . pl abel directive is obsolete. This directive is
i gnor ed
You cannot usethe .. pl abel directive any longer. An example of code that generates
this warning:
.proc foo
foo: :
. pl abel foo
.endp
To correct the code, declare the function symbol as either
.proc foo

59

or

.type
foo, @unction

A3403 virtual register has never been defined
Y ou may wish to define the virtual register named in . vr eq. undef .

A3410 Unwi nd generator nessage in procedure procedure

The static analysisis not complete; |AS may require additional annotations for an indirect
branch. This warning may also arise when the procedure code is incompatible with the
[tanium(TM) architecture software conventions.

60

Return Values

When the Intel® Itanium(TM) Assembler (IAS) stops executing, it returns a value that
indicates the reason for termination. These are the possible values:

0
2

10

11
12
13
15
20
25

IAS execution is complete.

IAS terminated due to a genera error not covered by any of the other
values.

|AS terminated due to an internal error.

IAS terminated due to afatal error. Thefatal errors are listed in the Fatal
Error Messages section in this appendix.

IAS was unable to open the main input file.

IAS was unable to open one of the filesincluded in the program.
IAS was unable to open arequested file.

IAS reached the upper limit of errors permitted during execution.
IAS was unable to execute, due to incorrect command-line syntax.

IAS terminated due to memory failure.

61

Specifications

This section liststhese IAS specifications:
String length up to 1024 bits
Symbol namelength upto4 KB
Alignment requests upto4 GB

Integer calculation up to 128 hits, signed
Include file depth system dependent
Line length system dependent

62

Predicate Analysis

This section describes how IAS performs predicate analysis.

See Dependency Violations and Assembly Modes for a description of dependency
violations and assembly modes.

This section includes:

* Mutex Relation

* Imply Relation

* Predicate Relation Scope

» Predicate Relation Scope Exceptions
* Analyssof Combinations

Mutex Relation

The mutually exclusive (mutex) relation indicates that not more than one predicatein a
group of predicates can be true simultaneoudly.

In the following example, if predicatespl, p2 and p3 are mutex, there is no write-after-
write dependency violation because only one of these instructions actually executes.

(pl) nov rd4 =2
(p2) nov r4 =5
(p3) nov rd4 =7

IAS creates mutex relations in the following cases:

non-predicated regular compare instructions

In the following code, the predicates p1 and p2 are mutex only when the qualifying
predicate (gp) is pO.

(qp) cnp.eq pl, p2 =7r1, r2

Regular compare instructions include all the instructions that write to a pair of
predicates.

cnp,fcnp,tbit,andt nat . Parallel compare and compare unconditional
instructions do not belong in this category.

unconditional compare instructions

In the following code, the predicates p1 and p2 are mutex (regardless of the
qualifying predicate value).

(p3) cnp.eq.unc pl, p2 =rl, r2

relation definition “mutex"

In the following code, the user annotation pred.rel sets mutex relations between
predicatespl, p2, and p3:

.pred.rel “nmutex“, pl, p2, p3

63

Imply Relation

Theimply relation isarelation defined between a pair of predicates. It means that the
state of one predicate implies the state of another register.

For example, predicate p1 implies another predicate p2. When pl istrue, p2 isaways
true. When pl isfalse, p2 can be either true or false. See the following code:
(pl) nov r4 =2
(p2) br.cond L
mv r4 =7
If p1impliesp2 then there is no write-after-write dependency violation because if pl is
true then p2 isaso true and the branch istaken. If p1 isfalse then the first instruction is
not executed and the third instruction executes safely.
In the following example, if p1 impliesp2 then there is no write-after-write dependency
violation.
mv r4 = 2
(p2) br.cond L
(pl) nov rd4 =7
IAS creates imply relationsin following cases:
unconditional compare instructions
In the following example, pl implies p3 and p2 implies p3 because when p3 isfalse
then both p1 and p2 are set to false. In other words, p1 or p2 can be true only when
p3 isasotrue.
(p3) cnp.eq.unc pl, p2 =rl, r2
relation definition “imply*
In the following code, the user annotation pred.rel setsimply relations. The predicate
pl impliespredicate p2.
.pred.rel “inmply“, pl, p2

Predicate Relation Scope

IAS enters predicate relations into a database that is used to identify false reports. IAS
deletes predicate relations from this database in the following situations:
* writeto predicate register
Predicate relations are deleted from the database when one of the following
instructions writes to the predicate related to these relations:
- compare instruction
- move to pr ingtruction if the mask designates the predicate
- moveto pr - r ot ingtruction (write to the rotating predicates only). If biti in
the mask is zero, delete al the imply relations where Pi is the target of the
implies. If biti inthe mask isone, delete all the imply relations where Pi isthe
source of the implies, and all the mutex relations related to Pi.

- modul o-scheduling loop branch instructions such as br . ct op, br . cl oop,
br.wt op, and br . wt op writeto all the rotating predicates
® user annotation
In the following example, the user annotation pr ed. r el deletes predicate
relations. All predicate relations regarding predicates p1, p2, and p3 are deleted
from the database.
.pred.rel “clear”, pl, p2, p3

Predicate Relation Scope Exceptions

There are some exceptions to the scope rules:

paralel compare instructions

The parallel compare instruction preserves and strengthens predicate relations when
there are severa coexisting conditions.

Theingtruction cnp. r el . or does not delete imply relations when the destination
register isthe target of the imply relation. In the following example, the imply
relationis generated in the first compare instruction, such that p1 implies p3 and
p2 impliesp3. Theinstructioncnp. eq. or does not delete these relations, p3 is
the destination register.

(p3) cnp.eq pl,p2 =11, r2 ; pl inplies p3

cnp.eq.or p3,p4 =715, r6

(pl) nov rd4 =2

(p3) br.cond.sptk L ; Inmply still exists

nv r4 =7 ; No wite-after-wite on r4
The instruction cmp.rel.and does not delete mutex relations and imply relations when
the destination register is the source of the imply relation. The following example
shows theinstruction and parallel compare. The mutex relation is generated in the

user annotation (p1 mutually excludes p2), and the instruction cmp.ne.and does not
delete thisrelation:

.pred.rel “nmutex“, pl, p2

cnp.ne.and p4,pl =r5,r0 ; Mutex still exists

(pl) nov rd4 =2

(p2) nov r4 =5 ; No wite-after-wite on r4
Theingructioncnp. rel . or. andcm pl, p2 = . . . recreatesthe mutex

relations between the same predicates p1 and p2, and doesn’'t erase the imply
relations when p1 isthe source of the imply relation, and doesn’t erase imply
relationswhen p2 isthetarget of theimply relation.

no control flow graph

IAS does not build a control flow graph (CFG); therefore, all known relations are
deleted from the database upon any entry point to a hyperblock, whether alabel or a
branch target. However, the path across conditional branches (fallthrough) is
analyzed according to the scope of the first instruction. In the following example,
IAS finds no dependency violation on register r 4, yet it reports a dependency

65

violation on register r 5 because the execution path can branch to L, in which case
IAS isunsure of the new relation between p3 and p4:

cnp.eq pl, p2 =rl1, r2

cnp.eq p3, p4 =r3, r0

(pl) nov rd4 =2

L:
(p2) nov r4 =5
(p3) nov r5 =1r7

(p4) nov r5 =18

If you know that the predicate relation should hold even under these conditions,
inform the assembler using annotation.

Analysis of Combinations

In some cases, |AS can deduce rel ations based on combinations of known relations:

66

chain of imply relations

If p1 impliesp2 and p2 impliesp3, then p1 implies p3.
combination of imply and mutex relations

If p1 impliesp2 and p2 ismutex with p3, then pl is mutex with p3.
However, in other cases, IAS analysis of complex relationsis limited:
predicated compare instructions

In the following example, IAS can not set p2 and p3 as mutex, because the last two

compare instructions are predicated and relations are created on non-predicated
regular compare instructions:

cnp.eq pl, p4d =rl, r2 ;,

(pl) cnp.ge p2, p3 =r1, r3

(p4) cnp.ge p2, p3 =r1l, r4

condition analysis

IAS does not analyze the conditions of the compare instructions. In the following
example, IASdoesnot set pl, p2, and p3 as mutex:

cmp.eqpl=0,rl

cmp.egp2=1,rl

cmp.eqp3=2,rl

CFG analysis

IAS does not calculate CFG and does not look for relations generated by more than
one path. Thismeansisthat at any entry point, IAS starts from theinitial point

regarding the predicate relations, where the relation between al the predicates are
unknown.

In the following example IAS does not set pl and p2 as mutex after the label.
cnp.eq pl, p2 =r1, r2 ;;
L:

I o N

(pl) nov r4
(p2) nov r4 =
cnp.eq pl, p2 ri, r2 ;,
br.cond.sptk L ;;
An exception to thisrule is the fallthrough case, as explained in “no control flow
graph” and in the following example:
cnp.eq pl,p2 =r1, r2 ;;
(pl) nov rd4 =2
(p3) br.cond.sptk L
(p2) nov r4 =5
In this case, there is no write-after-write dependency violation onr 4. |AS does not
report aviolation because the mutex relation still exists.

67

Glossary
absolute address

dias

application registers

assembler
Assembly language
big-endian

binding

bundle
COFF

data elements

directive

GB
globa symbol
A-32

68

A virtual (not physical) address within the process’ address space
that is computed as an absolute number.

One identifier becomes equivalent to another identifier.

Special purpose registers for various functions. Some of the more
commonly used registers have assembler aliases. For example,
ar66 is used as the Epilogue Counter and is also called ar.ec. See
dias.

A program that trandates Assembly language into machine
language.

A low level symbolic language closely resembling machine-code
language.

A method of storing a number so that the most significant byteis
stored in the first byte addressed.

The process of resolving a symboalic reference in one module by
finding the definition of the symbol in another module, and
substituting the address of the definition in place of the symbolic
reference. The linker binds relocatabl e object modul es together,
and the DLL loader binds executable load modules. When
searching for adefinition, the linker and DLL loader search each
module in a certain order, so that a definition of a symbol in one
modul e has precedence over a definition of the same symbol ina
later module. This order is called the binding order.

128 bits that include three instructions and a template field.
Common Object File Format; an object-module format.

Data elements can be bytes, words, doublewords, or quadwords.
The MMX"* technology packs data elements into newly defined
packed data types: groups of 8 bytes, 4 words, or 2 doublewords,
packed into 64-bit quantities.

An assembly language statement that does not produce
executable code.

Gigabytes.
Symbol visible outside the compilation unit in which it is defined.

Intel Architecture-32; the name for Intel’s 32-bit Instruction Set
Architecture (ISA).

|A-32 system
environment

index register

instruction

instruction group

Instruction Pointer

(IP)

Instruction Set
Architecture

IP
IP-relative addressing

ISA
KB

little-endian

|oad module

MB

nop

The system environment as defined by the Pentium® and
Pentium Pro processors.

Any of these general registers. eax, ebc, ecx, edx, ebp, esp, es,
and edi.

An operation code (opcode) that performs a specific machine
operation.

[tanium(TM) architecture instructions are organized in instruction
groups. Each instruction group contains one or more statically
contiguous instructions that execute in parallel. An instruction
group must contain at least one instruction; there is no upper limit
on the number of instructions in an instruction group.

An instruction group is terminated statically by a stop, and
dynamically by taken branches. Stops are represented by a double
semi-colon (;;). You can explicitly define stops. Stops
immediately follow an instruction, or appear on a separate line.
They can be inserted between two instructions on the same line,
as asemi-colon (;) isused to separate two instructions.

A 64-bit instruction that holds the address of the bundle which
contains the currently executing instruction. The IPis
incremented as instructions are executed and can be set to a new
value with a branch.

The architecture that defines application level resources,
including user-level instructions and user-visible register files.

See instruction pointer.

Code that uses its own address (commonly called the program
counter, or "PC"; in Itanium(TM) architecture thisis also called
the instruction pointer, or |P) as a base register for addressing
other code and data.

See Instruction Set Architecture.
Kilobytes.

A method of storing a number so that the least significant byte is
stored at the lowest addressed byte.

An executable unit produced by the linker, either amain program
or aDLL. A program consists of at least amain program, and
may also require one or more DLL s to satisfy its dependencies.

Megabytes.

A "no operation” instruction isareal instruction for the
processor, where the processor takes no action.

69

OMF

predicate registers
predication

priv.i leged instruction
section

shared symbol

statement

stop

symbol declaration

token

70

Object Module Format. Object modul€e's internal structure and
content. COFF is an example of an OMF.

64 1-bit predicate registers that control the execution of
instructions. The first register, PO, is always treated as 1.

The conditional execution of an instruction used to remove
branches from code.

Portions of object file, such as code or data, bound into one unit.

Symbols that can be exported by or imported to all object files
combined by the dynamic linker.

An Assembly-language program consists of a series of
statements. There are five primary types of Assembly-language
statements:

instruction statements

label statements

data all ocation statements
directive statements

assignment and equate statements

Indicates the end of an instruction group.

The symbol addressis resolved, not necessarily based on the
current module. Declare symbols using a .global or .weak
directive.

A minimal lexical element of Assembly language. A token
consists of a sequence of one or more adjacent characters.

	Intel® Itanium(TM) Assembler User’s Guide
	Table of Contents
	Disclaimer
	1 Overview
	About This Document
	Related Publications
	Notation Conventions

	2 Getting Started
	Environment
	Invoking IAS

	3 Command-line Options
	Information
	File Handling
	Compilation Model
	Error Handling
	UNIX ABI Section
	Advanced Section

	4 Dependency Violations and Assembly Modes
	Assembly Modes
	Automatic Mode
	Explicit Mode
	Behavior of IAS

	Mode Examples
	Explicit Mode
	Automatic Mode
	Initial Default is Automatic Mode

	Serialize and Memory Syncronization Instructions
	Avoiding False Reports
	Predicate Relation Analysis
	Compare Instructions
	Mutex Form of the .pred.rel Annotation
	Implication Form of the .pred.rel Annotation
	Clear Form of the .pred.rel Annotation
	Mutex Relation Not Created with a Simple Compare
	Instructions Separated by a Predicated Branch
	Safe Across Calls
	Indirect Access to Register File
	st8.spill and ld8.fill in the Same Instruction Group

	5 Features
	Assembly Language Features
	Instruction Set
	Bundling
	Instruction Groups
	Data Allocation
	Assembly Language Directives
	64-bit Address Space
	Alignment
	Assignment Statements
	Aliasing
	Arithmentic Expression Handling

	Complementary Features
	IA-32 jmpe Instruction
	instenc Pseudo-instruction
	String Equation
	Line Information for Debugging Tools
	#line Support
	Predefined Symbols
	Virtual Registers Allocation
	Allocate Registers
	Declare Variables
	Undefine and Redefine Registers
	Branch Target Annotation
	Register Value Annotation
	Bank Register Annotation

	Unwind Information Generation

	A Diagnostic Messages
	Diagnostic Message Types
	Diagnostic Message Syntax
	Fatal Error Messages
	Error Messages
	Warning Messages

	B Return Values
	C Specifications
	D Predicate Analysis
	Mutex Relation
	Imply Relation
	Predicate Relation Scope
	Predicate Relation Scope Exceptions
	Analysis of Combinations

	Glossary

