
 1

Table of Contents

ABOUT INTEL(R) C++ COMPILER... 8

Welcome to the Intel® C++ Compiler ...8
What's New in This Release...8
Features and Benefits ..9
Product Web Site and Support ...9
System Requirements..10
FLEXlm* Electronic Licensing ..10
About This Document...11

How to Use This Document ..11
Related Publications ...13

Disclaimer ..14

COMPILER OPTIONS QUICK REFERENCE GUIDES 15

Compiler Options Alphabetical Listing ..15
Compiler Options Quick Reference Guide..15

Compiler Options by Functional Groups...23
Customizing Compilation Process Options...23

Alternate Tools and Locations ... 23
Preprocessing Options .. 23
Controlling Compilation Flow... 24
Controlling Compilation Output.. 24
Debugging Options.. 25
Diagnostics and Messages.. 25

Language Conformance Options ..27
Conformance Options.. 27

Application Performance Optimization Options ..27
Optimization-level Options... 27
Floating-point Arithmetic Precision .. 28
Processor Dispatch Support (IA-32 only)... 29
Interprocedural Optimizations.. 30
Profile-guided Optimizations.. 31
High-level Language Optimizations ... 31
Vectorization Options .. 31

Compiler Options Cross-Reference for Windows* and Linux*33
Compiler Options Cross-reference..33

INVOKING THE INTEL(R) C++ COMPILER.. 38

Invoking the Intel® C++ Compiler...38

 2

Invoking the Compiler from the Command Line..38
Running from the Command Line with make..39
Default Behavior of the Compiler..39
Compiler Input Files ...40
Compilation Phases ...40

CUSTOMIZING COMPILATION ENVIRONMENT ... 42

Customizing the Compilation Environment...42
Environment Variables ...42
Configuration Files ...43
Response Files ..44
Include Files...44

CUSTOMIZING COMPILATION PROCESS.. 45

Customizing Compilation Process Overview ..45
Specifying Alternate Tools and Paths...45
Preprocessing ..47

Preprocessing Overview ...47
Preprocessing Only...47
Searching for Include Files..48
Defining Macros ..49

Compilation and Liking...51
Compilation and Linking Overview..51
Compiler Input and Output Options Summary..52
Monitoring Compiler-generated Code...52
Assembly File Listing Example ...53
Linking ...55

Debugging..55
Debugging Options Summary ...55
Preparing for Debugging ...56
Support for Symbolic Debugging ..56
Parsing for Syntax Only ..56

LANGUAGE CONFORMANCE ... 57

Conformance to the C Standard...57
Conformance to the C++ Standard...59

OPTIMIZATIONS ... 59

Optimization Levels..59
Optimization-level Options ..59

 3

Restricting Optimizations ..60
Floating-point Optimizations...60

Maintaining Floating-point Arithmetic Precision ..60
Processor Dispatch Extensions Support (IA-32 only) ...61

Targeting a Processor and Extensions Support Overview ...61
Targeting a Processor (IA-32 only) ...62
Exclusive Specialized Code (IA-32 only) ..62
Specialized Code with -ax{i|M|K|W}..63
Combining Processor Target and Dispatch Options (IA-32 only) ...64

Interprocedural Optimizations ..65
Interprocedural Optimizations (IPO)..65
Multifile IPO ...66

Multifile IPO Overview ... 66
Compilation with Real Object Files .. 67
Creating a Multifile IPO Executable ... 67
Creating a Multifile IPO Executable Using a Project Makefile.. 68
Creating a Library from IPO Objects.. 69
Analyzing the Effects of Multifile IPO... 69

Inline Expansion of Funtions ...69
Inline Expansion of Library Functions.. 69
Controlling Inline Expansion of User Functions ... 71
Criteria for Inline Function Expansion.. 71

Interprocedural Optimizations with -Qoption...72
Using -Qoptions Specificers .. 72
Using -ip with -Qoption .. 73

Profile-guided Optimizations ..73
Profile-guided Optimizations Overview ...73
Profile-guided Optimizations Methodology ...73
PGO Environment Variables ...74
Basic Profile-guided Optimization Options..74
Using Profile-guided Optimization...75
Function Order List Usage Guidelines ..76
Utilities for Profile-guided Optimization ...78

High-level Language Optimizations (HLO) ...79
HLO Overview...79
Loop Transformations ...79
Loop Unrolling ...80

Parallelization...80
Parallelization with OpenMP*..80
OpenMP* Standard Options..81
OpenMP* Run Time Library Routines...83
Intel Extensions to OpenMP* ..85

Vectorization (IA-32 only) ...85

 4

Vectorization Overview ...85
Loop Structure Coding Background..86
Vectorization Key Programming Guidelines ...86
Data Dependence ...87
Loop Constructs ..88
Loop Exit Conditions ...89
Types of Loops Vectorized..90
Stripmining and Cleanup...91
Statements in the Loop Body ..91
Vectorizable Data References ..92
Vectorization Examples...93
Loop Interchange and Subscripts: Matrix Multiply ..96
For Additional Information ...96

LIBRARIES .. 97

Libraries Overview ...97
Default Libraries...97
Intel® Shared Libraries ..98
Managing Libraries...99

DIAGNOSTICS AND MESSAGES... 100

Diagnostic Overview ..100
Language Diagnostics..100
Suppressing Warning Messages with lint Comments ...101
Suppressing Warning Messages or Enabling Remarks..101
Limiting the Number of Errors Reported ...102
Remark Messages ...102

REFERENCE INFORMATION ... 103

Compiler Limits ..103
Compiler Limits..103

Intel C++ Intrinsics Reference ..104
Overview of the Intrinsics ..104

Types of Intrinsics.. 104
Benefits of Using Intrinsics .. 105
Naming and Usage Syntax.. 108

Intrinsics Implementation Across All IA ...109
Intrinsics For Implementation for All IA .. 109
Integer Arithmetic Related ... 110
Floating-point Related ... 110
String and Block Copy Related.. 113
Miscellaneous Intrinsics... 113

 5

MMX(TM) Technology Intrinsics ...114
Support for MMX(TM) Technology .. 114
The EMMS Instruction: Why You Need It .. 115
EMMS Usage Guidelines... 115
MMX(TM) Technology General Support Intrinsics... 116
MMX(TM) Technology Packed Arithmetic Intrinsics .. 118
MMX(TM) Technology Shift Intrinsics.. 121
MMX(TM) Technology Logical Intrinsics.. 123
MMX(TM) Technology Compare Intrinsics .. 124
MMX(TM) Technology Set Intrinsics.. 125
MMX(TM) Technology Intrinsics on Itanium(TM) Architecture... 129

Streaming SIMD Extensions ...130
Intrinsics Support for Streaming SIMD Extensions .. 130
Floating-point Intrinsics for Streaming SIMD Extensions... 130
Arithmetic Operations for Streaming SIMD Extensions ... 131
Logical Operations for Streaming SIMD Extensions.. 136
Comparisons for Streaming SIMD Extensions... 137
Conversion Operations for Streaming SIMD Extensions ... 147
Miscellaneous Intrinsics Using Streaming SIMD Extensions... 151
Macro Function for Shuffle Using Streaming SIMD Extensions... 154
Macro Functions to Read and Write the Control Registers.. 154
Macro Function for Matrix Transposition ... 156
Summary of Memory and Initialization Using Streaming SIMD Extensions..................................... 157
Load Operations for Streaming SIMD Extensions ... 158
Set Operations for Streaming SIMD Extensions.. 159
Store Operations for Streaming SIMD Extensions... 161
Integer Intrinsics Using Streaming SIMD Extensions .. 162
Cacheability Support Using Streaming SIMD Extensions.. 166
Using Streaming SIMD Extensions on Itanium(TM) Architecture .. 168

Streaming SIMD Extensions 2 ..169
Overview of Streaming SIMD Extensions 2 Intrinsics.. 169
Floating Point Intrinsics.. 170

Floating-point Arithmetic Operations for Streaming SIMD Extensions 2...................................... 170
Logical Operations for Streaming SIMD Extensions 2... 174
Comparison Operations for Streaming SIMD Extensions 2... 175
Conversion Operations for Streaming SIMD Extensions 2 .. 183
Cacheability Support for Streaming SIMD Extensions 2.. 187
Floating-point Memory and Initialization Operations.. 188

Streaming SIMD Extensions 2 Floating-point Memory and Initialization Operations 188
Load Operations for Streaming SIMD Extensions ... 188
Set Operations for Streaming SIMD Extensions 2... 190
Store Operations for Streaming SIMD Extensions 2.. 191

Miscellaneous Operations for Streaming SIMD Extensions 2.. 193
Integer Intrinsics .. 194

Integer Arithmetic Operations for Streaming SIMD Extensions 2 .. 194
Integer Logical Operations for Streaming SIMD Extensions 2... 203
Integer Shift Operations for Streaming SIMD Extensions 2... 204
Integer Comparison Operations for Streaming SIMD Extensions 2... 209

 6

Conversion Operations for Streaming SIMD Extensions 2 .. 212
Macro Function for Shuffle... 212
Cacheability Support Operations for Streaming SIMD Extensions 2 ... 213
Integer Memory and Initialization Operations .. 215

Streaming SIMD Extensions 2 Integer Memory and Initialization .. 215
Load Operations for Streaming SIMD Extensions 2 .. 215
Set Operations for Streaming SIMD Extensions 2... 216
Store Operations for Streaming SIMD Extensions 2.. 221

Miscellaneous Operations for Streaming SIMD Extensions 2.. 222
Intrinsics for Itanium(TM) Instructions ...228

Overview: Intrinsics for Itanium(TM) Instructions... 228
Native Intrinsics for Itanium(TM) Instructions... 228
Lock and Atomic Operation Related Intrinsics ... 239
Operating System Related Intrinsics ... 240

Data Alignment, Memory Allocation Intrinsics, and Inline Assembly242
Overview of Data Alignment, Memory Allocation Intrinsics, and Inline Assembly............................ 242
Alignment Support ... 242
Allocating and Freeing Aligned Memory Blocks... 243
Inline Assembly ... 244

Intrinsics Cross-processor Implementation...244
Intrinsics Cross-processor Implementation.. 244
Intrinsics For Implementation Across All IA ... 245
MMX(TM) Technology Intrinsics Implementation... 251
Streaming SIMD Extensions Intrinsics Implementation ... 261
Streaming SIMD Extensions 2 Intrinsics Implementation .. 273

Intel C++ Class Libraries..294
Introduction to the Class Libraries...294

Welcome to the Class Libraries ... 294
Hardware and Software Requirements.. 294
About the Classes ... 294

Technical Overview...295
Details About the Libraries... 295
C++ Classes and SIMD Operations... 296
Capabilities .. 299

Integer Vector Classes..300
Integer Vector Classes .. 300
Terms, Conventions, and Syntax... 301
Rules for Operators ... 303
Assignment Operator... 305
Logical Operators .. 305
Addition and Subtraction Operators... 307
Multiplication Operators... 310
Shift Operators .. 312
Comparison Operators .. 313
Conditional Select Operators... 315
Debug.. 318
Unpack Operators ... 321

 7

Pack Operators.. 328
Clear MMX(TM) Instructions State Operator ... 329
Integer Intrinsics for Streaming SIMD Extensions ... 329
Conversions Between Fvec and Ivec .. 331

Floating-point Vector Classes ...332
Floating-point Vector Classes.. 332
Fvec Notation Conventions.. 333
Data Alignment .. 334
Conversions... 334
Constructors and Initialization.. 335
Arithmetic Operators.. 336
Minimum and Maximum Operators.. 341
Logical Operators .. 343
Compare Operators... 344
Conditional Select Operators for Fvec Classes ... 348
Cacheability Support Operations ... 352
Debugging ... 353
Load and Store Operators ... 354
Unpack Operators for Fvec Operators... 355
Move Mask Operator ... 355

Classes Quick Reference..356
Programming Example..360

 8

About Intel(R) C++ Compiler

Welcome to the Intel® C++ Compiler
Welcome to the Intel® C++ Compiler. To use the compiler, you must have Red Hat* Linux* 6.2 or 7.1
operating system software installed on your computer.

The Red Hat Linux distributions include the GNU* C library, assembler, linker, archiver, nm, dumper, and
others. The Intel C++ Compiler includes the Dinkumware* C++ library. See Libraries Overview.

Please look at the individual sections within each main section to gain an overview of the topics
presented. For the latest information, visit the Intel Web site:
http://developer.intel.com/design/perftool/cppontheweb.

What's New in This Release
Compiler for Two Architectures

This document combines information about Intel® C++ Compiler for IA-32-based applications and
Itanium(TM)-based applications. IA-32-based applications correspond to the applications run on any
processor of the Intel® Pentium® processor family. Itanium-based applications correspond to the
applications run on the Intel® Itanium(TM) processor.

The following variations of the compiler are provided for you to use according to your host system's
processor architecture and targeted architectures:

! Intel® C++ Compiler for 32-bit Applications is designed for IA-32 systems, and its command is
icc. The IA-32 compilations run on any IA-32 Intel processor and produce applications that run
only on IA-32 systems. This compiler can be optimized specifically for one or more Intel IA-32
processors, from the Intel® Pentium® to Pentium 4 to Celeron(TM) processors.

! Intel® C++ Compiler for Itanium(TM)-based Applications, or cross compiler, runs on IA-32
systems, but produces Itanium(TM)-based applications. Its command is ecc. You can run the
executable programs, generated on the IA-32-based systems, only on Itanium-based systems.

! Intel® C++ Itanium(TM) Compiler for Itanium(TM)-based Applications, or native compiler, is
designed for Itanium architecture systems, and its command is ecc. This compiler runs on
Itanium-based systems and produces Itanium-based applications. Itanium-based compilations
can only operate on Itanium-based systems.

IA-32 and Itanium(TM) Compilers

The Intel® C++ Compiler supports OpenMP* API version 1.0 and performs code transformation for
shared memory parallel programming. The OpenMP support and auto-parallelization are accomplished
with the -openmp compiler option.

IA-32 Compiler

The -tpp7 or -axW compiler options generate Streaming SIMD Extensions 2 designed to execute on a
Pentium® 4 processor system.

 9

Itanium(TM) Architecture

The Itanium architecture provides explicit parallelism, predication, speculation and other features to
enhance the performance of your application. The architecture is highly scalable to fulfill high
performance server and workstation requirements.

Features and Benefits
The Intel® C++ Compiler allows your software to perform best on computers based on the Intel
architecture. Using new compiler optimizations, such as the profile-guided optimization, prefetch
instruction and support for Streaming SIMD Extensions (SSE) and Streaming SIMD Extensions 2 (SSE2),
the Intel C++ Compiler provides high performance.

Feature Benefit

High Performance achieve a significant performance gain by using
optimizations

Support for Streaming SIMD Extensions advantage of new Intel microarchitecture

Automatic vectorizer advantage of SIMD parallelism in your code
achieved automatically

OpenMP* Support shared memory parallel programming

Floating-point optimizations improved floating-point performance

Data prefetching improved performance due to the accelerated
data delivery

Interprocedural optimizations larger application modules perform better

Profile-guided optimization improved performance based on profiling
frequently-used procedures

Processor dispatch taking advantage of the latest Intel architecture
features while maintaining object code
compatibility with previous generations of Intel®
Pentium® processors (for IA-32-based systems
only).

Product Web Site and Support
For the latest information about Intel® C++ Compiler, visit the Intel C++ documentation Web site where
you will find links to:

! Intel C++ Compiler home page at http://developer.intel.com/software/products/compilers/c50

! Intel C++ Compiler performance-related topics at
http://developer.intel.com/software/products/compilers/linux/opt_convert_linux.pdf

! Related topics on the http://developer.intel.com Web site

 10

For Internet-based support and resources visit http://developer.intel.com/go/compilers.

For specific details on the Intel® Itanium(TM) architecture, visit the web site at
http://www.intel.com/design/ia-64.

System Requirements
Minimum Hardware Requirements

A system based on a Pentium®, Pentium Pro, Pentium with MMX(TM) technology, Pentium II, Pentium
III or Pentium® 4 processor with 128 MB of RAM and 100 MB of disk space

Recommended Hardware

A system with a Pentium® 4 processor and 256 MB of RAM

Software Requirements

Red Hat* Linux* 6.2 or 7.1

To run Itanium(TM)-based applications you must have an Itanium(TM)-based system running 64-bit
TurboLinux*. The Itanium(TM)-based systems are shipped with all of the hardware necessary to support
this product.

It is the responsibility of application developers to ensure that the machine instructions contained in the
application are supported by the operating system and processor on which the application is to run.

FLEXlm* Electronic Licensing
The Intel® C++ Compiler uses GlobeTrotter*'s FLEXlm* electronic licensing technology. If you are using a
floating (concurrent) or node-locked-counted license model (license count > 0 in the license file) then the
license server must be setup correctly and started before the Intel C++ Compiler can be used. License
server utilities/files are located in the /flexlm/ directory in your installation path. Included files are as
follows:

lmgrd (the license server daemon)

lmutil (utility to determine machine information, lmhostid)

enduser.pdf (FLEXlm End User Manual)

License Server Setup

Note

The steps below assume the simple case where the license server exists on the same machine as the
Intel C++ Compiler software. For more complicated installations, please contact your system
administrator. If you are currently using GlobeTrotter*'s FLEXlm* electronic licensing technology to
monitor licenses, please contact your system administrator to install the new license file in the proper
location and to restart the license manager daemon. For detailed instructions on setting up and starting
the license server, please refer to the FLEXlm End User Manual located in the /flexlm/ directory of
your installation path.

 11

1. Install the license manager daemon (lmgrd) and intelpto on the license server.

2. Run lmgrd with this command: prompt>lmgrd -c license_file_path -l
debug_log_path where license_file_path is the full path to the license file and
debug_log_path is the full path to the debug log file.

3. Setup the license server daemon to run at system startup.

If you have any problems running the compiler, please make sure the file l_cpp.lic is located in the
/licenses directory in your installation path. There must be a local copy of the license file on every
machine that uses the application. The default directory is /opt/intel/compiler50/licenses.

About This Document

How to Use This Document
This User's Guide explains how you can use the Intel® C++ Compiler. It provides information on how to
get started with the Intel C++ Compiler, how this compiler operates and what capabilities it offers for high
performance. You learn how to use the standard and advanced compiler optimizations to gain maximum
performance of your application.

This documentation assumes that you are familiar with the C and C++ programming languages and with
the Intel processor architecture. You should also be familiar with the host computer's operating system.

Note

This document explains how information and instructions apply differently to each targeted architecture. If
there is no specific indication to either architecture, the description is applicable to both architectures.

Conventions

This documentation uses the following conventions:

This type style Indicates an element of syntax, reserved word,
keyword, filename, computer output, or part of
a program example. The text appears in
lowercase unless uppercase is significant.

This type style Indicates the exact characters you type as
input.

This type style Indicates a placeholder for an identifier, an
expression, a string, a symbol, or a value.
Substitute one of these items for the
placeholder.

[items] Indicates that the items enclosed in brackets
are optional.

{ item1 | item2 |... } Indicates to elect one of the items listed
between braces. A vertical bar (|) separates
the items. Some options, such as -
ax{i|M|K|M}, permit the use of more than
one item.

... (ellipses) Indicate that you can repeat the preceding item.

 12

Naming Syntax for the Intrinsics

Most intrinsic names use a notational convention as follows:

mm<intrin_op>_<suffix>

<intrin_op> Indicates the intrinsics basic operation; for
example, add for addition and sub for
subtraction.

<suffix> Denotes the type of data operated on by the
instruction. The first one or two letters of each
suffix denotes whether the data is packed (p),
extended packed (ep), or scalar (s). The
remaining letters denote the type:

! __s single-precision floating point

! __d double-precision floating point

! __i128 signed 128-bit integer

! __i64 signed 64-bit integer

! __u64 unsigned 64-bit integer

! __i32 signed 32-bit integer

! __u32 unsigned 32-bit integer

! __i16 signed 16-bit integer

! __u16 unsigned 16-bit integer

! __i8 signed 8-bit integer

! __u8 unsigned 8-bit integer

A number appended to a variable name indicates the element of a packed object. For example, r0 is the
lowest word of r. Some intrinsics are "composites" because they require more than one instruction to
implement them.

The packed values are represented in right-to-left order, with the lowest value being used for scalar
operations. Consider the following example operation:

double a[2] = {1.0, 2.0}; __m128d t = _mm_load_pd(a);

The result is the same as either of the following:

__m128d t = _mm_set_pd(2.0, 1.0); __m128d t = _mm_setr_pd(1.0, 2.0);

In other words, the xmm register that holds the value t will look as follows:

The "scalar" element is 1.0. Due to the nature of the instruction, some intrinsics require their arguments to
be immediates (constant integer literals).

 13

Naming Syntax for the Class Libraries

The name of each class denotes the data type, signedness, bit size, number of elements using the
following generic format:

<type><signedness><bits>vec<elements>

{ F | I } { s | u } { 64 | 32 | 16 | 8 } vec { 8 | 4 | 2 | 1 }

where

<type> Indicates floating point (F) or integer (I)

<signedness> Indicates signed (s) or unsigned (u). For the
Ivec class, leaving this field blank indicates
an intermediate class. There are no unsigned
Fvec classes, therefore for the Fvec
classes, this field is blank.

<bits> Specifies the number of bits per element

<elements> Specifies the number of elements

Related Publications
The following documents provide additional information relevant to the Intel® C++ Compiler:

! ISO/IEC 9989:1990, Programming Languages--C

! ISO/IEC 14882:1998, Programming Languages--C++.

! The Annotated C++ Reference Manual, 3rd edition, Ellis, Margaret; Stroustrup, Bjarne, Addison
Wesley, 1991. Provides information on the C++ programming language.

! The C++ Programming Language, 3rd edition, 1997: Addison-Wesley Publishing Company, One
Jacob Way, Reading, MA 01867.

! The C Programming Language, 2nd edition, Kernighan, Brian W.; Ritchie, Dennis W., Prentice
Hall, 1988. Provides information on the K & R definition of the C language.

! C: A Reference Manual, 3rd edition, Harbison, Samual P.; Steele, Guy L., Prentice Hall, 1991.
Provides information on the ANSI standard and extensions of the C language.

! Intel Architecture Software Developer's Manual, Volume 1: Basic Architecture, Intel Corporation,
doc. number 243190.

! Intel Architecture Software Developer's Manual, Volume 2: Instruction Set Reference Manual,
Intel Corporation, doc. number 243191.

! Intel Architecture Software Developer's Manual, Volume 3: System Programming, Intel
Corporation, doc. number 243192.

! Intel® Itanium(TM) Assembler User's Guide.

! Intel® Itanium(TM)-based Assembly Language Reference Manual.

 14

! Itanium(TM) Architecture Software Developer's Manual Vol. 1: Application Architecture, Intel
Corporation, doc. number 245317-001.

! Itanium(TM) Architecture Software Developer's Manual Vol. 2: System Architecture, Intel
Corporation, doc. number 245318-001.

! Itanium(TM) Architecture Software Developer's Manual Vol. 3: Instruction Set Reference, Intel
Corporation, doc. number 245319-001.

! Itanium(TM) Architecture Software Developer's Manual Vol. 4: Itanium(TM) Processor
Programmer's Guide, Intel Corporation, doc. number 245319-001.

! Intel Architecture Optimization Manual, Intel Corporation, doc. number 245127.

! Intel Processor Identification with the CPUID Instruction, Intel Corporation, doc. number 241618.

! Intel Architecture MMX(TM) Technology Programmer's Reference Manual, Intel Corporation, doc.
number 241618.

! Pentium® Pro Processor Developer's Manual (3-volume Set), Intel Corporation, doc. number
242693.

! Pentium® II Processor Developer's Manual, Intel Corporation, doc. number 243502-001.

! Pentium® Processor Specification Update, Intel Corporation, doc. number 242480.

! Pentium® Processor Family Developer's Manual, Intel Corporation, doc. numbers 241428-005.

Most Intel documents are also available from the Intel Corporation Web site at http://www.intel.com.

Disclaimer
This Intel® C++ Compiler User's Guide as well as the software described in it is furnished under license
and may only be used or copied in accordance with the terms of the license. The information in this
manual is furnished for informational use only, is subject to change without notice, and should not be
construed as a commitment by Intel Corporation. Intel Corporation assumes no responsibility or liability
for any errors or inaccuracies that may appear in this document or any software that may be provided in
association with this document.

Except as permitted by such license, no part of this document may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means without the express written consent of Intel
Corporation.

Information in this document is provided in connection with Intel products. No license, express or implied,
by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as
provided in Intel's Terms and Conditions of Sale for such products, Intel assumes no liability whatsoever,
and Intel disclaims any express or implied warranty, relating to sale and/or use of Intel products including
liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any
patent, copyright or other intellectual property right. Intel products are not intended for use in medical, life
saving, or life sustaining applications. Intel may make changes to specifications and product descriptions
at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked
"reserved" or "undefined." Intel reserves these for future definition and shall have no responsibility
whatsoever for conflicts or incompatibilities arising from future changes to them.

 15

The Intel® C++ Compiler may contain design defects or errors known as errata which may cause the
product to deviate from published specifications. Current characterized errata are available on request.

Copyright © Intel Corporation 1996-2001.

*Other names and brands may be claimed as the property of others.

Intel and Itanium are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the
United States and in other countries.

Compiler Options Quick Reference
Guides

Compiler Options Alphabetical Listing

Compiler Options Quick Reference
Guide
This topic provides you with a reference to all the compilation control options and some linker control
options.

! Options specific to IA-32 architecture

! Options specific to the Itanium(TM) architecture

! Options available for both IA-32 and Itanium(TM) architecture

Option Description Default Reference

-0f_check
 IA-32 only

Avoids the incorrect decoding of
certain 0f instructions for code
targeted at older processors.

OFF Avoiding Incorrect Decoding of
Certain Instructions

-A- Disables all predefined macros. OFF Defining Macros

-Aname[(value)] Associates a symbol name
with the specified sequence of
value . Equivalent to an
#assert preprocessing
directive.

OFF Defining Macros

-ansi[-] Enables [disables] assumption
of the program's ANSI
conformance.

OFF Specifiying ANSI Conformance

 16

Option Description Default Reference

-ax{i|M|K|W}
 IA-32 only

Generates specialized code for
processor-specific codes i, M,
K, W while also generating
generic IA-32 code.
i = Pentium® Pro and

Pentium II processor
instructions
M = MMX(TM) instructions
K = streaming SIMD

extensions
W = Pentium 4 processor

instructions

OFF Specialized Code with -ax

-C Places comments in
preprocessed source output.

OFF Preserving Comments in
Preprocessed Source Output

-c Stops the compilation process
after an object file has been
generated. The compiler
generates an object file for each
C or C++ source file or
preprocessed source file. Also
takes an assembler file and
invokes the assembler to
generate an object file.

OFF Suppressing Linking

-Dname[{=|#}value] Defines a macro name and
associates it with the specified
value .

OFF Defining Macros

-E Stops the compilation process
after the C or C++ source files
have been preprocessed, and
writes the results to stdout.

OFF Preprocessing Only

-EP Preprocess to stdout omitting
#line directives.

OFF Preprocessing Only

-fdiv_check[-]
 IA-32 only

Enables a software patch for
the floating-point division flaw
that exists in some steppings of
the Pentium processor.

OFF Enabling the Floating-point
Division Check

-fp
 IA-32 only

Disable using EBP as general
purpose register.

ON Preparing for Debugging

-fp_port
 IA-32 only

Round fp results at assignments
and casts. Some speed impact.

OFF

-fr32
 Itanium-based
 systems only

Use only lower 32 floating-point
registers.

OFF

-g Generates symbolic debugging
information in the object code
for use by source-level
debuggers.

OFF Preparing for Debugging

-H Print "include" file order; don't
compile.

OFF

-help Prints compiler options
summary.

OFF

 17

Option Description Default Reference

-Idirectory Specifies an additional
directory to search for
include files.

OFF Include Files

-inline_debug_info Preserve the source position of
inlined code instead of
assigning the call-site source
position to inlined code.

OFF

-ip Enables interprocedural
optimizations for single file
compilation.

OFF Interprocedural Optimization
(IPO)

-ip_no_inlining Disables inlining that would
result from the -ip
interprocedural optimization, but
has no effect on other
interprocedural optimizations.

OFF Controlling Inline Expansion of
User Functions

-ip_no_pinlining Disable partial inlining. Requires
-ip or -ipo.

-ipo Enables interprocedural
optimizations across files.

OFF Interprocedural Optimization
(IPO)

-ipo_c Generates a multifile object file
(ipo_out.o) that can be
used in further link steps.

OFF Analyzing the Effects of Multifile
IPO

-ipo_obj Forces the compiler to create
real object files when used with
-ipo.

OFF (IA-32)
 ON (Itanium-based systems)

Interprocedural Optimization
(IPO)

-ipo_S Generates a multifile assembly
file named ipo_out.s that
can be used in further link
steps.

OFF Analyzing the Effects of Multifile
IPO

-Kc++ Compile all source or
unrecognized file types as C++
source files.

OFF

-Kc++eh Enable C++ exception handling. OFF

-Knopic, -KNOPIC
 Itanium-based
 systems only

Don't generate position
independent code.

OFF

-Knovtab Suppresses definition of
vftables for classes
without non-inline vfns

OFF

-KPIC, -Kpic Generate position independent
code.

OFF

-Krtti Enables C++ Runtime Type
Information (RTTI).

ON

-Ldirectory Instruct linker to search
directory for libraries.

OFF Linking

-lm Link with math library. OFF

 18

Option Description Default Reference

-long_double Changes the default size of the
long double data type from 64
to 80 bits.

OFF Floating-point Arithmetic
Precision

-M Generates makefile
dependency lines for each
source file, based on the
#include lines found in the
source file.

OFF

-mp Favors conformance to the
ANSI C and IEEE 754
standards for floating-point
arithmetic. Behavior for NaN
comparisons does not conform.
(disables some optimization)

OFF Floating-point Arithmetic
Precision

-mp1 Improve floating-point precision
(speed impact is less than -
mp).

OFF Floating-point Arithmetic
Precision

-nobss_init Places variables that are
initialized with zeroes in the
DATA section. Disables
placement of zero-initialized
variables in BSS (use DATA).

OFF Allocation of Zero-initialized
Variables

-nolib_inline Disables inline expansion of
standard library functions.

OFF Inline Expansion of Library
Functions

-O same as -O1. ON

-O0 Disables optimizations. OFF Restricting Optimizations

-O1 Enable optimizations. ON Optimization Choices

-O2 Same as -O1. ON Optimization Choices

-O3 Enable -O2 plus more
aggressive optimizations that
may not improve performance
for all programs.

OFF Optimization Choices

-ofile Name output file . OFF

-openmp Enables the parallelizer to
generate multi-threaded code
based on the OpenMP*
directives. The -openmp
option only works at an
optimization level of -O2 (the
default) or higher.

OFF Parallelization With OpenMP*

-
openmp_report{0|1|2
}

Controls the OpenMP*
parallelizer's diagnostic levels.

-openmp_report1 Parallelization With OpenMP*

 19

Option Description Default Reference

-P, -F Stops the compilation process
after C or C++ source files have
been preprocessed and writes
the results to files named
according to the compiler's
default file-naming conventions.

OFF Preprocessing Only

-pc32
 IA-32 only

Set internal FPU precision to
24-bit significand.

OFF

-pc64
 IA-32 only

Set internal FPU precision to
53-bit significand.

ON

-pc80
 IA-32 only

Set internal FPU precision to
64-bit significand.

OFF

-prec_div
 IA-32 only

Disables the floating point
division-to-multiplication
optimization. Improves precision
of floating-point divides.

OFF Floating-point Arithmetic
Precision.

-prof_dir dirname Specify the directory
(dirname) to hold profile
information (*.dyn, *.dpi).

OFF Profile-Guided Optimization
(PGO)

-prof_file filename Specify the filename for
profiling summary file.

OFF Profile-Guided Optimization
(PGO)

-prof_gen[x] Instruments the program to
prepare for instrumented
execution and also creates a
new static profile information file
(.spi). With the x qualifier,
extra information is gathered.

OFF Profile-Guided Optimization
(PGO)

-prof_use Uses dynamic feedback
information.

OFF Profile-Guided Optimization
(PGO)

-Qansi[-]
 Itanium-based
 systems only

Enable [disable] stating ANSI
compliance of the compiled
program and that optimizations
can be based on the ANSI
rules.

-Qinstall dir Sets dir as root of compiler
installation.

OFF

-
Qlocation,tool,path

Sets path as the location of
the tool specified by tool .

OFF Specifying Alternate Tools and
Paths

-Qoption,tool,list Passes an argument list to
another tool in the
compilation sequence, such as
the assembler or linker.

OFF Specifying Alternate Tools and
Paths

-qp, -p Compile and link for function
profiling with UNIX* prof
tool

-rcd
 IA-32 only

Disables changing of the FPU
rounding control. Enables fast
float-to-int conversions.

OFF Floating-point Arithmetic
Precision

 20

Option Description Default Reference

-restrict Enables pointer disambiguation
with the
restrict qualifier.

OFF

-S Generate assembly files with
.s suffix

OFF Compilation and Linking

-size_lp64
 Itanium-based
 systems only

Assume 64-bit size for long and
pointer types.

OFF

-sox[-]
 IA-32 only

Enables [disables] the saving of
compiler options and version
information in the executable
file. NOTE: This option is
maintained for compatibility only
on Itanium(TM)-based systems.

ON

-syntax Checks the syntax of a program
and stops the compilation
process after the C or C++
source files and preprocessed
source files have been parsed.
Generates no code and
produces no output files.
Warnings and messages
appear on stderr.

OFF Parsing for Syntax Only

-Timplinc Enable implicit inclusion of
source files for finding template
definitions.

OFF

-Tlocal Instantiate template functions
used in this compilation and
make local.

OFF

-Tnoauto Disable automatic instantiation
of templates.

OFF

-tpp5
 IA-32 only

Targets the optimizations to the
Intel® Pentium® processor.

OFF Targeting a Processor and
Extensions Support

-tpp6
 IA-32 only

Targets the optimizations to the
Intel Pentium Pro, Pentium II
and Pentium III processors.

ON Targeting a Processor and
Extensions Support

-tpp7
 IA-32 only

Tunes code to favor the Intel
Pentium 4 processor.

OFF Targeting a Processor and
Extensions Support

-Tused Instantiate template functions
used in this compilation.

OFF

-Uname Suppresses any definition of a
macro name . Equivalent to a
#undef preprocessing
directive.

OFF Defining Macros

-unroll0
 Itanium-based
 systems only

Disable loop unrolling. OFF Loop Unrolling

 21

Option Description Default Reference

-unroll[n]
 IA-32 only

Set maximum number of times
to unroll loops. Omit n to use
default heuristics. Use n =0 to
disable loop unroller.

OFF Loop Unrolling

-use_asm
 IA-32 only

Produce objects through
assembler.

-use_msasm
 IA-32 only

Accept the Microsoft* MASM-
style inlined assembly format
instead of GNU-style.

ON

-V Display compiler version
information.

OFF

-vec[-] Enable [disable] the vectorizer. ON

-vec_report[n]
 IA-32 only

Controls the amount of
vectorizer diagnostic
information.

n =0 no diagnostic information

n =1 indicates vectorized
loops (DEFAULT)

n =2 indicates vectorized/non-
vectorized loops

n =3 indicates vectorized/non-
vectorized loops and prohibiting
data dependence information

n =4 indicates non-vectorized
loops

n =5 indicates non-vectorized
loops and prohibiting data

-vec_report1 Vectorizer Quick Reference

-w Disable all warnings. OFF

-wn Control diagnostics.

n =0 displays errors (same as
-w)

n =1 displays warnings and
errors (DEFAULT)

n =2 displays remarks,
warnings, and errors

OFF Supressing Warning Messages

-wdL1[,L2,...] Disables diagnostics L1
through LN.

OFF Controlling the Severity of
Diagnostics

-weL1[,L2,...] Changes severity of diagnostics
L1 through LN to error.

OFF Controlling the Severity of
Diagnostics

-wnn Limits the number of errors
displayed prior to aborting
compilation to n .

n=100 Limiting the Number of Errors
Reported

 22

Option Description Default Reference

-wp_ipo Compile all objects over entire
program with multifile
interprocedural optimizations.
This option additionally makes
the whole program assumption
that all variables and functions
seen in compiled sources are
referenced only within those
sources; the user must
guarantee that this assumption
is safe.

OFF Interprocedural Optimization
(IPO)

-wrL1[,L2,...] Changes the severity of
diagnostics L1 through LN to
remark.

OFF Controlling the Severity of
Diagnostics

-wwL1[,L2,...] Changes severity of diagnostics
L1 through LN to warning.

OFF Controlling the Severity of
Diagnostics

-X Removes the standard
directories from the list of
directories to be searched for
include files.

OFF Removing Include Directories

-XA C++ compilation follows ARM. OFF

-Xa Select extended ANSI C dialect. OFF

-XC C++ compilation follows cfront. OFF

-Xc Select strict ANSI conformance
dialect.

OFF

-x{i|M|K|W}
 IA-32 only

Generates specialized code to
run exclusively on processors
supporting the extensions
indicated by processor-specific
codes i, M, K, W.

OFF Targeting a Processor and
Extensions Support

-Xk Select K&R dialect. OFF

-XO C++ compilation follows ARM
with anachronisms.

OFF

-Xt Select ANSI transition dialect. OFF

-XU C++ compilation follows ARM
and cfront with anachronisms.

OFF

-Zp{1|2|4|8|16} Specifies the strictest alignment
constraint for structure and
union types as one of the
following: 1, 2, 4, 8, or 16 bytes.

-Zp16 Specifying Structure Tag
Alignments

 23

Compiler Options by Functional Groups

Customizing Compilation Process
Options
Alternate Tools and Locations
Option Description

-Qlocation,tool,path Allows you to specify the path for tools such as
the assembler, linker, preprocessor, and
compiler.

-Qoption,tool,optlist Passes an option specified by optlist to a
tool, where optlist is a comma-
separated list of options.

Preprocessing Options
Option Description

-Aname[(values,...)] Associates a symbol name with the specified
sequence of values . Equivalent to an
#assert preprocessing directive.

-A- Causes all predefined macros (other than those
beginning with __ and assertions to be
inactive.

-C Preserves comments in preprocessed source
output.

-Dname[(value)] Defines the macro name and associates it
with the specified value . The default (-
Dname) defines a macro with a value of
1.

-E Directs the preprocessor to expand your source
module and write the result to standard output.

-EP Same as -E but does not include #line
directives in the output.

-P Directs the preprocessor to expand your source
module and store the result in a file in the
current directory.

-Uname Suppresses any automatic definition for the
specified macro name .

 24

Controlling Compilation Flow
Option Description

-c Stops the compilation process after an object
file has been generated. The compiler
generates an object file for each C or C++
source file or preprocessed source file. Also
takes an assembler file and invokes the
assembler to generate an object file.

-fp[-]
 (IA-32 only)

Enables the use of the EBP register in
optimizations. When you disable with -fp-
the ebp register is used as frame pointer.

-Kpic, -KPIC Generate position-independent code.

-lname Link with a library indicated in name. For
example, -lm indicates to link with math
library.

-nobss_init Places variables that are initialized with zeroes
in the DATA section.

-P, -F Stops the compilation process after C or C++
source files have been preprocessed and
writes the results to files named according to
the compiler's default file-naming conventions.

-S Generate assembly files with .s suffix.

-sox[-]
 (Itanium(TM)-based systems only.)

Enables [disables] the saving of compiler
options and version information in the
executable file.

-Zp{1|2|4|8|16} Specifies the strictest alignment constraint for
structure and union types as one of the
following: 1, 2, 4, 8, or 16 bytes.

-0f_check
 (IA-32 only)

Avoids the incorrect decoding of certain 0f
instructions for code targeted at older
processors.

-fdiv_check[-]
 (IA-32 only)

Enables [disables] the patch for the Intel®
Pentium® processor FDIV erratum.

Controlling Compilation Output
Option Description

-Ldirectory Instruct linker to search directory for
libraries.

-oname Produces an executable output file with the
specified file name , or the default file name if
file name is not specified.

-S Generate assembly files with .s suffix.

 25

Debugging Options
Option Description

-g Debugging information produced, -O0
enabled, -fp disabled for IA-32-targeted
compilations.

-g -O2 Debugging information produced, -O2
optimizations enabled.

-g -O3 -fp- Debugging information produced, -O3
optimizations enabled, -fp disabled for IA-32-
targeted compilations.

-g -ip Limited debugging information produced due to
function inlining optimization, -ip option
enabled.

Diagnostics and Messages
Option Description

-w0,-w Displays error messages only.
Both -w0 and -w display
exactly the same messages.

-w1,-w2 Displays warnings and error
messages. Both -w1 and -
w2 display exactly the same
messages.The compiler uses
this level as the default.

-w3 Displays warnings and error
messages. This option displays
more warnings than do -w1
and -w2.

-w4 Displays remarks, warnings,
and error messages.

Controlling the Severity of Diagnostics

You can control the severity of some of the diagnostics returned by the compiler. The compiler returns
two types of diagnostics:

! Hard errors are issued for code that is definitely wrong or questionable. The severity of a hard
error is not configurable. For hard errors, the message number is never printed. Remarks and
warnings are never considered hard errors.

! Soft diagnostics include all other diagnostics (including remarks and warnings). For soft
diagnostics, the message number is always printed. The severity of a soft diagnostic is
configurable by the options described below.

In the descriptions below, tag represents the number associated with the diagnostic. Multiple tags are
permitted, separated by commas.

 26

Option Description

-wdL1[,L2,...] Disable the soft diagnostics
that corresponds to L1
through LN.

-wrL1[,L2,...] Override the severity of the soft
diagnostics corresponding to
L1 through LN and make it a
remark.

-wwL1[,L2,...] Override the severity of the soft
diagnostics corresponding to
L1 through LN and make it a
warning.

-weL1[,L2,...] Override the severity of the soft
diagnostics corresponding to
L1 through LN and make it an
error.

For example, the following command line disables soft diagnostic 68 during compilation of the file a.cpp:

! IA-32: prompt> icc -wd68 -c a.cpp

! Itanium-based systems: prompt> ecc -wd68 -c a.cpp

The following command line changes the severity of soft diagnostics 68 and 152 to remarks during
compilation of the file a.cpp.

! IA-32: prompt>icc -wr68,152 -c a.cpp

! Itanium-based systems: prompt>ecl -wr68,152 -c a.cpp

Assume that you have a file x.cpp that contains the following line:

extern i;

If you compile this code with warnings enabled (the default), you will receive the following response from
the compiler:

x.cpp(2): warning #9: nested comment is not allowed/* This is a comment. */
x.cpp(5): warning #260: explicit type is missing ("int" assumed)
extern i;

If you compile the code with the option -wd9 (to disable warning number 9), you will receive the following
response from the compiler:

x.cpp(5): warning #260: explicit type is missing ("int" assumed)
extern i;

 27

Language Conformance Options
Conformance Options
Option Description

-ansi[-] Enables [disables] assumption of the program's
ANSI conformance.

-mp Favors conformance to the ANSI C and IEEE
754 standards for floating-point arithmetic.
Behavior for NaN comparisons does not
conform.

Application Performance Optimization
Options
Optimization-level Options
Option Description

-O0 Disables optimizations.

-O1 Enables options -nolib_inline and -
fp*. -O1 disables inline expansion of library
functions. In most cases, -O2 is recommended
over -O1 because the -O2 option enables
inline expansion, which helps programs that
have many function calls.

-O2 Equivalent to options -O1 and -fp*. Confines
optimizations to the procedural level. The -O2
option is on by default. * -fp is an IA-32 option
and not applicable to compilations targeted for
Itanium(TM)-based systems.

-O3 Builds on -O1 and -O2 by enabling high-level
optimization. This level does not guarantee
higher performance unless loop and memory
access transformation take place. In conjunction
with -axK/-xK, this switch causes the
compiler to perform more aggressive data
dependency analysis than for -O2. This may
result in longer compilation times.

* -fp is an IA-32 option and not applicable to compilations targeted for Itanium(TM)-based systems.

 28

Floating-point Arithmetic Precision
Options for IA-32 and Itanium(TM)-based Systems

Option Description

-mp The -mp option restricts optimization to maintain declared precision and to ensure that
floating-point arithmetic conforms more closely to the ANSI and IEEE standards. For
most programs, specifying this option adversely affects performance. If you are not sure
whether your application needs this option, try compiling and running your program both
with and without it to evaluate the effects on performance versus precision. Specifying
this option has the following effects on program compilation:

! User variables declared as floating-point types are not assigned to registers.

! Whenever an expression is spilled, it is spilled as 80 bits (extended precision),
not 64 bits (double precision).

! Floating-point arithmetic comparisons conform to IEEE 754 except for NaN
behavior.

! The exact operations specified in the code are performed. For example,
division is never changed to multiplication by the reciprocal.

! The compiler performs floating-point operations in the order specified without
reassociation.

! The compiler does not perform the constant-folding optimization on floating-
point values. Constant folding also eliminates any multiplication by 1, division
by 1, and addition or subtraction of 0. For example, code that adds 0.0 to a
number is executed exactly as written. Compile-time floating-point arithmetic
is not performed to ensure that floating-point exceptions are also maintained.

! Floating-point operations conform to ANSI C. When assignments to type float
and double are made, the precision is rounded from 80 bits (extended) down
to 32 bits (float) or 64 bits (double). When you do not specify -Op, the extra
bits of precision are not always rounded before the variable is reused.

! The -nolib_inline option, which disables inline functions expansion,
is used.

Note: The -nolib_inline and -mp options are active by default when you
choose the -Xc (strict ANSI C conformance) option.

-long_double Use -long_double to change the size of the long double type to 80 bits. The Intel
compiler's defalt long double type is 64 bits in size, the same as the double type. This
option introduces a number of incompatibilities with other files compiled without this
option and with calls to library routines. Therefore, Intel recommends that the use of
long double variables be local to a single file when you compile with this option.

 29

Options for IA-32 Only

Option Description

-mp1 Use the -mp1 option to improve floating-point precision. -mp1 disables fewer
optimizations and has less impact on performance than -mp.

-prec_div With some optimizations, such as -xK and -xW, the Intel® C++ Compiler changes
floating-point division computations into multiplication by the reciprocal of the
denominator. For example, A/B is computed as A x (1/B) to improve the speed of the
computation. However, for values of B greater than 2126, the value of 1/B is "flushed"
(changed) to 0. When it is important to maintain the value of 1/B, use -prec_div to
disable the floating-point division-to-multiplication optimization. The result of -
prec_div is greater accuracy with some loss of performance.

-pcn Use the -pcn option to enable floating-point significand precision control. Some
floating-point algorithms are sensitive to the accuracy of the significand or fractional part
of the floating-point value. For example, iterative operations like division and finding the
square root can run faster if you lower the precision with the -pcn option. Set n to one
of the following values to round the significand to the indicated number of bits: The
default value for n is 64, indicating double precision. This option allows full optimization.
Using this option does not have the negative performance impact of using the -mp
option because only the fractional part of the floating-point value is affected. The range
of the exponent is not affected. The -pcn option causes the compiler to change the
floating point precision control when the main() function is compiled. The program that
uses -pcn must use main() as its entry point, and the file containing main() must be
compiled with -pcn.

-rcd The Intel compiler uses the -rcd option to improve the performance of code that
requires floating-point-to-integer conversions. The optimization is obtained by controlling
the change of the rounding mode. The system default floating point rounding mode is
round-to-nearest. This means that values are rounded during floating point calculations.
However, the C language requires floating point values to be truncated when a
conversion to an integer is involved. To do this, the compiler must change the rounding
mode to truncation before each floating point-to-integer conversion and change it back
afterwards. The -rcd option disables the change to truncation of the rounding mode
for all floating point calculations, including floating point-to-integer conversions. Turning
on this option can improve performance, but floating point conversions to integer will not
conform to C semantics.

Processor Dispatch Support (IA-32 only)
Option Description

-tpp5 Optimizes for the Intel® Pentium® processor.
 Enables best performance for Pentium processor

-tpp6 Optimizes for the Intel Pentium Pro, Pentium II, and Pentium III processors. Enables
best performance for the above processors

-tpp7 Optimizes for the Pentium 4 processor. Requires the RedHat* version 6.2 and support
of Streaming SIMD Extensions 2.
 Enables best performance for Pentium 4 processor

 30

Option Description

-ax{i|M|K|W} Generates, on a single binary, code specialized to the extensions specified by the
codes:
i Pentium Pro, Pentium II processors
M Pentium with MMX(TM) technology processor
K Pentium III processor
W Pentium 4 processor

 In addition, -ax generates IA-32 generic code. The generic code is usually slower.
 Sets opportunities to generate versions of functions that use instructions supported on
the specified processors for the best performance.

-x{i|M|K|W} Generate specialized code to run exclusively on the processors supporting the
extensions indicated by the codes:
i Pentium Pro, Pentium II processors
M Pentium with MMX(TM) technology processor
K Pentium III processor
W Pentium 4 processor

 Sets opportunities to generate versions of functions that use instructions supported on
the specified processors for the best performance.

Interprocedural Optimizations
Option Description

-ip Enables interprocedural optimizations for single file compilation.

-ip_no_inlining Disables inlining that would result from the -ip interprocedural
optimization, but has no effect on other interprocedural optimizations.

-ipo Enables interprocedural optimizations across files.

-ipo_c Generates a multifile object file that can be used in further link steps.

-ipo_obj Forces the compiler to create real object files when used with -ipo.

-ipo_S Generates a multifile assembly file named ipo_out.asm that can be used in
further link steps.

-inline_debug_info Preserve the source position of inlined code instead of assigning the call-site
source position to inlined code.

-nolib_inline Disables inline expansion of standard library functions.

-wp_ipo Compile all objects over entire program with multifile interprocedural
optimizations. This option additionally makes the whole program assumption
that all variables and functions seen in compiled sources are referenced only
within those sources; the user must guarantee that this assumption is safe.

 31

Profile-guided Optimizations
Option Description

-prof_gen[x] Instructs the compiler to produce instrumented code in your object files in preparation
for instrumented execution. NOTE: The dynamic information files are produced in
phase 2 when you run the instrumented executable.

-prof_use Instructs the compiler to produce a profile-optimized executable and merges available
dynamic information (.dyn) files into a pgopti.dpi file. If you perform multiple
executions of the instrumented program, -prof_use merges the dynamic
information files again and overwrites the previous pgopti.dpi file.

High-level Language Optimizations
Option Description

-openmp Enables the parallelizer to generate multi-threaded code based on the
OpenMP* directives.
 Enables parallel execution on both uni- and multiprocessor systems.

-openmp_report{0|1|2} Controls the OpenMP* parallelizer's diagnostic levels 0, 1, or 2:
0 - no information
1 - loops, regions, and sections parallelized (default)
2 - same as 1 plus master construct, single construct, etc.

-unroll[n]

Set maximum number (n) of times to unroll loops. Omit n to use default
heuristics. Use n =0 to disable loop unrolling. For Itanium(TM)-based
applications, -unroll[0] used only for compatibility.

IA-32 Applications Only

-prefetch[-] Enables or disables prefetch insertion (requires -O3). Reduces wait time;
optimum use is determined empirically.

Vectorization Options
Option Description

-ax{i|M|K|W} Enables the vectorizer and generates specialized and generic IA-32 code. The
generic code is usually slower than the specialized code. -vec- disables
vectorization, but processor-specific code continues to be generated.

-vec_reportn Controls the vectorizer's level of diagnostic messages:
n =0 no diagnostic information is displayed.
n =1 display diagnostics indicating loops successfully vectorized (default).
n =2 same as n =1, plus diagnostics indicating loops not successfully vectorized.
n =3 same as n =2, plus additional information about any proven or assumed

dependences.

-x{i|M|K|W} Turns on the vectorizer and generates processor-specific specialized code. -vec-
disables vectorization, but processor-specific code continues to be generated.

 32

Command-line Switch Support

Option Description

-ax{i|M|K|W} Generates, on a single binary, code specialized
to the extensions specified by {i|M|K|W}
but also generates generic IA-32 code. The
generic code is usually slower. See Specialized
Code with -ax for details. The -ax{M|K|W}
options turn on the vectorizer (note that -axi
does not).

-vec_reportn Controls the vectorizer's level of diagnostic
messages:
n = 0 no diagnostic information is displayed.
n = 1display diagnostics indicating loops

successfully vectorized (default).
n = 2 same as n = 1, plus diagnostics

indicating loops not successfully vectorized.
n = 3 same as n = 2, plus additional

information about any proven or assumed
dependences.

-x{i|M|K|W} Generates specialized code to run exclusively
on processors with the extensions specified by
{i|M|K|W}. See Optimizing for Processors
and Extensions Sets (IA-32 Only) for details.
The -Qx{M|K|W} options turn on vectorizer
with -O2 which is on by default.

Language Support and Pragmas

Option Description

__declspec(align(n)) Directs the compiler to align the variable var-
name to an n -byte boundary. Address of the
variable is address mod n = 0.

__declspec(align(n,off)) Directs the compiler to align the variable var-
name to an n -byte boundary with offset off
within each n -byte boundary. Address of the
variable is address mod n = off.

-restrict Permits the disambiguator flexibility in alias
assumptions, which enables more
vectorization.

__assume_aligned(a,n) Instructs the compiler to assume that array a
is aligned on an n -byte boundary; used in
cases where the compiler has failed to obtain
alignment information.

#pragma ivdep Instructs the compiler to ignore assumed vector
dependencies.

#pragma vector {aligned |
unaligned}

Specifies how to vectorize the loop and
indicates that efficiency heuristics should be
ignored.

#pragma novector Specifies that the loop should never be
vectorized

 33

Compiler Options Cross-Reference for
Windows* and Linux*

Compiler Options Cross-reference
Linux* Windows* Description Default

-0f -QI0f Enable/disable the patch for
the Pentium® 0f erratum.

OFF

-A[-] -QA[-] Remove all predefined
macros.

OFF

-Aname[(val)] -QAname[(val)] Create an assertion name
having value val.

OFF

-ansi[-] -Qansi[-] Enable/disable assumption of
ANSI conformance.

ON

-ax{i|K|M|W} -Qax{i|K|M|W} Generate code specialized for
processor extensions
specified by codes
(i,K,M,W) while also
generating generic IA-32
code. i = Pentium Pro and
Pentium II processor
instructions
K = Steaming SIMD

extensions
M = MMX(TM)
W = Streaming SIMD

Extensions 2

OFF

-C -C Don't strip comments. OFF

-c -c Compile to object (.o) only,
do not link.

OFF

-
Dname[{=|#}{text}
]

-Dname[=value] Define macro. OFF

-E -E Preprocess to stdout. OFF

-fdiv_check -QIfdiv[-] Enable the patch for the
Pentium FDIV erratum.

OFF

-fp -Oy[-] Disable using EBP as general
purpose register (no frame
pointer).

OFF

-g -Zi Produce symbolic debug
information in object file.

OFF

-H -Hn Print include file order. OFF

-help -help Print help message listing. OFF

 34

Linux* Windows* Description Default

-Idirectory -Idirectory Add directory to include file
search path.

OFF

-
inline_debug_info

-
Qinline_debug_inf
o

Preserve the source position
of inlined code instead of
assigning the call-site source
position to inlined code.

OFF

-ip -Qip Enable single-file IP
optimizations (within files).

OFF

-ip_no_inlining -Qip_no_inlining Optimize the behavior of IP:
disable full and partial inlining
(requires -ip or -ipo).

OFF

-ipo -Qipo Enable multi-file IP
optimizations (between files).

OFF

-ipo_obj -Qipo_obj Optimize the behavior of IP:
force generation of real object
files (requires -ipo).

OFF

-Knovtab -vd{0|1} Suppress definition of
vftables for classes without
non-inline vfns.

OFF

-KPIC NA Generate position
independent code (same as
-Kpic).

OFF

-Kpic NA Generate position
independent code (same as
-KPIC).

OFF

-long_double -Qlong_double Enable 80-bit long double. OFF

-m NA Instruct linker to produce map
file.

OFF

-M -QM Generate makefile
dependency information.

OFF

-mp -Op[-] Maintain floating-point
precision (disables some
optimizations).

OFF

-mp1 -Qprec Improve floating-point
precision (speed impact is
less than -mp).

OFF

-nobss_init NA Disable placement of zero-
initialized variables in BSS
(use DATA).

OFF

-nolib_inline -Oi[-] Disable inline expansion of
intrinsic functions.

OFF

-O -O2 Same as -O1. OFF

-ofile -ofile Name output file. OFF

-O0 -Od Disable optimizations. OFF

 35

Linux* Windows* Description Default

-O1 -O1 Optimizes for size. OFF

-O2 -O2 Same as -O1. ON

-P -EP Preprocess to file. OFF

-pc32 -Qpc 32 Set internal FPU precision to
24-bit significand.

OFF

-pc64 -Qpc 64 Set internal FPU precision to
53-bit significand.

ON

-pc80 -Qpc 80 Set internal FPU precision to
64-bit significand.

OFF

-prec_div -Qprec_div Improve precision of floating-
point divides (some speed
impact).

OFF

-prof_dir
directory

-Qprof_dir
directory

Specify directory for profiling
output files (*.dyn and
*.dpi).

OFF

-prof_file
filename

NA Specify filename for profiling
summary file.

OFF

-prof_gen[x] -Qprof_genx Instrument program for
profiling; with the x qualifier,
extra information is gathered.

OFF

-prof_use -Qprof_use Enable use of profiling
information during
optimization.

OFF

-Qinstall dir NA Set dir as root of compiler
installation.

OFF

-
Qlocation,str,dir

-Qlocation, tool,
path

Set dir as the location of
tool specified by str.

OFF

-Qoption,str,opts -Qoption, tool,
list

Pass options opts to tool
specified by str.

OFF

-qp, -p NA Compile and link for function
profiling with UNIX gprof tool.

OFF

-r -w2 Enable remarks, warnings
and errors.

OFF

-rcd -Qrcd Enable fast floating-point-to-
integer conversions.

OFF

-restrict -Qrestrict Enable the restrict keyword
for disambiguating pointers.

OFF

-S -S Compile to assembly (.s)
only, do not link (*I).

OFF

-sox[-] -Qsox Enable (default)/disable
saving of compiler options
and version in the executable.

ON

 36

Linux* Windows* Description Default

-syntax -Zs Perform syntax check only. OFF

-Timplinc NA Enable implicit inclusion of
source files for finding
template definitions.

OFF

-Tlocal NA Instantiate template functions
used in this compilation and
make local.

OFF

-Tnoauto NA Disable automatic
instantiation of templates.

OFF

-tpp5 -G5 Optimize for Pentium
processor.

OFF

-tpp6 -G6 Optimize for Pentium Pro,
Pentium II and Pentium III
processors.

OFF

-Tused NA Instantiate template functions
used in this compilation.

OFF

-Uname -U name Remove predefined macro. OFF

-unroll[n] -Qunrolln Set maximum number of
times to unroll loops. Omit n
to use default heuristics. Use
n=0 to disable loop unroller.

OFF

-V -V text Display compiler version
information.

OFF

-w -w Display errors. OFF

-wn -Wn Control diagnostics. Display
errors (n=0). Display
warnings and errors (n=1).
Display remarks, warnings,
and errors (n=2).

OFF

-wdL1[,L2,...] -Qwd[tag] Disable diagnostics L1
through LN.

OFF

-weL1[,L2,...] -Qwe[tag] Change severity of
diagnostics L1 through LN to
error.

OFF

-wnn -Qwn[tag] Print a maximum of n errors. OFF

-wrL1[,L2,...] -Qwr[tag] Change severity of
diagnostics L1 through LN to
remark.

OFF

-wwL1[,L2,...] -Qww[tag] Change severity of
diagnostics L1 through LN to
warning.

OFF

-X -X Remove standard directories
from include file search path.

OFF

 37

Linux* Windows* Description Default

-x{i|K|M|W} -Qx[i|M|K|W] Generate code specialized for
processor extensions
specified by codes (i,K,M,W)
while also generating generic
IA-32 code. i = Pentium®
Pro and Pentium II processor
instructions
K = Steaming SIMD

extensions
M = MMX(TM)
W = Streaming SIMD

Extensions 2.

OFF

-Xa -Ze Select extended ANSI C
dialect.

OFF

-XA NA C++ compilation follows
ARM.

OFF

-XC NA C++ compilation follows
cfront.

OFF

-Xc -Za Select strict ANSI
conformance dialect.

OFF

-Xk NA Select K&R dialect. OFF

-XO NA C++ compilation follows ARM
with anachronisms.

OFF

-Xt NA Select ANSI transition dialect. OFF

-XU NA C++ compilation follows ARM
and cfront with anachronisms.

OFF

-Zp{1|2|4|8|16} -Zp[n] Specify, in bytes, alignment
constraint for structures (n
=1,2,4,8,16). Default n =8.
This option overrides the
default alignment of code.

OFF

 38

Invoking the Intel(R) C++ Compiler

Invoking the Intel® C++ Compiler
The ways to invoke Intel® C++ Compiler are as follows:

! Invoke directly: Running Compiler from the Command Line

! Use system make file: Running from the Command Line with make

Invoking the Compiler from the
Command Line
There are two necessary steps to invoke the Intel® C++ Compiler from the command line:

1. Set the environment variables.

2. Invoke the compiler with icc or ecc.

Note

You can also invoke the compiler with icpc and ecpc for C++ source files on IA-32 and Itaniun(TM)-
based systems respectively. The icc and ecc compiler examples in this documentation apply to C and
C++ source files.

Set the Environment Variables

Before you can operate the compiler, you must set the environment variables to specify locations for the
various components. The Intel C++ Compiler installation includes shell scripts that you can use to set
environment variables. From the command line, execute the shell script that corresponds to your
installation. With the default compiler installation, these scripts are located at:

! IA-32 Systems: /opt/intel/compiler50/ia32/bin/iccvars.sh

! Itanium(TM)-based Systems: /opt/intel/compiler50/ia64/bin/eccvars.sh

Running the Shell Scripts

To run the iccvars.sh script on IA-32, enter the following on the command line:

prompt>. /opt/intel/compiler50/ia32/bin/iccvars.sh

If you want the iccvars.sh to run automatically when you start Linux*, edit your .bash_profile file
and add the same line to the end of your file:

set up environment for Intel compiler icc
. /opt/intel/compiler50/ia32/bin/iccvars.sh

The procedure is similar for running the eccvars.sh shell script on Itanium-based systems.

 39

Invoke the Compiler

Once the environment variables are set, you can invoke the compiler for your platform:

! IA-32 Systems: prompt> icc [options] file1 [file2. . .] [linker_options]

! Itanium(TM)-based Systems: prompt>ecc [options] file1 [file2 . . .]
[linker_options]

Syntax Description

options Indicates one or more command-line options. The compiler recognizes one or more
letters preceded by a hyphen (-).

file1, file2 . . . Indicates one or more files to be processed by the compilation system. You can
specify more than one file. Use a space as a delimiter for multiple files.

linker_options Indicates options directed to the linker.

Running from the Command Line with
make
To run from the command line using Intel® C++ Compiler, make sure that /usr/bin and
/usr/local/bin are on your path. If you use the C shell, you can edit your .cshrc file and add

setenv PATH /usr/bin:/usr/local/bin:<your path>

Then you can compile as

prompt>make -f your_makefile

Default Behavior of the Compiler
If you do not specify any options when you invoke the Intel® C++ Compiler, the compiler uses the
following default settings:

! Produces executable output with filename a.o.

! Invokes options specified in a configuration file first. See Configuration Files.

! Searches for include files using the INCLUDE variable.

! Searches for library files in directories specified by the LIB variable, if they are not found in the
current directory.

! Sets 8 bytes as the strictest alignment constraint for structures.

! Displays error and warning messages.

! Performs standard optimizations using the default -O2 option, as described in Optimization
Choices.

 40

If the compiler does not recognize a command-line option, that option is ignored and a warning is
displayed. See Diagnostic Messages for detailed descriptions about system messages.

IA-32-Specific Default

The vectorizor (-vec) is on by default.

Compiler Input Files
By default, the compiler recognizes .cc, .cpp, and .cxx files as C++ files. In examples, this
documentation uses the .cpp extension for C++ files. The compiler recognizes files with the .i and .c
extensions as C files. Also, the Intel® C++ Compiler recognizes the default filename extensions listed in
the table below.

Default Filename Extensions

Filename Interpretation Action

filename.a object library Passed to linker

filename.i C or C++ source preprocessed
and expanded by the C++
preprocessor

Passed to compiler

filename.o compiled object module Passed to linker

filename.s assembly file Assembled by the assembler

Compilation Phases
To produce the executable file filename, the compiler performs by default the compile and link phases.
When invoked, the compiler driver determines which compilation phases to perform based on the
extension to the source filename and on the compilation options specified in the command line.

The compiler passes object files and any unrecognized filename to the linker. The linker then determines
whether the file is an object file (.o) or a library (.a). The compiler driver handles all types of input files
correctly, thus it can be used to invoke any phase of compilation.

The relationship of the compiler to system-specific programming support tools is presented in the diagram
below.

 41

Application Development Cycle

 42

Customizing Compilation Environment

Customizing the Compilation
Environment
For IA-32 and the Intel® Itanium(TM) architecture, you will need to set a compilation environment. To
customize the environment used during compilation, you can specify:

Environment Variables -- the paths where the compiler can search for special files

Configuration Files -- the options to use with each compilation

Response Files -- the options and files to use for individual projects

Include Files -- the names and locations of compilation tools

Environment Variables
You can customize your environment by specifying paths where the compiler can search for special files
such as libraries and include files.

! LD_LIBRARY_PATH specifies the directory path for the math libraries. Also, the compiler calls
link, the GNU* linker, to produce an executable file from the object files. This linker searches the
path specified in the LIB environment variable to find the libraries. Also, the assembler relies on
LD_LIBRARY_PATH for the location of the associated libraries.

! PATH specifies the directory path for the compiler executable files.

! INCLUDE specifies the directory path for the "include" files.

! TMP specifies the directory in which to store temporary files. If the directory specified by TMP does
not exist, the compiler places the temporary files in the current directory.

! IA32ROOT (IA32-based systems) – If you choose to install the Intel® C++ Compiler to a location
other than the default location, you will need to modify the variable IA32ROOT in your
environment to point to this location. It should point to the directory containing the bin, lib, and
include directories.

! IA64ROOT (Itanium(TM)-based systems) -- If you choose to install the Intel C++ Compiler to a
location other than the default location, you will need to modify the variable IA64ROOT in your
environment to point to this location. It should point to the directory containing the bin, lib, and
include directories.

 43

Compilation Environment Options

The Intel C++ Compiler installation includes shell scripts that you can use to set environment variables.
From the command line, execute the shell script appropriate to your installation. You can find these
scripts at the following locations (assuming you installed to the default directories):

! IA-32 Systems: /opt/intel/compiler50/ia32/bin/iccvars.sh

! Itanium(TM)-based Systems: /opt/intel/compiler50/ia64/bin/eccvars.sh

Running the Shell Scripts

To run the iccvars.sh script, enter the following on the command line:

prompt: . /opt/intel/compiler50/ia32/bin/iccvars.sh
If you want the iccvars.sh to run automatically when you start Linux, edit your .bash_profile file and add
the same line to the end of your file:

set up environment for Intel Compiler icc
. /opt/intel/compiler50/ia32/bin/iccvars.sh

Configuration Files
You can decrease the time you spend entering command-line options and ensure consistency by using
the configuration file to automate often-used command line entries. You can insert any valid command-
line options into the configuration file. The compiler processes options in the configuration file in the order
they appear followed by the command-line options that you specify when you invoke the compiler.

Note

Be aware that options in the configuration file will be executed every time you run the compiler. If you
have varying option requirements for different projects, see Response Files.

How to Use Configuration Files For IA-32-targeted Compilations

The following example illustrates how to write configuration files for IA-32-targeted compilations. After you
have written the .CFG file, simply ensure it is in the same directory as the compiler's executable file when
you run the compiler. The text following the pound (#) character is recognized as a comment. For IA-32
compilations, the configuration file is icc.cfg.

Sample icc.cfg file.

Define preprocessor macro MY_PROJECT. -DMY_PROJECT

Additional directories to be searched for include

files, before the default. -Ic:/project/include

Use the static, multi-threaded C run-time library. -MT

 44

How to Use Configuration Files Targeted for Compilations on
Itanium(TM)-based Systems

The following example illustrates how to write configuration files targeted for compilations on Itanium(TM)-
based systems. After you have written the .CFG file, simply ensure it is in the same directory as the
compiler's executable file when you run the compiler. (The pound (#) character defines the text that
follows as a comment.) For compilations on Itanium(TM)-based systems, the configuration file is
ecc.cfg.

Sample ecc.cfg file.

Define preprocessor macro MY_PROJECT. -DMY_PROJECT

Additional directories to be searched for include

files, before the default. -Ic:/project/include

Use the static, multi-threaded C run-time library. -MT

Response Files
Use response files to specify options used during particular compilations, and to save this information in
individual files. Response files are invoked as an option in the command line. Options in a response file
are inserted in the command line at the point where the response file is invoked.

Response files are used to decrease the time spent entering command-line options, and to ensure
consistency by automating command-line entries. Use individual response files to maintain options for
specific projects; in this way you avoid editing the configuration file when changing projects.

Any number of options or filenames can be placed on a line in the response file. Several response files
can be referenced in the same command line. Use the pound character(#) to treat the rest of the line as a
comment.

The syntax for using response files is as follows:

! IA-32 systems: prompt>icc @response_file filenames

! Itanium(TM)-based systems: prompt>ecc @response_file filenames

Note

An "at" sign (@) must precede the name of the response file on the command line.

Include Files
By default, the compiler searches for the standard include files in the directories specified in the INCLUDE
environment variable. You can indicate the location of include files in the configuration file.

How to Specify an Include Directory (-I)

Use the -Idirectory option to specify an additional directory in which to search for include files. For
multiple search directories, multiple -Idirectory commands must be used. Included files are brought
into the program with a #include preprocessor directive. The compiler searches directories for include
files in the following order:

 45

! directory of the source file that contains the include

! directories specified by the -I option

! directories specified in the INCLUDE environment variable

How to Remove Include Directories

Use the -X option to prevent the compiler from searching the default path specified by the INCLUDE
environment variable.

You can use the -X option with the -I option to prevent the compiler from searching the default path for
include files and direct it to use an alternate path.

For example, to direct the compiler to search the path /alt/include instead of the default path, do the
following:

! IA-32 systems: prompt>icc -X -I/alt/include newmain.cpp

! Itanium(TM)-based systems: prompt>ecc -X -I/alt/include newmain.cpp

Customizing Compilation Process

Customizing Compilation Process
Overview
This section describes options that customize the compilation process—preprocessing, compiling, linking
and various compilation output and debug options.

Specifying Alternate Tools and Paths
You can direct the compiler to go outside default paths and tools to specify alternate tools for
preprocessing, compilation, assembly, and linking. Further, you can invoke options specific to your
alternate tools on the command line. The following sections explain how to use -Qlocation and -
Qoption to do this.

 46

How to Specify an Alternate Component

Use -Qlocation to specify an alternate path for a tool. This option accepts two arguments using the
following syntax:

prompt>-Qlocation,tool,path

tool Description

cpp Specifies the compiler front-end preprocessor.

c Specifies the C++ compiler.

asm Specifies the assembler.

ld Specifies the linker.

path is the complete path to the tool.

How to Pass Options to Other Programs (-Qoption, tool, optlist)

Use -Qoption to pass an option specified by optlist to a tool, where optlist is a comma-separated
list of options. The syntax for this command is the following:

prompt>-Qoption,tool,optlist

tool Description

cpp Specifies the compiler front-end preprocessor.

C Specifies the C++ compiler.

asm Specifies the assembler.

ld Specifies the linker.

-oplist Indicates one or more valid argument strings for the designated program. If the argument is a
command-line option, you must include the hyphen. If the argument contains a space or tab character,
you must enclose the entire argument in quotation characters (""). You must separate multiple arguments
with commas. The following example directs the linker to create a memory map when the compiler
produces the executable file from the source.

! IA-32 systems: prompt>icc -Qoption, link,-map:proto.map proto.cpp

! Itanium(TM)-based systems: prompt>ecc -Qoption, link,-map:proto.map
proto.cpp

The -Qoption, link option in the preceding example is passing the -map option to the linker. This is
an explicit way to pass arguments to other tools in the compilation process.

 47

Preprocessing

Preprocessing Overview
This section describes the options you can use to direct the operations of the preprocessor.
Preprocessing performs such tasks as macro substitution, conditional compilation, and file inclusion. The
compiler preprocesses files as an optional first phase of the compilation.

Preprocessor Options

Use the options in this section to control preprocessing from the command line. If you specify neither
option, the preprocessed source files are not saved but are passed directly to the compiler.

Option Description

-Aname[(value)] Associates a symbol name with the specified sequence of values . Equivalent to
an #assert preprocessing directive.

-A- Causes all predefined macros (other than those beginning with __ and assertions to be
inactive.

-C Preserves comments in preprocessed source output.

-Dname[{=|#}value] Defines the macro name and associates it with the specified value . The default
(-Dname) defines a macro with a value of 1.

-E Directs the preprocessor to expand your source module and write the result to standard
output.

-EP Same as -E but does not include #line directives in the output.

-P Directs the preprocessor to expand your source module and store the result in a file in
the current directory.

-Uname Suppresses any automatic definition for the specified macro name .

Preprocessing Only
Use either the -E or the -P option to preprocess your source files without compiling them.

When you specify the -E option, the compiler's preprocessor expands your source module and writes the
result to standard output. The preprocessed source contains #line directives, which the compiler uses to
determine the source file and line number during its next pass. For example, to preprocess two source
files and write them to stdout, enter the following command:

! IA-32 systems: prompt>icc -E prog1.cpp prog2.cpp

! Itanium(TM)-based systems: prompt>ecc -E prog1.cpp prog2.cpp

 48

When you specify the -P option, the preprocessor expands your source module and stores the result in a
file in the current directory. There is no way to change the default name. The preprocessor uses the name
of each source file with the .i extension. For example, the following command creates two files named
prog1.i and prog2.i, which you can use as input to another compilation:

! IA-32 systems: prompt>icc -P prog1. cpp prog2. cpp

! Itanium(TM)-based systems: prompt>ecc -P prog1. cpp prog2. cpp

The -EP option can be used in combination with -E or -P. It directs the preprocessor to not include
#line directives in the output. Specifying -EP alone is the same as specifying -E -EP.

Caution

When you use the -P option, any existing files with the same name and extension are overwritten.

Preserving Comments in Preprocessed Source Output

Use the -C option to preserve comments in your preprocessed source output.

Searching for Include Files
By default, the compiler searches for the standard include files in the directories specified in the INCLUDE
environment variable. You can indicate the location of include files in the configuration file.

How to Specify an Include Directory

Use the -Idirectory option to specify an additional directory in which to search for include files. For
multiple search directories, multiple -Idirectory commands must be used. Included files are brought
into the program with a #include preprocessor directive. The compiler searches directories for include
files in the following order:

! directory of the source file that contains the include

! directories specified by the -I option

! directories specified in the INCLUDE environment variable

How to Remove Include Directories

Use the -X option to prevent the compiler from searching the default path specified by the INCLUDE
environment variable.

You can use the -X option with the -I option to prevent the compiler from searching the default path for
include files and direct it to use an alternate path.

For example, to direct the compiler to search the path /alt/include instead of the default path, do the
following:

! IA-32 systems: prompt>icc -X -I/alt/include newmain.cpp

! Itanium(TM)-based systems: prompt>ecc -X -I/alt/include newmain.cpp

 49

Defining Macros
You can use the -A and -D options to define the assertion and macro names to be used during
preprocessing. The -U option directs the preprocessor to suppress an automatic definition of a macro.

Use the -A option to make an assertion. This option performs the same function as the #assert
preprocessor directive. The form of this option is:

-Aname[(value)]

Argument Description

name indicates an identifier for the
assertion

value indicates a value for the
assertion. If a value is
specified, it should be quoted,
along with the parentheses
delimiting it.

For example, to make an assertion for the identifier fruit with the value orange,banana use the following
command:

! IA-32 systems: prompt>icc -A"fruit(orange,banana)" prog1.cpp

! Itanium(TM)-based systems: prompt>ecc -A"fruit(orange,banana)" prog1.cpp

The compiler provides a number of predefined macros. For a list of predefined macros available to the
Intel® C++ Compiler, see the Predefined Macros table below.

Enter -A- to suppress all predefined macros, except for those beginning with the double underscore.

Use the -D option to define a macro. This option performs the same function as the #define preprocessor
directive. The form of this option is:

-Dname[{=|#}value]

Argument Description

name The name of the macro to define.

value Indicates a value to be substituted for name. If you do not enter a value, name is set
to 1. The value should be quoted if it contains non-alphanumerics.

For example, to define a macro called SIZE with the value 100 use the following command:

! IA-32 systems: prompt>icc -DSIZE=100 prog1.cpp

! Itanium(TM)-based systems: prompt>ecc -DSIZE=100 prog1.cpp

Use the -Uname option to suppress any automatic definition for the specified name. The -U option
performs the same function as a #undef preprocessor directive. It can be used to undefine any macro, in
addition to the predefined onces.

For more details about preprocessor directives, see a language reference such as C: A Reference
Manual.

 50

Predefined Macros

The predefined macros available for the Intel C++ Compiler compilations targeted for IA-32- and
Itanium(TM)-based systems are described in the tables below. The Default column describes whether the
macro is enabled (ON) or disabled (OFF) by default. The Disable column lists the option that disables the
macro; no indicates that the macro cannot be disabled.

! Predefined macros for compilations targeted for IA-32 systems

! Predefined macros for compilations targeted for Itanium(TM)-based systems

Predefined Macros for Compilations Targeted for IA-32 Systems

Macro Name Default Disable Description / When Used

__INTEL_COMPILER=n n=500 no Defines the compiler version. Defined
as 500 for the Intel C++ Compiler V5.0.
Always defined.

__ICC=n n=500 no Enables the Intel C++ Compiler.
Assigned value refers to version of the
compiler (e.g., 500 is 5.00). Supported
for legacy reasons. Use
__INTEL_COMPILER instead.

__cplusplus C++ only no Defined when compiling C++ source.

_M_IX86=n ON, n=600 -U defined based on the processor option
you specify:
n=500 if you specify the -G5 option
n=600 if you specify the -GB or -G6

option
n=700 if you specify the -G7 option

_DLL OFF -U defined if you specify the -MD option

_MT OFF -U defined if you specify the -MD, -MT,
or -LD option

_CHAR_UNSIGNED OFF -U defined if you specify the -J option

_CPPRTTI OFF -U defined if you specify the -GR option
for C++ only

_CPPUNWIND OFF -U defined if you specify the -GX option
for C++ only

Predefined Macros for Compilations Targeted for Itanium(TM)-based Systems

Macro Name Default Disable Description / When Used

__INTEL_COMPILER=n n=500 no Defines the compiler version. Defined
as 500 for the Intel C++ Compiler V5.0.
Always defined.

__ECC=n n=500 no Enables the Intel C++ Compiler.
Assigned value refers to version of the
compiler (e.g., 500 is 5.00). Supported
for legacy reasons. Use
__INTEL_COMPILER instead.

__cplusplus C++ only no Enables compilation of C++ source.

 51

Macro Name Default Disable Description / When Used

INTEGRAL MAX BITS=n n=64 -U Indicates support for the __int64
type.

_DLL OFF -U Compile and link with the multi-thread
run-time library to produce a DLL. This
macro is enabled if you specify -MD, -
MT, or -LD.

_MT OFF -U Compile and link with the C version of
the multi-thread run-time library. This
macro is enabled if you specify -MD.

_CHAR_UNSIGNED OFF -U Makes the default character type
unsigned. This macro is enabled if you
specify the -J option.

_CPPUNWIND OFF -U Enables C++ exception handling. This
macro is enabled if you specify the -
GX option.

_CPPRTTI OFF -U Enables run-time type information. This
macro is enabled when you specify -
GR.

_M_IA64 ON -U Enables compilations targeted for
Itanium(TM)-based systems

_M_IA64=n n=64100 -U Indicates the value for the preprocessor
identifier to reflect the Itanium(TM)
architecture.

Compilation and Liking

Compilation and Linking Overview
This section describes all the Intel® C++ Compiler options that determine the compilation and linking
process and their output. By default, the compiler converts source code directly to an executable file.
Appropriate options allow you to control the process and obtain desired output file produced by the
compiler.

Having control of the compilation process means, for example, that you can create a file at any of the
compilation phases such as assembly, object, or executable with -P or -c options. Or you can name the
output file or designate a set of options that are passed to the linker with the -S, -o options. If you specify
a phase-limiting option, the compiler produces a separate output file representing the output of the last
phase that completes for each primary input file.

You can use the command line options discussed as tools to display and check for certain aspects of the
compiler's behavior.

 52

The options in this section provide you with the following capabilities:

! monitor the compilation to a phase or to a stage within a phase

! name the output files or directories

Compiler Input and Output Options
Summary
If no errors occur during processing, you can use the output files from a particular phase as input to a
later compiler invocation. The table below describes the options to control the output.

Last Phase
Completed

Option Compiler Input Compiler Output

compile only -c source Compile to object only
(.o), do not link.

 -S source Generate assembly
files with .s suffix

syntax checking -syntax source files
 preprocessed files

diagnostic list

linking (default) source files
 preprocessed files
 assembly files
 object files
 librarie

executable file, map
file

preprocessing -P, -E, or -Ep source files preprocessed files

Monitoring Compiler-generated Code
The options described below provide monitoring the outcome of Intel compiler-generated code without
interfering with the way your program runs.

Specifying Structure Tag Alignments

You can specify an alignment constraint for structures and unions in two ways:

! place a pack pragma in your source file, or

! enter the alignment option on the command line

Both specifications change structure tag alignment constraints.

Use the -Zp option to determine the alignment constraint for structure declarations. Generally, smaller
constraints result in smaller data sections while larger constraints support faster execution.

 53

The form of the -Zp option is:

-Zpn

The alignment constraint is indicated by one of the following values.

n=1 1 byte.

n=2 2 bytes.

n=4 4 bytes.

n=8 8 bytes

n=16 16 bytes.

For example, to specify 2 bytes as the alignment constraint for all structures and unions in the file
prog1.cpp, use the following command:

! IA-32 systems: prompt>icc -Zp2 prog1.cpp

! Itanium(TM)-based systems: prompt>ecc -Zp2 prog1.cpp

Allocation of Zero-initialized Variables

By default, variables explicitly initialized with zeros are placed in the BSS section. But using the -
nobss_init option, you can place any variables that are explicitly initialized with zeros in the DATA
section if required.

Avoiding Incorrect Decoding of Certain Instructions (IA-32 Only)

Some instructions have 2-byte opcodes in which the first byte contains 0f. In rare cases, the Pentium®
processor can decode these instructions incorrectly. Specify the -0f_check option to avoid the incorrect
decoding of these instructions. The work-around implemented in the Intel® C++ Compiler avoids
generating the susceptible instructions.

Assembly File Listing Example
This topic provides examples of IA-32 and Itanium(TM) architecture assembly file listings and explains
how to read them.

IA-32 Assembly Listing Example

$B1$6: ; Preds $B1$9
mov eax, edx ;6.26
shld eax, esi, 11 ;6.26
or eax, -2147483648 ;6.26
neg ecx ;6.26
add ecx, 1054 ;6.26
shr eax, cl ;6.26
test edx, edx ;6.26
jge $B1$5 ; Prob 50% ;6.26

; LOE eax ebx ebp edi

 54

The following list describes the annotations:

! The ; Preds annotation lists all the basic-blocks that are predecessors of this basic-block.

! The ;6.26 annotation occurs next to every instruction and indicates the source line#.column
number that this instruction is associated with. When a 0 appears it means that there is no source
information associated with that particular instruction.

! The ; Prob annotation indicates the probability that the conditional jump is taken. This is based
either upon a "guess" by the compiler or from profile information from a -prof_use compilation.

! The ; LOE line is the live-on-exit registers. Generally only the integer registers, xmm, and mm
registers are printed.

Itanium(TM) Architecture Assembly Listing Example

The following is an example of a portion of an assembly file listing for compilations targeted for
Itanium(TM)-based systems:

The following list describes the annotations:

! { identifies the beginning of an bundle.

! .mmi and .mib identify the instruction template types; .mmi indicates two memory and one
integer instructions; .mib indicates one memory, one integer, and one branch instruction.

! } identifies the end of an instruction bundle.

! br.call.dpnt b0=bark# identifies a call to the function bark.

! ;; identifies the end of an instruction group.

! The number following the colon (:) in the comment at the end of each instruction indicates the
source line number corresponding to that assembly language instruction.

 55

Linking
This topic describes the options that allow you to control and customize the linking with tools and libraries
and define the output of the linking process.

Option Description

-Ldirectory Instruct linker to search directory for libraries.

-lm Link with math library.

-Qoption,tool,list Passes an argument list to another program in the compilation
sequence, such as the assembler or linker.

Suppressing Linking

Use the -c option to suppress linking. For example, entering the following command produces the object
files file.o and file2.o:

! IA-32 systems: prompt>icc -c file.cpp file2.cpp

! Itanium(TM)-based systems: prompt>ecc -c file.cpp file2.cpp

Note

The preceding command does not link these files to produce an executable file.

Debugging

Debugging Options Summary
For compilations targeted to IA-32 processor systems, the compiler uses -O0 as the default when you
specify -g. Specifying the -g or -O0 option automatically disables the -fp option for IA-32-targeted
compilations. (Option -fp is not used for compilations targeted for Itanium(TM)-based systems.)

The -fp option (applies to IA-32 compilations only) is enabled by default or when -O1 or -O2 is specified
and allows the compiler to use the ebp register as a general purpose register in optimizations. However,
most debuggers expect ebp to be used as a stack frame pointer, and cannot produce a stack backtrace
unless this is so. The -fp- option instructs the compiler to generate code for IA-32-targeted compilations
that maintains and uses ebp as a stack frame pointer, without turning off optimization, so that a debugger
can still produce a stack backtrace. Using this option reduces the number of available general purpose
registers by one, and can result in slightly less efficient code.

Options Descriptions

-g Debugging information produced, -O0 enabled, -fp disabled for IA-32-targeted
compilations.

-g -O2 Debugging information produced, -O2 optimizations enabled.

-g -O3 -fp- Debugging information produced, -O3 optimizations enabled, -fp disabled for IA-32-
targeted compilations.

 56

Options Descriptions

-g -ip Limited debugging information produced, -ip option enabled.

Preparing for Debugging
Use the -g option to direct the compiler to generate code to support symbolic debugging. For example:

! IA-32 systems: prompt>icc -g prog1.cpp

! Itanium(TM)-based systems: prompt>ecc -g prog1.cpp

The compiler does not support the generation of debugging information in assembly files. If you specify
the -g option, the resulting object file will contain debugging information the assembly file will not.

Support for Symbolic Debugging
As described in the preceding section, specifying -g or -O0 in IA-32-targeted compilations automatically
disables the -fp option for IA-32-targeted compilations. The compiler lets you generate code to support
symbolic debugging while the -O1, or -O2 optimization options are specified on the command line along
with -g. However, you can receive these unexpected results:

! If you specify the -O1, or -O2 options with the -g option, some of the debugging information
returned may be inaccurate as a side-effect of optimization.

! If you specify the -O1, or -O2 options, the -fp option will not be disabled. In this case, if you
want to maintain the frame pointer while generating debug information, for IA-32-targeted
compilations you must explicitly specify the -fp- option on the command line to disable -fp.

Parsing for Syntax Only
Use the -syntax option to stop processing source files after they have been parsed for C++ language
errors. This option provides a method to quickly check whether sources are syntactically and semantically
correct. The compiler creates no output file. In the following example, the compiler checks a file named
prog1.cpp. Any diagnostics appear on the standard error output.

! IA-32 systems: prompt>icc -syntax prog1.cpp

! Itanium(TM)-based systems: prompt>ecc -syntax prog1.cpp

 57

Language Conformance

Conformance to the C Standard
You can set the Intel® C++ Compiler to accept either

! C code that strictly adheres to the ANSI/ISO standard, or

! C code that contains extensions to this standard.

The compiler is set by default to accept extensions and not be limited to the ANSI/ISO standard.

Understanding the ANSI/ISO Standard C Dialect

The Intel C++ Compiler provides conformance to the ANSI/ISO standard for C language compilation
(ISO/IEC 9899:1990). This standard requires that conforming C compilers accept minimum translation
limits. This compiler exceeds all of the ANSI/ISO requirements for minimum translation limits.

Understanding the Extensions to ANSI/ISO Standard C Dialect

When you set the compiler to accept extensions to the ANSI/ISO standard, the compiler can process the
following extensions:

Extension Type Description

Files and data storage Input files with no declarations. Incomplete array types for the last member of a structure, except when
this is the only member of the structure. Incomplete struct or union type file-scope arrays. Note: The
struct and union types must be completed before the array is subscripted. In addition, if the array is
defined in the compilation, these types must be subscripted by the end of the compilation. enum tag
names you define. You can declare an enum tag name and then define it later in the source file.
Initializer expressions not enclosed in braces though they initialize any of the following: a full static
array, structure, or union. (Standard C required the braces.)

Pointers In initializers, pointer constant values cast to an integral type if the integral type is large enough to
contain it. In integral constant expressions, integer constants cast to a pointer type and then cast back
to an integral type. Assignments of pointers to integers and to other incompatible pointer types without
explicit casts. Fields selected in the form p->m when the p variable is a pointer, including when p does
not point to a struct or union that contains m. (All definitions of field must have the same type and
offset within their structure or union.) Fields selected in the form x.m, including when x is not a
structure or union containing m when (1) variable x is not a structure or union containing m and (2) the
x variable is an Ivalue. (All definitions of field must have the same type and offset within their structure
or union.)

Types and syntax Bit fields with enum base types or integral types other than int or unsigned int. long float as a synonym
for double. Arbitrary text at the end of preprocessing directives. Numbers that do not comply with the
pp-number syntax, because numbers are scanned according to the syntax for numbers when
extensions are allowed. Example: The compiler would scan 0x123e+1 as three tokens. Under strict
ANSI conformance mode, the compiler would use the pp-number syntax and scan this number as one
invalid token.

Predicates #assert and #unassert directives to define and test predicate names.

Syntax with warnings No warning given for an extra comma at the end of an enum list. Warning given when omitting the
final semicolon preceding the closing brace(}) of a structure or union. Warning given for a right brace
immediately following a label definition. (Normally, a statement must follow a legal definition.) No
warning given for an empty declaration, a semicolon with nothing preceding it.

 58

Extension Type Description

Semantics with warnings Differences in assignments and pointers between pointers to types that are interchangeable but not
identical, such as unsigned char* and char*. The compiler will not issue a warning in this case. A
string constant assigned to a pointer to any kind of character. Comparison using >, >=, <, or <=
operators between pointers to void and other kinds of pointers, without using an explicit type cast.
(Strict ANSI dialect mode requires such comparisons using == or != and issues no warnings.) Inline
assembly code inserted using the asm keyword. (Strict ANSI dialect mode requires the __asm
keyword.) Freestanding tag declarations in the parameter declaration list for a function with old-style
parameters.

How to Set the Compiler for Extended C Dialect

You set the compiler to accept extensions to the ANSI/ISO standard C code by using the -Ze option.

Macros Included with the Compiler

The ANSI/ISO standard for C language requires that certain predefined macros be supplied with
conforming compilers. The following table lists the macros that the Intel C++ Compiler supplies in
accordance with this standard:

Macro Description

__cplusplus Defines C++ programs only.

__DATE__ The date of compilation. As a string literal in the form "Mmm dd yyyy".

__FILE__ A string literal representing the name of the file being compiled.

__LINE__ The current line number as a decimal constant.

__STDC__ The constant 1 when you set the compiler to accept only standard ANSI conformance. This macro is
not defined for use when you set the compiler to accept extensions.

__TIME__ The time of compilation. As a string literal in the form "hh:mm:ss".

__TIMESTAMP__ The date and time of the last modification of the current source file in the form:
 "Ddd Mmm dd hh:mm:ss yyyy".

The compiler provides predefined macros in addition to the predefined macros required by the standard.

 59

Conformance to the C++ Standard
The Intel® C++ Compiler conforms to the ANSI/ISO standard (ISO/IEC 14882:1998) for the C++
language, with the following exceptions:

! reinterpret_cast does not allow casting a pointer-to-member of one class to a pointer-to-
member of another class if the classes are unrelated.

! Two-phase name binding in templates, as described in [temp.res] and [temp.dep] of the
standard, is not implemented.

! Putting a try/catch around the initializers and body of a constructor is not implemented.

! Template template parameters are not implemented.

! Universal character set escapes (for example, \uabcd) are not implemented.

! The export keyword for templates is not implemented.

Optimizations

Optimization Levels

Optimization-level Options
Each of the command-line options: -O,-O1, -O2 and -O3 turn on several compiler optimizations. -O and
-O1 are practically the same and are only mentioned for compatibility with other compilers. The following
table summarizes the optimizations that the compiler applies when you invoke -O1, -O2, or -O3
optimizations.

Option Optimization Affected Aspect of Program

-O1, -O2 global register allocation register use

-O1, -O2 instruction scheduling instruction reordering

-O1, -O2 register variable detection register use

-O1, -O2 common subexpression elimination constants and expression evaluation

-O1, -O2 dead-code elimination instruction sequencing

-O1, -O2 variable renaming register use

-O1, -O2 copy propagation register use

-O1, -O2 constant propagation constants and expression evaluation

-O1, -O2 strength reduction-induction variable simplification instruction,
 selection-sequencing

 60

Option Optimization Affected Aspect of Program

-O1, -O2 tail recursion elimination calls, further optimization

-O1, -O2 software pipelining calls, further optimization

-O3 prefetching, scalar replacement,
 loop transformations

memory access, instruction parallelism, predication, software
pipelining

For IA-32 and Itanium(TM) architectures, the options can behave in a different way. To specify the
optimizations for your program, use options for depending on the target architecture as follows.

IA-32 and Itanium(TM) compilers

-O, -O1, -O2 ON by default. Confines optimizations to the procedural level. Turns ON
intrinsics inlining. All three optimizations are equal.

-O3 Enables -O2 option with more aggressive optimizations, for example:

! prefetching

! scalar replacement

! loop transformations

Optimizes for maximum speed, but may not improve performance for some
programs.

Restricting Optimizations
The following options restrict or preclude the compiler's ability to optimize your program.

Option Description

-O0 Disables all optimizations.

-nolib_inline Disable inline expansion of intrinsic functions.

Floating-point Optimizations

Maintaining Floating-point Arithmetic
Precision
The -mp option restricts some optimizations to maintain declared precision and to ensure that floating-
point arithmetic conforms more closely to the ANSI and IEEE standards.

For most programs, specifying this option adversely affects performance. If you are not sure whether your

 61

application needs this option, try compiling and running your program both with and without it to evaluate
the effects on performance versus precision.

Specifying this option has the following effects on program compilation:

! User variables declared as floating-point types are not assigned to registers.

! Floating-point arithmetic comparisons conform to IEEE 754 except for NaN behavior.

! The exact operations specified in the code are performed. For example, division is never changed
to multiplication by the reciprocal.

! The compiler performs floating-point operations in the order specified without reassociation.

! The compiler does not perform the constant folding on floating-point values. Constant folding also
eliminates any multiplication by 1, division by 1, and addition or subtraction of 0. For example,
code that adds 0.0 to a number is executed exactly as written. Compile-time floating-point
arithmetic is not performed to ensure that floating-point exceptions are also maintained.

! For IA-32 systems, whenever an expression is spilled, it is spilled as 80 bits (EXTENDED
PRECISION), not 64 bits (DOUBLE PRECISION). Floating-point operations conform to IEEE 754.
When assignments to type REAL and DOUBLE PRECISION are made, the precision is rounded
from 80 bits (EXTENDED) down to 32 bits (REAL) or 64 bits (DOUBLE PRECISION). When you
do not specify -O0, the extra bits of precision are not always rounded away before the variable is
reused.

! Even if vectorization is enabled by the -xK, -xW, -axK, or -axW options, the compiler does not
vectorize reduction loops (loops computing the dot product) and loops with mixed precision types.

Processor Dispatch Extensions Support
(IA-32 only)

Targeting a Processor and Extensions
Support Overview
This section describes targeting a processor and processor dispatch options. -tpp{5|6|7} optimizes
non-specifically for the IA-32 processor, while -x{i|M|K|W} and -ax{i|M|K|W} provide support to
generate processor instruction extensions that are specific to the architecture.

Option Description

-tpp{5|6|7} Schedules instructions for optimal performance on the architecture specified by 5, 6, 7

-tpp5Pentium® processor.
-tpp6Pentium Pro, Pentium II, and Pentium III processors. Default.
-tpp7Pentium 4 processor.

-x{i|M|K|W} Generates specialized code to run exclusively on the processors supporting the extensions indicated by
the i, M, K, W codes.

-ax{i|M|K|W} Generates specialized code to run exclusively on the processors supporting the extensions indicated by
the i, M, K, W codes while also generating generic IA-32 code in the same executable.

 62

For example, on a Pentium III processor, if you have mostly integer code and only a small portion of
floating-point code, you may want to compile with -axM rather than -axK because MMX(TM) technology
extensions perform the best with integer data and the optimized code will run on a larger subset of Intel
processors.

The -ax and -x options are backward compatible with the extensions supported. The Intel® Pentium 4
processor can run code targeted to any of the previous processors specified by K, M, or i.

Targeting a Processor (IA-32 only)
The Intel® C++ Compiler lets you choose whether to optimize the performance of your application for
specific processors or to ensure your application can execute on a range of processors.

Optimizing for a Specific Processor without Excluding Others

Use the -tpp{n} option to optimize your application's performance for specific processors. Regardless
of which -tpp{n} suboption you choose, your application is optimized to use all the benefits of that
processor with the resulting binary file still capable of running on any of the processors listed.

To optimize for... Use...

Pentium® and Pentium processor with
MMX(TM) technology

-tpp5

Pentium Pro, Pentium II and Pentium III -tpp6
 (default)

Pentium 4 Processor -tpp7

For example, the following commands compile and optimize the source program prog.cpp for the
Pentium Pro processor:

prompt> icc prog.cpp

prompt> icc -tpp6 prog.cpp

Exclusive Specialized Code (IA-32 only)
The -x{i|M|K|W} option specifies the minimum set of processor extensions required to exist on
processors on which you execute your program. The resulting code can contain unconditional use of the
specified processor extensions. When you use -x{i|M|K|W} the code generated by the compiler might
not execute correctly on IA-32 processors that lack the specified extensions.

The following example compiles the program myprog.cpp, using the i extension. This means the
program will require Intel® Pentium® Pro, Pentium II, or later, processors to execute.

prompt> icc -O2 tpp6 -xi -o myprog myprog.cpp

The resulting program, myprog, might not execute on a Pentium processor, but will execute on Pentium
Pro, Pentium II, Pentium III, and Pentium 4 processors.

Caution
 If a program compiled with -x{i|M|K|W} is executed on a processor that lacks the specified
extensions, it can fail with an illegal instruction exception, or display other unexpected behavior.

 63

-x Summary

To Optimize for... Use this option

Pentium Pro and Pentium II processors, which use
the CMOV, FCMOV, and FCOMI instructions

-xi

Pentium processors with MMX(TM) technology
instructions (does not imply i instructions).

-xM

Pentium III processor with the Streaming SIMD
Extensions, implies i and M instructions

-xK

Pentium 4 processor with the Streaming SIMD
Extensions 2, implies i, M, and K instructions

-xW

Specialized Code with -ax{i|M|K|W}
When the -ax{i|M|K|W} option is used, your compiled application includes processor-specific
extensions. When the compiled application is run, it detects the extensions supported by the processor:

! If the processor supports the specialized extensions, the extensions are executed.

! If the processor does not support the specialized extensions, the extensions are not executed,
and a more generic version of the code is executed instead.

Applications compiled with -ax{i|M|K|W} have increased code size, but increased performance over
standard optimized code.

Note
 Applications that you compile with this option will execute on any Intel 32-bit processor. Such
compilations are, however, subject to any exclusive specialized code restrictions you impose during
compilation with the -x option.

-ax Summary

To Optimize for... Use this option

Intel® Pentium® Pro and Pentium II processors, which use the CMOV and
FCMOV, and FCOMI instructions

-axi

Pentium processors with MMX(TM) technology instructions -axM

Pentium III processor with the Streaming SIMD Extensions, implies i and M
instructions

-axK

Pentium 4 processor with the Streaming SIMD Extensions 2, implies i, M, and
K instructions

-axW

 64

Checking for Performance Gain

The -ax{i|M|K|W} option directs the compiler to find opportunities to generate separate versions of
functions that use instructions supported on the specified processors. If the compiler finds such an
opportunity, it first checks whether generating a processor-specific version of a function results in a
performance gain. If this is the case, the compiler generates both a processor-specific version of a
function and a generic version of that function that will run on any IA-32 architecture processor.

At run time, one of the two versions is chosen to execute depending on the processor the program is
currently running on. In this way, the program can get large performance gains on more advanced
processors, while still working properly on older processors.

The disadvantages of using -ax{i|M|K|W} are:

! The size of the compiled binary increases because it contains both a processor-specific version
and a generic version of the code.

! The runtime checks to determine which code to run slightly affect performance.

Combining Processor Target and
Dispatch Options (IA-32 only)
The following table shows how to combine processor target and dispatch options to compile applications
with different optimizations and exclusions.

Optimize
exclusively
for...

...without
excluding...

Intel®
Pentium®
Processor

Pentium
Processor
with
MMX(TM)
technology

Pentium Pro
Processor

Pentium II
Processor

Pentium III
Processor

Pentium 4
Processor

Pentium
Processor

-tpp5 -tpp5 -tpp6 -tpp6 -tpp6 -tpp7

Pentium
Processor with
MMX(TM)
technology

N-A -tpp5, -xM -tpp6, -xM -tpp6, -xM -tpp6, -xM -tpp7, -xM

Pentium Pro
Processor

N-A N-A -tpp6,-xi -tpp6,-xi -tpp6,-xi -tpp7,-xi

Pentium II
Processor

N-A N-A N-A -tpp6,-xiM -tpp6,-xiM -tpp7,-xiM

Pentium III
Processor

N-A N-A N-A N-A -tpp6,-xK -tpp7,-xK

Pentium 4
Processor

N-A N-A N-A N-A N-A -tpp7, -xW

 65

Example of -x and -ax Combinations

If you wanted your application to

! always require the MMX(TM) technology extensions

! use Pentium Pro processor extensions when the processor it is run on offers it

! and to not use them when it does not

you could generate such an application with the following command line:

prompt>icc -O2 -xM -axi myprog.cpp

-xM above restricts the application to running on Pentium processors with MMX(TM) technology or later
processors. If you wanted to enable the application to run on earlier generations of Intel 32-bit processors
as well, you would use the following command line:

prompt>icc -O2 -axiM myprog.cpp

Note that this specifically optimized code will run only on processors that support both the i and M
extensions.

Interprocedural Optimizations

Interprocedural Optimizations (IPO)
Use -ip and -ipo to enable interprocedural optimizations (IPO), which allow the compiler to analyze
your code to determine where you can benefit from the optimizations listed in tables that follow.

IA-32 and Itanium(TM)-based applications

Optimization Affected Aspect of
Program

inline function expansion calls, jumps, branches, and
loops

interprocedural constant
propagation

arguments, global variables,
and return values

monitoring module-level static
variables

further optimizations, loop
invariant code

dead code elimination code size

propagation of function
characteristics

call deletion and call movement

multifile optimization affects the same aspects as -
ip, but across multiple files

 66

IA-32 applications only

Optimization Affected Aspect of
Program

passing arguments in registers calls, register usage

loop-invariant code motion further optimizations, loop
invariant code

Inline function expansion is one of the main optimizations performed by the interprocedural optimizer. For
function calls that the compiler believes are frequently executed, the compiler might decide to replace the
instructions of the call with code for the function itself.

With -ip, the compiler performs inline function expansion for calls to procedures defined within the
current source file. However, when you use -ipo to specify multifile IPO, the compiler performs inline
function expansion for calls to procedures defined in separate files.

The IPO optimizations are disabled by default.

Multifile IPO
Multifile IPO Overview
Multifile IPO obtains potential optimization information from individual program modules of a multifile
program. Using the information, the compiler performs optimizations across modules.

Building a program is divided into two phases: compilation and linkage. Multifile IPO performs different
work depending on whether the compilation, linkage or both are performed.

Compilation Phase

As each source file is compiled, multifile IPO stores an intermediate representation (IR) of the source
code in the object file, which includes summary information used for optimization.

By default, the compiler produces "mock" object files during the compilation phase of multifile IPO.
Generating mock files instead of real object files reduces the time spent in the multifile IPO compilation
phase. Each mock object file contains the IR for its corresponding source file, but no real code or data.
These mock objects must be linked using the -ipo option and icc, or using the xild tool.

Note

Failure to link "mock" objects with icc, -ipo, or xild will result in linkage errors. There are situations
where mock object files cannot be used. See Compilation with Real Object Files for more information.

Linkage Phase

When you specify -ipo, the compiler is invoked a final time before the linker. The compiler performs
multifile IPO across all object files that have an IR.

 67

 Note

The compiler does not support multifile IPO for static libraries (.a files). See Compilation with Real Object
Files for more information.

-ipo enables the driver and compiler to attempt detecting a whole program automatically. If a whole
program is detected, the interprocedural constant propagation, stack frame alignment, data layout and
padding of common blocks optimizations perform more efficiently, while more dead functions get deleted.
This option is safe.

-wp_ipo is a whole program assertion flag that tells the compiler the whole program is present. It
enables multi-file optimization with the whole program assumption that all user variables and user
functions seen in the compiled sources are referenced only within those sources. This is an unsafe
option. The user must guarantee that this assumption is safe.

Compilation with Real Object Files
In certain situations you might need to generate real object files with -ipo. To force the compiler to
produce real object files instead of "mock" ones with IPO, you must specify -ipo_obj in addition to -ipo.

Use of -ipo_obj is necessary under the following conditions:

! The objects produced by the compilation phase of -ipo will be placed in a static library without
the use of xild or xild -lib. The compiler does not support multifile IPO for static libraries, so
all static libraries are passed to the linker. Linking with a static library that contains "mock" object
files will result in linkage errors because the objects do not contain real code or data. Specifying -
ipo_obj causes the compiler to generate object files that can be used in static libraries.

! Alternatively, if you create the static library using xild or xild -lib, then the resulting static
library will work as a normal library.

! The objects produced by the compilation phase of -ipo might be linked without the -ipo option
and without the use of xild.

! You want to generate an assembly listing for each source file (using -S) while compiling with -
ipo. If you use

! -ipo with -S, but without -ipo_obj, the compiler issues a warning and an empty assembly file
is produced for each compiled source file.

Creating a Multifile IPO Executable
This topic describes how to enable multifile IPO for compilations targeted for IA-32 and Itanium(TM)-
based systems.

Procedure for IA-32 Systems

Compile your modules with -ipo as follows:

prompt>icc -ipo -c a.cpp b.cpp c.cpp

 68

Use -c to stop compilation after generating .o files. Each object file has the IR for the corresponding
source file. With preceding results, you can now optimize interprocedurally:

prompt>icc -ipo a.o b.o c.o

Multifile IPO is applied only to modules that have an IR, otherwise the object file passes to the link stage.
For efficiency, combine steps 1 and 2:

prompt>icc -ipo a.cpp b.cpp c.cpp

Procedure for Itanium(TM)-based Systems

Compile your modules with -ipo as follows:

prompt>ecc -ipo -c a.cpp b.cpp c.cpp

Use -c to stop compilation after generating .o files. Each object file has the IR for the corresponding
source file. With preceding results, you can now optimize interprocedurally:

prompt>ecc -ipo a.o b.o c.o

Multifile IPO is applied only to modules that have an IR, otherwise the object file passes to link stage. For
efficiency, combine steps 1 and 2:

prompt>ecc -ipo a.cpp b.cpp c.cpp

See Using Profile-Guided Optimization: An Example for a description of how to use multifile IPO with
profile information for further optimization.

Creating a Multifile IPO Executable
Using a Project Makefile
Most applications use a makefile or something similar to call a linker such as link. This is done
automatically when you compile and link with the compiler. Therefore, when -ipo must result in a
separate linking step, you must use the Intel linker driver xild instead, as follows:

prompt>xild -ipo link_command_line

-ipo optional; enables additional
IPO diagnostic output

link_command_line is your linker command line

Use of -ipo is optional with xild for Multifile IPO in providing additional diagnostic output. You can use
the xild syntax when you use a makefile instead of step 2 in the example Creating a Multifile IPO
Executable. The following example places the multifile IPO executable in file name:

prompt>xild -o:filename a.o b.o c.o

Note

The -ipo option can reorder object files and linker arguments on the command line. Therefore, if your
program relies on a precise order of arguments on the command line, -ipo can cause your program to
have incorrect behavior.

 69

Creating a Library from IPO Objects
Normally, libraries are created using a library manager such as lib. Given a list of objects, the library
manager will insert the objects into a named library to be used in subsequent link steps.

prompt>xiar user.a a.o b.o

A library named user.a will be created containing a.o and b.o.

If, however, the objects have been created using -ipo -c, then the objects will not contain a valid object
but only the intermediate representation (IR) for that object file.

prompt>icc -ipo -c a.cpp b.cpp

will produce a.o and b.o that only contains IR to be used in a link time compilation. The library manager
will not allow these to be inserted in a library.

In this case you must use the Intel library driver xild -lib. This program will invoke the compiler on the
IR saved in the object file and generate a valid object that can be inserted in a library.

prompt>xild -lib /out:user.a a.o b.o

Analyzing the Effects of Multifile IPO
The -ipo_c and -ipo_S options are useful for analyzing the effects of multifile IPO, or when
experimenting with multifile IPO between modules that do not make up a complete program.

Use the -ipo_c option to optimize across files and produce an object file. This option performs
optimizations as described for -ipo, but stops prior to the final link stage, leaving an optimized object file.
The default name for this file is ipo_out.o.

Use the -ipo_S option to optimize across files and produce an assembly file. This option performs
optimizations as described for -ipo, but stops prior to the final link stage, leaving an optimized assembly
file. The default name for this file is ipo_out.s.

Inline Expansion of Funtions
Inline Expansion of Library Functions
By default, the compiler inlines a number of standard C, C++, and math library functions. This usually
results in faster execution of your program.

Sometimes inline expansion of library functions can cause unexpected results. The inlined library
functions do not set the errno variable. So, in code that relies upon the setting of the errno variable,
you should use the -nolib_inline option, which turns off inline expansion of library functions. Also, if
one of your functions has the same name as one of the compiler's supplied library functions, the compiler
assumes that it is one of the latter and replaces the call with the inlined version. Consequently, if the
program defines a function with the same name as one of the known library routines, you must use the -
nolib_inline option to ensure that the program's function is the one used.

 70

Note

Automatic inline expansion of library functions is not related to the inline expansion that the compiler does
during interprocedural optimizations. For example, the following command compiles the program
sum.cpp without expanding the library functions, but with inline expansion from interprocedural
optimizations (IPO):

! IA-32 systems: prompt>icc -ip -nolib_inline sum.cpp

! Itanium(TM)-based systems: prompt>ecc -ip -nolib_inline sum.cpp

For details on IPO, see Interprocedural Optimizations.

GNU*-like Style Inline Assembly

The Intel® C++ Compiler supports GNU-like style inline assembly. The syntax is as follows:

asm-keyword [volatile-keyword] (asm-template [asm-interface]) ;

Syntax Element Description

asm-keyword asm statements begin with the keyword asm. Alternatively, either __asm or
__asm__ may be used for compatibility.

volatile-keyword If the optional keyword volatile is given, the asm is volatile. Two
volatile asm statements will never be moved past each other, and a
reference to a volatile variable will not be moved relative to a volatile asm.
Alternate keywords __volatile and __volatile__ may be used for
compatibility.

asm-template The asm-template is a C language ASCII string which specifies how to output
the assembly code for an instruction. Most of the template is a fixed string;
everything but the substitution-directives, if any, is passed through to the assembler.
The syntax for a substitution directive is a % followed by one or two characters. The
supported substitution directives are specified in a subsequent section.

asm-interface The asm-interface consists of three parts:
 1. an optional output-list
 2. an optional input-list
 3. an optional clobber-list
 These are separated by colon (:) characters. If the output-list is missing,
but an input-list is given, the input list may be preceded by two colons (::)to
take the place of the missing output-list. If the asm-interface is
omitted altogether, the asm statement is considered volatile regardless of
whether a volatile-keyword was specified.

output-list An output-list consists of one or more output-specs separated by
commas. For the purposes of substitution in the asm-template, each
output-spec is numbered. The first operand in the output-list is
numbered 0, the second is 1, and so on. Numbering is continuous through the
output-list and into the input-list. The total number of operands is
limited to 10 (i.e. 0-9).

input-list Similar to an output-list, an input-list consists of one or more
input-specs separated by commas. For the purposes of substitution in the
asm-template, each input-spec is numbered, with the numbers
continuing from those in the output-list.

 71

Syntax Element Description

clobber-list A clobber-list tells the compiler that the asm uses or changes a specific
machine register that is either coded directly into the asm or is changed implicitly by
the assembly instruction. The clobber-list is a comma-separated list of
clobber-specs.

input-spec The input-specs tell the compiler about expressions whose values may be
needed by the inserted assembly instruction. In order to describe fully the input
requirements of the asm, you can list input-specs that are not actually
referenced in the asm-template.

clobber-spec Each clobber-spec specifies the name of a single machine register that is
clobbered. The register name may optionally be preceded by a %. The following
are the valid register names: eax, ebx, ecx, edx, esi, edi, ebp, esp, ax, bx, cx, dx, si,
di, bp, sp, al, bl, cl, dl, ah, bh, ch, dh, st, st(1) – st(7), mm0 – mm7, xmm0 – xmm7,
and cc. It is also legal to specify “memory” in a clobber-spec. This prevents
the compiler from keeping data cached in registers across the asm statement.

Controlling Inline Expansion of User
Functions
The compiler enables you to control the amount of inline function expansion, with the options shown in
the following summary.

-ip_no_inlining This option is only useful if -ip is also specified. In this case, -
ip_no_inlining disables inlining that would result from the -ip
interprocedural optimizations, but has no effect on other interprocedural
optimizations.

Criteria for Inline Function Expansion
For a routine to be considered for inlining, it has to meet certain minimum criteria. There are criteria to be
met by the call-site, the caller, and the callee.

! The call-site is the site of the call to the function that might be inlined.

! The caller is the function that contains the call-site.

! The callee is the function being called that might be inlined.

Minimum call-site criteria:

! The number of actual arguments must match the number of formal arguments of the callee.

! The number of return values must be the same as the callees' number.

! The data types of the actual and formal arguments must be compatible.

! No multi-lingual inlining is allowed. Caller and callee must be written in the same source
language.

 72

Minimum criteria for the caller:

! At most, 2000 intermediate statements will be inlined into the caller from all the call-sites being
inlined to the caller. You can change this value by specifying the option -Qoption,c,-
ip_ninl_max_total_stats=new value

! The function must be called or have its address used if it is declared as static. Otherwise, it will be
deleted.

Minimum criteria for the callee:

! Routines that contain the following substrings in their names are not inlined: abort, alloca, denied,
err, exit, fail, fatal, fault, halt, init, interrupt, invalid, quit, rare, stop, timeout, trace, trap, and warn.
Once these criteria are met, the compiler picks the routines whose inline expansions provide the
greatest benefit to program performance. This is done using the following default heuristics.
When you use profile-guided optimizations, a number of other heuristics are used.

! The default heuristic focuses on call-sites in loops or calls to functions containing loops.

! When profile information is available, the focus changes to the most frequently executed call-
sites. Also, the default inline heuristic does not allow the inlining of functions with more than 230
intermediate statements, or the number specified by the option -Qoption,c,-
ip_ninl_max_stats.

! The default inline heuristic stops when it detects direct recursion.

! The default heuristic will always inline very small functions that meet the minimum inline criteria.
By default, functions with 15 or fewer intermediate statements are inlined. This limit can be
modified with the option -Qoption,c,-ip_ninl_min_stats.

Interprocedural Optimizations with -
Qoption
Using -Qoptions Specificers
Option Description

ip_args_in_regs=0 Disables the passing of arguments in registers. By default, external functions
can pass arguments in registers when called locally. Also by default, static
functions can pass arguments in registers, provided the address of the function
is not taken and the function does not use a variable number of arguments.
Affects IA-32 compilations only.

ip_ninl_max_calls=n This option changes the default number of call-sites to inline. Note that n call-
sites are inlined only if that many call-sites meet the minimum inline criteria. The
default for n is 100. For more information, see the Criteria for Inline Function
Expansion.

ip_ninl_max_stats=n Sets the allowable number of intermediate language statements and
expressions for a function that is expanded inline. The number n is a positive
integer. The number of intermediate language statements usually exceeds the
actual number of source language statements. The default is set to the
maximum number of 230.

 73

Option Description

ip_ninl_max_total_stats=n Each function can be expanded by a maximum of n intermediate language
statements and expressions, which is set by this option. The number n is a
positive integer. By default, each function can increase to a maximum of 2000
statements.

Using -ip with -Qoption
You can adjust the Intel® C++ Compiler's optimization for a particular application by experimenting with
memory and interprocedural optimizations.

Enter the -Qoption option with the applicable keywords to select particular inline expansions and loop
optimizations. The option must be entered with a -ip or -ipo specification, as follows:

-ip [-Qoption,tool,opts]

where:

tool is any of the components used to specify the various stages from preprocessing to compilation,
which include the linker and assembler.

opts is any of the applicable optimization specifiers for the compilation stage defined in tool.

You can also simultaneously refine memory and interprocedural optimizations by placing a particular
specifier for both options in one -Qoption entry. The compiler performs interprocedural optimizations
before performing memory-access optimizations.

Profile-guided Optimizations

Profile-guided Optimizations Overview
Profile-guided optimizations (PGO) tell the compiler which areas of an application are most frequently
executed. By knowing these areas, the compiler is able to be more selective and specific in optimizing the
application. For example, the use of PGO often allows the compiler to make better decisions about
function inlining, thereby increasing the effectiveness of interprocedural optimizations.

Profile-guided Optimizations
Methodology
PGO works best for code with many frequently executed branches that are difficult to predict at compile
time. An example is code that is heavy with error-checking in which the error conditions are false most of
the time. The "cold" error-handling code can be placed such that the branch is rarely mispredicted.
Eliminating the interleaving of "hot" and "cold" code improves instruction cache behavior. For example,
the use of PGO often allows the compiler to make better decisions about function inlining, thereby
increasing the effectiveness of interprocedural optimizations.

 74

PGO Phases

The PGO methodology requires three phases:

! instrumentation compilation and linking with -prof_gen[x]

! instrumented execution by running the executable

! feedback compilation with -prof_use

A key factor in deciding whether you want to use PGO lies in knowing which sections of your code are the
most heavily used. If the data set provided to your program is very consistent and it elicits a similar
behavior on every execution, then PGO can probably help optimize your program execution. However,
different data sets can elicit different algorithms to be called. This can cause the behavior of your program
to vary from one execution to the next.

In cases where your code behavior differs greatly between executions, PGO may not provide noticeable
benefits. You have to ensure that the benefit of the profile information is worth the effort required to
maintain up-to-date profiles.

PGO Environment Variables
The "Profile-Guided Optimization Environment Variables" table below describes environment values to
determine the directory in which to store dynamic information files or whether to overwrite pgopti.dpi.
Refer to your operating system documentation for instructions on how to specify environment values.

Profile-guided Optimization Environment Variables

Variable Description

PROF_DIR Specifies the directory in which dynamic information files are created. This variable
applies to all three phases of the profiling process.

PROF_NO_CLOBBER Alters the feedback compilation phase slightly. By default, during the feedback compilation
phase, the compiler merges the data from all dynamic information files and creates a new
pgopti.dpifile if .dyn files are newer than an existing pgopti.dpifile. When this variable is
set, the compiler does not overwrite the existing pgopti.dpi file. Instead, the compiler
issues a warning and you must remove the pgopti.dpi file if you want to use additional
dynamic information files.

Basic Profile-guided Optimization
Options
Only two options are used in a basic profile-guided optimization. These options are:

! -prof_gen[x]

! -prof_use

 75

Basic Profile-Guided Optimization Options

Option Description

-prof_gen[x] Instructs the compiler to produce instrumented code in your object files in preparation for
instrumented execution. NOTE: The dynamic information files are produced in phase 2 when
you run the instrumented executable.

-prof_use Instructs the compiler to produce a profile-optimized executable and merges available
dynamic information (.dyn) files into a pgopti.dpi file. If you perform multiple
executions of the instrumented program, -prof_use merges the dynamic information
files again and overwrites the previous pgopti.dpi file.

Using Profile-guided Optimization
The following is an example of the basic PGO phases:

Instrumentation Compilation and Linking

Use -prof_gen[x] to produce an executable with instrumented information.

IA-32 Systems

prompt>icc -prof_gen -c a1.cpp a2.cpp a3.cpp
prompt>icc a1.o a2.o a3.o

Itanium(TM)-based Systems
prompt>ecc -prof_gen -c a1.cpp a2.cpp a3.cpp
prompt>ecc a1.o a2.o a3.o

In place of the second command, you could use the linker directly to produce the instrumented program.

Instrumented Execution

Run your instrumented program with a representative set of data to create a dynamic information file.

prompt>a.out

The resulting dynamic information file has a unique name and .dyn suffix every time you run a.out. The
instrumented file helps predict how the program runs with a particular set of data. You can run the
program more than once with different input data.

Feedback Compilation

Compile and link the source files with -prof_use to use the dynamic information to optimize your
program according to its profile:

 IA-32 Systems

prompt>icc -prof_use -ipo a1.cpp a2.cpp a3.cpp

Itanium(TM)-based Systems

prompt>ecc -prof_use -ipo a1.cpp a2.cpp a3.cpp

 76

Besides the optimization, the compiler produces a pgopti.dpi file. You typically specify the default
optimizations (-O2) for phase 1, and specify more advanced optimizations (-ip or -ipo) for phase 3.
This example used -O2 in phase 1 and -O2 -ip in phase 3.

Note

The compiler ignores the -ip or the -ipo options with -prof_gen[x].

Function Order List Usage Guidelines
A function order list is a text file that specifies the order in which the linker should link the non-static
functions of your program. This improves the performance of your program by reducing paging and
improving code locality. Profile-guided optimizations support the generation of a function order list to be
used by the linker. The compiler determines the order using profile information.

To enable the Intel® C++ Compiler and proforder tool to generate a function order list, you must use
the -prof_gen[x] and -prof_dir options described in the table below.

Option Description

-prof_gen[x] Generates an instrumented object file and creates a static profile information file (.spi),
which contains source position information for the calls of each compiled function. This
information, combined with the dynamic profile information from the .dpi file, enables
optimized ordering of functions. When you use -prof_gen[x] instead of -
prof_gen[x], you can use the proforder tool to create a function order list for
the linker. However, -prof_gen[x] also requires more memory at runtime, produces
larger .dyn files, and disables execution of parallel make files.

-prof_dir dirname Specifies the directory where .dyn files are to be created. The default is the directory
where the program is compiled. The specified directory must already exist. You should
specify the same -prof_dir option for both the instrumentation and feedback
compilations. If you move the .dyn files, you need to specify the new path.

You will need to use the utilities profmerge and proforder described in Utilities for Profile-Guided
Optimization.

Use the following guidelines to create a function order list:

! The order list only affects the order of non-static functions.

! Do not use -prof_gen[x] to compile two files from the same program simultaneously. This
means that you cannot use the -prof_gen[x] option with parallel makefile utilities.

! You must compile to enable function-level linking. This option is active when you specify -O, -O1,
-O2, or -O3.

 77

Function Order List Example

Assume you have a C program that consists of files file1.c and file2.c and that you have created a
directory for the profile data files in c:/profdata. Do the following to generate and use a function order
list.

1. Compile your program by specifying -prof_gen[x] and -prof_dir: IA-32 Systems
prompt>icc -oMYPROG -prof_genx -prof_dir /home/usr/profdata file1.c
file2.c Itanium(TM)-based Systems prompt>ecc -oMYPROG -prof_genx -prof_dir
/home/usr/profdata file1.c file2.c

2. Run the instrumented program on one or more sets of input data prompt>./MYPROG

3. The program produces a .dyn file each time it is executed.

4. Merge the data from one or more runs of the instrumented program using the profmerge tool to
produce the pgopti.dpi file. prompt>profmerge -prof_dir /home/usr/profdata

5. Generate the function order list using the proforder tool. By default, the function order list is
produced in the file proford.txt. prompt>proforder -prof_dir
/home/usr/profdata -o MYPROG.txt

6. Compile your application with profile feedback by specifying the -prof_use and the /ORDER
option to the linker. Again, use the -prof_dir option to specify the location of the profile files.
IA-32 Systems prompt>icc -oMYPROG -prof_use -prof_dir /home/usr/profdata
file1.c file2.c -link /ORDER:@MYPROG.txt Itanium(TM)-based Systems
prompt>ecc -oMYPROG -prof_use -prof_dir /home/usr/profdata file1.c
file2.c -link /ORDER:@MYPROG.txt

Comparison of Function Order Lists and IPO Code Layout

The Intel C++ Compiler provides two methods of optimizing the layout of functions in the executable:

1. use of a function order list

2. use of -ipo

Each method has its advantages. A function order list, created with proforder, enables you to optimize
the layout of non-static functions; that is, external and library functions whose names are exposed to the
linker. The linker cannot directly affect the layout order for static functions because the names of these
functions are not available in the object files.

On the other hand, using -ipo allows you to optimize the layout of all static or extern functions compiled
with the Intel C++ Compiler. The compiler cannot affect the layout order for functions it does not compile,
such as library functions. The function layout optimization is performed automatically when IPO is active.

Function Order List Effects

Function Type Code Layout with -ipo Function Ordering with proforder

Static X No effect.

Extern X X

Library No effect. X

 78

Function Call to Dump Profile Data Explicitly

As part of the instrumented execution phase of profile-guided optimization, the instrumented program
writes profile data to the dynamic information file (.dyn file). The file is written after the instrumented
program returns normally from main() or calls the standard C exit function. For programs that do not
terminate normally, the _PGOPTI_Prof_Dump function is provided. During the instrumentation
compilation (-prof_gen), you can add a call to this function to your program. You should add the
following function prototype prior to the call:

void _cdec _PGOPTI_Prof_Dump(void);

Note

You must remove the call or comment it out prior to the feedback compilation with -prof_use.

Utilities for Profile-guided Optimization
The profmerge and proforder tools are used when generating a function order list.

The profmerge Tool
Use profmerge to merge dynamic profile information (.dyn) files. The compiler executes this tool
automatically during the feedback compilation phase when you specify -prof_use. You can also invoke
it as follows:

! IA-32 systems: prompt>profmerge [-prof_dir dir_name]

! Itanium(TM)-based systems: prompt>profmerge -em -p64 [-prof_dir dir_name]

This merges all .dyn files in the current directory or the directory specified by -prof_dir, and produces
the summary file pgopti.dpi.

The proforder Tool
Use proforder to generate a function order list for use with the /ORDER linker option. The syntax for
this tool is as follows:

prompt>proforder [-prof_dir dir_name] [-o order_file]

Argument Description

dir_name the directory containing the profile files (.dpi, .dyn, and .spi)

order_file the optional name of the function order list file. The default name is proford.txt.

The proforder utility is used as part of the feedback compilation phase to improve program
performance.

 79

High-level Language Optimizations
(HLO)

HLO Overview
High-level optimizations (HLO) exploit the properties of source code constructs, such as loops and arrays,
in the applications developed in high-level programming languages, such as Fortran and C++. They
include loop interchange, loop fusion, loop unrolling, loop distribution, unroll-and-jam, blocking, data
prefetch, scalar replacement, data layout optimizations and some others. The option that turns on the
high-level optimizations is -O3.

IA-32 and Itanium(TM)-based
applications

-O3 Enable -O2 option plus more aggressive optimizations, for example, loop
transformation and prefetching. -O3 optimizes for maximum speed, but
may not improve performance for some programs.

IA-32 applications

-O3 In addition, in conjunction with the vectorization options, -ax{M|K|W}
and -x{M|K|W}, -O3 causes the compiler to perform more
aggressive data dependency analysis than for -O2. This may result in
longer compilation times.

Loop Transformations
All these transformations are supported by data dependence. These techniques also include induction
variable elimination, constant propagation, copy propagation, forward substitution, and dead code
elimination. The loop transformation techniques include:

! loop normalization

! loop reversal

! loop interchange and permutation

! loop skewing

! loop distribution

! loop fusion

! scalar replacement

In addition to the loop transformations listed for both IA-32 and Itanium(TM) architectures above, the
Itanium(TM) architecture allows collapsing techniques.

 80

Loop Unrolling
You can unroll loops and specify the maximum number of times you want the compiler to do so.

How to Enable Loop Unrolling

You use the -unroll[n] option to unroll loops. n determines the maximum number of times for the
unrolling operation. This applies only to loops that the compiler determines should be unrolled. Omit n to
let the compiler decide whether to perform unrolling or not.

The following example unrolls a loop at most four times:

IA-32 Systems: prompt>icc -unroll4 a.cpp

How to Disable Loop Unrolling

Disable loop unrolling by setting n to 0.

The following example disables loop unrolling:

IA-32 Systems: prompt>icc -unroll0 a.cpp

Parallelization

Parallelization with OpenMP*
The OpenMP* C/C++ API has recently emerged as the de facto standard for shared memory, parallel
programming. It shelters you from having to deal with the low-level details of iteration partitioning, data
sharing, thread scheduling, and synchronization. The Intel® C++ Compiler supports the OpenMP* API
version 1.0 and performs code transformation to generate multithreaded code automatically as
determined by your OpenMP* directive annotations to the program.

Note

As with many advanced features of compilers, you must be sure to properly understand the functionality
of the auto-parallelization switches in order to use them effectively and avoid unwanted program
behavior.

 81

OpenMP* Parallelization Reference

Option Description Default Reference

-openmp Enables the parallelizer to generate multi-threaded
code based on the OpenMP* directives. The code
can be executed in parallel on both uniprocessor
and multiprocessor systems. The -openmp option
only works at an optimization level of -O2 (the
default) or higher.

OFF See OpenMP*
Standard Options

-openmp_report{0|1|2} Controls the output of diagnostic messages. The
level of the message output is controlled by 0, 1, or
2.
0 = no diagnostic information is displayed.
1 = display diagnostics indicating loops, regions,

and sections successfully parallelized (default).
2 = same as 1 plus diagnostics indicating master

construct, single construct, critical sections, order
construct, atomic directive, etc. successfully
handled.

OpenMP* Standard Options
For complete information on the OpenMP* standard, visit the http://www.openmp.org Web site. The Intel
Extensions to OpenMP* topic describes the extensions to the standard that have been added by Intel in
the Intel® C++ Compiler.

OpenMP* C/C++ Directives

An OpenMP* directive has the form:

#pragma omp directive [directive clause . . .]

The following tables list and describe OpenMP* directives and clauses.

Directive Description

Parallel Defines a parallel region.

For Identifies an iterative work-sharing construct that specifies a
region in which the iterations of the associated loop should be
executed in parallel.

sections Identifies a non-iterative work-sharing constuct that specifies a
set of constucts that are to be divided among threads in a team.

section Indicates that the associated code block should be executed in
parallel.

single Identifies a construct that specifies that the associated
structured block is executed by only one thread in the team.

parallel for A shortcut for a parallel region that contains a single for
directive.

parallel sections Provides a shortcut form for specifying a parallel region
containing a single sections directive.

 82

Directive Description

master Identifies a constuct that specifies a structured block that is
executed by the master thread of the team.

critical Identifies a construct that restricts execution of the associated
structured block to a single thread at a time.

barrier Synchronizes all the threads in a team.

atomic Ensures that a specific memory location is updated atomically.

flush Specifies a "cross-thread" sequence point at which the
implementation is required to ensure that all the threads in a
team have a consistent view of certain objects in memory.

threadprivate Makes the named file-scope or namespace-scope variables
specified private to a thread but file-scope visible within the
thread.

ordered The structured block following an ordered directive

Clauses Description

private Declares variables to be private to each thread in a team.

firstprivate A private copy of the private variable is created for each thread.
In addition, each new private object is initialized with the value of
the original object.

lastprivate A private copy of the private variable is created for each thread.
In addition, the last iteration's value of each lastprivate is
assigned to the original object.

shared Shares variables among all the threads in a team.

default Allows you to affect the data-scope attributes of variables.

reduction Performs a reduction on scalar variables.

nowait Specifies that threads that finish the loop early may continue
executing code after the loop without waiting for the remaining
threads to finish.

if If if(scalar_logical_expression) clause is
present, the enclosed code block is executed in parallel only if
the scalar_logical_expression is true.
Otherwise, the code block is serialized.

ordered Must be present when ordered directives are contained in the
dynamic extent of the for construct.

schedule Specifies how iterations of the loop are divided among the
threads of the team.

copyin Provides a mechanism to assign the same name to
threadprivate variables for each thread in the team
executing the parallel region.

 83

OpenMP* Environment Variables

Variable Description Default

OMP_SCHEDULE Sets the run-time schedule
type and chunk size.

STATIC

OMP_NUM_THREADS Sets the number of threads to
use during execution.

Number of processors

OMP_DYNAMIC Enables or disables the
dynamic adjustment of the
number of threads.

FALSE

OMP_NESTED Enables or disables nested
parallelism.

FALSE

OpenMP* Run Time Library Routines
OpenMP* provides several run time library routines to assist you in managing your program in parallel
mode. Many of these run time library routines have corresponding environment variables that can be set
as defaults. The run time library routines allow you to dynamically change these factors to assist in
controlling your program. In all cases, a call to a run time library routine overrides any corresponding
environment variable.

The following table specifies the interface to these routines. The names for the routines are in user
namespace. omp.h is provided in the include directory of your compiler installation. There are definitions
for two different locks, omp_lock_t and omp_nest_lock_t, which are used by the functions in the
table.

Function Description

void omp_set_num_threads(int
num_threads)

Dynamically set the number of threads to use for this
region.

int omp_get_num_threads(void) Determine what the current number of threads is that is
allowed to execute a region.

int omp_get_max_threads(void) Obtains the maximum number of threads ever allowed
with this OpenMP* implementation.

int omp_get_thread_num(void) Determines the unique thread number of the thread
currently executing this section of code.

int omp_get_num_procs(void) Determines the number of processors on the current
machine.

int omp_in_parallel(void) Determines if the region of code the function is called in
is running in parallel. Returns non-zero if inside a
parallel region, zero otherwise.

void omp_set_dynamic(int
dynamic_threads)

Enable or disable dynamic adjustment of the number of
threads used to execute a parallel region. If
dynamic_threads is non-zero, dynamic threads
are enabled. If dynamic_threads is zero,
dynamic threads are disabled.

 84

Function Description

int omp_get_dynamic(void) Determine whether dynamic adjustment of the number
of threads executing a region is supported. Returns
non-zero if dynamic adjustment is supported, zero
otherwise.

void omp_set_nested(int nested) Enable or disable nested parallelism. If parameter is
non-zero, enable. Default is disabled.

int omp_get_nested(void) Determine whether nested parallelism is currently
enabled or disabled. Function returns non-zero if nested
parallelism is supported, zero otherwise.

void omp_init_lock(omp_lock_t *lock) Initialize a unique lock and set lock to point to it.

void omp_destroy_lock(omp_lock_t
*lock)

Disassociate lock from any locks.

void omp_set_lock(omp_lock_t *lock) Force the executing thread to wait until the lock
associated with lock is available. The thread is granted
ownership of the lock when it becomes available.

void omp_unset_lock(omp_lock_t *lock) Release executing thread from ownership of lock
associated with lock. lock must be initialized via
omp_init_lock(), and behavior undefined if
executing thread does not own the lock associated with
lock.

int omp_test_lock(omp_lock_t *lock); Attempt to set lock associated with lock. If successful,
return non-zero. lock must be initialized via
omp_init_lock().

void
omp_init_nest_lock(omp_nest_lock_t
*lock)

Initialize a unique nested lock and set lock to point to it.

void
omp_destroy_nest_lock(omp_nest_lock_t
*lock)

Disassociate the nested lock lock from any locks.

void omp set nest lock(omp nest lock t
*lock)

Force the executing thread to wait until the lock
associated with lock is available. The thread is granted
ownership of the lock when it becomes available

void
omp_unset_nest_lock(omp_nest_lock_t
*lock)

Release executing thread from ownership of lock
associated with lock if count is zero. lock must be
initialized via omp_init_nest_lock().
Behavior is undefined if executing thread does not own
the lock associated with lock.

int omp_test_nest lock(omp nest lock t
*lock)

Attempt to set lock associated with lock. If successful,
return nesting count, otherwise return zero. lock must
be initialized via omp_init_lock().

 85

Intel Extensions to OpenMP*
For complete information on the OpenMP* standard, visit the Web site http://www.openmp.org. This topic
describes the extensions to the standard that have been added by Intel in the Intel® C++ Compiler.

Environment Variables

Environment Variable Description

KMP_STACKSIZE Used to set the number of bytes that will be allocated for each parallel thread to use as its private
stack.

KMP_BLOCKTIME Used to set the integer value of time, in milliseconds, that the libraries wait after completing the
execution of a parallel region before putting threads to sleep.

KMP_SPIN_COUNT Used to help fine-tune the critical section.

Thread-level malloc()

The Intel C++ Compiler implements an extension to the OpenMP* run-time library to allow threads to
allocate memory from a heap local to each thread.

The memory allocated by these routines must also be freed by these routines. While it is legal for the
memory to be allocated by one thread and freed by a different thread, this mode of operation has a slight
performance penalty.

The interface is identical to the malloc() interface except the entry points are prefixed with kmp_, as
shown below:

#include omp.h
void * kmp_malloc(size_t);
void * kmp_calloc(size_t, size_t);
void * kmp_realloc(void *, size_t);
void kmp_free(void *);

Vectorization (IA-32 only)

Vectorization Overview
This section provides guidelines, option descriptions, and examples for Intel® C++ Compiler vectorization
on IA-32 systems only. The following list summarizes this section's contents.

! A quick reference of vectorization functionality and features

! Descriptions of compiler switches to control vectorization

! Descriptions of the C++ language features to control vectorization

 86

! Discussion and general guidelines on vectorization levels:

o Automatic vectorization

o Vectorization with user intervention

o Examples demonstrating typical vectorization issues and resolutions

Loop Structure Coding Background
The goal of vectorizing compilers is to exploit single-instruction multiple data (SIMD) processing
automatically. However, the realization of this goal has been difficult to achieve. The reason for the
difficulty in achieving vectorization is due to two major factors:

1. Style -- The style in which you write source code can inhibit optimization. For example, a
common problem with global pointers is that they often prevent the compiler from being able to
prove two memory references are distinct locations. Consequently, this prevents certain
reordering transformations.

2. Hardware Restrictions -- The compiler is limited by restrictions imposed by the underlying
hardware. In the case of Streaming SIMD Extensions, the vector memory operations are limited
to stride-1 accesses with a preference to 16-byte aligned memory references. This means that if
the compiler abstractly recognizes a loop as vectorizable, it still might not vectorize it to a distinct
target architecture.

Many stylistic issues that prevent the automatic parallelization by vectorization compilers are found in
loop structures. The ambiguity arises from the complexity of the keywords, operators, data references,
and memory operations within the loop bodies.

However, by understanding these limitations and by knowing how to interpret diagnostic messages, you
can modify your program to overcome the known limitations and enable effective vectorizations --
improving your application's performance. The following sections summarize the capabilities and
restrictions of the vectorizer with respect to loop structures.

Vectorization Key Programming
Guidelines
Review these guidelines, restrictions, and examples, and check them against your code to eliminate
ambiguities that prevent the compiler from achieving optimal vectorization.

Guidelines for loop bodies:

! Use straight-line code (a single basic block)

! Use vector data only; that is, arrays and invariant expressions on the right hand side of
assignments. Array references can appear on the left hand side of assignments.

! Use only assignment statements

 87

Avoid the following in loop bodies:

! Function calls

! Unvectorizable operations

! Mixing vectorizable types in the same loop

! Data-dependent loop exit conditions

Preparing Your Code for Vectorization

To make your code vectorizable, you will often need to make some changes to your loops. However, you
should make only the changes needed to enable vectorization and no others. In particular, you should
avoid these common changes:

! Do not unroll your loops, the compiler does this automatically.

! Do not decompose one loop with several statements in the body into several single-statement
loops.

Data Dependence
Data dependence relations represent the required ordering constraints on the operations in serial loops.

Because vectorization rearranges the order in which operations are executed, any auto-vectorizer must
have at its disposal some form of data dependence analysis.

The "Data-dependent Loop" example shows some code that exhibits data dependence. The value of
each element of an array is dependent on itself and its two neighbors.

Data-dependent Loop

The loop in the "Data-dependent Loop" example above is not vectorizable because the write to the
current element data[i] is dependent on the use of the preceding element data[i-1], which has already
been written to and changed in the previous iteration. To see this, look at the access patterns of the array
for the first two iterations as shown in the following example.

 88

Data Dependence Vectorization Patterns

In the normal sequential version of the loop shown, the value of data[1] read from during the second
iteration was written to in the first iteration. For vectorization, the iterations must be done in parallel,
without changing the semantics of the original loop.

Data Dependence Theory

Data dependence analysis involves finding the conditions under which two memory accesses may
overlap. Given two references in a program, the conditions are defined by:

! Whether the referenced variables may be aliases for the same (or overlapping) regions in
memory,

! For array references, the relationship between the subscripts.

For array references, the Intel® C++ Compiler's data dependence analyzer is organized as a series of
tests that progressively increase in power as well as time and space costs. First, a number of simple tests
are performed in a dimension-by-dimension manner, since independence in any dimension will exclude
any dependence relationship. Multi-dimensional arrays references that may cross their declared
dimension boundaries can be converted to their linearized form before the tests are applied. Some of the
simple tests used are the fast GCD test, proving independence if the greatest common divisor of the
coefficients of loop indices cannot evenly divide the constant term, and the extended bounds test, which
tests potential overlap for the extreme values of subscript expressions.

If all simple tests fail to prove independence, the compiler will eventually resort to a powerful hierarchical
dependence solver that uses Fourier-Motzkin elimination to solve the data dependence problem in all
dimensions.

Loop Constructs
Loops can be formed with the usual for and while-do, or repeat-until constructs or by using a goto or a
label. However, the loops must have a single entry and a single exit to be vectorized.

The "Loop Construct Usage" section shows correct and incorrect usages of loop constructs.

 89

Loop Construct Usage

Correct Usage

Incorrect Usage

Loop Exit Conditions
Loop exit conditions determine the number of iterations that a loop executes. For example, fixed indexes
in for loops determine the iterations. The loop iterations must be countable; that is, the number of
iterations must be expressed as one of the following:

! a constant

! a linear function of an integer variable

! a loop invariant term

Loops whose exit depends on computation are not countable.

 90

Loop Usage Comparisons

Correct Usage for Countable Loop:

Correct Usage for Countable Loop:

Incorrect Usage for Non-Countable Loop:

Types of Loops Vectorized
For integer loops, MMX(TM) technology and Streaming SIMD Extensions provide SIMD instructions for
most arithmetic and logical operators on 32-bit, 16-bit, and 8-bit integer data types. Vectorization may
proceed if the final precision of integer wrap-around arithmetic will be preserved. A 32-bit shift-right
operator, for instance, is not vectorized if the final stored value is a 16-bit integer. Also, note that because
the MMX(TM) instructions and Streaming SIMD Extensions instruction sets are not fully orthogonal (byte
shifts, for instance, are not supported), not all integer operations can actually be vectorized.

For loops that operate on 32-bit single-precision and 64-bit double-precision floating-point numbers, the
Streaming SIMD Extensions provide SIMD instructions for the arithmetic operators +, -, *, and /. In
addition, the Streaming SIMD Extensions provide SIMD instructions for the binary MIN, MAX, and unary
SQRT operators. SIMD versions of several other mathematical operators (like the trigonometric functions
SIN, COS, TAN) are supported in software in a vector mathematical runtime library that is provided with
the Intel® C++ Compiler..

 91

Stripmining and Cleanup
The compiler automatically strip-mines your loop and generates a cleanup loop. This means you do not
need to unroll your loops, and, in most cases, this will also enable more vectorization.

Strip Mining and Cleanup Loops

Statements in the Loop Body
The vectorizable operations are different for floating point and integer data.

Floating-point Array Operations

The statements within the loop body may contain float operations (typically on arrays). Arithmetic
operations are limited to addition, subtraction, multiplication, division, negation, square root, max, and
min.

Integer Array Operations

The statements within the loop body may contain char, unsigned char, short, unsigned short, int, and
unsigned int. Calls to functions such as sqrt and fabs are also supported. Arithmetic operations are limited
to addition, subtraction, bitwise AND, OR, and XOR operators, division (16-bit only), multiplication (16-bit
only), min, and max.

Other Integer Operations

You can mix data types only if the conversion can be done without a loss of precision. Some example
operators where you can mix data types are multiplication, shift, or unary operators.

Other Datatypes

No statements other than the preceding floating point and integer operations are allowed. In particular,
note that the special __m64 and __m128 datatypes are not vectorizable.

 92

No Function Calls

The loop body cannot contain any function calls. Use of the Streaming SIMD Extensions intrinsics (
_mm_add_ps) are not allowed.

Vectorizable Data References
For any data reference, either as an array element or pointer reference, take care to ensure that there are
no potential dependence or alias constraints preventing vectorization; intuitively, an expression in one
iteration must not depend on the value computed in a previous iteration and pointer variables must
provably point to distinct locations. Use of the ivdep pragma and the restrict keyword can be used to tell
the compiler to ignore assumed dependences. See also the examples in the Data Alignment section.

Arrays

Vectorizable data in a loop may be expressed as uses of array elements, provided that the array
references are not non-unit stride or loop invariant. Non-unit stride references are not vectorized by
default; the vector pragma can be used to override this. The compiler uses an efficiency heuristic that
decides whether the vectorization of non-unit strides is profitable (checks number of units vs. non-units).

Pointers

Vectorizable data can also be expressed using pointers, subject to the same constraints as uses of array
elements: You cannot vectorize references that are non-unit stride or loop invariant.

Invariants

Vectorizable data can also include loop invariant references on the right hand inside an expression, either
as variables or numeric constants. The loop in the "Vectorizable Loop Invariant Reference" example will
vectorize:

Vectorizable Loop Invariant Reference

If vectorizable data is provably aligned, the compiler will generate aligned instructions. This is the case for
locally declared data and data declared using the alignment declspec. Where data alignment is not
known, unaligned references will be used unless a pragma or command-line switch is used to override
this as described in Alignment with declspec.

Common Errors in Making Code Vectorization-Compatible

To make your code vectorizable, you will often need to make some changes to your loops. However, you
should make only the changes needed to enable vectorization and no others. In particular, you should
avoid these common changes:

! Do not unroll your loops, the compiler does this automatically.

! Do not decompose one loop with several statements in the body into several single-statement
loops.

 93

! Do not manually insert calls to EMMS-for example, via the _m_empty intrinsic, after the loops to
be vectorized. The compiler does this by default when MMX(TM) instructions are used.

Vectorization Examples
This section contains a few simple examples of some common issues in vector programming.

Argument Aliasing: A Vector Copy

The loop in the "Vectorizable Copy Due to Unproven Distinction" example, a vector copy operation,
vectorizes because the compiler can prove dest[i] and src[i] are distinct.

Vectorizable Copy Due to Unproven Distinction

The restrict keyword in the "Using restrict to Prove Vectorizable Distinction" example indicates that the
pointers refer to distinct objects. Therefore, the compiler allows vectorization without generation of multi-
version code.

Using restrict to Prove Vectorizable Distinction

Data Alignment

A 16-byte or greater data structure or array should be aligned so that the beginning of each structure or
array element is aligned in a way that its base address is a multiple of sixteen.

The "Misaligned Data Crossing 16-Byte Boundary" figure shows the effect of a data cache unit (DCU)
split due to misaligned data. The code loads the misaligned data across a 16-byte boundary, which
results in an additional memory access causing a six- to twelve-cycle stall. You can avoid the stalls if you
know that the data is aligned and you specify to assume alignment.

 94

Misaligned Data Crossing 16-Byte Boundary

For example, if you know that elements a[0] and b[0] are aligned on a 16-byte boundary, then the
following loop can be vectorized with the alignment option on (#pragma vector aligned):

Alignment of Pointers is Known

After vectorization, the loop is executed as shown in the "Vector and Scalar Clean-up Interations" figure.

Vector and Scalar Clean-up Iterations

Both the vector iterations a[0:3] = b[0:3]; and a[4:7] = b[4:7]; can be implemented with aligned
moves if both the elements a[0] and b[0] (or, likewise, a[4] and b[4]) are 16-byte aligned.

Caution

If you specify the vectorizer with incorrect alignment options, the compiler will generate unexpected
behavior. Specifically, using aligned moves on unaligned data, will result in an illegal instruction
exception!

Data Alignment Examples

The "Loop Unaligned Due to Unknown Variable Value at Compiler Time" example contains a loop that
vectorizes but only with unaligned memory instructions. The compiler can align the local arrays, but
because lb is not known at compile-time, the correct alignment cannot be determined.

 95

Loop Unaligned Due to Unknown Variable Value at Compile Time

If you know that lb is a multiple of 4, you can align the loop with #pragma vector aligned as shown in the
"Alignment Due to Assertion of Variable as Multiple of 4" example.

Alignment Due to Assertion of Variable as Multiple of 4

The use of the assertion checks that the constraint lb is a multiple of 4 is satisfied.

 96

Loop Interchange and Subscripts: Matrix
Multiply
Matrix multiplication is commonly written as shown in the example below:

Typical Matrix Multiplication

The use of b[k][j], is not a stride-1 reference and therefore will not normally be vectorizable. If the
loops are interchanged, however, all the references will become stride-1 as shown in the "Matrix
Multiplication With Stride-1" example.

Caution

Interchanging is not always possible because of dependencies, which can lead to different results.

Matrix Multiplication With Stride-1

For Additional Information
The following sources might be useful in helping you understand basic vectorization terminology and
technology:

! High Performance Computing (2nd edition), Kevin Dowd (O'Reilly and Associates, 1998), ISBN
156592312X

! Intel Architecture Optimization Manual, Intel Corporation, order number, 730795.

! Dependence Analysis, Utpal Banerjee (A Book Series on Loop Transformations for Restructuring
Compilers). Kluwer Academic Publishers. 1997.

 97

! The Structure of Computers and Computation: Volume I, David J. Kuck. John Wiley and Sons,
New York, 1978.

! Loop Transformations for Restructuring Compilers: The Foundations, Utpal Banerjee (A Book
Series on Loop Transformations for Restructuring Compilers). Kluwer Academic Publishers.
1993.

! Loop Parallelization, Utpal Banerjee (A Book Series on Loop Transformations for Restructuring
Compilers). Kluwer Academic Publishers. 1994.

! High Performance Compilers for Parallel Computers, Michael J. Wolfe. Addison-Wesley,
Redwood City. 1996.

! Supercompilers for Parallel and Vector Computers, H. Zima. ACM Press, New York, 1990.

Libraries

Libraries Overview
The Intel® C++ Compiler uses the GNU* C Library and Dinkumware* C++ Library. These libraries are
documented at the following Internet locations:

GNU C Library

http://www.gnu.org/manual/glibc-2.2.3/html_chapter/libc_toc.html

Dinkumware C++ Library

http://www.dinkumware.com/htm_cpl/lib_cpp.html

Default Libraries
The compiler allows you to use all the standard run-time libraries. By default, the compiler automatically
expands a number of standard C, C++, and math library functions. For more information, see Inline
Expansion of Library Functions. The following libraries are supplied.

Library Description

libc.a GNU* C library (included with Red Hat* Linux*)

libguide.a for OpenMP* implementation

libsvml.a short vector math library

libirc.a Intel support library for PGO and CPU dispatch

libimf.a Intel math library

libcprts.a Dinkumware C++ Library

libcxa.a Intel support library for EH and RTTI

 98

If you want to link your program with alternate or additional libraries, specify them at the end of the
command line. For example, to compile and link hello.cpp with mylib.a, use the following command:

! IA-32 systems: prompt>icc -ohello hello.cpp mylib.a

! Itanium(TM)-based systems: prompt>ecc -ohello hello.cpp mylib.a

The mylib.a library appears prior to the libimf.a library in the command line for the LINK linker.

Math Libraries

In the compiler package, you received the Intel math library, libimf.a, which contains optimized
versions of the math functions in the standard C run-time library. The functions in the library are optimized
for program execution speed on the Pentium® processor.

To enable the optimized math library, the installation creates a directory for libimf.a and adds the new
directory path to the LIB variable. Intel recommends you keep libimf.a in the first directory specified in
the path.

Enabling the Floating-point Division Check

The -fdiv_check option enables a software patch on IA-32 for the floating-point division flaw that exists on
some steppings of the Pentium processor. This patch ensures correct precision of your floating-point
division calculations.

Note

The -fdiv_check option is off by default when you specify -tpp5.

When you enable -fdiv_check, the compiler links your programs with libm_chk.a instead of
libimf.a. As a result, you enable the support routines to fix the floating-point division flaw for the
affected functions.

Use-fdiv_check- to disable the software patch for the floating-point division flaw regardless of
whatever other options are specified. When you specify -fdiv_check-, the compiler links with
libimf.a and uses simple hardware instructions for floating-point division and affected intrinsics.
Similarly, specify -fdiv_check- to disable the special version of the optimized math library
(libm_chk.a). The -fdiv_check- option is the default.

Intel® Shared Libraries
The Intel® C++ Compiler (both IA-32 and Itanium(TM) compilers) links the libraries statically at link time
and dynamically at run time, the latter as dynamically-shared objects (DSO).

By default, the libraries are linked as follows:

! C++, math, and libcprts.a libraries are linked at link time, that is, statically.

! libcxa.so is linked dynamically to conform to C++ ABI.

! GNU* and Linux* system libraries are linked dynamically.

 99

Advantages of This Approach

This approach

! Enables to maintain the same model for both IA-32 and Itanium compilers.

! Provides a model consistent with the Linux model where system libraries are dynamic and application
libraries are static.

! The users have the option of using dynamic versions of our libraries to reduce the size of their
binaries if desired.

! The users are licensed to distribute Intel-provided libraries.

The libraries libcprts.a and libcxa.so are C++ language support libraries used by Fortran when
Fortran includes code written in C++.

Shared Library Options

The main options used with shared libraries are -i_dynamic and -shared.

The -i_dynamic option can be used to specify that all Intel-provided libraries should be linked
dynamically. The comparison of the following commands illustrates the effects of this option.

1. prompt>icc myprog.cpp

This command produces the following results (default):

! C++, math, libirc.a, and libcprts.a libraries are linked statically (at link time).

! Dynamic version of libcxa.so is linked at run time.

The statically linked libraries increase the size of the application binary, but do not need to be installed on
the systems where the application runs.

2. prompt>icc -i_dynamic myprog.cpp

This command links all of the above libraries dynamically. This has the advantage of reducing the size of
the application binary, but it requires all the dynamic versions installed on the systems where the
application runs.

The -shared option instructs the compiler to build a Dynamic Shared Object (DSO) instead of an
executable. For more details, refer to the ld man page documentation.

Managing Libraries
The LD_LIBRARY_PATH environment variable contains a semicolon-separated list of directories in which
the linker will search for library (.a) files. If you want the linker to search additional libraries, you can add
their names to the command line, to a response file, or to the configuration file. In each case, the names
of these libraries are passed to the linker before the names of the Intel libraries that the driver always
specifies. For more information on adding library names to the response file and the configuration file, see
Response Files and Configuration Files.

 100

To specify a library name on the command line, you must first add the library's path to the LIB
environment variable. Then, to compile file.cpp and link it with the library mylib.a, enter the following
command:

! IA-32 systems: prompt>icc file.cpp mylib.a

! Itanium(TM)-based systems: prompt>ecc file.cpp mylib.a

The compiler passes file names to the linker in the following order:

1. the object file

2. any objects or libraries specified on the command line, in a response file, or in a configuration file

3. the libimf.a library

Diagnostics and Messages

Diagnostic Overview
This section describes the various messages that the compiler produces. These messages include the
sign-on message and diagnostic messages for remarks, warnings, or errors. The compiler always
displays any diagnostic message, along with the erroneous source line, on the standard output.

This section also describes how to control the severity of diagnostic messages.

Language Diagnostics
These messages describe diagnostics that are reported during the processing of the source file. These
diagnostics have the following format:

filename (linenum): type [#nn]: message

filename Indicates the name of the
source file currently being
processed.

linenum Indicates the source line where
the compiler detects the
condition.

type Indicates the severity of the
diagnostic message: warning,
remark, error, or catastrophic
error.

[#nn] The number assigned to the
error (or warning) message.
Hard errors or catastrophes are
not assigned a number.

message Describes the diagnostic.

 101

The following is an example of a warning message:

tantst.cpp(3): warning #328: Local variable "increment" never used.

The compiler can also display internal error messages on the standard error. If your compilation produces
any internal errors, contact your Intel representative. Internal error messages are in the following form:

FATAL COMPILER ERROR: message

Suppressing Warning Messages with lint
Comments
The UNIX lint program attempts to detect features of a C or C++ program that are likely to be bugs,
non-portable, or wasteful. The compiler recognizes three lint-specific comments:

1. /*ARGSUSED*/

2. /*NOTREACHED*/

3. /*VARARGS*/

Like the lint program, the compiler suppresses warnings about certain conditions when you place these
comments at specific points in the source.

Suppressing Warning Messages or
Enabling Remarks
Use the -w or -Wn option to suppress warning messages or to enable remarks during the preprocessing
and compilation phases. You can enter the option with one of the following arguments:

Option Description

-w0,-w Displays error messages only. Both -w0 and -w display exactly the same
messages.

-w1,-w2 Displays warnings and error messages. Both -w1 and -w2 display exactly
the same messages.The compiler uses this level as the default.

-w3 Displays warnings and error messages. This option displays more warnings
than do -w1 and -w2.

-w4 Displays remarks, warnings, and error messages.

For some compilations, you might not want warnings for known and benign characteristics, such as the
K&R C constructs in your code. For example, the following command compiles newprog.cpp and
displays compiler errors, but not warnings:

! IA-32 system: prompt>icc -W0 newprog.cpp

! Itanium(TM)-based system: prompt>ecc -W0 newprog.cpp

 102

Limiting the Number of Errors Reported
Use the -wnn option to limit the number of error messages displayed before the compiler aborts. By
default, if more than 100 errors are displayed, compilation aborts.

Option Description

-wnn Limit the number of error
diagnostics that will be
displayed prior to aborting
compilation to n . Remarks
and warnings do not count
towards this limit.

For example, the following command line specifies that if more than 50 error messages are displayed
during the compilation of a.cpp, compilation aborts.

! IA-32 systems: prompt>icc -wn50 -c a.cpp

! Itanium(TM)-based systems: prompt>ecc -wn50 -c a.cpp

Remark Messages
These messages report common, but sometimes unconventional, use of C or C++. The compiler does not
print or display remarks unless you specify level 4 for the -W option, as described in Suppressing Warning
Messages or Enabling Remarks. Remarks do not stop translation or linking. Remarks do not interfere with
any output files. The following are some representative remark messages:

! function declared implicitly

! type qualifiers are meaningless in this declaration

! controlling expression is constant

 103

Reference Information

Compiler Limits

Compiler Limits
The Compiler Limits table below shows the size or number of each item that the compiler can process. All
capacities shown in the table are tested values; the actual number can be greater than the number
shown.

Item Tested Values

Control structure nesting (block nesting) 512

Conditional compilation nesting 512

Declarator modifiers 512

Parenthesis nesting levels 512

Significant characters, internal identifier 2048

External identifier name length 64K

Number of external identifiers/file 128K

Number of identifiers in a single block 2048

Number of macros simultaneously defined 128K

Number of parameters to a function call 512

Number of parameters per macro 512

Number of characters in a string 128K

Bytes in an object 512K

Include file nesting depth 512

Case labels in a switch 32K

Members in one structure or union 32K

Enumeration constants in one enumeration 8192

Levels of structure nesting 320

 104

Intel C++ Intrinsics Reference

Overview of the Intrinsics
Types of Intrinsics
The Intel® Pentium® 4 processor and other processors have instructions to enable development of
optimized multimedia applications. The instructions are implemented through extensions to previously
implemented instructions. This technology uses the single instruction, multiple data (SIMD) technique. By
processing data elements in parallel, applications with media-rich bit streams are able to significantly
improve performance using SIMD instructions. The Itanium(TM) processor also supports these
instructions.

The most direct way to use these instructions is to inline the assembly language instructions into your
source code. However, this can be time-consuming and tedious, and assembly language inline
programming is not supported on all compilers. Instead, Intel provides easy implementation through the
use of API extension sets referred to as intrinsics.

Intrinsics are special coding extensions that allow using the syntax of C function calls and C variables
instead of hardware registers. Using these intrinsics frees programmers from having to program in
assembly language and manage registers. In addition, the compiler optimizes the instruction scheduling
so that executables run faster.

In addition, the native intrinsics for the Itanium processor give programmers access to Itanium instructions
that cannot be generated using the standard constructs of the C and C++ lanugages. The Intel® C++
Compiler also supports general purpose intrinsics that work across all IA-32 and Itanium-based platforms.

For more information on intrinsics, please refer to the following publications:

Intel Architecture Software Developer's Manual, Volume 2: Instruction Set Reference Manual, Intel
Corporation, doc. number 243191.

Itanium(TM) Architecture Software Developer's Manual Vol. 3: Instruction Set Reference, Intel
Corporation, doc. number 245319-001

Itanium(TM)-based Application Developer's Architecture Guide, Intel Corporation

Intrinsics Availability on Intel Processors

Processors: MMX(TM)
Technology
Intrinsics

Streaming
SIMD
Extensions

Streaming
SIMD
Extensions 2

Itanium
Processor
Instructions

Itanium Processor X X N/A X

Pentium 4
Processor

X X X N/A

Pentium III
Processor

X X N/A N/A

 105

Processors: MMX(TM)
Technology
Intrinsics

Streaming
SIMD
Extensions

Streaming
SIMD
Extensions 2

Itanium
Processor
Instructions

Pentium II
Processor

X N/A N/A N/A

Pentium with
MMX(TM)
Technology

X N/A N/A N/A

Pentium Pro
Processor

N/A N/A N/A N/A

Pentium
Processor

N/A N/A N/A N/A

Benefits of Using Intrinsics
The major benefit of using intrinsics is that you now have access to key features that are not available
using conventional coding practices. Intrinsics enable you to code with the syntax of C function calls and
variables instead of assembly language. Most MMX(TM) technology, Streaming SIMD Extensions, and
Streaming SIMD Extensions 2 intrinsics have a corresponding C intrinsic that implements that instruction
directly. This frees you from managing registers and enables the compiler to optimize the instruction
scheduling.

The MMX technology and Streaming SIMD Extension instructions use the following new features:

! New Registers--Enable packed data of up to 128 bits in length for optimal SIMD processing.

! New Data Types--Enable packing of up to 16 elements of data in one register.

The Streaming SIMD Extensions 2 intrinsics are defined only for IA-32, not for Itanium(TM)-based
systems. Streaming SIMD Extensions 2 operate on 128 bit quantities–2 64-bit double precision floating
point values. The Itanium architecture does not support parallel double precision computation, so
Streaming SIMD Extensions 2 are not implemented on Itanium-based systems.

New Registers

A key feature provided by the architecture of the processors are new register sets. The MMX instructions
use eight 64-bit registers (mm0 to mm7) which are aliased on the floating-point stack registers.

MMX(TM) Technology Registers

 106

The Streaming SIMD Extensions use eight 128-bit registers (xmm0 to xmm7).

Streaming SIMD Extensions Registers

These new data registers enable the processing of data elements in parallel. Because each register can
hold more than one data element, the processor can process more than one data element
simultaneously. This processing capability is also known as single-instruction multiple data processing
(SIMD).

For each computational and data manipulation instruction in the new extension sets, there is a
corresponding C intrinsic that implements that instruction directly. This frees you from managing registers
and assembly programming. Further, the compiler optimizes the instruction scheduling so that your
executable runs faster.

Note

The MM and XMM registers are the SIMD registers used by the IA-32 platforms to implement MMX
technology and Streaming SIMD Extensions/Streaming SIMD Extensions 2 intrinsics. On the Itanium-
based platforms, the MMX and Streaming SIMD Extension intrinsics use the 64-bit general registers and
the 64-bit significand of the 80-bit floating-point register.

New Data Types

Intrinsic functions use four new C data types as operands, representing the new registers that are used
as the operands to these intrinsic functions. The table below shows the new data type availability marked
with "X".

New Data Types Available

New
Data
Type

MMX(TM
)
Technol
ogy

Streamin
g SIMD
Extensio
ns

Streamin
g SIMD
Extensio
ns 2

Itanium(
TM)
Process
or

__m64 X X X X

__m128 N/A X X X

__m128d N/A N/A X X

__m128i N/A N/A X X

 107

__m64 Data Type

The __m64 data type is used to represent the contents of an MMX register, which is the register that is
used by the MMX technology intrinsics. The __m64 data type can hold eight 8-bit values, four 16-bit
values, two 32-bit values, or one 64-bit value.

__m128 Data Types

The __m128 data type is used to represent the contents of a Streaming SIMD Extension register used by
the Streaming SIMD Extension intrinsics. The __m128 data type can hold four 32-bit floating values.

The __m128d data type can hold two 64-bit floating-point values.

The __m128i data type can hold sixteen 8-bit, eight 16-bit, four 32-bit, or two 64-bit integer values.

The compiler aligns __m128 local and global data to 16-byte boundaries on the stack. To align integer,
float, or double arrays, you can use the declspec statement.

New Data Types Usage Guidelines

Since these new data types are not basic ANSI C data types, you must observe the following usage
restrictions:

! Use new data types only on either side of an assignment, as a return value, or as a parameter.
You cannot use it with other arithmetic expressions ("+", "-", and so on).

! Use new data types as objects in aggregates, such as unions to access the byte elements and
structures.

! Use new data types only with the respective intrinsics described in this documentation. The new
data types are supported on both sides of an assignment statement: as parameters to a function
call, and as a return value from a function call.

 108

Naming and Usage Syntax
Most of the intrinsic names use a notational convention as follows:

mm<intrin_op>_<suffix>

<intrin_op> Indicates the intrinsics basic operation; for example, add for addition and sub for
subtraction.

<suffix> Denotes the type of data operated on by the instruction. The first one or two letters of
each suffix denotes whether the data is packed (p), extended packed (ep), or scalar
(s). The remaining letters denote the type:

s single-precision floating point

d double-precision floating point

i128 signed 128-bit integer

i64 signed 64-bit integer

u64 unsigned 64-bit integer

i32 signed 32-bit integer

u32 unsigned 32-bit integer

i16 signed 16-bit integer

u16 unsigned 16-bit integer

i8 signed 8-bit integer

u8 unsigned 8-bit integer

A number appended to a variable name indicates the element of a packed object. For example, r0 is the
lowest word of r. Some intrinsics are "composites" because they require more than one instruction to
implement them.

The packed values are represented in right-to-left order, with the lowest value being used for scalar
operations. Consider the following example operation:

double a[2] = {1.0, 2.0};

__m128d t = _mm_load_pd(a);

The result is the same as either of the following:

__m128d t = _mm_set_pd(2.0, 1.0);

__m128d t = _mm_setr_pd(1.0, 2.0);

 109

In other words, the xmm register that holds the value t will look as follows:

The "scalar" element is 1.0. Due to the nature of the instruction, some
 intrinsics require their arguments to be immediates (constant integer literals).

Intrinsic Syntax

To use an intrinsic in your code, insert a line with the following syntax:

data_type intrinsic_name (parameters)

Where,

data_type Is the return data type, which can be either void, int,
__m64, __m128, __m128d, __m128i, __int64.
Intrinsics that can be implemented across all IA may return other
data types as well, as indicated in the intrinsic syntax definitions.

intrinsic_name Is the name of the intrinsic, which behaves like a function that
you can use in your C++ code instead of inlining the actual
instruction.

parameters Represents the parameters required by each intrinsic.

Intrinsics Implementation Across All IA
Intrinsics For Implementation for All IA
The intrinsics in this book work across all IA-32 and Itanium(TM)-based platforms. They are offered as a
convenience to the programmer. They are grouped as follows:

! Integer Arithmetic

! Floating-Point

! String and Block Copy

! Miscellaneous

 110

Integer Arithmetic Related
Note

Passing a constant shift value in the rotate intrinsics results in higher performance.

Intrinsic Description

int abs(int) Returns the absolute value of an
integer.

long labs(long) Returns the absolute value of a long
integer.

unsigned long _lrotl(unsigned long value, int shift) Rotates bits left for an unsigned long
integer.

unsigned long _lrotr(unsigned long value, int shift) Rotates bits right for an unsigned
long integer.

unsigned int __rotl(unsigned int value, int shift) Rotates bits left for an unsigned
integer.

unsigned int __rotr(unsigned int value, int shift) Rotates bits right for an unsigned
integer.

Floating-point Related
Note

On some architectures, such as the Itanium(TM) architecture, these are simply library functions and have
not yet been implemented as intrinsics.

Intrinsic Description

int is_NaN(double d)* Return non-zero if d is a NaN

double fabs(double) Returns the absolute value of a floating-point value.

double log(double) Returns the natural logarithm ln(x), x>0, with double precision.

float logf(float) Returns the natural logarithm ln(x), x>0, with single precision.

double log10(double) Returns the base 10 logarithm log10(x), x>0, with double
precision.

float log10f(float) Returns the base 10 logarithm log10(x), x>0, with single
precision.

double exp(double) Returns the exponential function with double precision.

float expf(float) Returns the exponential function with single precision.

 111

Intrinsic Description

double pow(double, double) Returns the value of x to the power y with double precision.

float powf(float, float) Returns the value of x to the power y with single precision.

double sin(double) Returns the sine of x with double precision.

float sinf(float) Returns the sine of x with single precision.

double cos(double) Returns the cosine of x with double precision.

float cosf(float) Returns the cosine of x with single precision.

double tan(double) Returns the tangent of x with double precision.

float tanf(float) Returns the tangent of x with single precision.

double acos(double) Returns the arccosine of x with double precision

float acosf(float) Returns the arccosine of x with single precision

double acosh(double) Compute the inverse hyperbolic cosine of the argument with
double precision.

float acoshf(float) Compute the inverse hyperbolic cosine of the argument with
single precision.

double asin(double) Compute arc sine of the argument with double precision.

float asinf(float) Compute arc sine of the argument with single precision.

double asinh(double) Compute inverse hyperbolic sine of the argument with double
precision.

float asinhf(float) Compute inverse hyperbolic sine of the argument with single
precision.

double atan(double) Compute arc tangent of the argument with double precision.

float atanf(float) Compute arc tangent of the argument with single precision.

double atanh(double) Compute inverse hyperbolic tangent of the argument with double
precision.

float atanhf(float) Compute inverse hyperbolic tangent of the argument with single
precision.

float cabs(double)** Computes absolute value of complex number.

double ceil(double) Computes smallest integral value of double precision argument
not less than the argument.

float ceilf(float) Computes smallest integral value of single precision argument
not less than the argument.

double cosh(double) Computes the hyperbolic cosine of double precison argument.

float coshf(float) Computes the hyperbolic cosine of single precison argument.

 112

Intrinsic Description

float fabsf(float) Computes absolute value of single precision argument.

double floor(double) Computes the largest integral value of the double precision
argument not greater than the argument.

float floorf(float) Computes the largest integral value of the single precision
argument not greater than the argument.

double fmod(double) Computes the floating-point remainder of the division of the first
argument by the second argument with double precison.

float fmodf(float) Computes the floating-point remainder of the division of the first
argument by the second argument with single precison.

double hypot(double, double) Computes the length of the hypotenuse of a right angled triangle
with double precision.

float hypotf(float) Computes the length of the hypotenuse of a right angled triangle
with single precision.

double rint(double) Computes the integral value represented as double using the
IEEE rounding mode.

float rintf(float) Computes the integral value represented with single precision
using the IEEE rounding mode.

double sinh(double) Computes the hyperbolic sine of the double precision argument.

float sinhf(float) Computes the hyperbolic sine of the single precision argument.

float sqrtf(float) Computes the square root of the single precision argument.

double tanh(double) Computes the hyperbolic tangent of the double precision
argument.

float tanhf(float) Computes the hyperbolic tangent of the single precision
argument.

* Not implemented on Itanium-based systems.

** double in this case is a complex number made up of two single precision (32-bit floating point)
elements (real and imaginary parts).

 113

String and Block Copy Related
Note

The following are not implemented as intrinsics on Itanium(TM)-based platforms.

Intrinsic Description

char *_strset(char *, _int32) Sets all characters in a string to a fixed
value.

void *memcmp(const void *cs, const void *ct, size_t n) Compares two regions of memory. Return
<0 if cs<ct, 0 if cs=ct, or >0 if cs>ct.

void *memcpy(void *s, const void *ct, size_t n) Copies from memory. Returns s.

void *memset(void * s, int c, size_t n) Sets memory to a fixed value. Returns s.

char *strcat(char * s, const char * ct) Appends to a string. Returns s.

int *strcmp(const char *, const char *) ompares two strings. Return <0 if cs<ct, 0 if
cs=ct, or >0 if cs>ct.

char *strcpy(char * s, const char * ct) Copies a string. Returns s.

size_t strlen(const char * cs) Returns the length of string cs.

int strncmp(char *, char *, int) Compare two strings, but only specified
number of characters.

int strncpy(char *, char *, int) Copies a string, but only specified number
of characters.

Miscellaneous Intrinsics
Note

Except for _enable() and _disable() ,these functions have not been implemented for Itanium(TM)
instructions.

Intrinsic Description

void *_alloca(int) Allocates the buffers.

int _setjmp(jmp_buf)* A fast version of setjmp(), which bypasses the termination handling.
Saves the callee-save registers, stack pointer and return address.

_exception_code(void) Returns the exception code.

_exception_info(void) Returns the exception information.

 114

Intrinsic Description

_abnormal_termination(void) Can be invoked only by termination handlers. Returns TRUE if the
termination handler is invoked as a result of a premature exit of the
corresponding try-finally region.

void _enable() Enables the interrupt.

void _disable() Disables the interrupt.

int _bswap(int) Intrinsic that maps to the IA-32 instruction BSWAP (swap bytes). Convert
little/big endian 32 bit argument to big/little endian form

int _in_byte(int) Intrinsic that maps to the IA-32 instruction IN. Transfer data byte from port
specified by argument.

int _in_dword(int) Intrinsic that maps to the IA-32 instruction IN. Transfer double word from
port specified by argument.

int _in_word(int) Intrinsic that maps to the IA-32 instruction IN. Transfer word from port
specified by argument.

int _inp(int) Same as _in_byte

int _inpd(int) Same as _in_dword

int _inpw(int) Same as _in_word

int _out_byte(int, int) Intrinsic that maps to the IA-32 instruction OUT. Transfer data byte in
second argument to port specified by first argument.

int _out_dword(int, int) Intrinsic that maps to the IA-32 instruction OUT. Transfer double word in
second argument to port specified by first argument.

int _out_word(int, int) Intrinsic that maps to the IA-32 instruction OUT. Transfer word in second
argument to port specified by first argument.

int _outp(int, int) Same as _out_byte

int _outpd(int, int) Same as _out_dword

int _outpw(int, int) Same as _out_word

* Implemented as a library function call.

MMX(TM) Technology Intrinsics
Support for MMX(TM) Technology
MMX(TM) technology is an extension to the Intel architecture (IA) instruction set. The MMX instruction set
adds 57 opcodes and a 64-bit quadword data type, and eight 64-bit registers. Each of the eight registers
can be directly addressed using the register names mm0 to mm7.

The MMX technology intrinsics prototypes can be found in the mmintrin.h header file.

 115

The EMMS Instruction: Why You Need It
Using EMMS is like emptying a container to accommodate new content. For instance, MMX(TM)
instructions automatically enable an FP tag word in the register to enable use of the __m64 data type.
This resets the FP register set to alias it as the MMX register set. To enable the FP register set again,
reset the register state with the EMMS instruction or via the _mm_empty() intrinsic.

Why You Need EMMS to Reset After an MMX(TM) Instruction

Caution

Failure to empty the multimedia state after using an MMX instruction and before using a floating-point
instruction can result in unexpected execution or poor performance.

EMMS Usage Guidelines
The guidelines when to use EMMS are:

! Do not use on Itanium(TM)-based systems. There are no special registers (or overlay) for the
MMX(TM) instructions or Streaming SIMD Extensions on Itanium-based systems even though the
intrinsics are supported.

! Use _mm_empty() after an MMX instruction if the next instruction is a floating-point (FP)
instruction–for example, before calculations on float, double or long double. You must be
aware of all situations when your code generates an MMX instruction with the Intel® C++
Compiler, i.e.:

 116

o when using an MMX technology intrinsic

o when using Streaming SIMD Extension integer intrinsics that use the __m64 data type

o when referencing an __m64 data type variable

o when using an MMX instruction through inline assembly

! Do not use _mm_empty() before an MMX instruction, since using _mm_empty() before an
MMX instruction incurs an operation with no benefit (no-op).

! Use different functions for operations that use FP instructions and those that use MMX
instructions. This eliminates the need to empty the multimedia state within the body of a critical
loop.

! Use _mm_empty() during runtime initialization of __m64 and FP data types. This ensures
resetting the register between data type transitions.

! See the "Correct Usage" coding example below.

Incorrect Usage Correct Usage

__m64 x = _m_paddd(y, z);
float f = init();

__m64 x = _m_paddd(y, z);
float f = (_mm_empty(), init());

For more documentation on EMMS, visit the http://developer.intel.com web site and search on EMMS:

MMX(TM) Technology General Support
Intrinsics
Intrinsic Name Corresponding

Instruction
Operation Signed Saturation

_mm_empty EMMS Empty MM state -- --

_mm_cvtsi32_si64 MOVD Convert from int -- --

_mm_cvtsi64_si32 MOVD Convert from int -- --

_mm_packs_pi16 PACKSSWB Pack Yes Yes

_mm_packs_pi32 PACKSSDW Pack Yes Yes

_mm_packs_pu16 PACKUSWB Pack No Yes

_mm_unpackhi_pi8 PUNPCKHBW Interleave -- --

_mm_unpackhi_pi16 PUNPCKHWD Interleave -- --

_mm_unpackhi_pi32 PUNPCKHDQ Interleave -- --

_mm_unpacklo_pi8 PUNPCKLBW Interleave -- --

 117

Intrinsic Name Corresponding
Instruction

Operation Signed Saturation

_mm_unpacklo_pi16 PUNPCKLWD Interleave -- --

_mm_unpacklo_pi32 PUNPCKLDQ Interleave -- --

void _mm_empty (void)

Empty the multimedia state.
 See The EMMS Instruction: Why You Need It figure for details.

__m64 _mm_cvtsi32_si64 (int i)

Convert the integer object i to a 64-bit __m64 object. The integer value is zero-extended to 64 bits.

int _mm_cvtsi64_si32 (__m64 m)

Convert the lower 32 bits of the __m64 object m to an integer.

__m64 _mm_packs_pi16 (__m64 m1, __m64 m2)

Pack the four 16-bit values from m1 into the lower four 8-bit values of the result with signed saturation,
and pack the four 16-bit values from m2 into the upper four 8-bit values of the result with signed
saturation.

__m64 _mm_packs_pi32 (__m64 m1, __m64 m2)

Pack the two 32-bit values from m1 into the lower two 16-bit values of the result with signed saturation,
and pack the two 32-bit values from m2 into the upper two 16-bit values of the result with signed
saturation.

__m64 _mm_packs_pu16 (__m64 m1, __m64 m2)

Pack the four 16-bit values from m1 into the lower four 8-bit values of the result with unsigned saturation,
and pack the four 16-bit values from m2 into the upper four 8-bit values of the result with unsigned
saturation.

__m64 _mm_unpackhi_pi8 (__m64 m1, __m64 m2)

Interleave the four 8-bit values from the high half of m1 with the four values from the high half of m2. The
interleaving begins with the data from m1.

 118

__m64 _mm_unpackhi_pi16 (__m64 m1, __m64 m2)

Interleave the two 16-bit values from the high half of m1 with the two values from the high half of m2. The
interleaving begins with the data from m1.

__m64 _mm_unpackhi_pi32 (__m64 m1, __m64 m2)

Interleave the 32-bit value from the high half of m1 with the 32-bit value from the high half of m2. The
interleaving begins with the data from m1.

__m64 _mm_unpacklo_pi8 (__m64 m1, __m64 m2)

Interleave the four 8-bit values from the low half of m1 with the four values from the low half of m2. The
interleaving begins with the data from m1.

__m64 _mm_unpacklo_pi16 (__m64 m1, __m64 m2)

Interleave the two 16-bit values from the low half of m1 with the two values from the low half of m2. The
interleaving begins with the data from m1.

__m64 _mm_unpacklo_pi32 (__m64 m1, __m64 m2)

Interleave the 32-bit value from the low half of m1 with the 32-bit value from the low half of m2. The
interleaving begins with the data from m1.

MMX(TM) Technology Packed Arithmetic
Intrinsics
Intrinsic Name Corresponding

Instruction
Operation Signed Argument–

Values/Bits
Result–
Values/Bits

_mm_add_pi8 PADDB Addition -- 8/8 8/8

_mm_add_pi16 PADDW Addition -- 4/16 4/16

_mm_add_pi32 PADDD Addition -- 2/32 2/32

_mm_adds_pi8 PADDSB Addition Yes 8/8 8/8

_mm_adds_pi16 PADDSW Addition Yes 4/16 4/16

_mm_adds_pu8 PADDUSB Addition No 8/8 8/8

_mm_adds_pu16 PADDUSW Addition No 4/16 4/16

_mm_sub_pi8 PSUBB Subtraction -- 8/8 8/8

 119

Intrinsic Name Corresponding
Instruction

Operation Signed Argument–
Values/Bits

Result–
Values/Bits

_mm_sub_pi16 PSUBW Subtraction -- 4/16 4/16

_mm_sub_pi32 PSUBD Subtraction -- 2/32 2/32

_mm_subs_pi8 PSUBSB Subtraction Yes 8/8 8/8

_mm_subs_pi16 PSUBSW Subtraction Yes 4/16 4/16

_mm_subs_pu8 PSUBUSB Subtraction No 8/8 8/8

_mm_subs_pu16 PSUBUSW Subtraction No 4/16 4/16

_mm_madd_pi16 PMADDWD Multiplication -- 4/16 2/32

_mm_mulhi_pi16 PMULHW Multiplication Yes 4/16 4/16 (high)

_mm_mullo_pi16 PMULLW Multiplication -- 4/16 4/16 (low)

__m64 _mm_add_pi8 (__m64 m1, __m64 m2)

Add the eight 8-bit values in m1 to the eight 8-bit values in m2.

__m64 _mm_add_pi16 (__m64 m1, __m64 m2)

Add the four 16-bit values in m1 to the four 16-bit values in m2.

__m64 _mm_add_pi32 (__m64 m1, __m64 m2)

Add the two 32-bit values in m1 to the two 32-bit values in m2.

__m64 _mm_adds_pi8 (__m64 m1, __m64 m2)

Add the eight signed 8-bit values in m1 to the eight signed 8-bit values in m2 using saturating arithmetic.

__m64 _mm_adds_pi16 (__m64 m1, __m64 m2)

Add the four signed 16-bit values in m1 to the four signed 16-bit values in m2 using saturating arithmetic.

__m64 _mm_adds_pu8 (__m64 m1, __m64 m2)

Add the eight unsigned 8-bit values in m1 to the eight unsigned 8-bit values in m2 and using saturating
arithmetic.

 120

__m64 _mm_adds_pu16 (__m64 m1, __m64 m2)

Add the four unsigned 16-bit values in m1 to the four unsigned 16-bit values in m2 using saturating
arithmetic.

__m64 _mm_sub_pi8 (__m64 m1, __m64 m2)

Subtract the eight 8-bit values in m2 from the eight 8-bit values in m1.

__m64 _mm_sub_pi16 (__m64 m1, __m64 m2)

Subtract the four 16-bit values in m2 from the four 16-bit values in m1.

__m64 _mm_sub_pi32 (__m64 m1, __m64 m2)

Subtract the two 32-bit values in m2 from the two 32-bit values in m1.

__m64 _mm_subs_pi8 (__m64 m1, __m64 m2)

Subtract the eight signed 8-bit values in m2 from the eight signed 8-bit values in m1 using saturating
arithmetic.

__m64 _mm_subs_pi16 (__m64 m1, __m64 m2)

Subtract the four signed 16-bit values in m2 from the four signed 16-bit values in m1 using saturating
arithmetic.

__m64 _mm_subs_pu8 (__m64 m1, __m64 m2)

Subtract the eight unsigned 8-bit values in m2 from the eight unsigned 8-bit values in m1 using saturating
arithmetic.

__m64 _mm_subs_pu16 (__m64 m1, __m64 m2)

Subtract the four unsigned 16-bit values in m2 from the four unsigned 16-bit values in m1 using saturating
arithmetic.

__m64 _mm_madd_pi16 (__m64 m1, __m64 m2)

Multiply four 16-bit values in m1 by four 16-bit values in m2 producing four 32-bit intermediate results,
which are then summed by pairs to produce two 32-bit results.

 121

__m64 _mm_mulhi_pi16 (__m64 m1, __m64 m2)

Multiply four signed 16-bit values in m1 by four signed 16-bit values in m2 and produce the high 16 bits of
the four results.

__m64 _mm_mullo_pi16 (__m64 m1, __m64 m2)

Multiply four 16-bit values in m1 by four 16-bit values in m2 and produce the low 16 bits of the four results.

MMX(TM) Technology Shift Intrinsics
Intrinsic Name Shift Direction Shift Type Corresponding

Instruction

_mm_sll_pi16 left Logical PSLLW

_mm_slli_pi16 left Logical PSLLWI

_mm_sll_pi32 left Logical PSLLD

_mm_slli_pi32 left Logical PSLLDI

_mm_sll_si64 left Logical PSLLQ

_mm_slli_si64 left Logical PSLLQI

_mm_sra_pi16 right Arithmetic PSRAW

_mm_srai_pi16 right Arithmetic PSRAWI

_mm_sra_pi32 right Arithmetic PSRAD

_mm_srai_pi32 right Arithmetic PSRADI

_mm_srl_pi16 right Logical PSRLW

_mm_srli_pi16 right Logical PSRLWI

_mm_srl_pi32 right Logical PSRLD

_mm_srli_pi32 right Logical PSRLDI

_mm_srl_si64 right Logical PSRLQ

_mm_srli_si64 right Logical PSRLQI

 122

__m64 _mm_sll_pi16 (__m64 m, __m64 count)

Shift four 16-bit values in m left the amount specified by count while shifting in zeros.

__m64 _mm_slli_pi16 (__m64 m, int count)

Shift four 16-bit values in m left the amount specified by count while shifting in zeros. For the best
performance, count should be a constant.

__m64 _mm_sll_pi32 (__m64 m, __m64 count)

Shift two 32-bit values in m left the amount specified by count while shifting in zeros.

__m64 _mm_slli_pi32 (__m64 m, int count)

Shift two 32-bit values in m left the amount specified by count while shifting in zeros. For the best
performance, count should be a constant.

__m64 _mm_sll_si64 (__m64 m, __m64 count)

Shift the 64-bit value in m left the amount specified by count while shifting in zeros.

__m64 _mm_slli_si64 (__m64 m, int count)

Shift the 64-bit value in m left the amount specified by count while shifting in zeros. For the best
performance, count should be a constant.

__m64 _mm_sra_pi16 (__m64 m, __m64 count)

Shift four 16-bit values in m right the amount specified by count while shifting in the sign bit.

__m64 _mm_srai_pi16 (__m64 m, int count)

Shift four 16-bit values in m right the amount specified by count while shifting in the sign bit. For the best
performance, count should be a constant.

__m64 _mm_sra_pi32 (__m64 m, __m64 count)

Shift two 32-bit values in m right the amount specified by count while shifting in the sign bit.

__m64 _mm_srai_pi32 (__m64 m, int count)

 123

Shift two 32-bit values in m right the amount specified by count while shifting in the sign bit. For the best
performance, count should be a constant.

__m64 _mm_srl_pi16 (__m64 m, __m64 count)

Shift four 16-bit values in m right the amount specified by count while shifting in zeros.

__m64 _mm_srli_pi16 (__m64 m, int count)

Shift four 16-bit values in m right the amount specified by count while shifting in zeros. For the best
performance, count should be a constant.

__m64 _mm_srl_pi32 (__m64 m, __m64 count)

Shift two 32-bit values in m right the amount specified by count while shifting in zeros.

__m64 _mm_srli_pi32 (__m64 m, int count)

Shift two 32-bit values in m right the amount specified by count while shifting in zeros. For the best
performance, count should be a constant.

__m64 _mm_srl_si64 (__m64 m, __m64 count)

Shift the 64-bit value in m right the amount specified by count while shifting in zeros.

__m64 _mm_srli_si64 (__m64 m, int count)

Shift the 64-bit value in m right the amount specified by count while shifting in zeros. For the best
performance, count should be a constant.

MMX(TM) Technology Logical Intrinsics
Intrinsic Name Operation Corresponding Instruction

_mm_and_si64 Bitwise AND PAND

_mm_andnot_si64 Logical NOT PANDN

_mm_or_si64 Bitwise OR POR

_mm_xor_si64 Bitwise Exclusive OR PXOR

 124

__m64 _mm_and_si64 (__m64 m1, __m64 m2)

Perform a bitwise AND of the 64-bit value in m1 with the 64-bit value in m2.

__m64 _mm_andnot_si64 (__m64 m1, __m64 m2)

Perform a logical NOT on the 64-bit value in m1 and use the result in a bitwise AND with the 64-bit value
in m2.

__m64 _mm_or_si64 (__m64 m1, __m64 m2)

Perform a bitwise OR of the 64-bit value in m1 with the 64-bit value in m2.

__m64 _mm_xor_si64 (__m64 m1, __m64 m2)

Perform a bitwise XOR of the 64-bit value in m1 with the 64-bit value in m2.

MMX(TM) Technology Compare
Intrinsics
Intrinsic Name Comparison Number of

Elements
Element Bit Size Corresponding

Instruction

_mm_cmpeq_pi8 Equal 8 8 PCMPEQB

_mm_cmpeq_pi16 Equal 4 16 PCMPEQW

_mm_cmpeq_pi32 Equal 2 32 PCMPEQD

_mm_cmpgt_pi8 Greater Than 8 8 PCMPGTB

_mm_cmpgt_pi16 Greater Than 4 16 PCMPGTW

_mm_cmpgt_pi32 Greater Than 2 32 PCMPGTD

__m64 _mm_cmpeq_pi8 (__m64 m1, __m64 m2)

If the respective 8-bit values in m1 are equal to the respective 8-bit values in m2 set the respective 8-bit
resulting values to all ones, otherwise set them to all zeros.

__m64 _mm_cmpeq_pi16 (__m64 m1, __m64 m2)

If the respective 16-bit values in m1 are equal to the respective 16-bit values in m2 set the respective 16-
bit resulting values to all ones, otherwise set them to all zeros.

 125

__m64 _mm_cmpeq_pi32 (__m64 m1, __m64 m2)

If the respective 32-bit values in m1 are equal to the respective 32-bit values in m2 set the respective 32-
bit resulting values to all ones, otherwise set them to all zeros.

__m64 _mm_cmpgt_pi8 (__m64 m1, __m64 m2)

If the respective 8-bit values in m1 are greater than the respective 8-bit values in m2 set the respective 8-
bit resulting values to all ones, otherwise set them to all zeros.

__m64 _mm_cmpgt_pi16 (__m64 m1, __m64 m2)

If the respective 16-bit values in m1 are greater than the respective 16-bit values in m2 set the respective
16-bit resulting values to all ones, otherwise set them to all zeros.

__m64 _mm_cmpgt_pi32 (__m64 m1, __m64 m2)

If the respective 32-bit values in m1 are greater than the respective 32-bit values in m2 set the respective
32-bit resulting values to all ones, otherwise set them all to zeros.

MMX(TM) Technology Set Intrinsics
Intrinsic Name Operation Number of

Elements
Element
Bit Size

Signed Reverse Order

_mm_setzero_si64 set to zero 1 64 No No

_mm_set_pi32 set integer values 2 32 No No

_mm_set_pi16 set integer values 4 16 No No

_mm_set_pi8 set integer values 8 8 No No

_mm_set1_pi32 set integer values 2 32 Yes No

_mm_set1_pi16 set integer values 4 16 Yes No

_mm_set1_pi8 set integer values 8 8 Yes No

_mm_setr_pi32 set integer values 2 32 No Yes

_mm_setr_pi16 set integer values 4 16 No Yes

_mm_setr_pi8 set integer values 8 8 No Yes

Note

 126

In the following descriptions regarding the bits of the MMX(TM) register, bit 0 is the least significant and
bit 63 is the most significant.

__m64 _mm_setzero_si64 ()

PXOR

Sets the 64-bit value to zero.

r : = 0x0

__m64 _mm_set_pi32 (int i1, int i0)

(composite)

Sets the 2 signed 32-bit integer values.

r0 : = i0

r1 : = i1

__m64 _mm_set_pi16 (short w3, short w2, short w1, short w0)

(composite)

Sets the 4 signed 16-bit integer values.

r0 := w0

r1 := w1

r2 := w2

r3 := w3

 127

__m64 _mm_set_pi8 (char b7, char b6,

char b5, char b4,

char b3, char b2,

char b1, char b0)

(composite)

Sets the 8 signed 8-bit integer values.

r0 := b0

r1 := b1

...

r7 := b7

__m64 _mm_set1_pi32 (int i)

(composite)

Sets the 2 signed 32-bit integer values to i.

r0 := i

r1 := i

__m64 _mm_set1_pi16 (short w)

(composite)

Sets the 4 signed 16-bit integer values to w.

r0 := w

r1 := w

r2 := w

r3 := w

 128

__m64 _mm_set1_pi8 (char b)

(composite)

Sets the 8 signed 8-bit integer values to b.

r0 := b

r1 := b

...

r7 := b

__m64 _mm_setr_pi32 (int i0, int i1)

(composite)

Sets the 2 signed 32-bit integer values in reverse order.

r0 := i0

r1 := i1

__m64 _mm_setr_pi16 (short w0, short w1,

short w2, short w3)

(composite)

Sets the 4 signed 16-bit integer values in reverse order.

r0 := w0

r1 := w1

r2 := w2

r3 := w3

 129

__m64 _mm_setr_pi8 (char b0, char b1,char b2, char b3,

char b4, char b5,

char b6, char b7)

(composite)

Sets the 8 signed 8-bit integer values in reverse order.

r0 := b0

r1 := b1

...

r7 := b7

MMX(TM) Technology Intrinsics on
Itanium(TM) Architecture
MMX(TM) technology intrinsics provide access to the MMX technology instruction set on Itanium-based
systems. To provide source compatibility with the IA-32 architecture, these intrinsics are equivalent both
in name and functionality to the set of IA-32-based MMX intrinsics.

Some intrinsics have more than one name. When one intrinsic has two names, both names generate the
same instructions, but the first is preferred as it conforms to a newer naming standard.

Prototypes for these intrinsics and some related macros and constants are in the header file
mmintrin.h.

Data Types

The C data type __m64 is used when using MMX technology intrinsics. It can hold eight 8-bit values, four
16-bit values, two 32-bit values, or one 64-bit value.

The __m64 data type is not a basic ANSI C data type. Therefore, observe the following usage restrictions:

! Use the new data type only on the left-hand side of an assignment, as a return value, or as a
parameter. You cannot use it with other arithmetic expressions (" + ", " - ", and so on).

! Use the new data type as objects in aggregates, such as unions, to access the byte elements and
structures; the address of an __m64 object may be taken.

! Use new data types only with the respective intrinsics described in this documentation.

For complete details of the hardware instructions, see the Intel Architecture MMX Technology
Programmer's Reference Manual. For descriptions of data types, see the Intel Architecture Software
Developer's Manual, Volume 2.

 130

Streaming SIMD Extensions
Intrinsics Support for Streaming SIMD
Extensions
This book describes the C++ language-level features supporting the Streaming SIMD Extensions in the
Intel® C++ Compiler. The following topics explain the following features of the intrinsics:

! Floating Point Intrinsics

! Memory and Initialization Intrinsics

! Integer Intrinsics

! Cacheability Support Intrinsics

The Streaming SIMD Extensions intrinsics prototypes can be found in the xmmintrin.h header file.

Floating-point Intrinsics for Streaming
SIMD Extensions
You should be familiar with the hardware features provided by the Streaming SIMD Extensions when
writing programs with the intrinsics. The following are four important issues to keep in mind:

! Certain intrinsics, such as _mm_loadr_ps and _mm_cmpgt_ss, are not directly supported by
the instruction set. While these intrinsics are convenient programming aids, be mindful that they
might consist of more than one machine-language instruction.

! Floating-point data loaded or stored as __m128 objects must be generally 16-byte-aligned.

! Some intrinsics require that their argument be immediates, that is, constant integers (literals), due
to the nature of the instruction.

! The result of arithmetic operations acting on two NaN (Not a Number) arguments is undefined.
Therefore, FP operations using NaN arguments will not match the expected behavior of the
corresponding assembly instructions.

 131

Arithmetic Operations for Streaming
SIMD Extensions
Intrinsic Instruction Operation R0 R1 R2 R3

_mm_add_ss ADDSS Addition a0 [op] b0 a1 a2 a3

_mm_add_ps ADDPS Addition a0 [op] b0 a1 [op] b1 a2 [op] b2 a3 [op] b3

_mm_sub_ss SUBSS Subtraction a0 [op] b0 a1 a2 a3

_mm_sub_ps SUBPS Subtraction a0 [op] b0 a1 [op] b1 a2 [op] b2 a3 [op] b3

_mm_mul_ss MULSS Multiplication a0 [op] b0 a1 a2 a3

_mm_mul_ps MULPS Multiplication a0 [op] b0 a1 [op] b1 a2 [op] b2 a3 [op] b3

_mm_div_ss DIVSS Division a0 [op] b0 a1 a2 a3

_mm_div_ps DIVPS Division a0 [op] b0 a1 [op] b1 a2 [op] b2 a3 [op] b3

_mm_sqrt_ss SQRTSS Squared Root [op] a0 a1 a2 a3

_mm_sqrt_ps SQRTPS Squared Root [op] a0 [op] b1 [op] b2 [op] b3

_mm_rcp_ss RCPSS Reciprocal [op] a0 a1 a2 a3

_mm_rcp_ps RCPPS Reciprocal [op] a0 [op] b1 [op] b2 [op] b3

_mm_rsqrt_ss RSQRTSS Reciprocal Square
Root

[op] a0 a1 a2 a3

_mm_rsqrt_ps RSQRTPS Reciprocal
Squared Root

[op] a0 [op] b1 [op] b2 [op] b3

_mm_min_ss MINSS Computes
Minimum

[op](a0,b0) a1 a2 a3

_mm_min_ps MINPS Computes
Minimum

[op](a0,b0) [op] (a1, b1) [op] (a2, b2) [op] (a3, b3)

_mm_max_ss MAXSS Computes
Maximum

[op](a0,b0) a1 a2 a3

_mm_max_ps MAXPS Computes
Maximum

[op](a0,b0) [op] (a1, b1) [op] (a2, b2) [op] (a3, b3)

 132

__m128 _mm_add_ss(__m128 a, __m128 b)

Adds the lower SP FP (single-precision, floating-point) values of a and b ; the upper 3 SP FP values are
passed through from a.

r0 := a0 + b0

r1 := a1 ; r2 := a2 ; r3 := a3

__m128 _mm_add_ps(__m128 a, __m128 b)

Adds the four SP FP values of a and b.

r0 := a0 + b0

r1 := a1 + b1

r2 := a2 + b2

r3 := a3 + b3

__m128 _mm_sub_ss(__m128 a, __m128 b)

Subtracts the lower SP FP values of a and b. The upper 3 SP FP values are passed through from a.

r0 := a0 - b0

r1 := a1 ; r2 := a2 ; r3 := a3

__m128 _mm_sub_ps(__m128 a, __m128 b)

Subtracts the four SP FP values of a and b.

r0 := a0 - b0

r1 := a1 - b1

r2 := a2 - b2

r3 := a3 - b3

__m128 _mm_mul_ss(__m128 a, __m128 b)

Multiplies the lower SP FP values of a and b ; the upper 3 SP FP values are passed through from a.

r0 := a0 * b0

r1 := a1 ; r2 := a2 ; r3 := a3

 133

__m128 _mm_mul_ps(__m128 a, __m128 b)

Multiplies the four SP FP values of a and b.

r0 := a0 * b0

r1 := a1 * b1

r2 := a2 * b2

r3 := a3 * b3

__m128 _mm_div_ss(__m128 a, __m128 b)

Divides the lower SP FP values of a and b ; the upper 3 SP FP values are passed through from a.

r0 := a0 / b0

r1 := a1 ; r2 := a2 ; r3 := a3

__m128 _mm_div_ps(__m128 a, __m128 b)

Divides the four SP FP values of a and b.

r0 := a0 / b0

r1 := a1 / b1

r2 := a2 / b2

r3 := a3 / b3

__m128 _mm_sqrt_ss(__m128 a)

Computes the square root of the lower SP FP value of a ; the upper 3 SP FP values are passed through.

r0 := sqrt(a0)

r1 := a1 ; r2 := a2 ; r3 := a3

 134

__m128 _mm_sqrt_ps(__m128 a)

Computes the square roots of the four SP FP values of a.

r0 := sqrt(a0)

r1 := sqrt(a1)

r2 := sqrt(a2)

r3 := sqrt(a3)

__m128 _mm_rcp_ss(__m128 a)

Computes the approximation of the reciprocal of the lower SP FP value of a; the upper 3 SP FP values
are passed through.

r0 := recip(a0)

r1 := a1 ; r2 := a2 ; r3 := a3

__m128 _mm_rcp_ps(__m128 a)

Computes the approximations of reciprocals of the four SP FP values of a.

r0 := recip(a0)

r1 := recip(a1)

r2 := recip(a2)

r3 := recip(a3)

__m128 _mm_rsqrt_ss(__m128 a)

Computes the approximation of the reciprocal of the square root of the lower SP FP value of a; the upper
3 SP FP values are passed through.

r0 := recip(sqrt(a0))

r1 := a1 ; r2 := a2 ; r3 := a3

 135

__mm128 _mm_rsqrt_ps(__m128 a)

Computes the approximations of the reciprocals of the square roots of the four SP FP values of a.

r0 := recip(sqrt(a0))

r1 := recip(sqrt(a1))

r2 := recip(sqrt(a2))

r3 := recip(sqrt(a3))

__m128 _mm_min_ss(__m128 a, __m128 b)

Computes the minimum of the lower SP FP values of a and b; the upper 3 SP FP values are passed
through from a.

r0 := min(a0, b0)

r1 := a1 ; r2 := a2 ; r3 := a3

__m128 _mm_min_ps(__m128 a, __m128 b)

Computes the minima of the four SP FP values of a and b.

r0 := min(a0, b0)

r1 := min(a1, b1)

r2 := min(a2, b2)

r3 := min(a3, b3)

__m128 _mm_max_ss(__m128 a, __m128 b)

Computes the maximum of the lower SP FP values of a and b ; the upper 3 SP FP values are passed
through from a.

r0 := max(a0, b0)

r1 := a1 ; r2 := a2 ; r3 := a3

 136

__m128 _mm_max_ps(__m128 a, __m128 b)

Computes the maximums of the four SP FP values of a and b.

r0 := max(a0, b0)

r1 := max(a1, b1)

r2 := max(a2, b2)

r3 := max(a3, b3)

Logical Operations for Streaming SIMD
Extensions
Intrinsic Name Operation Corresponding Instruction

_mm_and_ps Bitwise AND ANDPS

_mm_andnot_ps Logical NOT ANDNPS

_mm_or_ps Bitwise OR ORPS

_mm_xor_ps Bitwise Exclusive OR XORPS

__m128 _mm_and_ps(__m128 a, __m128 b)

Computes the bitwise And of the four SP FP values of a and b.

r0 := a0 & b0

r1 := a1 & b1

r2 := a2 & b2

r3 := a3 & b3

__m128 _mm_andnot_ps(__m128 a, __m128 b)

Computes the bitwise AND-NOT of the four SP FP values of
a and b.

r0 := ~a0 & b0

r1 := ~a1 & b1

r2 := ~a2 & b2

r3 := ~a3 & b3

 137

__m128 _mm_or_ps(__m128 a, __m128 b)

Computes the bitwise OR of the four SP FP values of a and b.

r0 := a0 | b0

r1 := a1 | b1

r2 := a2 | b2

r3 := a3 | b3

__m128 _mm_xor_ps(__m128 a, __m128 b)

Computes bitwise XOR (exclusive-or) of the four SP FP values of a and b.

r0 := a0 ^ b0

r1 := a1 ^ b1

r2 := a2 ^ b2

r3 := a3 ^ b3

Comparisons for Streaming SIMD
Extensions
Each comparison intrinsic performs a comparison of a and b. For the packed form, the four SP FP values
of a and b are compared, and a 128-bit mask is returned. For the scalar form, the lower SP FP values of
a and b are compared, and a 32-bit mask is returned; the upper three SP FP values are passed through
from a. The mask is set to 0xffffffff for each element where the comparison is true and 0x0 where
the comparison is false.

The compare intrinsics are listed in the following table and are followed by a description of each intrinsic.

Compare Intrinsics

Intrinsic Name Comparison Corresponding Instruction

_mm_cmpeq_ss Equal CMPEQSS

_mm_cmpeq_ps Equal CMPEQPS

_mm_cmplt_ss Less Than CMPLTSS

_mm_cmplt_ps Less Than CMPLTPS

_mm_cmple_ss Less Than or Equal CMPLESS

_mm_cmple_ps Less Than or Equal CMPLEPS

 138

Intrinsic Name Comparison Corresponding Instruction

_mm_cmpgt_ss Greater Than CMPLTSS

_mm_cmpgt_ps Greater Than CMPLTPS

_mm_cmpge_ss Greater Than or Equal CMPLESS

_mm_cmpge_ps Greater Than or Equal CMPLEPS

_mm_cmpneq_ss Not Equal CMPNEQSS

_mm_cmpneq_ps Not Equal CMPNEQPS

_mm_cmpnlt_ss Not Less Than CMPNLTSS

_mm_cmpnlt_ps Not Less Than CMPNLTPS

_mm_cmpnle_ss Not Less Than or Equal CMPNLESS

_mm_cmple_ps Not Less Than or Equal CMPNLEPS

_mm_cmpngt_ss Not Greater Than CMPNLTSS

_mm_cmpngt_ps Not Greater Than CMPNLTPS

_mm_cmpnge_ss Not Greater Than or Equal CMPNLESS

_mm_cmpnge_ps Not Greater Than or Equal CMPNLEPS

_mm_cmpord_ss Ordered CMPORDSS

_mm_cmpord_ps Ordered CMPORDPS

_mm_cmpunord_ss Unordered CMPUNORDSS

_mm_cmpunord_ps Unordered CMPUNORDPS

_mm_comieq_ss Equal COMISS

_mm_comilt_ps Less Than COMISS

_mm_comile_ss Less Than or Equal COMISS

_mm_comigt_ss Greater Than COMISS

_mm_comige_ss Greater Than or Equal COMISS

_mm_comineq_ss Not Equal COMISS

_mm_ucomieq_ss Equal UCOMISS

 139

Intrinsic Name Comparison Corresponding Instruction

_mm_ucomilt_ss Less Than UCOMISS

_mm_ucomile_ss Less Than or Equal UCOMISS

_mm_ucomigt_ss Greater Than UCOMISS

_mm_ucomige_ss Greater Than or Equal UCOMISS

_mm_ucomineq_ss Not Equal UCOMISS

__m128 _mm_cmpeq_ss(__m128 a, __m128 b)

Compare for equality.

r0 := (a0 == b0) ? 0xffffffff : 0x0

r1 := a1 ; r2 := a2 ; r3 := a3

__m128 _mm_cmpeq_ps(__m128 a, __m128 b)

Compare for equality.

r0 := (a0 == b0) ? 0xffffffff : 0x0

r1 := (a1 == b1) ? 0xffffffff : 0x0

r2 := (a2 == b2) ? 0xffffffff : 0x0

r3 := (a3 == b3) ? 0xffffffff : 0x0

__m128 _mm_cmplt_ss(__m128 a, __m128 b)

Compare for less-than.

r0 := (a0 < b0) ? 0xffffffff : 0x0

r1 := a1 ; r2 := a2 ; r3 := a3

 140

__m128 _mm_cmplt_ps(__m128 a, __m128 b)

Compare for less-than.

r0 := (a0 < b0) ? 0xffffffff : 0x0

r1 := (a1 < b1) ? 0xffffffff : 0x0

r2 := (a2 < b2) ? 0xffffffff : 0x0

r3 := (a3 < b3) ? 0xffffffff : 0x0

__m128 _mm_cmple_ss(__m128 a, __m128 b)

Compare for less-than-or-equal.

r0 := (a0 <= b0) ? 0xffffffff : 0x0

r1 := a1 ; r2 := a2 ; r3 := a3

__m128 _mm_cmple_ps(__m128 a, __m128 b)

Compare for less-than-or-equal.

r0 := (a0 <= b0) ? 0xffffffff : 0x0

r1 := (a1 <= b1) ? 0xffffffff : 0x0

r2 := (a2 <= b2) ? 0xffffffff : 0x0

r3 := (a3 <= b3) ? 0xffffffff : 0x0

__m128 _mm_cmpgt_ss(__m128 a, __m128 b)r1

Compare for greater-than.

r0 := (a0 > b0) ? 0xffffffff : 0x0

r1 := a1 ; r2 := a2 ; r3 := a3

 141

__m128 _mm_cmpgt_ps(__m128 a, __m128 b)r

Compare for greater-than.

r0 := (a0 > b0) ? 0xffffffff : 0x0

r1 := (a1 > b1) ? 0xffffffff : 0x0

r2 := (a2 > b2) ? 0xffffffff : 0x0

r3 := (a3 > b3) ? 0xffffffff : 0x0

__m128 _mm_cmpge_ss(__m128 a, __m128 b) r

Compare for greater-than-or-equal.

r0 := (a0 >= b0) ? 0xffffffff : 0x0

r1 := a1 ; r2 := a2 ; r3 := a3

__m128 _mm_cmpge_ps(__m128 a, __m128 b) r

Compare for greater-than-or-equal.

r0 := (a0 >= b0) ? 0xffffffff : 0x0

r1 := (a1 >= b1) ? 0xffffffff : 0x0

r2 := (a2 >= b2) ? 0xffffffff : 0x0

r3 := (a3 >= b3) ? 0xffffffff : 0x0

__m128 _mm_cmpneq_ss(__m128 a, __m128 b)

Compare for inequality.

r0 := (a0 != b0) ? 0xffffffff : 0x0

r1 := a1 ; r2 := a2 ; r3 := a3

 142

__m128 _mm_cmpneq_ps(__m128 a, __m128 b)

Compare for inequality.

r0 := (a0 != b0) ? 0xffffffff : 0x0

r1 := (a1 != b1) ? 0xffffffff : 0x0

r2 := (a2 != b2) ? 0xffffffff : 0x0

r3 := (a3 != b3) ? 0xffffffff : 0x0

__m128 _mm_cmpnlt_ss(__m128 a, __m128 b)

Compare for not-less-than.

r0 := !(a0 < b0) ? 0xffffffff : 0x0

r1 := a1 ; r2 := a2 ; r3 := a3

__m128 _mm_cmpnlt_ps(__m128 a, __m128 b)

Compare for not-less-than.

r0 := !(a0 < b0) ? 0xffffffff : 0x0

r1 := !(a1 < b1) ? 0xffffffff : 0x0

r2 := !(a2 < b2) ? 0xffffffff : 0x0

r3 := !(a3 < b3) ? 0xffffffff : 0x0

__m128 _mm_cmpnle_ss(__m128 a, __m128 b)

Compare for not-less-than-or-equal.

r0 := !(a0 <= b0) ? 0xffffffff : 0x0

r1 := a1 ; r2 := a2 ; r3 := a3

 143

__m128 _mm_cmpnle_ps(__m128 a, __m128 b)

Compare for not-less-than-or-equal.

r0 := !(a0 <= b0) ? 0xffffffff : 0x0

r1 := !(a1 <= b1) ? 0xffffffff : 0x0

r2 := !(a2 <= b2) ? 0xffffffff : 0x0

r3 := !(a3 <= b3) ? 0xffffffff : 0x0

__m128 _mm_cmpngt_ss(__m128 a, __m128 b) r

Compare for not-greater-than.

r0 := !(a0 > b0) ? 0xffffffff : 0x0

r1 := a1 ; r2 := a2 ; r3 := a3

__m128 _mm_cmpngt_ps(__m128 a, __m128 b) r

Compare for not-greater-than.

r0 := !(a0 > b0) ? 0xffffffff : 0x0

r1 := !(a1 > b1) ? 0xffffffff : 0x0

r2 := !(a2 > b2) ? 0xffffffff : 0x0

r3 := !(a3 > b3) ? 0xffffffff : 0x0

__m128 _mm_cmpnge_ss(__m128 a, __m128 b)r

Compare for not-greater-than-or-equal.

r0 := !(a0 >= b0) ? 0xffffffff : 0x0

r1 := a1 ; r2 := a2 ; r3 := a3

 144

__m128 _mm_cmpnge_ps(__m128 a, __m128 b)r

Compare for not-greater-than-or-equal.

r0 := !(a0 >= b0) ? 0xffffffff : 0x0

r1 := !(a1 >= b1) ? 0xffffffff : 0x0

r2 := !(a2 >= b2) ? 0xffffffff : 0x0

r3 := !(a3 >= b3) ? 0xffffffff : 0x0

__m128 _mm_cmpord_ss(__m128 a, __m128 b)

Compare for ordered.

r0 := (a0 ord? b0) ? 0xffffffff : 0x0

r1 := a1 ; r2 := a2 ; r3 := a3

__m128 _mm_cmpord_ps(__m128 a, __m128 b)

Compare for ordered.

r0 := (a0 ord? b0) ? 0xffffffff : 0x0

r1 := (a1 ord? b1) ? 0xffffffff : 0x0

r2 := (a2 ord? b2) ? 0xffffffff : 0x0

r3 := (a3 ord? b3) ? 0xffffffff : 0x0

__m128 _mm_cmpunord_ss(__m128 a, __m128 b)

Compare for unordered.

r0 := (a0 unord? b0) ? 0xffffffff : 0x0

r1 := a1 ; r2 := a2 ; r3 := a3

 145

__m128 _mm_cmpunord_ps(__m128 a, __m128 b)

Compare for unordered.

r0 := (a0 unord? b0) ? 0xffffffff : 0x0

r1 := (a1 unord? b1) ? 0xffffffff : 0x0

r2 := (a2 unord? b2) ? 0xffffffff : 0x0

r3 := (a3 unord? b3) ? 0xffffffff : 0x0

int _mm_comieq_ss (__m128 a, __m128 b)

Compares the lower SP FP value of a and b for a equal to b. If a and b are equal, 1 is returned.
Otherwise 0 is returned.

r := (a0 == b0) ? 0x1 : 0x0

int _mm_comilt_ss (__m128 a, __m128 b)

Compares the lower SP FP value of a and b for a less than b. If a is less than b, 1 is returned. Otherwise
0 is returned.

r := (a0 < b0) ? 0x1 : 0x0

int _mm_comile_ss (__m128 a, __m128 b)

Compares the lower SP FP value of a and b for a less than or equal to b. If a is less than or equal to b, 1
is returned. Otherwise 0 is returned.

r := (a0 <= b0) ? 0x1 : 0x0

int _mm_comigt_ss (__m128 a, __m128 b)

Compares the lower SP FP value of a and b for a greater than b. If a is greater than b are equal, 1 is
returned. Otherwise 0 is returned.

r := (a0 > b0) ? 0x1 : 0x0

int _mm_comige_ss (__m128 a, __m128 b)

Compares the lower SP FP value of a and b for a greater than or equal to b. If a is greater than or equal
to b, 1 is returned. Otherwise 0 is returned.

r := (a0 >= b0) ? 0x1 : 0x0

 146

int _mm_comineq_ss (__m128 a, __m128 b)

Compares the lower SP FP value of a and b for a not equal to b. If a and b are not equal, 1 is returned.
Otherwise 0 is returned.

r := (a0 != b0) ? 0x1 : 0x0

int _mm_ucomieq_ss (__m128 a, __m128 b)

Compares the lower SP FP value of a and b for a equal to b. If a and b are equal, 1 is returned.
Otherwise 0 is returned.

r := (a0 == b0) ? 0x1 : 0x0

int _mm_ucomilt_ss (__m128 a, __m128 b)

Compares the lower SP FP value of a and b for a less than b. If a is less than b, 1 is returned. Otherwise
0 is returned.

r := (a0 < b0) ? 0x1 : 0x0

int _mm_ucomile_ss (__m128 a, __m128 b)

Compares the lower SP FP value of a and b for a less than or equal to b. If a is less than or equal to b, 1
is returned. Otherwise 0 is returned.

r := (a0 <= b0) ? 0x1 : 0x0

int _mm_ucomigt_ss (__ m128 a, __ m128 b)

Compares the lower SP FP value of a and b for a greater than b. If a is greater than b are equal, 1 is
returned. Otherwise 0 is returned.

r := (a0 > b0) ? 0x1 : 0x0

int _mm_ucomige_ss (__ m128 a, __ m128 b)

Compares the lower SP FP value of a and b for a greater than or equal to b. If a is greater than or equal
to b, 1 is returned. Otherwise 0 is returned.

r := (a0 >= b0) ? 0x1 : 0x0

 147

int _mm_ucomineq_ss (__ m128 a, __ m128 b)

Compares the lower SP FP value of a and b for a not equal to b. If a and b are not equal, 1 is returned.
Otherwise 0 is returned.

r := (a0 != b0) ? 0x1 : 0x0

The superscript "r" on the instruction indicates that the operands are reversed in the instruction
implementation.

Conversion Operations for Streaming
SIMD Extensions
The conversions operations are listed in the following table followed by a description of each intrinsic with
the most recent mnemonic naming convention. The alternate name is provided in case you have used
these intrinsics before.

Intrinsic Name Corresponding Instruction

_mm_cvtss_si32 CVTSS2SI

_mm_cvtps_pi32 CVTPS2PI

_mm_cvttss_si32 CVTTSS2SI

_mm_cvttps_pi32 CVTTPS2PI

_mm_cvtsi32_ss CVTSI2SS

_mm_cvtpi32_ps CVTTPS2PI

_mm_cvtpi16_ps composite

_mm_cvtpu16_ps composite

_mm_cvtpi8_ps composite

_mm_cvtpu8_ps composite

_mm_cvtpi32x2_ps composite

_mm_cvtps_pi16 composite

_mm_cvtps_pi8 composite

 148

int _mm_cvtss_si32(__m128 a)

Convert the lower SP FP value of a to a 32-bit integer according to the current rounding mode.

r := (int)a0

__m64 _mm_cvtps_pi32(__m128 a)

Convert the two lower SP FP values of a to two 32-bit integers according to the current rounding mode,
returning the integers in packed form.

r0 := (int)a0

r1 := (int)a1

int _mm_cvttss_si32(__m128 a)

Convert the lower SP FP value of a to a 32-bit integer with truncation.

r := (int)a0

__m64 _mm_cvttps_pi32(__m128 a)

Convert the two lower SP FP values of a to two 32-bit integer with truncation, returning the integers in
packed form.

r0 := (int)a0

r1 := (int)a1

__m128 _mm_cvtsi32_ss(__m128 a, int b)

Convert the 32-bit integer value b to an SP FP value; the upper three SP FP values are passed through
from a.

r0 := (float)b

r1 := a1 ; r2 := a2 ; r3 := a3

 149

__m128 _mm_cvtpi32_ps(__m128 a, __m64 b)

Convert the two 32-bit integer values in packed form in b to two SP FP values; the upper two SP FP
values are passed through from a.

r0 := (float)b0

r1 := (float)b1

r2 := a2

r3 := a3

__m128 _mm_cvtpi16_ps(__m64 a)

Convert the four 16-bit signed integer values in a to four single precision FP values.

r0 := (float)a0

r1 := (float)a1

r2 := (float)a2

r3 := (float)a3

__m128 _mm_cvtpu16_ps(__m64 a)

Convert the four 16-bit unsigned integer values in a to four single precision FP values.

r0 := (float)a0

r1 := (float)a1

r2 := (float)a2

r3 := (float)a3

__m128 _mm_cvtpi8_ps(__m64 a)

Convert the lower four 8-bit signed integer values in a to four single precision FP values.

r0 := (float)a0

r1 := (float)a1

r2 := (float)a2

r3 := (float)a3

 150

__m128 _mm_cvtpu8_ps(__m64 a)

Convert the lower four 8-bit unsigned integer values in a to four single precision FP values.

r0 := (float)a0

r1 := (float)a1

r2 := (float)a2

r3 := (float)a3

__m128 _mm_cvtpi32x2_ps(__m64 a, __m64 b)

Convert the two 32-bit signed integer values in a and the two 32-bit signed integer values in b to four
single precision FP values.

r0 := (float)a0

r1 := (float)a1

r2 := (float)b0

r3 := (float)b1

__m64 _mm_cvtps_pi16(__m128 a)

Convert the four single precision FP values in a to four signed 16-bit integer values.

r0 := (short)a0

r1 := (short)a1

r2 := (short)a2

r3 := (short)a3

__m64 _mm_cvtps_pi8(__m128 a)

Convert the four single precision FP values in a to the lower four signed 8-bit integer values of the result.

r0 := (char)a0

r1 := (char)a1

r2 := (char)a2

r3 := (char)a3

 151

Miscellaneous Intrinsics Using
Streaming SIMD Extensions
Intrinsic Name Operation Corresponding Instruction

_mm_shuffle_ps Shuffle SHUFPS

_mm_unpackhi_ps Unpack High UNPCKHPS

_mm_unpacklo_ps Unpack Low UNPCKLPS

_mm_loadh_pi Load High MOVHPS reg, mem

_mm_storeh_pi Store High MOVHPS mem, reg

_mm_movehl_ps Move High to Low MOVHLPS

_mm_movelh_ps Move Low to High MOVLHPS

_mm_loadl_pi Load Low MOVLPS reg, mem

_mm_storel_pi Store Low MOVLPS mem, reg

_mm_movemask_ps Create four-bit mask MOVMSKPS

_mm_getcsr Return Register Contents STMXCSR

_mm_setcsr Control Register LDMXCSR

__m128 _mm_shuffle_ps(__m128 a, __m128 b, int i)

Selects four specific SP FP values from a and b, based on the mask i. The mask must be an immediate.
See Macro Function for Shuffle Using Streaming SIMD Extensions for a description of the shuffle
semantics.

__m128 _mm_unpackhi_ps(__m128 a, __m128 b)

Selects and interleaves the upper two SP FP values from a and b.

r0 := a2

r1 := b2

r2 := a3

r3 := b3

 152

__m128 _mm_unpacklo_ps(__m128 a, __m128 b)

Selects and interleaves the lower two SP FP values from a and b.

r0 := a0

r1 := b0

r2 := a1

r3 := b1

__m128 _mm_loadh_pi(__m128 a, __m64 * p)

Sets the upper two SP FP values with 64 bits of data loaded from the address p; the lower two values are
passed through from a.

r0 := a0

r1 := a1

r2 := *p0

r3 := *p1

void _mm_storeh_pi(__m64 * p, __m128 a)

Stores the upper two SP FP values of a to the address p.

*p0 := a2

*p1 := a3

__m128 _mm_movehl_ps (__ m128 a, __m128 b)

Moves the upper 2 SP FP values of b to the lower 2 SP FP values of the result. The upper 2 SP FP
values of a are passed through to the result.

r3 := a3

r2 := a2

r1 := b3

r0 := b2

 153

__m128 _mm_movelh_ps (__m128 a, __m128 b)

Moves the lower 2 SP FP values of b to the upper 2 SP FP values of the result. The lower 2 SP FP
values of a are passed through to the result.

r3 := b1

r2 := b0

r1 := a1

r0 := a0

__m128 _ mm_loadl_pi(__m128 a, __m64 * p)

Sets the lower two SP FP values with 64 bits of data loaded from the address p; the upper two values are
passed through from a.

r0 := *p0

r1 := *p1

r2 := a2

r3 := a3

void _mm_storel_pi(__m64 * p, __m128 a)

Stores the lower two SP FP values of a to the address p.

*p0 := b0

*p1 := b1

int _mm_movemask_ps(__m128 a)

Creates a 4-bit mask from the most significant bits of the four SP FP values.

r := sign(a3)<<3 | sign(a2)<<2 | sign(a1)<<1 | sign(a0)

unsigned int _mm_getcsr(void)

Returns the contents of the control register.

void _mm_setcsr(unsigned int i)

Sets the control register to the value specified.

 154

Macro Function for Shuffle Using
Streaming SIMD Extensions
The Streaming SIMD Extensions provide a macro function to help create constants that describe shuffle
operations. The macro takes four small integers (in the range of 0 to 3) and combines them into an 8-bit
immediate value used by the SHUFPS instruction. See the example below.

Shuffle Function Macro

You can view the four integers as selectors for choosing which two words from the first input operand and
which two words from the second are to be put into the result word.

View of Original and Result Words
 with Shuffle Function Macro

Macro Functions to Read and Write the
Control Registers
The following macro functions enable you to read and write bits to and from the control register. For
details, see Set Operations. For Itanium(TM)-based systems, these macros do not allow you to access all
of the bits of the FPSR. See the descriptions for the getfpsr() and setfpsr() intrinsics in the Native
Intrinsics for Itanium Instructions topic.

Exception State Macros Macro Arguments

_MM_SET_EXCEPTION_STATE(x) _MM_EXCEPT_INVALID

_MM_GET_EXCEPTION_STATE() _MM_EXCEPT_DIV_ZERO

 _MM_EXCEPT_DENORM

 155

Macro Definitions

Write to and read from the sixth-least
 significant control register bit, respectively.

_MM_EXCEPT_OVERFLOW

 _MM_EXCEPT_UNDERFLOW

 _MM_EXCEPT_INEXACT

The following example tests for a divide-by-zero exception.

Exception State Macros
 with _MM_EXCEPT_DIV_ZERO

Exception Mask Macros Macro Arguments

_MM_SET_EXCEPTION_MASK(x) _MM_MASK_INVALID

_MM_GET_EXCEPTION_MASK () _MM_MASK_DIV_ZERO

 _MM_MASK_DENORM

Macro Definitions

Write to and read from the seventh through twelfth
 control register bits, respectively.
 Note: All six exception mask bits are always affected.
 Bits not set explicitly are cleared.

_MM_MASK_OVERFLOW

 _MM_MASK_UNDERFLOW

 _MM_MASK_INEXACT

The following example masks the overflow and underflow exceptions and unmasks all other exceptions.

Exception Mask with _MM_MASK_OVERFLOW and _MM_MASK_UNDERFLOW

_MM_SET_EXCEPTION_MASK(MM_MASK_OVERFLOW | _MM_MASK_UNDERFLOW)

Rounding Mode Macro Arguments

_MM_SET_ROUNDING_MODE(x) _MM_ROUND_NEAREST

_MM_GET_ROUNDING_MODE() _MM_ROUND_DOWN

 156

Macro Definition

Write to and read from bits thirteen and fourteen of the control
register.

_MM_ROUND_UP

 _MM_ROUND_TOWARD_ZERO

The following example tests the rounding mode for round toward zero.

Rounding Mode with _MM_ROUND_TOWARD_ZERO

if (_MM_GET_ROUNDING_MODE() == _MM_ROUND_TOWARD_ZERO) {

/* Rounding mode is round toward zero */

}

Flush-to-Zero Mode Macro Arguments

_MM_SET_FLUSH_ZERO_MODE(x) _MM_FLUSH_ZERO_ON

_MM_GET_FLUSH_ZERO_MODE() _MM_FLUSH_ZERO_OFF

Macro Definition

Write to and read from bit fifteen of the control register.

The following example disables flush-to-zero mode.

Flush-to-Zero Mode with _MM_FLUSH_ZERO_OFF

_MM_SET_FLUSH_ZERO_MODE(_MM_FLUSH_ZERO_OFF)

Macro Function for Matrix Transposition
The Streaming SIMD Extensions also provide the following macro function to transpose a 4 by 4 matrix of
single precision floating point values.

_MM_TRANSPOSE4_PS(row0, row1, row2, row3)

The arguments row0, row1, row2, and row3 are __m128 values whose elements form the
corresponding rows of a 4 by 4 matrix. The matrix transposition is returned in arguments row0, row1,
row2, and row3 where row0 now holds column 0 of the original matrix, row1 now holds column 1 of
the original matrix, and so on.

 157

The transposition function of this macro is illustrated in the "Matrix Transposition Using the
_MM_TRANSPOSE4_PS" figure.

Matrix Transposition Using
 _MM_TRANSPOSE4_PS Macro

Summary of Memory and Initialization
Using Streaming SIMD Extensions
This section describes the Load, Set, and Store operations, which let you load and store data into
memory. The Load and Set operations are similar in that both initialize __m128 data. However, the Set
operations take a float argument and are intended for initialization with constants, whereas the Load
operations take a floating point argument and are intended to mimic the instructions for loading data from
memory. The Store operation assigns the initialized data to the address.

The miscellaneous intrinsics are listed in the following table. Syntax and a brief description are contained
the following topics.

Memory and Initialization Operations

Intrinsic Name Operation Corresponding Instruction

_mm_load_ss Load the low value and clear the three
high values

MOVSS

_mm_load1_ps Load one value into all four words MOVSS + Shuffling

_mm_load_ps Load four values, address aligned MOVAPS

_mm_loadu_ps Load four values, address unaligned MOVUPS

_mm_loadr_ps Load four values, in reverse order MOVAPS + Shuffling

_mm_set_ss Set the low value and clear the three
high values

Composite

_mm_set1_ps Set all four words with the same value Composite

 158

Intrinsic Name Operation Corresponding Instruction

_mm_set_ps Set four values, address aligned Composite

_mm_setr_ps Set four values, in reverse order Composite

_mm_setzero_ps Clear all four values Composite

_mm_store_ss Store the low value MOVSS

_mm_store1_ps Store the low value acros all four
words

MOVSS + Shuffling

_mm_store_ps Store four values, address aligned MOVAPS

_mm_storeu_ps Store four values, address unaligned MOVUPS

_mm_storer_ps Store four values, in reverse order MOVAPS + Shuffling

_mm_move_ss Set the low word, and pass in three
high values

MOVSS

Load Operations for Streaming SIMD
Extensions
See summary table in Summary of Memory and Initialization topic.

__m128 _mm_load_ss(float * p)

Loads an SP FP value into the low word and clears the upper three words.

r0 := *p

r1 := 0.0 ; r2 := 0.0 ; r3 := 0.0

__m128 _mm_load1_ps(float * p)

or

__m128 _mm_load_ps1(float * p)

Loads a single SP FP value, copying it into all four words.

r0 := *p

r1 := *p

r2 := *p

r3 := *p

 159

__m128 _mm_load_ps(float * p)

Loads four SP FP values. The address must be 16-byte-aligned.

r0 := p[0]

r1 := p[1]

r2 := p[2]

r3 := p[3]

__m128 _mm_loadu_ps(float * p)

Loads four SP FP values. The address need not be 16-byte-aligned.

r0 := p[0]

r1 := p[1]

r2 := p[2]

r3 := p[3]

__m128 _mm_loadr_ps(float * p)

Loads four SP FP values in reverse order. The address must be 16-byte-aligned.

r0 := p[3]

r1 := p[2]

r2 := p[1]

r3 := p[0]

Set Operations for Streaming SIMD
Extensions
See summary table in Summary of Memory and Initialization topic.

__m128 _mm_set_ss(float w)

Sets the low word of an SP FP value to w and clears the upper three words.

r0 := w

r1 := r2 := r3 := 0.0

 160

__m128 _mm_set1_ps(float w)

or

__m128 _mm_set_ps1(float w)

Sets the four SP FP values to w.

r0 := r1 := r2 := r3 := w

__m128 _mm_set_ps(float z, float y, float x, float w)

Sets the four SP FP values to the four inputs.

r0 := w

r1 := x

r2 := y

r3 := z

__m128 _mm_setr_ps(float z, float y, float x, float w)

Sets the four SP FP values to the four inputs in reverse order.

r0 := z

r1 := y

r2 := x

r3 := w

__m128 _mm_setzero_ps(void)

Clears the four SP FP values.

r0 := r1 := r2 := r3 := 0.0

 161

Store Operations for Streaming SIMD
Extensions
See summary table in Summary of Memory and Initialization topic.

void _mm_store_ss(float * p, __m128 a)

Stores the lower SP FP value.

*p := a0

void _mm_store1_ps(float * p, __m128 a)

or

void _mm_store_ps1(float * p, __m128 a)

Stores the lower SP FP value across four words.

p[0] := a0

p[1] := a0

p[2] := a0

p[3] := a0

void _mm_store_ps(float *p, __m128 a)

Stores four SP FP values. The address must be 16-byte-aligned.

p[0] := a0

p[1] := a1

p[2] := a2

p[3] := a3

void _mm_storeu_ps(float *p, __m128 a)

Stores four SP FP values. The address need not be 16-byte-aligned.

p[0] := a0

p[1] := a1

p[2] := a2

p[3] := a3

 162

void _mm_storer_ps(float * p, __m128 a)

Stores four SP FP values in reverse order. The address must be 16-byte-aligned.

p[0] := a3

p[1] := a2

p[2] := a1

p[3] := a0

__m128 _mm_move_ss(__m128 a, __m128 b)

Sets the low word to the SP FP value of b. The upper 3 SP FP values are passed through from a.

r0 := b0

r1 := a1

r2 := a2

r3 := a3

Integer Intrinsics Using Streaming SIMD
Extensions
The integer intrinsics are listed in the table below followed by a description of each intrinsic with the most
recent mnemonic naming convention.

Intrinsic Name Operation Corresponding Instruction

_mm_extract_pi16 Extract on of four words PEXTRW

_mm_insert_pi16 Insert a word PINSRW

_mm_max_pi16 Compute the maximum PMAXSW

_mm_max_pu8 Compute the maximum, unsigned PMAXUB

_mm_min_pi16 Compute the minimum PMINSW

_mm_min_pu8 Compute the minimum, unsigned PMINUB

_mm_movemask_pi8 Create an eight-bit mask PMOVMSKB

_mm_mulhi_pu16 Multiply, return high bits PMULHUW

_mm_shuffle_pi16 Return a combination of four words PSHUFW

_mm_maskmove_si64 Conditional Store MASKMOVQ

 163

Intrinsic Name Operation Corresponding Instruction

_mm_avg_pu8 Compute rounded average PAVGB

_mm_avg_pu16 Compute rounded average PAVGW

_mm_sad_pu8 Compute sum of absolute differences PSADBW

For this topic you need to ensure to empty the multimedia state for the mmx register. See The EMMS
Instruction: Why You Need It and When to Use It topic for more details.

int _mm_extract_pi16(__m64 a, int n)

Extracts one of the four words of a. The selector n must be an immediate.

r := (n==0) ? a0 : ((n==1) ? a1 : ((n==2) ? a2 : a3))

__m64 _mm_insert_pi16(__m64 a, int d, int n)

Inserts word d into one of four words of a. The selector n must be an
 immediate.

r0 := (n==0) ? d : a0;

r1 := (n==1) ? d : a1;

r2 := (n==2) ? d : a2;

r3 := (n==3) ? d : a3;

__m64 _mm_max_pi16(__m64 a, __m64 b)

Computes the element-wise maximum of the words in a and b.

r0 := min(a0, b0)

r1 := min(a1, b1)

r2 := min(a2, b2)

r3 := min(a3, b3)

 164

__m64 _mm_max_pu8(__m64 a, __m64 b)

Computes the element-wise maximum of the unsigned bytes in a and b.

r0 := min(a0, b0)

r1 := min(a1, b1)

...

r7 := min(a7, b7)

__m64 _mm_min_pi16(__m64 a, __m64 b)

Computes the element-wise minimum of the words in a and b.

r0 := min(a0, b0)

r1 := min(a1, b1)

r2 := min(a2, b2)

r3 := min(a3, b3)

__m64 _mm_min_pu8(__m64 a, __m64 b)

Computes the element-wise minimum of the unsigned bytes in a and b.

r0 := min(a0, b0)

r1 := min(a1, b1)

...

r7 := min(a7, b7)

int _mm_movemask_pi8(__m64 a)

Creates an 8-bit mask from the most significant bits of the bytes in a.

r := sign(a7)<<7 | sign(a6)<<6 |... | sign(a0)

 165

__m64 _mm_mulhi_pu16(__m64 a, __m64 b)

Multiplies the unsigned words in a and b, returning the upper 16 bits of the 32-bit intermediate results.

r0 := hiword(a0 * b0)

r1 := hiword(a1 * b1)

r2 := hiword(a2 * b2)

r3 := hiword(a3 * b3)

__m64 _mm_shuffle_pi16(__m64 a, int n)

Returns a combination of the four words of a. The selector n must be an immediate.

r0 := word (n&0x3) of a

r1 := word ((n>>2)&0x3) of a

r2 := word ((n>>4)&0x3) of a

r3 := word ((n>>6)&0x3) of a

void _mm_maskmove_si64(__m64 d, __m64 n, char * p)

Conditionally store byte elements of d to address p. The high bit of each byte in the selector n determines
whether the corresponding byte in d will be stored.

if (sign(n0)) p[0] := d0

if (sign(n1)) p[1] := d1

...

if (sign(n7)) p[7] := d7

__m64 _mm_avg_pu8(__m64 a, __m64 b)

Computes the (rounded) averages of the unsigned bytes in a and b.

t = (unsigned short)a0 + (unsigned short)b0

r0 = (t >> 1) | (t & 0x01)

...

t = (unsigned short)a7 + (unsigned short)b7

r7 = (unsigned char)((t >> 1) | (t & 0x01))

 166

__m64 _mm_avg_pu16(__m64 a, __m64 b)

Computes the (rounded) averages of the unsigned words in a and b.

t = (unsigned int)a0 + (unsigned int)b0

r0 = (t >> 1) | (t & 0x01)

...

t = (unsigned word)a7 + (unsigned word)b7

r7 = (unsigned short)((t >> 1) | (t & 0x01))

__m64 _mm_sad_pu8(__m64 a, __m64 b)

Computes the sum of the absolute differences of the unsigned bytes in a and b, returning he value in the
lower word. The upper three words are cleared.

r0 = abs(a0-b0) +... + abs(a7-b7)

r1 = r2 = r3 = 0

Cacheability Support Using Streaming
SIMD Extensions
The following intrinsics provide ways to make efficient use of the cache.

void _mm_prefetch(char * p, int i)

(uses PREFETCH)

Loads one cache line of data from address p to a location "closer" to the processor. The value i
specifies the type of prefetch operation: the constants _MM_HINT_T0, _MM_HINT_T1, _MM_HINT_T2,
and _MM_HINT_NTA should be used, corresponding to the type of prefetch instruction.

void _mm_stream_pi(__m64 * p, __m64 a)

(uses MOVNTQ)

Stores the data in a to the address p without polluting the caches. This intrinsic requires you to empty the
multimedia state for the mmx register. See The EMMS Instruction: Why You Need It and When to Use It
topic.

 167

void _mm_stream_ps(float * p, __m128 a)

(see MOVNTPS)

Stores the data in a to the address p without polluting the caches. The address must be 16-byte-aligned.

void _mm_sfence(void)

(uses SFENCE)

Guarantees that every preceding store is globally visible before any subsequent store.

void _mm_pause(void)

The execution of the next instruction is delayed an implementation specific amount of time. The
instruction does not modify the architectural state. This intrinsic provides especially significant
performance gain and described in more detail below.

PAUSE Intrinsic

The PAUSE intrinsic is used in spin-wait loops with the processors implementing dynamic execution
(especially out-of-order execution). In the spin-wait loop, PAUSE improves the speed at which the code
detects the release of the lock. For dynamic scheduling, the PAUSE instruction reduces the penalty of
exiting from the spin-loop.

Example of loop with the PAUSE instruction:

spin_loop:pause

 cmp eax, A

 jne spin_loop

In the above example, the program spins until memory location A matches the value in register eax. The
code sequence that follows shows a test-and-test-and-set. In this example, the spin occurs only after the
attempt to get a lock has failed.

get_lock: mov eax, 1

 xchg eax, A ; Try to get lock

 cmp eax, 0 ; Test if successful

 jne spin_loop

Critical Section:

<critical_section code>

mov A, 0 ; Release lock

jmp continue

spin_loop: pause; Spin-loop hint

 168

cmp 0, A ; Check lock availability

jne spin_loop

jmp get_lock

continue: <other code>

Note that the first branch is predicted to fall-through to the critical section in anticipation of successfully
gaining access to the lock. It is highly recommended that all spin-wait loops include the PAUSE instruction.
Since PAUSE is backwards compatible to all existing IA-32 processor generations, a test for processor
type (a CPUID test) is not needed. All legacy processors will execute PAUSE as a NOP, but in processors
which use the PAUSE as a hint there can be significant performance benefit.

Using Streaming SIMD Extensions on
Itanium(TM) Architecture
The Streaming SIMD Extensions intrinsics provide access to Itanium instructions for Streaming SIMD
Extensions. To provide source compatibility with the IA-32 architecture, these intrinsics are equivalent
both in name and functionality to the set of IA-32-based Streaming SIMD Extensions intrinsics.

To write programs with the intrinsics, you should be familiar with the hardware features provided by the
Streaming SIMD Extensions. Keep the following four important issues in mind:

! Certain intrinsics are provided only for compatibility with previously-defined IA-32 intrinsics. Using
them on Itanium-based systems probably leads to performance degradation. See section below.

! Floating-point (FP) data loaded stored as __m128 objects must be 16-byte-aligned.

! Some intrinsics require that their arguments be immediates– that is, constant integers (literals),
due to the nature of the instruction.

Prototypes for these intrinsics and some related macros and constants are in the header file
xmmintrin.h.

Data Types

The new data type __m128 is used with the Streaming SIMD Extensions intrinsics. It represents a 128-bit
quantity composed of four single-precision FP values. This corresponds to the 128-bit IA-32 Streaming
SIMD Extensions register.

The compiler aligns __m128 local data to 16-byte boundaries on the stack. Global data of these types is
also 16 byte-aligned. To align integer, float, or double arrays, you can use the declspec
alignment.

Because Itanium instructions treat the Streaming SIMD Extensions registers in the same way whether
you are using packed or scalar data, there is no __m32 data type to represent scalar data. For scalar
operations, use the __m128 objects and the "scalar" forms of the intrinsics; the compiler and the
processor implement these operations with 32-bit memory references. But, for better performance the
packed form should be substituting for the scalar form whenever possible.

The address of a __m128 object may be taken.

For more information, see Intel Architecture Software Developer's Manual, Volume 2: Instruction Set
Reference Manual, Intel Corporation, doc. number 243191.

 169

Implementation on Itanium-based systems

Streaming SIMD Extensions intrinsics are defined for the __m128 data type, a 128-bit quantity
consisting of four single-precision FP values. SIMD instructions for Itanium-based systems operate on 64-
bit FP register quantities containing two single-precision floating-point values. Thus, each __m128
operand is actually a pair of FP registers and therefore each intrinsic corresponds to at least one pair of
Itanium instructions operating on the pair of FP register operands.

Compatibility versus Performance

Many of the Streaming SIMD Extensions intrinsics for Itanium-based systems were created for
compatibility with existing IA-32 intrinsics and not for performance. In some situations, intrinsic usage that
improved performance on IA-32 will not do so on Itanium-based systems. One reason for this is that some
intrinsics map nicely into the IA-32 instruction set but not into the Itanium instruction set. Thus, it is
important to differentiate between intrinsics which were implemented for a performance advantage on
Itanium-based systems, and those implemented simply to provide compatibility with existing IA-32 code.

The following intrinsics are likely to reduce performance and should only be used to initially port legacy
code or in non-critical code sections:

! Any Streaming SIMD Extensions scalar intrinsic (_ss variety) - use packed (_ps) version if
possible

! comi and ucomi Streaming SIMD Extensions comparisons - these correspond to IA-32 COMISS
and UCOMISS instructions only. A sequence of Itanium instructions are required to implement
these.

! Conversions in general are multi-instruction operations. These are particularly expensive:
_mm_cvtpi16_ps, _mm_cvtpu16_ps, _mm_cvtpi8_ps, _mm_cvtpu8_ps,
_mm_cvtpi32x2_ps, _mm_cvtps_pi16, _mm_cvtps_pi8

! Streaming SIMD Extensions utility intrinsic _mm_movemask_ps

If the inaccuracy is acceptable, the SIMD reciprocal and reciprocal square root approximation intrinsics
(rcp and rsqrt) are much faster than the true div and sqrt intrinsics.

Streaming SIMD Extensions 2
Overview of Streaming SIMD Extensions
2 Intrinsics
This book describes the C++ language-level features supporting the Pentium® 4 processor Streaming
SIMD Extensions 2 in the Intel® C++ Compiler, which are divided into two categories:

! Floating-Point Intrinsics -- describes the arithmetic, logical, compare, conversion, memory, and
initialization intrinsics for the double-precision floating-point data type (__m128d).

! Integer Intrinsics -- describes the arithmetic, logical, compare, conversion, memory, and
initialization intrinsics for the extended-precision integer data type (__m128i).

 170

Note

The Pentium 4 processor Streaming SIMD Extensions 2 intrinsics are defined only for IA-32 platforms, not
Itanium(TM)-based platforms. Pentium 4 processor Streaming SIMD Extensions 2 operate on 128 bit
quantities–2 64-bit double precision floating point values. The Itanium processor does not support parallel
double precision computation, so Pentium 4 processor Streaming SIMD Extensions 2 are not
implemented on Itanium-based systems.

For more details, refer to the Pentium® 4 processor Streaming SIMD Extensions 2 External Architecture
Specification (EAS) and other Pentium 4 processor manuals available for download from the
developer.intel.com web site. You should be familiar with the hardware features provided by the
Streaming SIMD Extensions 2 when writing programs with the intrinsics. The following are three important
issues to keep in mind:

! Certain intrinsics, such as _mm_loadr_pd and _mm_cmpgt_sd, are not directly supported by the
instruction set. While these intrinsics are convenient programming aids, be mindful of their
implementation cost.

! Data loaded or stored as __m128d objects must be generally 16-byte-aligned.

! Some intrinsics require that their argument be immediates, that is, constant integers (literals), due
to the nature of the instruction.

The Streaming SIMD Extensions 2 intrinsics prototypes can be found in the emmintrin.h header file.

Floating Point Intrinsics
Floating-point Arithmetic Operations for
Streaming SIMD Extensions 2
The arithmetic operations for the Streaming SIMD Extensions 2 are listed in the following table and are
followed by descriptions of each intrinsic.

Intrinsic Name Corresponding
Instruction

Operation R0 Value R1 Value

_mm_add_sd ADDSD Addition a0 [op] b0 a1

_mm_add_pd ADDPD Addition a0 [op] b0 a1 [op] b1

_mm_sub_sd SUBSD Subtraction a0 [op] b0 a1

_mm_sub_pd SUBPD Subtraction a0 [op] b0 a1 [op] b1

_mm_mul_sd MULSD Multiplication a0 [op] b0 a1

_mm_mul_pd MULPD Multiplication a0 [op] b0 a1 [op] b1

_mm_div_sd DIVSD Division a0 [op] b0 a1

_mm_div_pd DIVPD Division a0 [op] b0 a1 [op] b1

 171

Intrinsic Name Corresponding
Instruction

Operation R0 Value R1 Value

_mm_sqrt_sd SQRTSD Computes Square Root a0 [op] b0 a1

_mm_sqrt_pd SQRTPD Computes Square Root a0 [op] b0 a1 [op] b1

_mm_min_sd MINSD Computes Minimum a0 [op] b0 a1

_mm_min_pd MINPD Computes Minimum a0 [op] b0 a1 [op] b1

_mm_max_sd MAXSD Computes Maximum a0 [op] b0 a1

_mm_max_pd MAXPD Computes Maximum a0 [op] b0 a1 [op] b1

__m128d _mm_add_sd(__m128d a, __m128d b)

Adds the lower DP FP (double-precision, floating-point) values of a and b ; the upper DP FP value is
passed through from a.

r0 := a0 + b0

r1 := a1

__m128d _mm_add_pd(__m128d a, __m128d b)

Adds the two DP FP values of a and b.

r0 := a0 + b0

r1 := a1 + b1

__m128d _mm_sub_sd (__m128d a, __m128d b)

Subtracts the lower DP FP value of b from a. The upper DP FP value is passed through from a.

r0 := a0 - b0

r1 := a1

 172

__m128d _mm_sub_pd (__m128d a, __m128d b)

Subtracts the two DP FP values of b from a.

r0 := a0 - b0

r1 := a1 - b1

__m128d _mm_mul_sd (__m128d a, __m128d b)

Multiplies the lower DP FP values of a and b. The upper DP FP is passed through from a.

r0 := a0 * b0

r1 := a1

__m128d _mm_mul_pd (__m128d a, __m128d b)

Multiplies the two DP FP values of a and b.

r0 := a0 * b0

r1 := a1 * b1

__m128d _mm_div_sd (__m128d a, __m128d b)

Divides the lower DP FP values of a and b. The upper DP FP value is passed through from a.

r0 := a0 / b0

r1 := a1

__m128d _mm_div_pd (__m128d a, __m128d b)

Divides the two DP FP values of a and b.

r0 := a0 / b0

r1 := a1 / b1

__m128d _mm_sqrt_sd (__m128d a, __m128d b)

Computes the square root of the lower DP FP value of b. The upper DP FP value is passed through from
a.

r0 := sqrt(b0)

r1 := a1

 173

__m128d _mm_sqrt_pd (__m128d a)

Computes the square roots of the two DP FP values of a.

r0 := sqrt(a0)

r1 := sqrt(a1)

__m128d _mm_min_sd (__m128d a, __m128d b)

Computes the minimum of the lower DP FP values of a and b. The upper DP FP value is passed through
from a.

r0 := min (a0, b0)

r1 := a1

__m128d _mm_min_pd (__m128d a, __m128d b)

Computes the minima of the two DP FP values of a and b.

r0 := min(a0, b0)

r1 := min(a1, b1)

__m128d _mm_max_sd (__m128d a, __m128d b)

Computes the maximum of the lower DP FP values of a and b. The upper DP FP value is passed through
from a.

r0 := max (a0, b0)

r1 := a1

__m128d _mm_max_pd (__m128d a, __m128d b)

Computes the maxima of the two DP FP values of a and b.

r0 := max(a0, b0)

r1 := max(a1, b1)

 174

Logical Operations for Streaming SIMD
Extensions 2
__m128d _mm_andnot_pd (__m128d a, __m128d b)

(uses ANDNPD)

Computes the bitwise AND of the 128-bit value in b and the bitwise NOT of the 128-bit value in a.

r0 := (~a0) & b0

r1 := (~a1) & b1

__m128d _mm_and_pd (__m128d a, __m128d b)

(uses ANDPD)

Computes the bitwise AND of the two DP FP values of a and b.

r0 := a0 & b0

r1 := a1 & b1

__m128d _mm_or_pd (__m128d a, __m128d b)

(uses ORPD)

Computes the bitwise OR of the two DP FP values of a and b.

r0 := a0 | b0

r1 := a1 | b1

__m128d _mm_xor_pd (__m128d a, __m128d b)

(uses XORPD)

Computes the bitwise XOR of the two DP FP values of a and b.

r0 := a0 ^ b0

r1 := a1 ^ b1

 175

Comparison Operations for Streaming
SIMD Extensions 2
Each comparison intrinsic performs a comparison of a and b. For the packed form, the two DP FP values
of a and b are compared, and a 128-bit mask is returned. For the scalar form, the lower DP FP values of
a and b are compared, and a 64-bit mask is returned; the upper DP FP value is passed through from a.
The mask is set to 0xffffffffffffffff for each element where the comparison is true and 0x0 where the
comparison is false. The r following the instruction name indicates that the operands to the instruction are
reversed in the actual implementation. The comparison intrinsics for the Streaming SIMD Extensions 2
are listed in the following table followed by detailed descriptions.

Intrinsic Name Corresponding Instruction Compare For:

_mm_cmpeq_pd CMPEQPD Equality

_mm_cmplt_pd CMPLTPD Less Than

_mm_cmple_pd CMPLEPD Less Than or Equal

_mm_cmpgt_pd CMPLTPDr Greater Than

_mm_cmpge_pd CMPLEPDr Greater Than or Equal

_mm_cmpord_pd CMPORDPD Ordered

_mm_cmpunord_pd CMPUNORDPD Unordered

_mm_cmpneq_pd CMPNEQPD Inequality

_mm_cmpnlt_pd CMPNLTPD Not Less Than

_mm_cmpnle_pd CMPNLEPD Not Less Than or Equal

_mm_cmpngt_pd CMPNLTPDr Not Greater Than

_mm_cmpnge_pd CMPLEPDr Not Greater Than or Equal

_mm_cmpeq_sd CMPEQSD Equality

_mm_cmplt_sd CMPLTSD Less Than

_mm_cmple_sd CMPLESD Less Than or Equal

_mm_cmpgt_sd CMPLTSDr Greater Than

_mm_cmpge_sd CMPLESDr Greater Than or Equal

_mm_cmpord_sd CMPORDSD Ordered

_mm_cmpunord_sd CMPUNORDSD Unordered

 176

Intrinsic Name Corresponding Instruction Compare For:

_mm_cmpneq_sd CMPNEQSD Inequality

_mm_cmpnlt_sd CMPNLTSD Not Less Than

_mm_cmpnle_sd CMPNLESD Not Less Than or Equal

_mm_cmpngt_sd CMPNLTSDr Not Greater Than

_mm_cmpnge_sd CMPNLESDR Not Greater Than or Equal

_mm_comieq_sd COMISD Equality

_mm_comilt_sd COMISD Less Than

_mm_comile_sd COMISD Less Than or Equal

_mm_comigt_sd COMISD Greater Than

_mm_comige_sd COMISD Greater Than or Equal

_mm_comineq_sd COMISD Not Equal

_mm_ucomieq_sd UCOMISD Equality

_mm_ucomilt_sd UCOMISD Less Than

_mm_ucomile_sd UCOMISD Less Than or Equal

_mm_ucomigt_sd UCOMISD Greater Than

_mm_ucomige_sd UCOMISD Greater Than or Equal

_mm_ucomineq_sd UCOMISD Not Equal

__m128d _mm_cmpeq_pd (__m128d a, __m128d b)

Compares the two DP FP values of a and b for equality.

r0 := (a0 == b0) ? 0xffffffffffffffff : 0x0

r1 := (a1 == b1) ? 0xffffffffffffffff : 0x0

 177

__m128d _mm_cmplt_pd (__m128d a, __m128d b)

Compares the two DP FP values of a and b for a less than b.

r0 := (a0 < b0) ? 0xffffffffffffffff : 0x0

r1 := (a1 < b1) ? 0xffffffffffffffff : 0x0

___m128d _mm_cmple_pd (__m128d a, __m128d b)

Compares the two DP FP values of a and b for a less than or equal to b.

r0 := (a0 <= b0) ? 0xffffffffffffffff : 0x0

r1 := (a1 <= b1) ? 0xffffffffffffffff : 0x0

__m128d _mm_cmpgt_pd (__m128d a, __m128d b)

Compares the two DP FP values of a and b for a greater than b.

r0 := (a0 > b0) ? 0xffffffffffffffff : 0x0

r1 := (a1 > b1) ? 0xffffffffffffffff : 0x0

__m128d _mm_cmpge_pd (__m128d a, __m128d b)

Compares the two DP FP values of a and b for a greater than or equal to b.

r0 := (a0 >= b0) ? 0xffffffffffffffff : 0x0

r1 := (a1 >= b1) ? 0xffffffffffffffff : 0x0

__m128d _mm_cmpord_pd (__m128d a, __m128d b)

Compares the two DP FP values of a and b for ordered.

r0 := (a0 ord b0) ? 0xffffffffffffffff : 0x0

r1 := (a1 ord b1) ? 0xffffffffffffffff : 0x0

 178

__m128d _mm_cmpunord_pd (__m128d a, __m128d b)

Compares the two DP FP values of a and b for unordered.

r0 := (a0 unord b0) ? 0xffffffffffffffff : 0x0

r1 := (a1 unord b1) ? 0xffffffffffffffff : 0x0

__m128d _mm_cmpneq_pd (__m128d a, __m128d b)

Compares the two DP FP values of a and b for inequality.

r0 := (a0 != b0) ? 0xffffffffffffffff : 0x0

r1 := (a1 != b1) ? 0xffffffffffffffff : 0x0

__m128d _mm_cmpnlt_pd (__m128d a, __m128d b)

Compares the two DP FP values of a and b for a not less than b.

r0 := !(a0 < b0) ? 0xffffffffffffffff : 0x0

r1 := !(a1 < b1) ? 0xffffffffffffffff : 0x0

__m128d _mm_cmpnle_pd (__m128d a, __m128d b)

Compares the two DP FP values of a and b for a not less than or equal to b.

r0 := !(a0 <= b0) ? 0xffffffffffffffff : 0x0

r1 := !(a1 <= b1) ? 0xffffffffffffffff : 0x0

__m128d _mm_cmpngt_pd (__m128d a, __m128d b)

Compares the two DP FP values of a and b for a not greater than b.

r0 := !(a0 > b0) ? 0xffffffffffffffff : 0x0

r1 := !(a1 > b1) ? 0xffffffffffffffff : 0x0

__m128d _mm_cmpnge_pd (__m128d a, __m128d b)

Compares the two DP FP values of a and b for a not greater than or equal to b.

r0 := !(a0 >= b0) ? 0xffffffffffffffff : 0x0

r1 := !(a1 >= b1) ? 0xffffffffffffffff : 0x0

 179

__m128d _mm_cmpeq_sd (__m128d a, __m128d b)

Compares the lower DP FP value of a and b for equality. The upper DP FP value is passed through from
a.

r0 := (a0 == b0) ? 0xffffffffffffffff : 0x0

r1 := a1

__m128d _mm_cmplt_sd (__m128d a, __m128d b)

Compares the lower DP FP value of a and b for a less than b. The upper DP FP value is passed through
from a.

r0 := (a0 < b0) ? 0xffffffffffffffff : 0x0

r1 := i1

__m128d _mm_cmple_sd (__m128d a, __m128d b)

Compares the lower DP FP value of a and b for a less than or equal to b. The upper DP FP value is
passed through from a.

r0 := (a0 <= b0) ? 0xffffffffffffffff : 0x0

r1 := a1

__m128d _mm_cmpgt_sd (__m128d a, __m128d b)

Compares the lower DP FP value of a and b for a greater than b. The upper DP FP value is passed
through from a.

r0 := (a0 > b0) ? 0xffffffffffffffff : 0x0

r1 := a1

__m128d _mm_cmpge_sd (__m128d a, __m128d b)

Compares the lower DP FP value of a and b for a greater than or equal to b. The upper DP FP value is
passed through from a.

r0 := (a0 >= b0) ? 0xffffffffffffffff : 0x0

r1 := a1

 180

__m128d _mm_cmpord_sd (__m128d a, __m128d b)

Compares the lower DP FP value of a and b for ordered. The upper DP FP value is passed through from
a.

r0 := (a0 ord b0) ? 0xffffffffffffffff : 0x0

r1 := a1

__m128d _mm_cmpunord_sd (__m128d a, __m128d b)

Compares the lower DP FP value of a and b for unordered. The upper DP FP value is passed through
from a.

r0 := (a0 unord b0) ? 0xffffffffffffffff : 0x0

r1 := a1

__m128d _mm_cmpneq_sd (__m128d a, __m128d b)

Compares the lower DP FP value of a and b for inequality. The upper DP FP value is passed through
from a.

r0 := (a0 != b0) ? 0xffffffffffffffff : 0x0

r1 := a1

__m128d _mm_cmpnlt_sd (__m128d a, __m128d b)

Compares the lower DP FP value of a and b for a not less than b. The upper DP FP value is passed
through from a.

r0 := !(a0 < b0) ? 0xffffffffffffffff : 0x0

r1 := a1

__m128d _mm_cmpnle_sd (__m128d a, __m128d b)

Compares the lower DP FP value of a and b for a not less than or equal to b. The upper DP FP value is
passed through from a.

r0 := !(a0 <= b0) ? 0xffffffffffffffff : 0x0

r1 := a1

 181

__m128d _mm_cmpngt_sd (__m128d a, __m128d b)

Compares the lower DP FP value of a and b for a not greater than b. The upper DP FP value is passed
through from a.

r0 := !(a0 > b0) ? 0xffffffffffffffff : 0x0

r1 := a1

__m128d _mm_cmpnge_sd (__m128d a, __m128d b)

Compares the lower DP FP value of a and b for a not greater than or equal to b. The upper DP FP value
is passed through from a.

r0 := !(a0 >= b0) ? 0xffffffffffffffff : 0x0

r1 := a1

int _mm_comieq_sd (__m128d a, __m128d b)

Compares the lower DP FP value of a and b for a equal to b. If a and b are equal, 1 is returned.
Otherwise 0 is returned.

r := (a0 == b0) ? 0x1 : 0x0

int _mm_comilt_sd (__m128d a, __m128d b)

Compares the lower DP FP value of a and b for a less than b. If a is less than b, 1 is returned.
Otherwise 0 is returned.

r := (a0 < b0) ? 0x1 : 0x0

int _mm_comile_sd (__m128d a, __m128d b)

Compares the lower DP FP value of a and b for a less than or equal to b. If a is less than or equal to b, 1
is returned. Otherwise 0 is returned.

r := (a0 <= b0) ? 0x1 : 0x0

int _mm_comigt_sd (__m128d a, __m128d b)

Compares the lower DP FP value of a and b for a greater than b. If a is greater than b are equal, 1 is
returned. Otherwise 0 is returned.

r := (a0 > b0) ? 0x1 : 0x0

int _mm_comige_sd (__m128d a, __m128d b)

 182

Compares the lower DP FP value of a and b for a greater than or equal to b. If a is greater than or equal
to b, 1 is returned. Otherwise 0 is returned.

r := (a0 >= b0) ? 0x1 : 0x0

int _mm_comineq_sd (__m128d a, __m128d b)

Compares the lower DP FP value of a and b for a not equal to b. If a and b are not equal, 1 is returned.
Otherwise 0 is returned.

r := (a0 != b0) ? 0x1 : 0x0

int _mm_ucomieq_sd (__m128d a, __m128d b)

Compares the lower DP FP value of a and b for a equal to b. If a and b are equal, 1 is returned.
Otherwise 0 is returned.

r := (a0 == b0) ? 0x1 : 0x0

int _mm_ucomilt_sd (__m128d a, __m128d b)

Compares the lower DP FP value of a and b for a less than b. If a is less than b, 1 is returned.
Otherwise 0 is returned.

r := (a0 < b0) ? 0x1 : 0x0

int _mm_ucomile_sd (__m128d a, __m128d b)

Compares the lower DP FP value of a and b for a less than or equal to b. If a is less than or equal to b, 1
is returned. Otherwise 0 is returned.

r := (a0 <= b0) ? 0x1 : 0x0

int _mm_ucomigt_sd (__m128d a, __m128d b)

Compares the lower DP FP value of a and b for a greater than b. If a is greater than b are equal, 1 is
returned. Otherwise 0 is returned.

r := (a0 > b0) ? 0x1 : 0x0

 183

int _mm_ucomige_sd (__m128d a, __m128d b)

Compares the lower DP FP value of a and b for a greater than or equal to b. If a is greater than or equal
to b, 1 is returned. Otherwise 0 is returned.

r := (a0 >= b0) ? 0x1 : 0x0

int _mm_ucomineq_sd (__m128d a, __m128d b)

Compares the lower DP FP value of a and b for a not equal to b. If a and b are not equal, 1 is returned.
Otherwise 0 is returned.

r := (a0 != b0) ? 0x1 : 0x0

Conversion Operations for Streaming
SIMD Extensions 2
Each conversion intrinsic takes one data type and performs a conversion to a different type. Some
conversions such as _mm_cvtpd_ps result in a loss of precision. The rounding mode used in such cases
is determined by the value in the MXCSR register. The default rounding mode is round-to-nearest. Note
that the rounding mode used by the C and C++ languages when performing a type conversion is to
truncate. The _mm_cvttpd_epi32, _mm_cvttsd_si32, and _mm_cvttps_epi32 intrinsics use the
truncate rounding mode regardless of the mode specified by the MXCSR register.

The conversion-operation intrinsics for Streaming SIMD Extensions 2 are listed in the following table
followed by detailed descriptions.

Intrinsic Name Corresponding Instruction Return Type Parameters

_mm_cvtpd_ps CVTPD2PS __m128 (__m128d a)

_mm_cvtps_pd CVTPS2PD __m128d (__m128 a)

_mm_cvtepi32_pd CVTDQ2PD __m128d (__m128i a)

_mm_cvtpd_epi32 CVTPD2DQ __m128i (__m128d a)

_mm_cvtsd_si32 CVTSD2SI int (__m128d a)

_mm_cvtsd_ss CVTSD2SS __m128 (__m128 a, __m128d b)

_mm_cvtsi32_sd CVTSI2SD __m128d (__m128d a, int b)

_mm_cvtss_sd CVTSS2SD __m128d (__m128d a, __m128 b)

_mm_cvttpd_epi32 CVTTPD2DQ __m128i (__m128d a)

_mm_cvttsd_si32 CVTTSD2SI int (__m128d a)

_mm_cvtepi32_ps CVTDQ2PS __m128 (__m128i a)

 184

Intrinsic Name Corresponding Instruction Return Type Parameters

_mm_cvtps_epi32 CVTPS2DQ __m128i (__m128 a)

_mm_cvttps_epi32 CVTTPS2DQ __m128i (__m128 a)

_mm_cvtpd_pi32 CVTPD2PI __m64 (__m128d a)

_mm_cvttpd_pi32 CVTTPD2PI __m64 (__m128d a)

_mm_cvtpi32_pd CVTPI2PD __m128d (__m64 a)

__m128 _mm_cvtpd_ps (__m128d a)

Converts the two DP FP values of a to SP FP values.

r0 := (float) a0

r1 := (float) a1

r2 := 0.0 ; r3 := 0.0

__m128d _mm_cvtps_pd (__m128 a)

Converts the lower two SP FP values of a to DP FP values.

r0 := (double) a0

r1 := (double) a1

__m128d _mm_cvtepi32_pd (__m128i a)

Converts the lower two signed 32-bit integer values of a to DP FP values.

r0 := (double) a0

r1 := (double) a1

 185

__m128i _mm_cvtpd_epi32 (__m128d a)

Converts the two DP FP values of a to 32-bit signed integer values.

r0 := (int) a0

r1 := (int) a1

r2 := 0x0 ; r3 := 0x0

int _mm_cvtsd_si32 (__m128d a)

Converts the lower DP FP value of a to a 32-bit signed integer value.

r := (int) a0

__m128 _mm_cvtsd_ss (__m128 a, __m128d b)

Converts the lower DP FP value of b to an SP FP value. The upper SP FP values in a are passed
through.

r0 := (float) b0

r1 := a1; r2 := a2 ; r3 := a3

__m128d _mm_cvtsi32_sd (__m128d a, int b)

Converts the signed integer value in b to a DP FP value. The upper DP FP value in a is passed through.

r0 := (double) b

r1 := a1

__m128d _mm_cvtss_sd (__m128d a, __m128 b)

Converts the lower SP FP value of b to a DP FP value. The upper value DP FP value in a is passed
through.

r0 := (double) b0

r1 := a1

 186

__m128i _mm_cvttpd_epi32 (__m128d a)

Converts the two DP FP values of a to 32 bit signed integers using truncate.

r0 := (int) a0

r1 := (int) a1

r2 := 0x0 ; r3 := 0x0

int _mm_cvttsd_si32 (__m128d a)

Converts the lower DP FP value of a to a 32 bit signed integer using truncate.

r := (int) a0

__m128 _mm_cvtepi32_ps (__m128i a)

Converts the 4 signed 32 bit integer values of a to SP FP values.

r0 := (float) a0

r1 := (float) a1

r2 := (float) a2

r3 := (float) a3

__m128i _mm_cvtps_epi32 (__m128 a)

Converts the 4 SP FP values of a to signed 32 bit integer values.

r0 := (int) a0

r1 := (int) a1

r2 := (int) a2

r3 := (int) a3

 187

__m128i _mm_cvttps_epi32 (__m128 a)

Converts the 4 SP FP values of a to signed 32 bit integer values using truncate.

r0 := (int) a0

r1 := (int) a1

r2 := (int) a2

r3 := (int) a3

__m64 _mm_cvtpd_pi32 (__m128d a)

Converts the two DP FP values of a to 32-bit signed integer values.

r0 := (int) a0

r1 := (int) a1

__m64 _mm_cvttpd_pi32 (__m128d a)

Converts the two DP FP values of a to 32-bit signed integer values using truncate.

r0 := (int) a0

r1 := (int) a1

__m128d _mm_cvtpi32_pd (__m64 a)

Converts the two 32-bit signed integer values of a to DP FP values.

r0 := (double) a0

r1 := (double) a1

Cacheability Support for Streaming
SIMD Extensions 2
void _mm_stream_pd (double *p, __m128d a)

(uses MOVNTPD)

Stores the data in a to the address p without polluting caches. The address p must be 16-byte aligned. If
the cache line containing address p is already in the cache, the cache will be updated.

p[0] := a0

p[1] := a1

 188

Floating-point Memory and Initialization
Operations
Streaming SIMD Extensions 2 Floating-
point Memory and Initialization
Operations
This book describes the Load, Set, and Store operations, which let you load and store data into memory.
The Load and Set operations are similar in that both initialize __m128d data. However, the Set operations
take a double argument and are intended for initialization with constants, while the Load operations take a
double pointer argument and are intended to mimic the instructions for loading data from memory. The
Store operation assigns the initialized data to the address.

Load Operations for Streaming SIMD
Extensions

__m128d _mm_load_pd (double *p)

(uses MOVAPD)

Loads two DP FP values. The address p must be 16-byte aligned.

r0 := p[0]

r1 := p[1]

__m128d _mm_load1_pd (double *p)

(uses MOVSD + shuffling)

Loads a single DP FP value, copying to both elements. The address p need not be 16-byte aligned.

r0 := *p

r1 := *p

 189

__m128d _mm_loadr_pd (double *p)

(uses MOVAPD + shuffling)

Loads two DP FP values in reverse order. The address p must be 16-byte aligned.

r0 := p[1]

r1 := p[0]

__m128d _mm_loadu_pd (double *p)

(uses MOVUPD)

Loads two DP FP values. The address p need not be 16-byte aligned.

r0 := p[0]

r1 := p[1]

__m128d _mm_load_sd (double *p)

(uses MOVSD)

Loads a DP FP value. The upper DP FP is set to zero. The address p need not be 16-byte aligned.

r0 := *p

r1 := 0.0

__m128d _mm_loadh_pd (__m128d a, double *p)

(uses MOVHPD)

Loads a DP FP value as the upper DP FP value of the result. The lower DP FP value is passed through
from a. The address p need not be 16-byte aligned.

r0 := a0

r1 := *p

__m128d _mm_loadl_pd (__m128d a, double *p)

(uses MOVLPD)

Loads a DP FP value as the lower DP FP value of the result. The upper DP FP value is passed through
from a. The address p need not be 16-byte aligned.

r0 := *p

r1 := a1

 190

Set Operations for Streaming SIMD
Extensions 2
__m128d _mm_set_sd (double w)

(composite)

Sets the lower DP FP value to w and sets the upper DP FP value to zero.

r0 := w

r1 := 0.0

__m128d _mm_set1_pd (double w)

(composite)

Sets the 2 DP FP values to w.

r0 := w

r1 := w

__m128d _mm_set_pd (double w, double x)

(composite)

Sets the lower DP FP value to x and sets the upper DP FP value to w.

r0 := x

r1 := w

__m128d _mm_setr_pd (double w, double x)

(composite)

Sets the lower DP FP value to w and sets the upper DP FP value to x.

r0 := w

r1 := x

 191

__m128d _mm_setzero_pd ()

(uses XORPD)

Sets the 2 DP FP values to zero.

r0 := 0.0

r1 := 0.0

__m128d _mm_move_sd (__m128d a, __m128d b)

(uses MOVSD)

Sets the lower DP FP value to the lower DP FP value of b. The upper DP FP value is passed through
from a.

r0 := b0

r1 := a1

Store Operations for Streaming SIMD
Extensions 2
void _mm_store_sd (double *p, __m128d a)

(uses MOVSD)

Stores the lower DP FP value of a. The address p need not be 16-byte aligned.

*p := a0

void _mm_store1_pd (double *p, __m128d a)

(uses MOVAPD + shuffling)

Stores the lower DP FP value of a twice. The address p must be 16-byte aligned.

p[0] := a0

p[1] := a0

 192

void _mm_store_pd (double *p, __m128d a)

(uses MOVAPD)

Stores two DP FP values. The address p must be 16-byte aligned.

p[0] := a0

p[1] := a1

void _mm_storeu_pd (double *p, __m128d a)

(uses MOVUPD)

Stores two DP FP values. The address p need not be 16 byte aligned.

p[0] := a0

p[1] := a1

void _mm_storer_pd (double *p, __m128d a)

(uses MOVAPD + shuffling)

Stores two DP FP values in reverse order. The address p must be 16 byte aligned.

p[0] := a1

p[1] := a0

void _mm_storeh_pd (double *p, __m128d a)

(uses MOVHPD)

Stores the upper DP FP value of a.

*p := a1

void _mm_storel_pd (double *p, __m128d a)

(uses MOVLPD)

Stores the lower DP FP value of a.

*p := a0

 193

Miscellaneous Operations for Streaming
SIMD Extensions 2

__m128d _mm_unpackhi_pd (__m128d a, __m128d b)

(uses UNPCKHPD)

Interleaves the upper DP FP values of a and b.

r0 := a1

r1 := b1

__m128d _mm_unpacklo_pd (__m128d a, __m128d b)

(uses UNPCKLPD)

Interleaves the lower DP FP values of a and b.

r0 := a0

1 := b0

int _mm_movemask_pd (__m128d a)

(uses MOVMSKPD)

Creates a two bit mask from the sign bits of the two DP FP values of a.

r := sign(a1) << 1 | sign(a0)

__m128d _mm_shuffle_pd (__m128d a, __m128d b, int i)

(uses SHUFPD)

Selects two specific DP FP values from a and b, based on the mask i. The mask must be an immediate.
See Macro Function for Shuffle for a description of the shuffle semantics.

 194

Integer Intrinsics
Integer Arithmetic Operations for
Streaming SIMD Extensions 2
The integer arithmetic operations for Streaming SIMD Extensions 2 are listed in the following table
followed by their descriptions. The packed arithmetic intrinsics for Streaming SIMD Extensions 2 are listed
in the Floating-point Arithmetic Operations topic.

Intrinsic Instruction Operation

_mm_add_epi8 PADDB Addition

_mm_add_epi16 PADDW Addition

_mm_add_epi32 PADDD Addition

_mm_add_si64 PADDQ Addition

_mm_add_epi64 PADDQ Addition

_mm_adds_epi8 PADDSB Addition

_mm_adds_epi16 PADDSW Addition

_mm_adds_epu8 PADDUSB Addition

_mm_adds_epu16 PADDUSW Addition

_mm_avg_epu8 PAVGB Computes Average

_mm_avg_epu16 PAVGW Computes Average

_mm_madd_epi16 PMADDWD Multiplication/Addition

_mm_max_epi16 PMAXSW Computes Maxima

_mm_max_epu8 PMAXUB Computes Maxima

_mm_min_epi16 PMINSW Computes Minima

_mm_min_epu8 PMINUB Computes Minima

_mm_mulhi_epi16 PMULHW Multiplication

_mm_mulhi_epu16 PMULHUW Multiplication

_mm_mullo_epi16 PMULLW Multiplication

 195

Intrinsic Instruction Operation

_mm_mul_su32 PMULUDQ Multiplication

_mm_mul_epu32 PMULUDQ Multiplication

_mm_sad_epu8 PSADBW Computes Difference/Adds

_mm_sub_epi8 PSUBB Subtraction

_mm_sub_epi16 PSUBW Subtraction

_mm_sub_epi32 PSUBD Subtraction

_mm_sub_si64 PSUBQ Subtraction

_mm_sub_epi64 PSUBQ Subtraction

_mm_subs_epi8 PSUBSB Subtraction

_mm_subs_epi16 PSUBSW Subtraction

_mm_subs_epu8 PSUBUSB Subtraction

_mm_subs_epu16 PSUBUSW Subtraction

__m128i _mm_add_epi8 (__m128i a,__m128i b)

Adds the 16 signed or unsigned 8-bit integers in a to the 16 signed or unsigned 8-bit integers in b.

r0 := a0 + b0

r1 := a1 + b1

...

r15 := a15 + b15

__m128i _mm_add_epi16 (__m128i a, __m128i b)

Adds the 8 signed or unsigned 16-bit integers in a to the 8 signed or unsigned 16-bit integers in b.

r0 := a0 + b0

r1 := a1 + b1

...

r7 := a7 + b7

 196

__m128i _mm_add_epi32 (__m128i a, __m128i b)

Adds the 4 signed or unsigned 32-bit integers in a to the 4 signed or unsigned 32-bit integers in b.

r0 := a0 + b0

r1 := a1 + b1

r2 := a2 + b2

r3 := a3 + b3

__m64 _mm_add_si64 (__m64 a, __m64 b)

Adds the signed or unsigned 64-bit integer a to the signed or unsigned 64-bit integer b.

r := a + b

__m128i _mm_add_epi64 (__m128i a, __m128i b)

Adds the 2 signed or unsigned 64-bit integers in a to the 2 signed or unsigned 64-bit integers in b.

r0 := a0 + b0

r1 := a1 + b1

__m128i _mm_adds_epi8 (__m128i a, __m128i b)

Adds the 16 signed 8-bit integers in a to the 16 signed 8-bit integers in b using saturating arithmetic.

r0 := SignedSaturate(a0 + b0)

r1 := SignedSaturate(a1 + b1)

...

r15 := SignedSaturate(a15 + b15)

__m128i _mm_adds_epi16 (__m128i a, __m128i b)

Adds the 8 signed 16-bit integers in a to the 8 signed 16-bit integers in b using saturating arithmetic.

r0 := SignedSaturate(a0 + b0)

r1 := SignedSaturate(a1 + b1)

...

r7 := SignedSaturate(a7 + b7)

 197

__m128i _mm_adds_epu8 (__m128i a, __m128i b)

Adds the 16 unsigned 8-bit integers in a to the 16 unsigned 8-bit integers in b using saturating arithmetic.

r0 := UnsignedSaturate(a0 + b0)

r1 := UnsignedSaturate(a1 + b1)

...

r15 := UnsignedSaturate(a15 + b15)

__m128i _mm_adds_epu16 (__m128i a, __m128i b)

Adds the 8 unsigned 16-bit integers in a to the 8 unsigned 16-bit integers in b using saturating arithmetic.

r0 := UnsignedSaturate(a0 + b0)

r1 := UnsignedSaturate(a1 + b1)

...

r15 := UnsignedSaturate(a7 + b7)

__m128i _mm_avg_epu8 (__m128i a, __m128i b)

Computes the average of the 16 unsigned 8-bit integers in a and the 16 unsigned 8-bit integers in b and
rounds.

r0 := (a0 + b0) / 2

r1 := (a1 + b1) / 2

...

r15 := (a15 + b15) / 2

__m128i _mm_avg_epu16 (__m128i a, __m128i b)

Computes the average of the 8 unsigned 16-bit integers in a and the 8 unsigned 16-bit integers in b and
rounds.

r0 := (a0 + b0) / 2

r1 := (a1 + b1) / 2

...

r7 := (a7 + b7) / 2

__m128i _mm_madd_epi16 (__m128i a, __m128i b)

 198

Multiplies the 8 signed 16-bit integers from a by the 8 signed 16-bit integers from b. Adds the signed 32-
bit integer results pairwise and packs the 4 signed 32-bit integer results.

r0 := (a0 * b0) + (a1 * b1)

r1 := (a2 * b2) + (a3 * b3)

r2 := (a4 * b4) + (a5 * b5)

r3 := (a6 * b6) + (a7 * b7)

__m128i _mm_max_epi16 (__m128i a, __m128i b)

Computes the pairwise maxima of the 8 signed 16-bit integers from a and the 8 signed 16-bit integers
from b.

r0 := max(a0, b0)

r1 := max(a1, b1)

...

r7 := max(a7, b7)

__m128i _mm_max_epu8 (__m128i a, __m128i b)

Computes the pairwise maxima of the 16 unsigned 8-bit integers from a and the 16 unsigned 8-bit
integers from b.

r0 := max(a0, b0)

r1 := max(a1, b1)

...

r15 := max(a15, b15)

__m128i _mm_min_epi16 (__m128i a, __m128i b)

Computes the pairwise minima of the 8 signed 16-bit integers from a and the 8 signed 16-bit integers
from b.

r0 := min(a0, b0)

r1 := min(a1, b1)

...

r7 := min(a7, b7)

__m128i _mm_min_epu8 (__m128i a, __m128i b)

Computes the pairwise minima of the 16 unsigned 8-bit integers from a and the 16 unsigned 8-bit integers

 199

from b.

r0 := min(a0, b0)

r1 := min(a1, b1)

...

r15 := min(a15, b15)

__m128i _mm_mulhi_epi16 (__m128i a, __m128i b)

Multiplies the 8 signed 16-bit integers from a by the 8 signed 16-bit integers from b. Packs the upper 16-
bits of the 8 signed 32-bit results.

r0 := (a0 * b0)[31:16]

r1 := (a1 * b1)[31:16]

...

r7 := (a7 * b7)[31:16]

__m128i _mm_mulhi_epu16 (__m128i a, __m128i b)

Multiplies the 8 unsigned 16-bit integers from a by the 8 unsigned 16-bit integers from b. Packs the upper
16-bits of the 8 unsigned 32-bit results.

r0 := (a0 * b0)[31:16]

r1 := (a1 * b1)[31:16]

...

r7 := (a7 * b7)[31:16]

__m128i _mm_mullo_epi16 (__m128i a, __m128i b)

Multiplies the 8 signed or unsigned 16-bit integers from a by the 8 signed or unsigned 16-bit integers from
b. Packs the lower 16-bits of the 8 signed or unsigned 32-bit results.

r0 := (a0 * b0)[15:0]

r1 := (a1 * b1)[15:0]

...

r7 := (a7 * b7)[15:0]

__m64 _mm_mul_su32 (__m64 a, __m64 b)

Multiplies the lower 32-bit integer from a by the lower 32-bit integer from b, and returns the 64-bit integer
result.

 200

r := a0 * b0

__m128i _mm_mul_epu32 (__m128i a, __m128i b)

Multiplies 2 unsigned 32-bit integers from a by 2 unsigned 32-bit integers from b. Packs the 2 unsigned
64-bit integer results.

r0 := a0 * b0

r1 := a2 * b2

__m128i _mm_sad_epu8 (__m128i a, __m128i b)

Computes the absolute difference of the 16 unsigned 8-bit integers from a and the 16 unsigned 8-bit
integers from b. Sums the upper 8 differences and lower 8 differences, and packs the resulting 2
unsigned 16-bit integers into the upper and lower 64-bit elements.

r0 := abs(a0 - b0) + abs(a1 - b1) +...+ abs(a7 - b7)

r1 := 0x0 ; r2 := 0x0 ; r3 := 0x0

r4 := abs(a8 - b8) + abs(a9 - b9) +...+ abs(a15 - b15)

r5 := 0x0 ; r6 := 0x0 ; r7 := 0x0

__m128i _mm_sub_epi8 (__m128i a, __m128i b)

Subtracts the 16 signed or unsigned 8-bit integers of b from the 16 signed or unsigned 8-bit integers of a.

r0 := a0 - b0

r1 := a1 - b1

...

r15 := a15 - b15

 201

__m128i _mm_sub_epi16 (__m128i a, __m128i b)

Subtracts the 8 signed or unsigned 16-bit integers of b from the 8 signed or unsigned 16-bit integers of a.

r0 := a0 - b0

r1 := a1 - b1

...

r7 := a7 - b7

__m128i _mm_sub_epi32 (__m128i a, __m128i b)

Subtracts the 4 signed or unsigned 32-bit integers of b from the 4 signed or unsigned 32-bit integers of a.

r0 := a0 - b0

r1 := a1 - b1

r2 := a2 - b2

r3 := a3 - b3

__m64 _mm_sub_si64 (__m64 a, __m64 b)

Subtracts the signed or unsigned 64-bit integer b from the signed or unsigned 64-bit integer a.

r := a - b

__m128i _mm_sub_epi64 (__m128i a, __m128i b)

Subtracts the 2 signed or unsigned 64-bit integers in b from the 2 signed or unsigned 64-bit integers in a.

r0 := a0 - b0

r1 := a1 - b1

__m128i _mm_subs_epi8 (__m128i a, __m128i b)

Subtracts the 16 signed 8-bit integers of b from the 16 signed 8-bit integers of a using saturating
arithmetic.

r0 := SignedSaturate(a0 - b0)

r1 := SignedSaturate(a1 - b1)

...

r15 := SignedSaturate(a15 - b15)

 202

__m128i _mm_subs_epi16 (__m128i a, __m128i b)

Subtracts the 8 signed 16-bit integers of b from the 8 signed 16-bit integers of a using saturating
arithmetic.

r0 := SignedSaturate(a0 - b0)

r1 := SignedSaturate(a1 - b1)

...

r7 := SignedSaturate(a7 - b7)

__m128i _mm_subs_epu8 (__m128i a, __m128i b)

Subtracts the 16 unsigned 8-bit integers of b from the 16 unsigned 8-bit integers of a using saturating
arithmetic.

r0 := UnsignedSaturate(a0 - b0)

r1 := UnsignedSaturate(a1 - b1)

...

r15 := UnsignedSaturate(a15 - b15)

__m128i _mm_subs_epu16 (__m128i a, __m128i b)

Subtracts the 8 unsigned 16-bit integers of b from the 8 unsigned 16-bit integers of a using saturating
arithmetic.

r0 := UnsignedSaturate(a0 - b0)

r1 := UnsignedSaturate(a1 - b1)

...

r7 := UnsignedSaturate(a7 - b7)

 203

Integer Logical Operations for Streaming
SIMD Extensions 2
The following four logical-operation intrinsics and their respective instructions are functional as part of
Streaming SIMD Extensions 2.

__m128i _mm_and_si128 (__m128i a, __m128i b)

(uses PAND)

Computes the bitwise AND of the 128-bit value in a and the 128-bit value in b.

r := a & b

__m128i _mm_andnot_si128 (__m128i a, __m128i b)

(uses PANDN)

Computes the bitwise AND of the 128-bit value in b and the bitwise NOT of the 128-bit value in a.

r := (~a) & b

__m128i _mm_or_si128 (__m128i a, __m128i b)

(uses POR)

Computes the bitwise OR of the 128-bit value in a and the 128-bit value in b.

r := a | b

__m128i _mm_xor_si128 (__m128i a, __m128i b)

(uses PXOR)

Computes the bitwise XOR of the 128-bit value in a and the 128-bit value in b.

r := a ^ b

 204

Integer Shift Operations for Streaming
SIMD Extensions 2
The shift-operation intrinsics for Streaming SIMD Extensions 2 and the description for each are listed in
the following table.

Intrinsic Shift Direction Shift Type Corresponding
Instruction

_mm_slli_si128 Left Logical PSLLDQ

_mm_slli_epi16 Left Logical PSLLW

_mm_sll_epi16 Left Logical PSLLW

_mm_slli_epi32 Left Logical PSLLD

_mm_sll_epi32 Left Logical PSLLD

_mm_slli_epi64 Left Logical PSLLQ

_mm_sll_epi64 Left Logical PSLLQ

_mm_srai_epi16 Right Arithmetic PSRAW

_mm_sra_epi16 Right Arithmetic PSRAW

_mm_srai_epi32 Right Arithmetic PSRAD

_mm_sra_epi32 Right Arithmetic PSRAD

_mm_srli_si128 Right Logical PSRLDQ

_mm_srli_epi16 Right Logical PSRLW

_mm_srl_epi16 Right Logical PSRLW

_mm_srli_epi32 Right Logical PSRLD

_mm_srl_epi32 Right Logical PSRLD

_mm_srli_epi64 Right Logical PSRLQ

_mm_srl_epi64 Right Logical PSRLQ

 205

__m128i _mm_slli_si128 (__m128i a, int imm)

Shifts the 128-bit value in a left by imm bytes while shifting in zeros. imm must be an immediate.

r := a << (imm * 8)

__m128i _mm_slli_epi16 (__m128i a, int count)

Shifts the 8 signed or unsigned 16-bit integers in a left by count bits while shifting in zeros.

r0 := a0 << count

r1 := a1 << count

...

r7 := a7 << count

__m128i _mm_sll_epi16 (__m128i a, __m128i count)

Shifts the 8 signed or unsigned 16-bit integers in a left by count bits while shifting in zeros.

r0 := a0 << count

r1 := a1 << count

...

r7 := a7 << count

__m128i _mm_slli_epi32 (__m128i a, int count)

Shifts the 4 signed or unsigned 32-bit integers in a left by count bits while shifting in zeros.

r0 := a0 << count

r1 := a1 << count

r2 := a2 << count

r3 := a3 << count

 206

__m128i _mm_sll_epi32 (__m128i a, __m128i count)

Shifts the 4 signed or unsigned 32-bit integers in a left by count bits while shifting in zeros.

r0 := a0 << count

r1 := a1 << count

r2 := a2 << count

r3 := a3 << count

__m128i _mm_slli_epi64 (__m128i a, int count)

Shifts the 2 signed or unsigned 64-bit integers in a left by count bits while shifting in zeros.

r0 := a0 << count

r1 := a1 << count

__m128i _mm_sll_epi64 (__m128i a, __m128i count)

Shifts the 2 signed or unsigned 64-bit integers in a left by count bits while shifting in zeros.

r0 := a0 << count

r1 := a1 << count

__m128i _mm_srai_epi16 (__m128i a, int count)

Shifts the 8 signed 16-bit integers in a right by count bits while shifting in the sign bit.

r0 := a0 >> count

r1 := a1 >> count

...

r7 := a7 >> count

 207

__m128i _mm_sra_epi16 (__m128i a, __m128i count)

Shifts the 8 signed 16-bit integers in a right by count bits while shifting in the sign bit.

r0 := a0 >> count

r1 := a1 >> count

...

r7 := a7 >> count

__m128i _mm_srai_epi32 (__m128i a, int count)

Shifts the 4 signed 32-bit integers in a right by count bits while shifting in the sign bit.

r0 := a0 >> count

r1 := a1 >> count

r2 := a2 >> count

r3 := a3 >> count

__m128i _mm_sra_epi32 (__m128i a, __m128i count)

Shifts the 4 signed 32-bit integers in a right by count bits while shifting in the sign bit.

r0 := a0 >> count

r1 := a1 >> count

r2 := a2 >> count

r3 := i3 >> count

__m128i _mm_srli_si128 (__m128i a, int imm)

Shifts the 128-bit value in a right by imm bytes while shifting in zeros. imm must be an immediate.

r := srl(a, imm*8)

 208

__m128i _mm_srli_epi16 (__m128i a, int count)

Shifts the 8 signed or unsigned 16-bit integers in a right by count bits while shifting in zeros.

r0 := srl(a0, count)

r1 := srl(a1, count)

...

r7 := srl(a7, count)

__m128i _mm_srl_epi16 (__m128i a, __m128i count)

Shifts the 8 signed or unsigned 16-bit integers in a right by count bits while shifting in zeros.

r0 := srl(a0, count)

r1 := srl(a1, count)

...

r7 := srl(a7, count)

__m128i _mm_srli_epi32 (__m128i a, int count)

Shifts the 4 signed or unsigned 32-bit integers in a right by count bits while shifting in zeros.

r0 := srl(a0, count)

r1 := srl(a1, count)

r2 := srl(a2, count)

r3 := srl(a3, count)

__m128i _mm_srl_epi32 (__m128i a, __m128i count)

Shifts the 4 signed or unsigned 32-bit integers in a right by count bits while shifting in zeros.

r0 := srl(a0, count)

r1 := srl(a1, count)

r2 := srl(a2, count)

r3 := srl(a3, count)

 209

__m128i _mm_srli_epi64 (__m128i a, int count)

Shifts the 2 signed or unsigned 64-bit integers in a right by count bits while shifting in zeros.

r0 := srl(a0, count)

r1 := srl(a1, count)

__m128i _mm_srl_epi64 (__m128i a, __m128i count)

Shifts the 2 signed or unsigned 64-bit integers in a right by count bits while shifting in zeros.

r0 := srl(a0, count)

r1 := srl(a1, count)

Integer Comparison Operations for
Streaming SIMD Extensions 2
The comparison intrinsics for Streaming SIMD Extensions 2 and descriptions for each are listed in the
following table. The "r" next to the instruction indicates that the operands are reversed in the instruction
implementation.

Intrinsic Name Instruction Comparison Elements Size of Elements

_mm_cmpeq_epi8 PCMPEQB Equality 16 8

_mm_cmpeq_epi16 PCMPEQW Equality 8 16

_mm_cmpeq_epi32 PCMPEQD Equality 4 32

_mm_cmpgt_epi8 PCMPGTB Greater Than 16 8

_mm_cmpgt_epi16 PCMPGTW Greater Than 8 16

_mm_cmpgt_epi32 PCMPGTD Greater Than 4 32

_mm_cmplt_epi8 PCMPGTBr Less Than 16 8

_mm_cmplt_epi16 PCMPGTWr Less Than 8 16

_mm_cmplt_epi32 PCMPGTDr Less Than 4 32

 210

__m128i _mm_cmpeq_epi8 (__m128i a, __m128i b)

Compares the 16 signed or unsigned 8-bit integers in a and the 16 signed or unsigned 8-bit integers in b
for equality.

r0 := (a0 == b0) ? 0xff : 0x0

r1 := (a1 == b1) ? 0xff : 0x0

...

r15 := (a15 == b15) ? 0xff : 0x0

__m128i _mm_cmpeq_epi16 (__m128i a, __m128i b)

Compares the 8 signed or unsigned 16-bit integers in a and the 8 signed or unsigned 16-bit integers in b
for equality.

r0 := (a0 == b0) ? 0xffff : 0x0

r1 := (a1 == b1) ? 0xffff : 0x0

...

r7 := (a7 == b7) ? 0xffff : 0x0

__m128i _mm_cmpeq_epi32 (__m128i a, __m128i b)

Compares the 4 signed or unsigned 32-bit integers in a and the 4 signed or unsigned 32-bit integers in b
for equality.

r0 := (a0 == b0) ? 0xffffffff : 0x0

r1 := (a1 == b1) ? 0xffffffff : 0x0

r2 := (a2 == b2) ? 0xffffffff : 0x0

r3 := (a3 == b3) ? 0xffffffff : 0x0

__m128i _mm_cmpgt_epi8 (__m128i a, __m128i b)

Compares the 16 signed 8-bit integers in a and the 16 signed 8-bit integers in b for greater than.

r0 := (a0 > b0) ? 0xff : 0x0

r1 := (a1 > b1) ? 0xff : 0x0

...

r15 := (a15 > b15) ? 0xff : 0x0

 211

__m128i _mm_cmpgt_epi16 (__m128i a, __m128i b)

Compares the 8 signed 16-bit integers in a and the 8 signed 16-bit integers in b for greater than.

r0 := (a0 > b0) ? 0xffff : 0x0

r1 := (a1 > b1) ? 0xffff : 0x0

...

r7 := (a7 > b7) ? 0xffff : 0x0

__m128i _mm_cmpgt_epi32 (__m128i a, __m128i b)

Compares the 4 signed 32-bit integers in a and the 4 signed 32-bit integers in b for greater than.

r0 := (a0 > b0) ? 0xffff : 0x0

r1 := (a1 > b1) ? 0xffff : 0x0

r2 := (a2 > b2) ? 0xffff : 0x0

r3 := (a3 > b3) ? 0xffff : 0x0

__m128i _mm_cmplt_epi8 (__m128i a, __m128i b)

Compares the 16 signed 8-bit integers in a and the 16 signed 8-bit integers in b for less than.

r0 := (a0 < b0) ? 0xff : 0x0

r1 := (a1 < b1) ? 0xff : 0x0

...

r15 := (a15 < b15) ? 0xff : 0x0

__m128i _mm_cmplt_epi16 (__m128i a, __m128i b)

Compares the 8 signed 16-bit integers in a and the 8 signed 16-bit integers in b for less than.

r0 := (a0 < b0) ? 0xffff : 0x0

r1 := (a1 < b1) ? 0xffff : 0x0

...

r7 := (a7 < b7) ? 0xffff : 0x0

 212

__m128i _mm_cmplt_epi32 (__m128i a, __m128i b)

Compares the 4 signed 32-bit integers in a and the 4 signed 32-bit integers in b for less than.

r0 := (a0 < b0) ? 0xffff : 0x0

r1 := (a1 < b1) ? 0xffff : 0x0

r2 := (a2 < b2) ? 0xffff : 0x0

r3 := (a3 < b3) ? 0xffff : 0x0

Conversion Operations for Streaming
SIMD Extensions 2
The following two conversion intrinsics and their respective instructions are functional in the Streaming
SIMD Extensions 2.

__m128i _mm_cvtsi32_si128 (int a)

(uses MOVD)

Moves 32-bit integer a to the least significant 32 bits of an __m128i object. Copies the sign bit of a into
the upper 96 bits of the __m128i object.

r0 := a

r1 := 0x0 ; r2 := 0x0 ; r3 := 0x0

int _mm_cvtsi128_si32 (__m128i a)

(uses MOVD)

Moves the least significant 32 bits of a to a 32 bit integer.

r := a0

Macro Function for Shuffle
The Streaming SIMD Extensions 2 provide a macro function to help create constants that describe shuffle
operations. The macro takes two small integers (in the range of 0 to 1) and combines them into an 2-bit
immediate value used by the SHUFPD instruction. See the following example.

Shuffle Function Macro

 213

You can view the two integers as selectors for choosing which two words from the first input operand and
which two words from the second are to be put into the result word.

View of Original and Result Words
 with Shuffle Function Macro

Cacheability Support Operations for
Streaming SIMD Extensions 2
void _mm_stream_si128(__m128i *p, __m128i a)

Stores the data in a to the address p without polluting the caches. If the cache line containing address p
is already in the cache, the cache will be updated. Address p must be 16 byte aligned.

*p := a

void _mm_stream_si32(int *p, int a)

Stores the data in a to the address p without polluting the caches. If the cache line containing address p
is already in the cache, the cache will be updated.

*p := a

void _mm_clflush(void const *p)

Cache line containing p is flushed and invalidated from all caches in the coherency domain.

void _mm_lfence(void)

Guarantees that every load instruction that precedes, in program order, the load fence instruction is
globally visible before any load instruction which follows the fence in program order.

void _mm_mfence(void)

Guarantees that every memory access that precedes, in program order, the memory fence instruction is
globally visible before any memory instruction which follows the fence in program order.

 214

void _mm_pause(void)

The execution of the next instruction is delayed an implementation specific amount of time. The
instruction does not modify the architectural state. This intrinsic provides especially significant
performance gain and described in more detail below.

PAUSE Intrinsic

The PAUSE intrinsic is used in spin-wait loops with the processors implementing dynamic execution
(especially out-of-order execution). In the spin-wait loop, PAUSE improves the speed at which the code
detects the release of the lock. For dynamic scheduling, the PAUSE instruction reduces the penalty of
exiting from the spin-loop.

Future generations of Intel microarchitectures will see increasing performance benefit from the use of
PAUSE in spin-wait loops.

Example of loop with the PAUSE instruction:

spin_loop:pause

 cmp eax, A

 jne spin_loop

In the above example, the program spins until memory location A matches the value in register eax. The
code sequence that follows shows a test-and-test-and-set. In this example, the spin occurs only after the
attempt to get a lock has failed.

get_lock: mov eax, 1

 xchg eax, A ; Try to get lock

 cmp eax, 0 ; Test if successful

 jne spin_loop

Critical Section:

<critical_section code>

mov A, 0 ; Release lock

 jmp continue

 spin_loop: pause ; Spin-loop hint

 cmp 0, A ; Check lock availability

 jne spin_loop

 jmp get_lock

 continue: <other code>

Note that the first branch is predicted to fall-through to the critical section in anticipation of successfully
gaining access to the lock. It is highly recommended that all spin-wait loops include the PAUSE instruction.
Since PAUSE is backwards compatible to all existing IA-32 processor generations, a test for processor

 215

type (a CPUID test) is not needed. All legacy processors will execute PAUSE as a NOP, but in processors
which use the PAUSE as a hint there can be significant performance benefit.

Integer Memory and Initialization
Operations
Streaming SIMD Extensions 2 Integer
Memory and Initialization
The integer load, set, and store intrinsics and their respective instructions provide memory and
initialization operations for the Streaming SIMD Extensions 2.

! Load Operations

! Set Operations

! Store Operations

Load Operations for Streaming SIMD
Extensions 2
The following load operation intrinsics and their respective instructions are functional in the Streaming
SIMD Extensions 2.

__m128i _mm_load_si128 (__m128i *p)

(uses MOVDQA)

Loads 128-bit value. Address p must be 16-byte aligned.

r := *p

__m128i _mm_loadu_si128 (__m128i *p)

(uses MOVDQU)

Loads 128-bit value. Address p not need be 16-byte aligned.

r := *p

__m128i _mm_loadl_epi64(__m128i const *p)

(uses MOVQ)

Load the lower 64 bits of the value pointed to by p into the lower 64 bits of the result, zeroing the upper 64

 216

bits of the result.

r0:= *p[63:0]

r1:=0x0

Set Operations for Streaming SIMD
Extensions 2
The set operation intrinsics for the Pentium® 4 processor are listed in the following table followed by their
descriptions.

Intrinsic Corresponding Instruction

_mm_set_epi64 Composite

_mm_set_epi32 Composite

_mm_set_epi16 Composite

_mm_set_epi8 Composite

_mm_set1_epi64 Composite

_mm_set1_epi32 Composite

_mm_set1_epi16 Composite

_mm_set1_epi8 Composite

_mm_setr_epi64 Composite

_mm_setr_epi32 Composite

_mm_setr_epi16 Composite

_mm_setr_epi8 Composite

_mm_setzero_si128 PXOR

 217

__m128i _mm_set_epi64 (__m64 q1, __m64 q0)

Sets the 2 64-bit integer values.

r0 := q0

r1 := q1

__m128i _mm_set_epi32 (int i3, int i2, int i1, int i0)

Sets the 4 signed 32-bit integer values.

r0 := i0

r1 := i1

r2 := i2

r3 := i3

__m128i _mm_set_epi16 (short w7, short w6,

short w5, short w4,

short w3, short w2,

short w1, short w0)

Sets the 8 signed 16-bit integer values.

r0 := w0

r1 := w1

...

r7 := w7

 218

__m128i _mm_set_epi8 (char b15, char b14,

char b13, char b12,

char b11, char b10,

char b9, char b8,

char b7, char b6,

char b5, char b4,

char b3, char b2,

char b1, char b0)

Sets the 16 signed 8-bit integer values.

r0 := b0

r1 := b1

...

r15 := b15

__m128i _mm_set1_epi64 (__m64 q)

Sets the 2 64-bit integer values to q.

r0 := q

r1 := q

__m128i _mm_set1_epi32 (int i)

Sets the 4 signed 32-bit integer values to i.

r0 := i

r1 := i

r2 := i

r3 := i

 219

__m128i _mm_set1_epi16 (short w)

Sets the 8 signed 16-bit integer values to w.

r0 := w

r1 := w

...

r7 := w

__m128i _mm_set1_epi8 (char b)

Sets the 16 signed 8-bit integer values to b.

r0 := b

r1 := b

...

r15 := b

__m128i _mm_setr_epi64 (__m64 q0, __m64 q1)

Sets the 2 64-bit integer values in reverse order.

r0 := q0

r1 := q1

__m128i _mm_setr_epi32 (int i0, int i1,

int i2, int i3)

Sets the 4 signed 32-bit integer values in reverse order.

r0 := i0

r1 := i1

r2 := i2

r3 := i3

 220

__m128i _mm_setr_epi16 (short w0, short w1,

short w2, short w3,

short w4, short w5,

short w6, short w7)

Sets the 8 signed 16-bit integer values in reverse order.

r0 := w0

r1 := w1

...

r7 := w7

__m128i _mm_setr_epi8 (char b0, char b1,

char b2, char b3,

char b4, char b5,

char b6, char b7,

char b8, char b9,

char b10, char b11,

char b12, char b13,

char b14, char b15)

Sets the 16 signed 8-bit integer values in reverse order.

r0 := b0

r1 := b1

...

r15 := b15

__m128i _mm_setzero_si128 ()

Sets the 128-bit value to zero.

r := 0x0

 221

Store Operations for Streaming SIMD
Extensions 2
The following store operation intrinsics and their respective instructions are functional in the Streaming
SIMD Extensions 2.

void _mm_store_si128 (__m128i *p, __m128i a)

(uses MOVDQA)

Stores 128-bit value. Address p must be 16 byte aligned.

*p := a

void _mm_storeu_si128 (__m128i *p, __m128i a)

(uses MOVDQU)

Stores 128-bit value. Address p need not be 16-byte aligned.

*p := a

void _mm_maskmoveu_si128(__m128i d, __m128i n, char *p)

(uses MASKMOVDQU)

Conditionally store byte elements of d to address p. The high bit of each byte in the selector n determines
whether the corresponding byte in d will be stored. Address p need not be 16-byte aligned.

if (n0[7]) p[0] := d0

if (n1[7]) p[1] := d1

...

if (n15[7]) p[15] := d15

void _mm_storel_epi64(__m128i *p, __m128i a)

(uses MOVQ)

Stores the lower 64 bits of the value pointed to by p.

*p[63:0]:=a0

 222

Miscellaneous Operations for Streaming
SIMD Extensions 2
The miscellaneous intrinsics for Streaming SIMD Extensions 2 are listed in the following table followed by
their descriptions.

Intrinsic Corresponding Instruction Operation

_mm_packs_epi16 PACKSSWB Packed Saturation

_mm_packs_epi32 PACKSSDW Packed Saturation

_mm_packus_epi16 PACKUSWB Packed Saturation

_mm_extract_epi16 PEXTRW Extraction

_mm_insert_epi16 PINSRW Insertion

_mm_movemask_epi8 PMOVMSKB Mask Creation

_mm_shuffle_epi32 PSHUFD Shuffle

_mm_shufflehi_epi16 PSHUFHW Shuffle

_mm_shufflelo_epi16 PSHUFLW Shuffle

_mm_unpackhi_epi8 PUNPCKHBW Interleave

_mm_unpackhi_epi16 PUNPCKHWD Interleave

_mm_unpackhi_epi32 PUNPCKHDQ Interleave

_mm_unpackhi_epi64 PUNPCKHQDQ Interleave

_mm_unpacklo_epi8 PUNPCKLBW Interleave

_mm_unpacklo_epi16 PUNPCKLWD Interleave

_mm_unpacklo_epi32 PUNPCKLDQ Interleave

_mm_unpacklo_epi64 PUNPCKLQDQ Interleave

_mm_movepi64_pi64 MOVDQ2Q move

_m128i_mm_movpi64_epi64 MOVQ2DQ move

_mm_move_epi64 MOVQ move

 223

__m128i _mm_packs_epi16 (__m128i a, __m128i b)

Packs the 16 signed 16-bit integers from a and b into 8-bit integers and saturates.

r0 := SignedSaturate(a0)

r1 := SignedSaturate(a1)

...

r7 := SignedSaturate(a7)

r8 := SignedSaturate(b0)

r9 := SignedSaturate(b1)

...

r15 := SignedSaturate(b7)

__m128i _mm_packs_epi32 (__m128i a, __m128i b)

Packs the 8 signed 32-bit integers from a and b into signed 16-bit integers and saturates.

r0 := SignedSaturate(a0)

r1 := SignedSaturate(a1)

r2 := SignedSaturate(a2)

r3 := SignedSaturate(a3)

r4 := SignedSaturate(b0)

r5 := SignedSaturate(b1)

r6 := SignedSaturate(b2)

r7 := SignedSaturate(b3)

 224

__m128i _mm_packus_epi16 (__m128i a, __m128i b)

Packs the 16 signed 16-bit integers from a and b into 8-bit unsigned integers and saturates.

r0 := UnsignedSaturate(a0)

r1 := UnsignedSaturate(a1)

...

r7 := UnsignedSaturate(a7)

r8 := UnsignedSaturate(b0)

r9 := UnsignedSaturate(b1)

...

r15 := UnsignedSaturate(b7)

int _mm_extract_epi16 (__m128i a, int imm)

Extracts the selected signed or unsigned 16-bit integer from a and zero extends. The selector imm must
be an immediate.

r := (imm == 0) ? a0 :

((imm == 1) ? a1 :

...

(imm == 7) ? a7)

__m128i _mm_insert_epi16 (__m128i a, int b, int imm)

Inserts the least significant 16 bits of b into the selected 16-bit integer of a. The selector imm must be an
immediate.

r0 := (imm == 0) ? b : a0;

r1 := (imm == 1) ? b : a1;

...

r7 := (imm == 7) ? b : a7;

 225

int _mm_movemask_epi8 (__m128i a)

Creates a 16-bit mask from the most significant bits of the 16 signed or unsigned 8-bit integers in a and
zero extends the upper bits.

r := a15[7] << 15 |

a14[7] << 14 |

...

a1[7] << 1 |

a0[7]

__m128i _mm_shuffle_epi32 (__m128i a, int imm)

Shuffles the 4 signed or unsigned 32-bit integers in a as specified by imm. The shuffle value, imm, must
be an immediate. See Macro Function for Shuffle for a description of shuffle semantics.

__m128i _mm_shufflehi_epi16 (__m128i a, int imm)

Shuffles the upper 4 signed or unsigned 16-bit integers in a as specified by imm. The shuffle value, imm,
must be an immediate. See Macro Function for Shuffle for a description of shuffle semantics.

__m128i _mm_shufflelo_epi16 (__m128i a, int imm)

Shuffles the lower 4 signed or unsigned 16-bit integers in a as specified by imm. The shuffle value, imm,
must be an immediate. See Macro Function for Shuffle for a description of shuffle semantics.

__m128i _mm_unpackhi_epi8 (__m128i a, __m128i b)

Interleaves the upper 8 signed or unsigned 8-bit integers in a with the upper 8 signed or unsigned 8-bit
integers in b.

r0 := a8 ; r1 := b8

r2 := a9 ; r3 := b9

...

r14 := a15 ; r15 := b15

 226

__m128i _mm_unpackhi_epi16 (__m128i a, __m128i b)

Interleaves the upper 4 signed or unsigned 16-bit integers in a with the upper 4 signed or unsigned 16-bit
integers in b.

r0 := a4 ; r1 := b4

r2 := a5 ; r3 := b5

r4 := a6 ; r5 := b6

r6 := a7 ; r7 := b7

__m128i _mm_unpackhi_epi32 (__m128i a, __m128i b)

Interleaves the upper 2 signed or unsigned 32-bit integers in a with the upper 2 signed or unsigned 32-bit
integers in b.

r0 := a2 ; r1 := b2

r2 := a3 ; r3 := b3

__m128i _mm_unpackhi_epi64 (__m128i a, __m128i b)

Interleaves the upper signed or unsigned 64-bit integer in a with the upper signed or unsigned 64-bit
integer in b.

r0 := a1 ; r1 := b1

__m128i _mm_unpacklo_epi8 (__m128i a, __m128i b)

Interleaves the lower 8 signed or unsigned 8-bit integers in a with the lower 8 signed or unsigned 8-bit
integers in b.

r0 := a0 ; r1 := b0

r2 := a1 ; r3 := b1

...

r14 := a7 ; r15 := b7

 227

__m128i _mm_unpacklo_epi16 (__m128i a, __m128i b)

Interleaves the lower 4 signed or unsigned 16-bit integers in a with the lower 4 signed or unsigned 16-bit
integers in b.

r0 := a0 ; r1 := b0

r2 := a1 ; r3 := b1

r4 := a2 ; r5 := b2

r6 := a3 ; r7 := b3

__m128i _mm_unpacklo_epi32 (__m128i a, __m128i b)

Interleaves the lower 2 signed or unsigned 32-bit integers in a with the lower 2 signed or unsigned 32-bit
integers in b.

r0 := a0 ; r1 := b0

r2 := a1 ; r3 := b1

__m128i _mm_unpacklo_epi64 (__m128i a, __m128i b)

Interleaves the lower signed or unsigned 64-bit integer in a with the lower signed or unsigned 64-bit
integer in b.

r0 := a0 ; r1 := b0

__m64 _mm_movepi64_pi64 (__m128i a)

Returns the lower 64 bits of a as an __m64 type.

r0 := a0 ;

__128i _mm_movpi64_pi64 (__m64 a)

Moves the 64 bits of a to the lower 64 bits of the result, zeroing the upper bits.

r0 := a0 ; r1 := 0X0 ;

__128i _mm_move_epi64 (__128i a)

Moves the lower 64 bits of the lower 64 bits of the result, zeroing the upper bits.

r0 := a0 ; r1 := 0X0 ;

 228

Intrinsics for Itanium(TM) Instructions
Overview: Intrinsics for Itanium(TM)
Instructions
This book lists and describes the native intrinsics for Itanium(TM) instructions. These intrinsics cannot be
used on the IA-32 architecture. The intrinsics for Itanium instructions give programmers access to Itanium
instructions that cannot be generated using the standard constructs of the C and C++ languages.

The intrinsics for Itanium instruction prototypes can be found in the ia64intrin.h header file.

Native Intrinsics for Itanium(TM)
Instructions
For more information on the instructions, refer to:

Itanium(TM)-based Application Developer's Architecture Guide, Intel Corporation

or

Itanium(TM) Architecture Software Developer's Manual Vol. 3: Instruction Set Reference, Intel
Corporation, doc. number 245319-001

Both of these documents are available from http://developer.intel.com.

Intrinsic Corresponding Instruction

__m64 _m64_czx1l(__m64 a) czx1.l (Compute Zero Index)

__m64 _m64_czx1r(__m64 a) czx1.r (Compute Zero Index)

__m64 _m64_czx2l(__m64 a) czx2.l (Compute Zero Index)

__m64 _m64_czx2r(__m64 a) czx2.r (Compute Zero Index)

__int64 _i64_dep_mr(__int64 r, __int64 s, const int
pos, const int len)

dep (Deposit)

__int64 _i64_dep_mi(const int r, __int64 s, const
int pos, const int len)

dep (Deposit)

__int64 _i64_dep_zr(__int64 r, const int pos , const
int len)

dep.z (Deposit)

__int64 _i64_dep_zi(const int v, const int pos,
const int len)

dep.z (Deposit)

__int64 _i64_extr(__int64 r, const int pos, const
int len)

extr (Extract)

 229

Intrinsic Corresponding Instruction

__int64 _i64_extru(__int64 r, const int pos, const
int len)

extr.u (Extract)

__int64 _i64_muladd64lo(__int64 a, __int64 b,
__int64 c)

xma.l (Fixed-point multiply add)

__int64 _i64_muladd64lo_u(__int64 a, __int64 b,
__int64 c)

xma.lu (Fixed-point multiply add)

__int64 _i64_muladd64hi(__int64 a, __int64 b,
__int64 c)

xma.h (Fixed-point multiply add)

__int64 _i64_muladd64hi_u(__int64 a, __int64 b,
__int64 c)

xma.hu (Fixed-point multiply add)

__m64 _m64_mix1l(__m64 a, __m64 b) mix1.l (Mix)

__m64 _m64_mix1r(__m64 a, __m64 b) mix1.r (Mix)

__m64 _m64_mix2l(__m64 a, __m64 b) mix2.l (Mix)

__m64 _m64_mix2r(__m64 a, __m64 b) mix2.r (Mix)

__m64 _m64_mix4l(__m64 a, __m64 b) mix4.l (Mix)

__m64 _m64_mix4r(__m64 a, __m64 b) mix4.r (Mix)

__m64 _m64_mux1(__m64 a, const int n) mux1 (Mux)

__m64 _m64_mux2(__m64 a, const int n) mux2 (Mux)

__int64 _i64_popcnt(__int64 a) popcnt (Population count)

__m64 _m64_pavgsub1(__m64 a, __m64 b) pavgsub1 (Parallel average subtract)

__m64 _m64_pavgsub2(__m64 a, __m64 b) pavgsub2 (Parallel average subtract)

__m64 _m64_pmpy2r(__m64 a, __m64 b) pmpy2.r (Parallel multiply)

__m64 _m64_pmpy2l(__m64 a, __m64 b) pmpy2.l (Parallel multiply)

__m64 _m64_pmpyshr2(__m64 a, __m64 b, const int
count)

pmpyshr2 (Parallel multiply and shift
right)

__m64 _m64_pmpyshr2u(__m64 a, __m64 b, const int
count)

pmpyshr2.u (Parallel multiply and shift
right)

__m64 _m64_pshladd2(__m64 a, const int count, __m64
b)

pshladd2 (Parallel shift left and add)

__m64 _m64_pshradd2(__m64 a, const int count, __m64
b)

pshradd2 (Parallel shift right and add)

__int64 _i64_shladd(__int64 a, const int count,
__int64 b)

shladd (Shift left and add)

__int64 _i64_shrp(__int64 a, __int64 b, const int
ount)

shrp (Shift right pair)

 230

Intrinsic Corresponding Instruction
count)

__m64 _m64_padd1uus(__m64 a, __m64 b) padd1.uus (Parallel add)

__m64 _m64_padd2uus(__m64 a, __m64 b) padd2.uus (Parallel add)

__m64 _m64_psub1uus(__m64 a, __m64 b) psub1.uus (Parallel subtract)

__m64 _m64_psub2uus(__m64 a, __m64 b) psub2.uus (Parallel subtract)

__m64 _m64_pavg1_nraz(__m64 a, __m64 b) pavg1 (Parallel average)

__m64 _m64_pavg2_nraz(__m64 a, __m64 b) pavg2 (Parallel average)

Other Native Intrinsics Description

void __lfetch(int, lfhint, _int64) Line prefetch, non fault form. Maps to the
lfetch.lfhint [r] instruction.

void __lfetch_fault(int lfhint, _int64) Line prefetch, fault form. Maps to the
lfetch.fault.lfhint [r]
instruction.

void _fclrf(void) Clears the floating point status flags (the
6-bit flags of FPSR.sf0). Maps to the
fclrf.sf0 instruction.

void _fsetc(int amask, int omask) Sets the control bits of FPSR.sf0.
Maps to the fsetc.sf0 r, r
instruction. There is no corresponding
instruction to read the control bits. Use
_mm_getfpsr().

void _mm_setfpsr(unsigned __int64 i) Set the bits of the FPSR that cannot be
set using the macros described in the
Macro Functions to Read and Write the
Control Registers topic.

unsigned __int64 _mm_getfpsr(void) Get the bits of the FPSR that cannot be
accessed using the macros described in
the Macro Functions to Read and Write
the Control Registers topic.

__int64 _m_to_int64(__m64 a) Convert a of type __m64 to type
__int64. Translates to nop since
both types reside in the same register on
Itanium-based systems.

__m64 _m_from_int64(__int64 a) Convert a of type __int64 to type
__m64. Translates to nop since both
types reside in the same register on
Itanium-based systems.

 231

__m64 _m64_czx1l(__m64 a)

The 64-bit value a is scanned for a zero element from the most significant element to the least significant
element, and the index of the first zero element is returned. The element width is 8 bits, so the range of
the result is from 0 - 7. If no zero element is found, the default result is 8.

__m64 _m64_czx1r(__m64 a)

The 64-bit value a is scanned for a zero element from the least significant element to the most significant
element, and the index of the first zero element is returned. The element width is 8 bits, so the range of
the result is from 0 - 7. If no zero element is found, the default result is 8.

__m64 _m64_czx2l(__m64 a)

The 64-bit value a is scanned for a zero element from the most significant element to the least significant
element, and the index of the first zero element is returned. The element width is 16 bits, so the range of
the result is from 0 - 3. If no zero element is found, the default result is 4.

__m64 _m64_czx2r(__m64 a)

The 64-bit value a is scanned for a zero element from the least significant element to the most significant
element, and the index of the first zero element is returned. The element width is 16 bits, so the range of
the result is from 0 - 3. If no zero element is found, the default result is 4.

__int64 _i64_dep_mr(__int64 r, __int64 s, const int pos, const int len)

The right-justified 64-bit value r is deposited into the value in s at an arbitrary bit position and the result is
returned. The deposited bit field begins at bit position pos and extends to the left (toward the most
significant bit) the number of bits specified by len.

__int64 _i64_dep_mi(const int r, __int64 s, const int pos, const int len)

The sign-extended value r (either all 1s or all 0s) is deposited into the value in s at an arbitrary bit
position and the result is returned. The deposited bit field begins at bit position pos and extends to the left
(toward the most significant bit) the number of bits specified by len.

__int64 _i64_dep_zr(__int64 r, const int pos , const int len)

The right-justified 64-bit value r is deposited into a 64-bit field of all zeros at an arbitrary bit position and
the result is returned. The deposited bit field begins at bit position pos and extends to the left (toward the
most significant bit) the number of bits specified by len.

 232

__int64 _i64_dep_zi(const int v, const int pos, const int len)

The sign-extended value r (either all 1s or all 0s) is deposited into a 64-bit field of all zeros at an arbitrary
bit position and the result is returned. The deposited bit field begins at bit position pos and extends to the
left (toward the most significant bit) the number of bits specified by len.

__int64 _i64_extr(__int64 r, const int pos, const int len)

A field is extracted from the 64-bit value r and is returned right-justified and sign extended. The extracted
field begins at position pos and extends len bits to the left. The sign is taken from the most significant bit
of the extracted field.

__int64 _i64_extru(__int64 r, const int pos, const int len)

A field is extracted from the 64-bit value r and is returned right-justified and zero extended. The
extracted field begins at position pos and extends len bits to the left.

__int64 _i64_muladd64lo(__int64 a, __int64 b, __int64 c)

The 64-bit values a and b are treated as signed integers and multiplied to produce a full 128-bit signed
result. The 64-bit value c is zero-extended and added to the product. The least significant 64 bits of the
sum are then returned.

__int64 _i64_muladd64lo_u(__int64 a, __int64 b, __int64 c)

The 64-bit values a and b are treated as signed integers and multiplied to produce a full 128-bit unsigned
result. The 64-bit value c is zero-extended and added to the product. The least significant 64 bits of the
sum are then returned.

__int64 _i64_muladd64hi(__int64 a, __int64 b, __int64 c)

The 64-bit values a and b are treated as signed integers and multiplied to produce a full 128-bit signed
result. The 64-bit value c is zero-extended and added to the product. The most significant 64 bits of the
sum are then returned.

__int64 _i64_muladd64hi_u(__int64 a, __int64 b, __int64 c)

The 64-bit values a and b are treated as unsigned integers and multiplied to produce a full 128-bit
unsigned result. The 64-bit value c is zero-extended and added to the product. The most significant 64
bits of the sum are then returned.

 233

__m64 _m64_mix1l(__m64 a, __m64 b)

Interleave 64-bit quantities a and b in 1-byte groups, starting from the left, as shown in Figure 1, and
return the result.

__m64 _m64_mix2l(__m64 a, __m64 b)

Interleave 64-bit quantities a and b in 1-byte groups, starting from the right, as shown in Figure 2, and
return the result.

__m64 _m64_mix2l(__m64 a, __m64 b)

Interleave 64-bit quantities a and b in 2-byte groups, starting from the left, as shown in Figure 3, and
return the result.

__m64 _m64_mix2r(__m64 a, __m64 b)

Interleave 64-bit quantities a and b in 2-byte groups, starting from the right, as shown in Figure 4, and
return the result.

 234

__m64 _m64_mix4l(__m64 a, __m64 b)

Interleave 64-bit quantities a and b in 4-byte groups, starting from the left, as shown in Figure 5, and
return the result.

__m64 _m64_mix4r(__m64 a, __m64 b)

Interleave 64-bit quantities a and b in 4-byte groups, starting from the right, as shown in Figure 6, and
return the result.

 235

__m64 _m64_mux1(__m64 a, const int n)

Based on the value of n, a permutation is performed on a as shown in Figure 7, and the result is returned.
Table 1 shows the possible values of n.

Table 1. Values of n for
m64_mux1

Operation n

@brcst 0

@mix 8

@shuf 9

@alt 0xA

@rev 0xB

 236

__m64 _m64_mux2(__m64 a, const int n)

Based on the value of n, a permutation is performed on a as shown in Figure 8, and the result is returned.

__int64 _i64_popcnt(__int64 a)

The number of bits in the 64-bit integer a that have the value 1 are counted, and the resulting sum is
returned.

__m64 _m64_pavgsub1(__m64 a, __m64 b)

The unsigned data elements (bytes) of b are subtracted from the unsigned data elements (bytes) of a and
the results of the subtraction are then each independently shifted to the right by one position. The high-
order bits of each element are filled with the borrow bits of the subtraction.

__m64 _m64_pavgsub2(__m64 a, __m64 b)

The unsigned data elements (double bytes) of b are subtracted from the unsigned data elements (double
bytes) of a and the results of the subtraction are then each independently shifted to the right by one
position. The high-order bits of each element are filled with the borrow bits of the subtraction.

 237

__m64 _m64_pmpy2l(__m64 a, __m64 b)

Two signed 16-bit data elements of a, starting with the most significant data element, are multiplied by the
corresponding two signed 16-bit data elements of b, and the the two 32-bit results are returned as shown
in Figure 9.

__m64 _m64_pmpy2r(__m64 a, __m64 b)

Two signed 16-bit data elements of a, starting with the least significant data element, are multiplied by the
corresponding two signed 16-bit data elements of b, and the two 32-bit results are returned as shown in
Figure 10.

__m64 _m64_pmpyshr2(__m64 a, __m64, const int count)

The four signed 16-bit data elements of a are multiplied by the corresponding signed 16-bit data elements
of b, yielding four 32-bit products. Each product is then shifted to the right count bits and the least
significant 16 bits of each shifted product form 4 16-bit results, which are returned as one 64-bit word.

__m64 _m64_pmpyshr2u(__m64 a, __m64 b, const int count)

The four unsigned 16-bit data elements of a are multiplied by the corresponding unsigned 16-bit data
elements of b, yielding four 32-bit products. Each product is then shifted to the right count bits and the
least significant 16 bits of each shifted product form 4 16-bit results, which are returned as one 64-bit
word.

 238

__m64 _m64_pshladd2(__m64 a, const int count, __m64 b)

a is shifted to the left by count bits and then is added to b. The upper 32 bits of the result are forced to 0,
and then bits [31:30] of b are copied to bits [62:61] of the result. The result is returned.

__m64 _m64_pshradd2(__m64 a, const int count, __m64 b)

The four signed 16-bit data elements of a are each independently shifted to the right by count bits (the
high order bits of each element are filled with the initial value of the sign bits of the data elements in a);
they are then added to the four signed 16-bit data elements of b. The result is returned.

__int64 _i64_shladd(__int64 a, const int count, __int64 b)

a is shifted to the left by count bits and then added to b. The result is returned.

__int64 _i64_shrp(__int64 a, __int64 b, const int count)

a and b are concatenated to form a 128-bit value and shifted to the right count bits. The least significant
64 bits of the result are returned.

__m64 _m64_padd1uus(__m64 a, __m64 b)

a is added to b as eight separate byte-wide elements. The elements of a are treated as unsigned, while
the elements of b are treated as signed. The results are treated as unsigned and are returned as one 64-
bit word.

__m64 _m64_padd2uus(__m64 a, __m64 b)

a is added to b as four separate 16-bit wide elements. The elements of a are treated as unsigned, while
the elements of b are treated as signed. The results are treated as unsigned and are returned as one 64-
bit word.

__m64 _m64_psub1uus(__m64 a, __m64 b)

a is subtracted from b as eight separate byte-wide elements. The elements of a are treated as unsigned,
while the elements of b are treated as signed. The results are treated as unsigned and are returned as
one 64-bit word.

__m64 _m64_psub2uus(__m64 a, __m64 b)

a is subtracted from b as four separate 16-bit wide elements. The elements of a are treated as unsigned,
while the elements of b are treated as signed. The results are treated as unsigned and are returned as
one 64-bit word.

__m64 _m64_pavg1_nraz(__m64 a, __m64 b)

 239

The unsigned byte-wide data elements of a are added to the unsigned byte-wide data elements of b and
the results of each add are then independently shifted to the right by one position. The high-order bits of
each element are filled with the carry bits of the sums.

__m64 _m64_pavg2_nraz(__m64 a, __m64 b)

The unsigned 16-bit wide data elements of a are added to the unsigned 16-bit wide data elements of b
and the results of each add are then independently shifted to the right by one position. The high-order bits
of each element are filled with the carry bits of the sums.

Lock and Atomic Operation Related
Intrinsics
Intrinsic Description

long _InterlockedIncrement(long *addend) Increment the addend by one atomically. Maps
to the fetchadd4 instruction.

long _InterlockedDecrement(long *addend) Decrement the addend by one atomically.
Maps to the fetchadd4 instruction.

long _InterlockedExchange(long *Target, long
value)

Do an exchange operation atomically. Maps to
the xchg4 instruction.

long _InterlockedCompareExchange(long
*Destination, long Exchange, long Comperand)

Do a compare and exchange operation
atomically. Maps to the cmpxchg4
instruction with appropriate setup.

void * _InterlockedCompareExchangePointer(void
**Destination, void *Exchange, void *Comperand)

long _InterlockedExchangeAdd(long *addend, long
increment)

Use compare and exchange to do an atomic
add of the increment value to the addend.
Maps to a loop with the cmpxchg4
instruction to guarantee atomicity.

long _InterlockedAdd(long *addend, long
increment)

Returns new value, not the original value.

__int64 _InterlockedIncrement64(__int64 *addend) Increment the addend by one atomically. Maps
to the fetchadd instruction.

__int64 _InterlockedDecrement64(__int64 *addend) Decrement the addend by one atomically.
Maps to the fetchadd instruction.

__int64 _InterlockedExchange64(__int64 *Target,
__int64 value)

Do an exchange operation atomically. Maps to
the xchg instruction.

__int64 _InterlockedCompareExchange64(__int64
*Destination, __int64 Exchange, __int64
Comperand)

Do a compare and exchange operation
atomically. Maps to the cmpxchg instruction
with appropriate setup

__int64 _InterlockedExchangeAdd64(__int64
*addend, __int64 increment)

Use compare and exchange to do an atomic
add of the increment value to the addend.
Maps to a loop with the cmpxchg instruction
to guarantee atomicity

 240

Intrinsic Description

__int64 _InterlockedAdd64(__int64 *addend,
__int64 increment)

Returns new value, not the original value.

void _ReleaseSpinLock(_int32 *x) Release spin lock.

Operating System Related Intrinsics
Intrinsic Description

void * __ptr64 _rdteb(void) Gets TEB address. The TEB address is kept in r13
and maps to the move r=tp instruction.

unsigned __int64 __getReg(int whichReg) Gets the value from a hardware register based on the
index passed in. Produces a corresponding mov = r
instruction. Provides access to the following
registers:

ar.lc__-ar.ec__-____ar.pfs

ar.unat.-__ar.bsp__-
____ar.bspstore

ar.ccv

-ar40 (fpsr) (preferable to use
getfpsr/setfpsr)

-ar44 (itc)__-ar21 (fcr)__-ar24
(eflag)

-ar25 (csd)__-ar26 (ssd)__-ar27
(cflg)

-ar28 (fsr)__-ar29 (fir)__-ar30
(fdr)

void __setReg(int whichReg, unsigned __int64 value) Sets the value for a hardware register based on the index
passed in. Produces a corresponding mov = r
instruction. See __getReg()for supported
registers.

void __isrlz(void) Executes the serialize instruction. Maps to the
srlz.i instruction.

void __dsrlz(void) Serializes the data. Maps to the srlz.d instruction.

void __fwb(void) Flushes the write buffers. Maps to the fwb instruction.

void __mf(void) Executes a memory fence instruction. Maps to the mf
instruction.

void __mfa(void) Executes a memory fence, acceptance form instruction.
Maps to the mf.a instruction.

 241

Intrinsic Description

void __synci(void) Enables memory synchronization. Maps to the sync.i
instruction.

__int64 __thash(_int64) Generates a translation hash entry address. Maps to the
thash r = r instruction.

__int64 __ttag(__int64) Generates a translation hash entry tag. Maps to the
ttag r=r instruction.

void __ptcl(__int64 va, __int64 pagesz) Purges the local translation cache. Maps to the ptc.l
r, r instruction.

void __ptcg(__int64 va, __int64 pagesz) Purges the global translation cache. Maps to the ptc.g
r, r instruction.

void __ptcga(__int64 va, __int64 pagesz) Purges the global translation cache and ALAT. Maps to
the ptc.ga r, r instruction.

void __ptri(__int64 va, __int64 pagesz) Purges the translation register. Maps to the ptr.i r,
r instruction.

void __ptrd(__int64 va, __int64 pagesz) Purges the translation register. Maps to the ptr.d r
r instruction.

void __invalat (void) Invalidates ALAT. Maps to the invala instruction.

void __break(int) Generates a break instruction with an immediate.

void __fc(__int64) Flushes a cache line associated with the address given
by the argument. Maps to the fc r instruction.

void __sum (int mask) Sets the user mask bits of PSR. Maps to the sum
imm24 instruction.

void __rum (int mask) Resets the user mask.

void __ssm (int mask) Sets the system mask.

void __rsm (int mask) Resets the user mask bits of PSR. Maps to the rsm
imm24 instruction.

__int64 _ReturnAddress(void) Get the caller's address.

 242

Data Alignment, Memory Allocation
Intrinsics, and Inline Assembly
Overview of Data Alignment, Memory
Allocation Intrinsics, and Inline
Assembly
This book describes features that support usage of the intrinsics. The following topics are described:

! Alignment Support

! Dynamic Stack Frame Alignment

! Allocating and Freeing Aligned Memory Blocks

! Inline Assembly

Alignment Support
To improve intrinsics performance, you need to align data. For example, when you are using the
Streaming SIMD Extensions, you should align data to 16 bytes in memory operations to improve
performance. Specifically, you must align __m128 objects as addresses passed to the _mm_load and
_mm_store intrinsics. If you want to declare arrays of floats and treat them as __m128 objects by
casting, you need to ensure that the float arrays are properly aligned.

Use __declspec(align) to direct the compiler to align data more strictly than it otherwise does on
both IA-32 and Itanium(TM)-based systems. For example, a data object of type int is allocated at a byte
address which is a multiple of 4 by default (the size of an int). However, by using
__declspec(align), you can direct the compiler to instead use an address which is a multiple of 8, 16,
or 32 with the following restrictions on IA-32:

! 32-byte addresses must be statically allocated

! 16-byte addresses can be locally or statically allocated

You can use this data alignment support as an advantage in optimizing cache line usage. By clustering
small objects that are commonly used together into a struct, and forcing the struct to be allocated at
the beginning of a cache line, you can effectively guarantee that each object is loaded into the cache as
soon as any one is accessed, resulting in a significant performance benefit.

The syntax of this extended-attribute is as follows:

align(n)

where n is an integral power of 2, less than or equal to 32. The value specified is the requested
alignment.

 243

Note

If a value is specified that is less than the alignment of the affected data type, it has no effect. In other
words, data is aligned to the maximum of its own alignment or the alignment specified with
__declspec(align).

You can request alignments for individual variables, whether of static or automatic storage duration.
(Global and static variables have static storage duration; local variables have automatic storage duration
by default.) You cannot adjust the alignment of a parameter, nor a field of a struct or class. You can,
however, increase the alignment of a struct (or union or class), in which case every object of that
type is affected.

As an example, suppose that a function uses local variables i and j as subscripts into a 2-dimensional
array. They might be declared as follows:

int i, j;

These variables are commonly used together. But they can fall in different cache lines, which could be
detrimental to performance. You can instead declare them as follows:

__declspec(align(8)) struct { int i, j; } sub;

The compiler now ensures that they are allocated in the same cache line. In C++, you can omit the
struct variable name (written as sub in the above example). In C, however, it is required, and you must
write references to i and j as sub.i and sub.j.

If you use many functions with such subscript pairs, it is more convenient to declare and use a struct
type for them, as in the following example:

typedef struct __declspec(align(8)) { int i, j; } Sub;

By placing the __declspec(align) after the keyword struct, you are requesting the appropriate
alignment for all objects of that type. However, that allocation of parameters is unaffected by
__declspec(align). (If necessary, you can assign the value of a parameter to a local variable with the
appropriate alignment.)

You can also force alignment of global variables, such as arrays:

__declspec(align(16)) float array[1000];

Allocating and Freeing Aligned Memory
Blocks
Use the _mm_malloc and _mm_free intrinsics to allocate and free aligned blocks of memory. These
intrinsics are based on malloc and free, which are in the libirc.a library. The syntax for these intrinsics
is as follows:

void* _mm_malloc (int size, int align)

void _mm_free (void *p)

 244

The _mm_malloc routine takes an extra parameter, which is the alignment constraint. This constraint
must be a power of two. The pointer that is returned from _mm_malloc is guaranteed to be aligned on
the specified boundary.

Note

Memory that is allocated using _mm_malloc must be freed using _mm_free . Calling free on memory
allocated with _mm_malloc or calling _mm_free on memory allocated with malloc will cause
unpredictable behavior.

Inline Assembly
The Intel® C++ Compiler for Itanium(TM)-based systems does not support assembly language inline
programming. The Intel C++ Compiler for IA-32 supports use of all the MMX(TM) instructions and
Streaming SIMD Extensions in inline assembly (__asm) blocks. The compiler also accepts the new
syntax MMWORD PTR and XMMWORD PTR to refer to 64- and 128-bit data.

Intrinsics Cross-processor
Implementation
Intrinsics Cross-processor
Implementation
This book provides a series of tables that compare intrinsics performance across architectures. Before
implementing intrinsics across architectures, please note the following.

! Instrinsics may generate code that does not run on all IA processors. Therefore the programmer
is responsible for using CPUID to detect the processor and generating the appropriate code.

! Implement intrinsics by processor family, not by specific processor. The guiding principle for
which family–IA-32 or Itanium(TM) processors–the intrinsic is implemented on is performance,
not compatibility. Where there is added performance on both families, the intrinsic will be
identical.

 245

Intrinsics For Implementation Across All
IA
Key to the table entries

! A = Expected to give significant performance gain over non-intrinsic-based code equivalent.

! B = Non-intrinsic-based source code would be better; the intrinsic's implementation may map
directly to native instructions, but they offer no significant performance gain.

! C = Requires contorted implementation for particular microarchitecture. Will result in very poor
performance if used.

Intrinsic Across All IA MMX(TM)
Technology

Streaming
SIMD
Extensions

Streaming
SIMD
Extensions 2

Itanium(TM)
Architecture

int abs(int) A A A A A

long labs(long) A A A A A

unsigned long
__lrotl(unsigned
long value, int
shift)

A A A A A

unsigned long
__lrotr(unsigned
long value, int
shift)

A A A A A

unsigned int
__rotl(unsigned
int value, int
shift)

A A A A A

unsigned int
__rotr(unsigned
int value, int
shift)

A A A A A

__int64
__i64_rotl(__int6
4 value, int shift)

A A A A A

__int64
__i64_rotr(__int
64 value, int
shift)

A A A A A

int
is_NaN(double
d)

A A A A A

 246

Intrinsic Across All IA MMX(TM)
Technology

Streaming
SIMD
Extensions

Streaming
SIMD
Extensions 2

Itanium(TM)
Architecture

double
fabs(double)

A A A A A

double
log(double)

A A A A A

float logf(float) A A A A A

double
log10(double)

A A A A A

float log10f(float) A A A A A

double
exp(double)

A A A A A

float expf(float) A A A A A

double
pow(double,
double)

A A A A A

float powf(float,
float)

A A A A A

double
sin(double)

A A A A A

float sinf(float) A A A A A

double
cos(double)

A A A A A

float cosf(float) A A A A A

double
tan(double)

A A A A A

float tanf(float) A A A A A

double
acos(double)

A A A A A

float acosf(float) A A A A A

double
acosh(double)

A A A A A

float
acoshf(float)

A A A A A

double
()

A A A A A

 247

Intrinsic Across All IA MMX(TM)
Technology

Streaming
SIMD
Extensions

Streaming
SIMD
Extensions 2

Itanium(TM)
Architecture

asin(double)

float asinf(float) A A A A A

double
asinh(double)

A A A A A

float asinhf(float) A A A A A

double
atan(double)

A A A A A

float atanf(float) A A A A A

double
atanh(double)

A A A A A

float atanhf(float) A A A A A

float
cabs(double)*

A A A A A

double
ceil(double)

A A A A A

float ceilf(float) A A A A A

double
cosh(double)

A A A A A

float coshf(float) A A A A A

float fabsf(float) A A A A A

double
floor(double)

A A A A A

float floorf(float) A A A A A

double
fmod(double)

A A A A A

float fmodf(float) A A A A A

double
hypot(double,
double)

A A A A A

float hypotf(float) A A A A A

double
rint(double)

A A A A A

 248

Intrinsic Across All IA MMX(TM)
Technology

Streaming
SIMD
Extensions

Streaming
SIMD
Extensions 2

Itanium(TM)
Architecture

float rintf(float) A A A A A

double
sinh(double)

A A A A A

float sinhf(float) A A A A A

float sqrtf(float) A A A A A

double
tanh(double)

A A A A A

float tanhf(float) A A A A A

char
*_strset(char *,
_int32)

A A A A A

void
*memcmp(const
void *cs, const
void *ct, size_t
n)

A A A A A

void
*memcpy(void
*s, const void
*ct, size_t n)

A A A A A

void
*memset(void *
s, int c, size_t n)

A A A A A

char *Strcat(char
* s, const char *
ct)

A A A A A

int *strcmp(const
char *, const
char *)

A A A A A

char *strcpy(char
* s, const char *
ct)

A A A A A

size_t
strlen(const char
* cs)

A A A A A

int strncmp(char
*, char *, int)

A A A A A

 249

Intrinsic Across All IA MMX(TM)
Technology

Streaming
SIMD
Extensions

Streaming
SIMD
Extensions 2

Itanium(TM)
Architecture

int strncpy(char
*, char *, int)

A A A A A

void
*__alloca(int)

A A A A A

int
_setjmp(jmp_buf
)

A A A A A

_exception_cod
e(void)

A A A A A

_exception_info(
void)

A A A A A

_abnormal_termi
nation(void)

A A A A A

void _enable() A A A A A

void _disable() A A A A A

int _bswap(int) A A A A A

int _in_byte(int) A A A A A

int
_in_dword(int)

A A A A A

int _in_word(int) A A A A A

int _inp(int) A A A A A

int _inpd(int) A A A A A

int _inpw(int) A A A A A

int _out_byte(int,
int)

A A A A A

int
_out_dword(int,
int)

A A A A A

int
_out_word(int,
int)

A A A A A

int _outp(int, int) A A A A A

int _outpd(int,
)

A A A A A

 250

Intrinsic Across All IA MMX(TM)
Technology

Streaming
SIMD
Extensions

Streaming
SIMD
Extensions 2

Itanium(TM)
Architecture

int)

int _outpw(int,
int)

A A A A A

 251

MMX(TM) Technology Intrinsics
Implementation
Key to the table entries

! A = Expected to give significant performance gain over non-intrinsic-based code equivalent.

! B = Non-intrinsic-based source code would be better; the intrinsic's implementation may map
directly to native instructions, but they offer no significant performance gain.

! C = Requires contorted implementation for particular microarchitecture. Will result in very poor
performance if used.

Intrinsic Across All IA MMX(TM)
Technology

Streaming
SIMD
Extensions

Streaming
SIMD
Extensions 2

Itanium(TM)
Architecture

void
_mm_empty(voi
d)

N/A A A A B

__m64
_m_from_int (int
i)

_m64
_mm_cvtsi32_si
64

N/A A A A A

int _m_to_int
(__m64 m)

_m64
_mm_cvtsi64_si
32

N/A A A A A

__m64
_m_packsswb
(__m64 m1,
__m64 m2)

__m64
_mm_packs_pi1
6

N/A A A A A

__m64
_m_packssdw
(__m64 m1,
__m64 m2)

__m64
_mm_packs_pi3
2

N/A A A A A

 252

Intrinsic Across All IA MMX(TM)
Technology

Streaming
SIMD
Extensions

Streaming
SIMD
Extensions 2

Itanium(TM)
Architecture

__m64
_m_packuswb
(__m64 m1,
__m64 m2)

__m64
_mm_packs_pu
16

N/A A A A A

__m64
_m_punpckhbw
(__m64 m1,
__m64 m2)

__m64
_mm_unpackhi_
pi8

N/A A A A A

__m64
_m_punpckhwd
(__m64 m1,
__m64 m2)

__m64
_mm_unpackhi_
pi16

N/A A A A A

__m64
_m_punpckhdq
(__m64 m1,
__m64 m2)

__m64
_mm_unpackhi_
pi32

N/A A A A A

__m64
_m_punpcklbw
(__m64 m1,
__m64 m2)

__m64
_mm_unpacklo_
pi8

N/A A A A A

__m64
_m_punpcklwd
(__m64 m1,
__m64 m2)

__m64
_mm_unpacklo_

N/A A A A A

 253

Intrinsic Across All IA MMX(TM)
Technology

Streaming
SIMD
Extensions

Streaming
SIMD
Extensions 2

Itanium(TM)
Architecture

pi16

__m64
_m_punpckldq
(__m64 m1,
__m64 m2)

__m64
_mm_unpacklo_
pi32

N/A A A A A

__m64
_m_paddb
(__m64 m1,
__m64 m2)

__m64
_mm_add_pi8

N/A A A A A

__m64
_m_paddw
(__m64 m1,
__m64 m2)

__m64
_mm_add_pi16

N/A A A A A

__m64
_m_paddd
(__m64 m1,
__m64 m2)

__m64
_mm_add_pi32

N/A A A A A

__m64
_m_paddsb
(__m64 m1,
__m64 m2)

__m64
_mm_adds_pi8

N/A A A A A

__m64
_m_paddsw
(__m64 m1,
__m64 m2)

__m64
_mm_adds_pi16

N/A A A A A

__m64
_m_paddusb

N/A A A A A

 254

Intrinsic Across All IA MMX(TM)
Technology

Streaming
SIMD
Extensions

Streaming
SIMD
Extensions 2

Itanium(TM)
Architecture

(__m64 m1,
__m64 m2)

__m64
_mm_adds_pu8

__m64
_m_paddusw
(__m64 m1,
__m64 m2)

__m64
_mm_adds_pu1
6

N/A A A A A

__m64
_m_psubb
(__m64 m1,
__m64 m2)

__m64
_mm_sub_pi8

N/A A A A A

__m64
_m_psubw
(__m64 m1,
__m64 m2)

__m64
_mm_sub_pi16

N/A A A A A

__m64
_m_psubd
(__m64 m1,
__m64 m2)

__m64
_mm_sub_pi32

N/A A A A A

__m64
_m_psubsb
(__m64 m1,
__m64 m2)

__m64
_mm_subs_pi8

N/A A A A A

__m64
_m_psubsw(__
m64 m1, __m64
m2)

__m64

N/A A A A A

 255

Intrinsic Across All IA MMX(TM)
Technology

Streaming
SIMD
Extensions

Streaming
SIMD
Extensions 2

Itanium(TM)
Architecture

_mm_subs_pi16

__m64
_m_psubusb(__
m64 m1, __m64
m2)

__m64
_mm_subs_pu8

N/A A A A A

__m64
_m_psubusw(__
m64 m1, __m64
m2)

__m64
_mm_subs_pu1
6

N/A A A A A

__m64
_m_pmaddwd
(__m64 m1,
__m64 m2)

__m64
_mm_madd_pi1
6

N/A A A A C

__m64
_m_pmulhw
(__m64 m1,
__m64 m2)

__m64
_mm_mulhi_pi1
6

N/A A A A A

__m64
_m_pmullw
(__m64 m1,
__m64 m2)

__m64
_mm_mullo_pi1
6

N/A A A A A

__m64 _m_psllw
(__m64 m,
__m64 count)

__m64
_mm_sll_pi16

N/A A A A A

 256

Intrinsic Across All IA MMX(TM)
Technology

Streaming
SIMD
Extensions

Streaming
SIMD
Extensions 2

Itanium(TM)
Architecture

__m64
_m_psllwi
(__m64 m, int
count)

__m64
_mm_slli_pi16

N/A A A A A

__m64 _m_pslld
(__m64 m, int
count)

__m64
_mm_sll_pi32

N/A A A A A

__m64 _m_pslldi
(__m64 m, int
count)

__m64
_mm_slli_pi32

N/A A A A A

__m64 _m_psllq
(__m64 m,
__m64 count)

__m64
_mm_sll_si64

N/A A A A A

__m64 _m_psllqi
(__m64 m,
__m64 count)

__m64
_mm_slli_si64

N/A A A A A

__m64
_m_psraw
(__m64 m,
__m64 count)

__m64
_mm_sra_pi16

N/A A A A A

__m64
_m_psrawi
(__m64 m, int
count)

__m64
_mm_srai_pi16

N/A A A A A

 257

Intrinsic Across All IA MMX(TM)
Technology

Streaming
SIMD
Extensions

Streaming
SIMD
Extensions 2

Itanium(TM)
Architecture

__m64
_m_psrad
(__m64 m,
__m64 count)

__m64
_mm_sra_pi32

N/A A A A A

__m64
_m_psradi
(__m64 m, int
count)

__m64
_mm_srai_pi32

N/A A A A A

__m64
_m_psrlw
(__m64 m,
__m64 count)

__m64
_mm_srl_pi16

N/A A A A A

__m64
_m_psrlwi
(__m64 m, int
count)

__m64
_mm_srli_pi16

N/A A A A A

__m64 _m_psrld
(__m64 m,
__m64 count)

__m64
_mm_srl_pi32

N/A A A A A

__m64
_m_psrldi
(__m64 m, int
count)

__m64
_mm_srli_pi32

N/A A A A A

__m64 _m_psrlq
(__m64 m,
__m64 count)

__m64

N/A A A A A

 258

Intrinsic Across All IA MMX(TM)
Technology

Streaming
SIMD
Extensions

Streaming
SIMD
Extensions 2

Itanium(TM)
Architecture

_mm_srl_si64

__m64
_m_psrlqi
(__m64 m, int
count)

__m64
_mm_srli_si64

N/A A A A A

__m64 _m_pand
(__m64 m1,
__m64 m2)

__m64
_mm_and_si64

N/A A A A A

__m64
_m_pandn
(__m64 m1,
__m64 m2)

__m64
_mm_andnot_si
64

N/A A A A A

__m64 _m_por
(__m64 m1,
__m64 m2)

__m64
_mm_or_si64

N/A A A A A

__m64 _m_pxor
(__m64 m1,
__m64 m2)

__m64
_mm_xor_si64

N/A A A A A

__m64
_m_pcmpeqb
(__m64 m1,
__m64 m2)

__m64
_mm_cmpeq_pi
8

N/A A A A A

__m64
_m_pcmpeqw
(__m64 m1,
__m64 m2)

N/A A A A A

 259

Intrinsic Across All IA MMX(TM)
Technology

Streaming
SIMD
Extensions

Streaming
SIMD
Extensions 2

Itanium(TM)
Architecture

__m64
_mm_cmpeq_pi
16

__m64
_m_pcmpeqd
(__m64 m1,
__m64 m2)

__m64
_mm_cmpeq_pi
32

N/A A A A A

__m64
_m_pcmpgtb
(__m64 m1,
__m64 m2)

__m64
_mm_cmpgt_pi8

N/A A A A A

__m64
_m_pcmpgtw
(__m64 m1,
__m64 m2)

__m64
_mm_cmpgt_pi1
6

N/A A A A A

__m64
_m_pcmpgtd
(__m64 m1,
__m64 m2)

__m64
_mm_cmpgt_pi3
2

N/A A A A A

__m64
_mm_setzero_si
64 ()

N/A A A A A

__m64
__mm_set_pi32
(int i1, int i0)

N/A A A A A

__m64
__mm_set_pi16
(short w3, short
w2, short w1,
short w0)

N/A A A A C

 260

Intrinsic Across All IA MMX(TM)
Technology

Streaming
SIMD
Extensions

Streaming
SIMD
Extensions 2

Itanium(TM)
Architecture

__m64
__mm_set_pi8 (
char b7, char b6,
char b5, char b4,
char b3, char b2,
char b1, char b0)

N/A A A A C

__m64
__mm_set1_pi3
2 (int I)

N/A A A A A

__m64
__mm_set1_pi1
6 (short w)

N/A A A A A

__m64
__mm_set1_pi8
(char b)

N/A A A A A

__m64
__mm_setr_pi32
(int i1, int i0)

N/A A A A A

__m64
__mm_setr_pi16
(short w3, short
w2, short w1,
short w0)

N/A A A A C

__m64
__mm_setr_pi8
(char b7, char
b6, char b5, char
b4, char b3, char
b2, char b1, char
b0)

N/A A A A C

_mm_empty is implemented in Itanium instructions as a NOP for source compatibility only.

 261

Streaming SIMD Extensions Intrinsics
Implementation
Regular Streaming SIMD Extensions intrinsics work on 4 32-bit single precision values. On Itanium(TM)-
based systems, basic operations like add or compare will require two SIMD instructions. Both can be
executed in the same cycle so the throughput is one basic Streaming SIMD Extensions operation per
cycle or 4 32-bit single precision operations per cycle.

Key to the table entries

! A = Expected to give significant performance gain over non-intrinsic-based code equivalent.

! B = Non-intrinsic-based source code would be better; the intrinsic's implementation may map
directly to native instructions, but they offer no significant performance gain.

! C = Requires contorted implementation for particular microarchitecture. Will result in very poor
performance if used.

Intrinsic Across All IA MMX(TM)
Technology

Streaming
SIMD
Extensions

Streaming
SIMD
Extensions 2

Itanium(TM)
Architecture

__m128
_mm_add_ss
(__m128 a,
__m128 b)

N/A N/A B B B

__m128
_mm_add_ps
(__m128 a,
__m128 b)

N/A N/A A A A

__m128
_mm_sub_ss
(__m128 a,
__m128 b)

N/A N/A B B B

__m128
_mm_sub_ps
(__m128 a,
__m128 b)

N/A N/A A A A

__m128
_mm_mul_ss
(__m128 a,
__m128 b)

N/A N/A B B B

__m128
_mm_mul_ps
(__m128 a,
__m128 b)

N/A N/A A A A

__m128 N/A N/A B B B

 262

Intrinsic Across All IA MMX(TM)
Technology

Streaming
SIMD
Extensions

Streaming
SIMD
Extensions 2

Itanium(TM)
Architecture

_mm_div_ss
(__m128 a,
__m128 b)

__m128
_mm_div_ps
(__m128 a,
__m128 b)

N/A N/A A A A

__m128
_mm_sqrt_ss
(__m128 a)

N/A N/A B B B

__m128
_mm_sqrt_ps
(__m128 a)

N/A N/A A A A

__m128
_mm_rcp_ss
(__m128 a)

N/A N/A B B B

__m128
_mm_rcp_ps
(__m128 a)

N/A N/A A A A

__m128
_mm_rsqrt_ss
(__m128 a)

N/A N/A B B B

__m128
_mm_rsqrt_ps
(__m128 a)

N/A N/A A A A

__m128
_mm_min_ss
(__m128 a,
__m128 b)

N/A N/A B B B

__m128
_mm_min_ps
(__m128 a,
__m128 b)

N/A N/A A A A

__m128
_mm_max_ss
(__m128 a,
__m128 b)

N/A N/A B B B

__m128
_mm_max_ps
(__m128 a,
__m128 b)

N/A N/A A A A

 263

Intrinsic Across All IA MMX(TM)
Technology

Streaming
SIMD
Extensions

Streaming
SIMD
Extensions 2

Itanium(TM)
Architecture

__m128
_mm_and_ps
(__m128 a,
__m128 b)

N/A N/A A A A

__m128
_mm_andnot_ps
(__m128 a,
__m128 b)

N/A N/A A A A

__m128
_mm_or_ps
(__m128 a,
__m128 b)

N/A N/A A A A

__m128
_mm_xor_ps
(__m128 a,
__m128 b)

N/A N/A A A A

__m128
_mm_cmpeq_ss
(__m128 a,
__m128 b)

N/A N/A B B B

__m128
_mm_cmpeq_ps
(__m128 a,
__m128 b)

N/A N/A A A A

__m128
_mm_cmplt_ss
(__m128 a,
__m128 b)

N/A N/A B B B

__m128
_mm_cmplt_ps
(__m128 a,
__m128 b)

N/A N/A A A A

__m128
_mm_cmple_ss
(__m128 a,
__m128 b)

N/A N/A B B B

__m128
_mm_cmple_ps
(__m128 a,
__m128 b)

N/A N/A A A A

__m128
_mm_cmpgt_ss

N/A N/A B B B

 264

Intrinsic Across All IA MMX(TM)
Technology

Streaming
SIMD
Extensions

Streaming
SIMD
Extensions 2

Itanium(TM)
Architecture

(__m128 a,
__m128 b)

__m128
_mm_cmpgt_ps
(__m128 a,
__m128 b)

N/A N/A A A A

__m128
_mm_cmpge_ss
(__m128 a,
__m128 b)

N/A N/A B B B

__m128
_mm_cmpge_ps
(__m128 a,
__m128 b)

N/A N/A A A A

__m128
_mm_cmpneq_s
s (__m128 a,
__m128 b)

N/A N/A B B B

__m128
_mm_cmpneq_p
s (__m128 a,
__m128 b)

N/A N/A A A A

__m128
_mm_cmpnlt_ss
(__m128 a,
__m128 b)

N/A N/A B B B

__m128
_mm_cmpnlt_ps
(__m128 a,
__m128 b)

N/A N/A A A A

__m128
_mm_cmpnle_ss
(__m128 a,
__m128 b)

N/A N/A B B B

__m128
_mm_cmpnle_p
s (__m128 a,
__m128 b)

N/A N/A A A A

__m128
_mm_cmpngt_s
s (__m128 a,
__m128 b)

N/A N/A B B B

 265

Intrinsic Across All IA MMX(TM)
Technology

Streaming
SIMD
Extensions

Streaming
SIMD
Extensions 2

Itanium(TM)
Architecture

__m128
_mm_cmpngt_p
s (__m128 a,
__m128 b)

N/A N/A A A A

__m128
_mm_cmpnge_s
s (__m128 a,
__m128 b)

N/A N/A B B B

__m128
_mm_cmpnge_p
s (__m128 a,
__m128 b)

N/A N/A A A A

__m128
_mm_cmpord_s
s (__m128 a,
__m128 b)

N/A N/A B B B

__m128
_mm_cmpord_p
s (__m128 a,
__m128 b)

N/A N/A A A A

__m128
_mm_cmpunord
_ss (__m128 a,
__m128 b)

N/A N/A B B B

__m128
_mm_cmpunord
_ps (__m128 a,
__m128 b)

N/A N/A A A A

int
_mm_comieq_ss
(__m128 a,
__m128 b)

N/A N/A B B B

int
_mm_comilt_ss
(__m128 a,
__m128 b)

N/A N/A B B B

int
_mm_comile_ss
(__m128 a,
__m128 b)

N/A N/A B B B

int
_mm_comigt_ss

N/A N/A B B B

 266

Intrinsic Across All IA MMX(TM)
Technology

Streaming
SIMD
Extensions

Streaming
SIMD
Extensions 2

Itanium(TM)
Architecture

(__m128 a,
__m128 b)

int
_mm_comige_ss
(__m128 a,
__m128 b)

N/A N/A B B B

int
_mm_comineq_
ss (__m128 a,
__m128 b)

N/A N/A B B B

int
_mm_ucomieq_
ss (__m128 a,
__m128 b)

N/A N/A B B B

int
_mm_ucomilt_ss
(__m128 a,
__m128 b)

N/A N/A B B B

int
_mm_ucomile_s
s (__m128 a,
__m128 b)

N/A N/A B B B

int
_mm_ucomigt_s
s (__m128 a,
__m128 b)

N/A N/A B B B

int
_mm_ucomige_
ss (__m128 a,
__m128 b)

N/A N/A B B B

int
_mm_ucomineq
_ss (__m128 a,
__m128 b)

N/A N/A B B B

int
_mm_cvtss_si32
(__m128 a)

int
_mm_cvt_ss2si

N/A N/A A A B

__m64
_mm_cvtps_pi32

N/A N/A A A A

 267

Intrinsic Across All IA MMX(TM)
Technology

Streaming
SIMD
Extensions

Streaming
SIMD
Extensions 2

Itanium(TM)
Architecture

(__m128 a)

int
_mm_cvt_ps2pi

int
_mm_cvttss_si3
2 (__m128 a)

int
_mm_cvtt_ss2si

N/A N/A A A B

__m64
_mm_cvttps_pi3
2 (__m128 a)

int
_mm_cvtt_ps2pi

N/A N/A A A A

__m128
_mm_cvtsi32_ss
(__m128 a, int b)

int
_mm_cvt_si2ss

N/A N/A A A B

__m128
_mm_cvtpi32_ps
(__m128 a,
__m64 b)

int
_mm_cvt_pi2ps

N/A N/A A A C

__m128
_mm_cvtpi16_ps
(__m64 a)

N/A N/A A A C

__m128
_mm_cvtpu16_p
s (__m64 a)

N/A N/A A A C

__m128
_mm_cvtpi8_ps
(__m64 a)

N/A N/A A A C

__m128
_mm_cvtpu8_ps
(__m64 a)

N/A N/A A A C

__m128
_mm_cvtpi32x2_
ps (__m64 a,

N/A N/A A A C

 268

Intrinsic Across All IA MMX(TM)
Technology

Streaming
SIMD
Extensions

Streaming
SIMD
Extensions 2

Itanium(TM)
Architecture

__m64 b)

__m64
_mm_cvtps_pi16
(__m128 a)

N/A N/A A A C

__m64
_mm_cvtps_pi8
(__m128 a)

N/A N/A A A C

__m128
_mm_move_ss
(__m128 a
__m128 b)

N/A N/A A A A

int
_mm_shuffle_ps
(__m128 a)

N/A N/A A A A

__m128
_mm_unpackhi_
ps (__m128 a,
__m128 b)

N/A N/A A A A

__m128
_mm_unpacklo_
ps (__m128 a,
__m128b)

N/A N/A A A A

__m128
_mm_movehl_p
s (__m128 a,
__m128b)

N/A N/A A A A

__m128
_mm_movelh_p
s (__m128 a,
__m128b)

N/A N/A A A A

int
_mm_movemas
k_ps (__m128 a)

N/A N/A A A C

unsigned int
_mm_getcsr
(void)

N/A N/A A A A

void _mm_setcsr
(unsigned int i)

N/A N/A A A A

__m128
_mm_loadh_pi
(__m128 a,

N/A N/A A A A

 269

Intrinsic Across All IA MMX(TM)
Technology

Streaming
SIMD
Extensions

Streaming
SIMD
Extensions 2

Itanium(TM)
Architecture

__m64 *p)

__m128
_mm_loadl_pi
(__m128 a,
__m64 *p)

N/A N/A A A A

__m128
_mm_load_ss
(__m128 a, float
*p)

N/A N/A A A B

__m128
_mm_load1_ps
(__m128 a, float
*p)

__m128
_mm_load_ps1

N/A N/A A A A

__m128
_mm_load_ps
(__m128 a, float
*p)

N/A N/A A A A

__m128
_mm_loadu_ps
(__m128 a, float
*p)

N/A N/A A A A

__m128
_mm_loadr_ps
(__m128 a, float
*p)

N/A N/A A A A

void
_mm_storeh_pi (
__m64 *p,
__m128 a)

N/A N/A A A A

void
_mm_storel_pi (
__m64 *p,
__m128 a)

N/A N/A A A A

Void
_mm_store_ss (
float *p, __m128
a)

N/A N/A A A A

Void
_mm_store_ps (
float *p, __m128

N/A N/A A A A

 270

Intrinsic Across All IA MMX(TM)
Technology

Streaming
SIMD
Extensions

Streaming
SIMD
Extensions 2

Itanium(TM)
Architecture

a)

Void
_mm_store1_ps
(float *p,
__m128 a)

Void
_mm_store_ps1

N/A N/A A A A

Void
_mm_storeu_ps
(float *p,
__m128 a)

N/A N/A A A A

Void
_mm_storer_ps (
float *p, __m128
a)

N/A N/A A A A

__m128
_mm_set_ss (
float w)

N/A N/A A A A

__m128
_mm_set1_ps (
float w)

__m128
_mm_set_ps1

N/A N/A A A A

__m128
_mm_set_ps (
float z, float y,
float x, float w)

N/A N/A A A A

__m128
_mm_setr_ps (
float z, float y,
float x, float w)

N/A N/A A A A

__m128
_mm_setzero_p
s (void)

N/A N/A A A A

void
_mm_prefetch
(char *p, int i)

N/A N/A A A A

void
_mm_stream_pi
(__m64 *p,

N/A N/A A A A

 271

Intrinsic Across All IA MMX(TM)
Technology

Streaming
SIMD
Extensions

Streaming
SIMD
Extensions 2

Itanium(TM)
Architecture

__m64 *a)

__m128
_mm_stream_ps
(float *p
__mm128 a)

N/A N/A A A A

void
_mm_sfence
(void)

N/A N/A A A A

int
_mm_extract_pi
16 (__m64 a, int
n)

int _m_pextrw

N/A N/A A A A

__m64
_mm_insert_pi1
6 (__m64 a, int
d, int n)

__m64
_m_pinsrw

N/A N/A A A A

__m64
_mm_max_pi16
(__m64 a,
__m64 b)

__m64
_m_pmaxsw

N/A N/A A A A

__m64
_mm_max_pu8 (
__m64 a, __m64
b)

__m64
_m_pmaxub

N/A N/A A A A

__m64
_mm_min_pi16 (
__m64 a, __m64
b)

__m64
_m_pminsw

N/A N/A A A A

__m64
_mm_min_pu8 (
__m64 a, __m64

N/A N/A A A A

 272

Intrinsic Across All IA MMX(TM)
Technology

Streaming
SIMD
Extensions

Streaming
SIMD
Extensions 2

Itanium(TM)
Architecture

b)

__m64
_m_pminub

int
_mm_movemas
k_pi8 (__m64 a)

__m64
_m_pmovmskb

N/A N/A A A C

__m64
_mm_mulhi_pu1
6 (__m64 a,
__m64 b)

__m64
_m_pmulhuw

N/A N/A A A A

__m64
_mm_shuffle_pi
16 (__m64 a, int
n)

__m64
_m_pshufw

N/A N/A A A A

void
_mm_maskmov
e_si64 (__m64
d, __m64 n, char
*p)

void
_m_maskmovq

N/A N/A A A C

__m64
_mm_avg_pu8 (
__m64 a, __m64
b)

__m64
_m_pavgb

N/A N/A A A A

__m64
_mm_avg_pu16
(__m64 a,
__m64 b)

__m64
_m_pavgw

N/A N/A A A A

 273

Intrinsic Across All IA MMX(TM)
Technology

Streaming
SIMD
Extensions

Streaming
SIMD
Extensions 2

Itanium(TM)
Architecture

__m64
_mm_sad_pu8 (
__m64 a, __m64
b)

__m64
_m_psadbw

N/A N/A A A A

Streaming SIMD Extensions 2 Intrinsics
Implementation
Streaming SIMD Extensions 2 operate on 128-bit quantities with 64-bit double precision floating-point
values. The Itanium(TM) processor does not support parallel double precision computation, so Streaming
SIMD Extensions 2 are not implemented on Itanium-based systems.

Key to the table entries:

! A = Expected to give significant performance gain over non-intrinsic-based code equivalent.

! B = Non-intrinsic-based source code would be better; the intrinsic's implementation may map
directly to native instructions, but they offer no significant performance gain.

! C = Requires contorted implementation for particular microarchitecture. Will result in very poor
performance if used.

Intrinsic Across All IA MMX(TM)
Technology

Streaming
SIMD Extenions

Pentium(TM) 4
Processor
Streaming
SIMD
Extensions 2

Itanium(TM)
Architecture

__m128d
_mm_add_sd(__
m128d a,
__m128d b)

N/A N/A N/A A N/A

__m128d
_mm_add_pd(_
_m128d a,
__m128d b)

N/A N/A N/A A N/A

__m128d
_mm_sub_sd(__
m128d a,
__m128d b)

N/A N/A N/A A N/A

__m128d
(

N/A N/A N/A A N/A

 274

Intrinsic Across All IA MMX(TM)
Technology

Streaming
SIMD Extenions

Pentium(TM) 4
Processor
Streaming
SIMD
Extensions 2

Itanium(TM)
Architecture

_mm_sub_pd(__
m128d a,
__m128d b)

__m128d
_mm_mul_sd(__
m128d a,
__m128d b)

N/A N/A N/A A N/A

__m128d
_mm_mul_pd(__
m128d a,
__m128d b)

N/A N/A N/A A N/A

__m128d
_mm_sqrt_sd(__
m128d a,
__m128d b)

N/A N/A N/A A N/A

__m128d
_mm_sqrt_pd(__
m128d a)

N/A N/A N/A A N/A

__m128d
_mm_div_sd(__
m128d a,
__m128d b)

N/A N/A N/A A N/A

__m128d
_mm_div_pd(__
m128d a,
__m128d b)

N/A N/A N/A A N/A

__m128d
_mm_min_sd(__
m128d a,
__m128d b)

N/A N/A N/A A N/A

__m128d
_mm_min_pd(__
m128d a,
__m128d b)

N/A N/A N/A A N/A

__m128d
_mm_max_sd(_
_m128d a,
__m128d b)

N/A N/A N/A A N/A

__m128d
_mm_max_pd(_

N/A N/A N/A A N/A

 275

Intrinsic Across All IA MMX(TM)
Technology

Streaming
SIMD Extenions

Pentium(TM) 4
Processor
Streaming
SIMD
Extensions 2

Itanium(TM)
Architecture

_m128d a,
__m128d b)

__m128d
_mm_and_pd(_
_m128d a,
__m128d b)

N/A N/A N/A A N/A

__m128d
_mm_andnot_pd
(__m128d a,
__m128d b)

N/A N/A N/A A N/A

__m128d
_mm_or_pd(__
m128d a,
__m128d b)

N/A N/A N/A A N/A

__m128d
_mm_xor_pd(__
m128d a,
__m128d b)

N/A N/A N/A A N/A

__m128d
_mm_cmpeq_sd
(__m128d a,
__m128d b)

N/A N/A N/A A N/A

__m128d
_mm_cmpeq_pd
(__m128d a,
__m128d b)

N/A N/A N/A A N/A

__m128d
_mm_cmplt_sd(
__m128d a,
__m128d b)

N/A N/A N/A A N/A

__m128d
_mm_cmplt_pd(
__m128d a,
__m128d b)

N/A N/A N/A A N/A

__m128d
_mm_cmple_sd(
__m128d a,
__m128d b)

N/A N/A N/A A N/A

__m128d
_mm_cmple_pd(

N/A N/A N/A A N/A

 276

Intrinsic Across All IA MMX(TM)
Technology

Streaming
SIMD Extenions

Pentium(TM) 4
Processor
Streaming
SIMD
Extensions 2

Itanium(TM)
Architecture

__m128d a,
__m128d b)

__m128d
_mm_cmpgt_sd(
__m128d a,
__m128d b)

N/A N/A N/A A N/A

__m128d
_mm_cmpgt_pd(
__m128d a,
__m128d b)

N/A N/A N/A A N/A

__m128d
_mm_cmpge_sd
(__m128d a,
__m128d b)

N/A N/A N/A A N/A

__m128d
_mm_cmpge_pd
(__m128d a,
__m128d b)

N/A N/A N/A A N/A

__m128d
_mm_cmpneq_s
d(__m128d a,
__m128d b)

N/A N/A N/A A N/A

__m128d
_mm_cmpneq_p
d(__m128d a,
__m128d b)

N/A N/A N/A A N/A

__m128d
_mm_cmpnlt_sd
(__m128d a,
__m128d b)

N/A N/A N/A A N/A

__m128d
_mm_cmpnlt_pd
(__m128d a,
__m128d b)

N/A N/A N/A A N/A

__m128d
_mm_cmpnle_s
d(__m128d a,
__m128d b)

N/A N/A N/A A N/A

__m128d
_mm_cmpnle_p

N/A N/A N/A A N/A

 277

Intrinsic Across All IA MMX(TM)
Technology

Streaming
SIMD Extenions

Pentium(TM) 4
Processor
Streaming
SIMD
Extensions 2

Itanium(TM)
Architecture

d(__m128d a,
__m128d b)

__m128d
_mm_cmpngt_s
d(__m128d a,
__m128d b)

N/A N/A N/A A N/A

__m128d
_mm_cmpngt_p
d(__m128d a,
__m128d b)

N/A N/A N/A A N/A

__m128d
_mm_cmpnge_s
d(__m128d a,
__m128d b)

N/A N/A N/A A N/A

__m128d
_mm_cmpnge_p
d(__m128d a,
__m128d b)

N/A N/A N/A A N/A

__m128d
_mm_cmpord_p
d(__m128d a,
__m128d b)

N/A N/A N/A A N/A

__m128d
_mm_cmpord_s
d(__m128d a,
__m128d b)

N/A N/A N/A A N/A

__m128d
_mm_cmpunord
_pd(__m128d a,
__m128d b)

N/A N/A N/A A N/A

__m128d
_mm_cmpunord
_sd(__m128d a,
__m128d b)

N/A N/A N/A A N/A

int
_mm_comieq_s
d(__m128d a,
__m128d b)

N/A N/A N/A A N/A

int
_mm_comilt_sd(

N/A N/A N/A A N/A

 278

Intrinsic Across All IA MMX(TM)
Technology

Streaming
SIMD Extenions

Pentium(TM) 4
Processor
Streaming
SIMD
Extensions 2

Itanium(TM)
Architecture

__m128d a,
__m128d b)

int
_mm_comile_sd
(__m128d a,
__m128d b)

N/A N/A N/A A N/A

int
_mm_comigt_sd
(__m128d a,
__m128d b)

N/A N/A N/A A N/A

Int
_mm_comige_s
d(__m128d a,
__m128d b)

N/A N/A N/A A N/A

Int
_mm_comineq_
sd(__m128d a,
__m128d b)

N/A N/A N/A A N/A

Int
_mm_ucomieq_
sd(__m128d a,
__m128d b)

N/A N/A N/A A N/A

Int
_mm_ucomilt_sd
(__m128d a,
__m128d b)

N/A N/A N/A A N/A

Int
_mm_ucomile_s
d(__m128d a,
__m128d b)

N/A N/A N/A A N/A

Int
_mm_ucomigt_s
d(__m128d a,
__m128d b)

N/A N/A N/A A N/A

Int
_mm_ucomige_
sd(__m128d a,
__m128d b)

N/A N/A N/A A N/A

Int
_mm_ucomineq

N/A N/A N/A A N/A

 279

Intrinsic Across All IA MMX(TM)
Technology

Streaming
SIMD Extenions

Pentium(TM) 4
Processor
Streaming
SIMD
Extensions 2

Itanium(TM)
Architecture

_sd(__m128d a,
__m128d b)

__m128d
_mm_cvtepi32_
pd(__m128i a)

N/A N/A N/A A N/A

__m128i
_mm_cvtpd_epi
32(__m128d a)

N/A N/A N/A A N/A

__m128i
_mm_cvttpd_epi
32(__m128d a)

N/A N/A N/A A N/A

__m128
_mm_cvtepi32_
ps(__m128i a)

N/A N/A N/A A N/A

__m128i
_mm_cvtps_epi3
2(__m128 a)

N/A N/A N/A A N/A

__m128i
_mm_cvttps_epi
32(__m128 a)

N/A N/A N/A A N/A

__m128
_mm_cvtpd_ps(
__m128d a)

N/A N/A N/A A N/A

__m128d
_mm_cvtps_pd(
__m128 a)

N/A N/A N/A A N/A

__m128
_mm_cvtsd_ss(_
_m128 a,
__m128d b)

N/A N/A N/A A N/A

__m128d
_mm_cvtss_sd(_
_m128d a,
__m128 b)

N/A N/A N/A A N/A

int
_mm_cvtsd_si32
(__m128d a)

N/A N/A N/A A N/A

int
_mm_cvttsd_si3

N/A N/A N/A A N/A

 280

Intrinsic Across All IA MMX(TM)
Technology

Streaming
SIMD Extenions

Pentium(TM) 4
Processor
Streaming
SIMD
Extensions 2

Itanium(TM)
Architecture

2(__m128d a)

__m128d
_mm_cvtsi32_sd
(__m128d a, int
b)

N/A N/A N/A A N/A

__m64
_mm_cvtpd_pi3
2(__m128d a)

N/A N/A N/A A N/A

__m64
_mm_cvttpd_pi3
2(__m128d a)

N/A N/A N/A A N/A

__m128d
_mm_cvtpi32_p
d(__m64 a)

N/A N/A N/A A N/A

__m128d
_mm_unpackhi_
pd(__m128d a,
__m128d b)

N/A N/A N/A A N/A

__m128d
_mm_unpacklo_
pd(__m128d a,
__m128d b)

N/A N/A N/A A N/A

__m128d
_mm_unpacklo_
pd(__m128d a,
__m128d b)

N/A N/A N/A A N/A

__m128d
_mm_shuffle_pd
(__m128d a,
__m128d b, int i)

N/A N/A N/A A N/A

__m128d
_mm_load_pd(d
ouble const*dp)

N/A N/A N/A A N/A

__m128d
_mm_load1_pd(
double const*dp)

N/A N/A N/A A N/A

__m128d
_mm_loadr_pd(d
ouble const*dp)

N/A N/A N/A A N/A

 281

Intrinsic Across All IA MMX(TM)
Technology

Streaming
SIMD Extenions

Pentium(TM) 4
Processor
Streaming
SIMD
Extensions 2

Itanium(TM)
Architecture

__m128d
_mm_loadu_pd(
double const*dp)

N/A N/A N/A A N/A

__m128d
_mm_load_sd(d
ouble const*dp)

N/A N/A N/A A N/A

__m128d
_mm_loadh_pd(
__m128d a,
double const*dp)

N/A N/A N/A A N/A

__m128d
_mm_loadl_pd(_
_m128d a,
double const*dp)

N/A N/A N/A A N/A

__m128d
_mm_set_sd(do
uble w)

N/A N/A N/A A N/A

__m128d
_mm_set1_pd(d
ouble a)

N/A N/A N/A A N/A

__m128d
_mm_set_pd(do
uble z, double y)

N/A N/A N/A A N/A

__m128d
_mm_setr_pd(do
uble y, double z)

N/A N/A N/A A N/A

__m128d
_mm_setzero_p
d(void)

N/A N/A N/A A N/A

__m128d
_mm_move_sd(
__m128d a,
__m128d b)

N/A N/A N/A A N/A

void
_mm_store_sd(d
ouble *dp,
__m128d a)

N/A N/A N/A A N/A

void
_mm_store1_pd(

N/A N/A N/A A N/A

 282

Intrinsic Across All IA MMX(TM)
Technology

Streaming
SIMD Extenions

Pentium(TM) 4
Processor
Streaming
SIMD
Extensions 2

Itanium(TM)
Architecture

double *dp,
__m128d a)

void
_mm_store_pd(d
ouble *dp,
__m128d a)

N/A N/A N/A A N/A

void
_mm_storeu_pd(
double *dp,
__m128d a)

N/A N/A N/A A N/A

void
_mm_storer_pd(
double *dp,
__m128d a)

N/A N/A N/A A N/A

void
_mm_storeh_pd(
double *dp,
__m128d a)

N/A N/A N/A A N/A

void
_mm_storel_pd(
double *dp,
__m128d a)

N/A N/A N/A A N/A

__m128i
_mm_add_epi8(
__m128i a,
__m128i b)

N/A N/A N/A A N/A

__m128i
_mm_add_epi16
(__m128i a,
__m128i b)

N/A N/A N/A A N/A

__m128i
_mm_add_epi32
(__m128i a,
__m128i b)

N/A N/A N/A A N/A

__m64
_mm_add_si64(
__m64 a, __m64
b)

N/A N/A N/A A N/A

__m128i
_mm_add_epi64

N/A N/A N/A A N/A

 283

Intrinsic Across All IA MMX(TM)
Technology

Streaming
SIMD Extenions

Pentium(TM) 4
Processor
Streaming
SIMD
Extensions 2

Itanium(TM)
Architecture

(__m128i a,
__m128i b)

__m128i
_mm_adds_epi8
(__m128i a,
__m128i b)

N/A N/A N/A A N/A

__m128i
_mm_adds_epi1
6(__m128i a,
__m128i b)

N/A N/A N/A A N/A

__m128i
_mm_adds_epu
8(__m128i a,
__m128i b)

N/A N/A N/A A N/A

__m128i
_mm_adds_epu
16(__m128i a,
__m128i b)

N/A N/A N/A A N/A

__m128i
_mm_avg_epu8(
__m128i a,
__m128i b)

N/A N/A N/A A N/A

__m128i
_mm_avg_epu1
6(__m128i a,
__m128i b)

N/A N/A N/A A N/A

__m128i
_mm_madd_epi
16(__m128i a,
__m128i b)

N/A N/A N/A A N/A

__m128i
_mm_max_epi1
6(__m128i a,
__m128i b)

N/A N/A N/A A N/A

__m128i
_mm_max_epu8
(__m128i a,
__m128i b)

N/A N/A N/A A N/A

__m128i
_mm_min_epi16

N/A N/A N/A A N/A

 284

Intrinsic Across All IA MMX(TM)
Technology

Streaming
SIMD Extenions

Pentium(TM) 4
Processor
Streaming
SIMD
Extensions 2

Itanium(TM)
Architecture

(__m128i a,
__m128i b)

__m128i
_mm_min_epu8(
__m128i a,
__m128i b)

N/A N/A N/A A N/A

__m128i
_mm_mulhi_epi
16(__m128i a,
__m128i b)

N/A N/A N/A A N/A

__m128i
_mm_mulhi_epu
16(__m128i a,
__m128i b)

N/A N/A N/A A N/A

__m128i
_mm_mullo_epi
16(__m128i a,
__m128i b)

N/A N/A N/A A N/A

__m64
_mm_mul_su32(
__m64 a, __m64
b)

N/A N/A N/A A N/A

__m128i
_mm_mul_epu3
2(__m128i a,
__m128i b)

N/A N/A N/A A N/A

__m128i
_mm_sad_epu8(
__m128i a,
__m128i b)

N/A N/A N/A A N/A

__m128i
_mm_sub_epi8(
__m128i a,
__m128i b)

N/A N/A N/A A N/A

__m128i
_mm_sub_epi16
(__m128i a,
__m128i b)

N/A N/A N/A A N/A

__m128i
_mm_sub_epi32

N/A N/A N/A A N/A

 285

Intrinsic Across All IA MMX(TM)
Technology

Streaming
SIMD Extenions

Pentium(TM) 4
Processor
Streaming
SIMD
Extensions 2

Itanium(TM)
Architecture

(__m128i a,
__m128i b)

__m64
_mm_sub_si64(
__m64 a, __m64
b)

N/A N/A N/A A N/A

__m128i
_mm_sub_epi64
(__m128i a,
__m128i b)

N/A N/A N/A A N/A

__m128i
_mm_subs_epi8
(__m128i a,
__m128i b)

N/A N/A N/A A N/A

__m128i
_mm_subs_epi1
6(__m128i a,
__m128i b)

N/A N/A N/A A N/A

__m128i
_mm_subs_epu
8(__m128i a,
__m128i b)

N/A N/A N/A A N/A

__m128i
_mm_subs_epu
16(__m128i a,
__m128i b)

N/A N/A N/A A N/A

__m128i
_mm_and_si128
(__m128i a,
__m128i b)

N/A N/A N/A A N/A

__m128i
_mm_andnot_si
128(__m128i a,
__m128i b)

N/A N/A N/A A N/A

__m128i
_mm_or_si128(_
_m128i a,
__m128i b)

N/A N/A N/A A N/A

__m128i
_mm_xor_si128(

N/A N/A N/A A N/A

 286

Intrinsic Across All IA MMX(TM)
Technology

Streaming
SIMD Extenions

Pentium(TM) 4
Processor
Streaming
SIMD
Extensions 2

Itanium(TM)
Architecture

__m128i a,
__m128i b)

__m128i
_mm_slli_si128(
__m128i a, int
imm)

N/A N/A N/A A N/A

__m128i
_mm_slli_epi16(
__m128i a, int
count)

N/A N/A N/A A N/A

__m128i
_mm_sll_epi16(
__m128i a,
__m128i count)

N/A N/A N/A A N/A

__m128i
_mm_slli_epi32(
__m128i a, int
count)

N/A N/A N/A A N/A

__m128i
_mm_sll_epi32(
__m128i a,
__m128i count)

N/A N/A N/A A N/A

__m128i
_mm_slli_epi64(
__m128i a, int
count)

N/A N/A N/A A N/A

__m128i
_mm_sll_epi64(
__m128i a,
__m128i count)

N/A N/A N/A A N/A

__m128i
_mm_srai_epi16
(__m128i a, int
count)

N/A N/A N/A A N/A

__m128i
_mm_sra_epi16(
__m128i a,
__m128i count)

N/A N/A N/A A N/A

__m128i
_mm_srai_epi32

N/A N/A N/A A N/A

 287

Intrinsic Across All IA MMX(TM)
Technology

Streaming
SIMD Extenions

Pentium(TM) 4
Processor
Streaming
SIMD
Extensions 2

Itanium(TM)
Architecture

(__m128i a, int
count)

__m128i
_mm_sra_epi32(
__m128i a,
__m128i count)

N/A N/A N/A A N/A

__m128i
_mm_srli_si128(
__m128i a, int
imm)

N/A N/A N/A A N/A

__m128i
_mm_srli_epi16(
__m128i a, int
count)

N/A N/A N/A A N/A

__m128i
_mm_srl_epi16(
__m128i a,
__m128i count)

N/A N/A N/A A N/A

__m128i
_mm_srli_epi32(
__m128i a, int
count)

N/A N/A N/A A N/A

__m128i
_mm_srl_epi32(
__m128i a,
__m128i count)

N/A N/A N/A A N/A

__m128i
_mm_srli_epi64(
__m128i a, int
count)

N/A N/A N/A A N/A

__m128i
_mm_srl_epi64(
__m128i a,
__m128i count)

N/A N/A N/A A N/A

__m128i
_mm_cmpeq_ep
i8(__m128i a,
__m128i b)

N/A N/A N/A A N/A

__m128i
_mm_cmpeq_ep

N/A N/A N/A A N/A

 288

Intrinsic Across All IA MMX(TM)
Technology

Streaming
SIMD Extenions

Pentium(TM) 4
Processor
Streaming
SIMD
Extensions 2

Itanium(TM)
Architecture

i16(__m128i a,
__m128i b)

__m128i
_mm_cmpeq_ep
i32(__m128i a,
__m128i b)

N/A N/A N/A A N/A

__m128i
_mm_cmpgt_epi
8(__m128i a,
__m128i b)

N/A N/A N/A A N/A

__m128i
_mm_cmpgt_epi
16(__m128i a,
__m128i b)

N/A N/A N/A A N/A

__m128i
_mm_cmpgt_epi
32(__m128i a,
__m128i b)

N/A N/A N/A A N/A

__m128i
_mm_cmplt_epi
8(__m128i a,
__m128i b)

N/A N/A N/A A N/A

__m128i
_mm_cmplt_epi
16(__m128i a,
__m128i b)

N/A N/A N/A A N/A

__m128i
_mm_cmplt_epi
32(__m128i a,
__m128i b)

N/A N/A N/A A N/A

__m128i
_mm_cvtsi32_si
128(int a)

N/A N/A N/A A N/A

int
_mm_cvtsi128_s
i32(__m128i a)

N/A N/A N/A A N/A

__m128i
_mm_packs_epi
16(__m128i a,
__m128i b)

N/A N/A N/A A N/A

 289

Intrinsic Across All IA MMX(TM)
Technology

Streaming
SIMD Extenions

Pentium(TM) 4
Processor
Streaming
SIMD
Extensions 2

Itanium(TM)
Architecture

__m128i
_mm_packs_epi
32(__m128i a,
__m128i b)

N/A N/A N/A A N/A

__m128i
_mm_packus_e
pi16(__m128i a,
__m128i b)

N/A N/A N/A A N/A

int
_mm_extract_ep
i16(__m128i a,
int imm)

N/A N/A N/A A N/A

__m128i
_mm_insert_epi
16(__m128i a,
int b, int imm)

N/A N/A N/A A N/A

int
_mm_movemas
k_epi8(__m128i
a)

N/A N/A N/A A N/A

__m128i
_mm_shuffle_ep
i32(__m128i a,
int imm)

N/A N/A N/A A N/A

__m128i
_mm_shufflehi_
epi16(__m128i
a, int imm)

N/A N/A N/A A N/A

__m128i
_mm_shufflelo_
epi16(__m128i
a, int imm)

N/A N/A N/A A N/A

__m128i
_mm_unpackhi_
epi8(__m128i a,
__m128i b)

N/A N/A N/A A N/A

__m128i
_mm_unpackhi_
epi16(__m128i
a, __m128i b)

N/A N/A N/A A N/A

 290

Intrinsic Across All IA MMX(TM)
Technology

Streaming
SIMD Extenions

Pentium(TM) 4
Processor
Streaming
SIMD
Extensions 2

Itanium(TM)
Architecture

__m128i
_mm_unpackhi_
epi32(__m128i
a, __m128i b)

N/A N/A N/A A N/A

__m128i
_mm_unpackhi_
epi64(__m128i
a, __m128i b)

N/A N/A N/A A N/A

__m128i
_mm_unpacklo_
epi8(__m128i a,
__m128i b)

N/A N/A N/A A N/A

__m128i
_mm_unpacklo_
epi16(__m128i
a, __m128i b)

N/A N/A N/A A N/A

__m128i
_mm_unpacklo_
epi32(__m128i
a, __m128i b)

N/A N/A N/A A N/A

__m128i
_mm_unpacklo_
epi64(__m128i
a, __m128i b)

N/A N/A N/A A N/A

__m128i
_mm_move_epi
64(__m128i a)

N/A N/A N/A A N/A

__m128i
_mm_movpi64_
epi64(__m64 a)

N/A N/A N/A A N/A

__m64
_mm_movepi64
_pi64(__m128i
a)

N/A N/A N/A A N/A

__m128i
_mm_load_si12
8(__m128i
const*p)

N/A N/A N/A A N/A

__m128i
_mm_loadu_si1

N/A N/A N/A A N/A

 291

Intrinsic Across All IA MMX(TM)
Technology

Streaming
SIMD Extenions

Pentium(TM) 4
Processor
Streaming
SIMD
Extensions 2

Itanium(TM)
Architecture

28(__m128i
const*p)

__m128i
_mm_loadl_epi6
4(__m128i
const*p)

N/A N/A N/A A N/A

__m128i
_mm_set_epi64(
__m64 q1,
__m64 q0)

N/A N/A N/A A N/A

__m128i
_mm_set_epi32(
int i3, int i2, int
i1, int i0)

N/A N/A N/A A N/A

__m128i
_mm_set_epi16(
short w7, short
w6, short w5,
short w4, short
w3, short w2,
short w1, short
w0)

N/A N/A N/A A N/A

__m128i
_mm_set_epi8(c
har b15, char
b14, char b13,
char b12, char
b3, char b2, char
b1, char b0)

N/A N/A N/A A N/A

__m128i
_mm_set1_epi6
4(__m64 q)

N/A N/A N/A A N/A

__m128i
_mm_set1_epi3
2(int i)

N/A N/A N/A A N/A

__m128i
_mm_set1_epi1
6(short w)

N/A N/A N/A A N/A

__m128i
_mm_set1_epi8(
char b)

N/A N/A N/A A N/A

 292

Intrinsic Across All IA MMX(TM)
Technology

Streaming
SIMD Extenions

Pentium(TM) 4
Processor
Streaming
SIMD
Extensions 2

Itanium(TM)
Architecture

__m128i
_mm_setr_epi64
(__m64 q0,
__m64 q1)

N/A N/A N/A A N/A

__m128i
_mm_setr_epi32
(int i0, int i1, int
i2, int i3)

N/A N/A N/A A N/A

__m128i
_mm_setr_epi16
(short w0, short
w1, short w2,
short w3, short
w4, short w5,
short w6, short
w7)

N/A N/A N/A A N/A

__m128i
_mm_setr_epi8(
char b15, char
b14, char b13,
char b12, char
b11, char b10,
char b9, char b8,
char b7, char b6,
char b5, char b4,
char b3, char b2,
char b1, char b0)

N/A N/A N/A A N/A

__m128i
_mm_setzero_si
128()

N/A N/A N/A A N/A

void
_mm_store_si12
8(__m128i *p,
__m128i b)

N/A N/A N/A A N/A

void
_mm_storeu_si1
28(__m128i *p,
__m128i b)

N/A N/A N/A A N/A

void
_mm_storel_epi
64(__m128i *p,
__m128i q)

N/A N/A N/A A N/A

 293

Intrinsic Across All IA MMX(TM)
Technology

Streaming
SIMD Extenions

Pentium(TM) 4
Processor
Streaming
SIMD
Extensions 2

Itanium(TM)
Architecture

void
_mm_maskmov
eu_si128(__m12
8i d, __m128i n,
char *p)

N/A N/A N/A A N/A

void
_mm_stream_pd
(double *dp,
__m128d a)

N/A N/A N/A A N/A

void
_mm_stream_si
128(__m128i *p,
__m128i a)

N/A N/A N/A A N/A

void
_mm_clflush(voi
d const*p)

N/A N/A N/A A N/A

void
_mm_lfence(voi
d)

N/A N/A N/A A N/A

void
_mm_mfence(vo
id)

N/A N/A N/A A N/A

void
_mm_stream_si
32(int *p, int a)

N/A N/A N/A A N/A

void
_mm_pause(voi
d)

N/A N/A N/A A N/A

 294

Intel C++ Class Libraries

Introduction to the Class Libraries
Welcome to the Class Libraries
The Intel® C++ Class Libraries enable Single-Instruction, Multiple-Data (SIMD) operations. The principle
of SIMD operations is to exploit microprocessor architecture through parallel processing. The effect of
parallel processing is increased data throughput using fewer clock cycles. The objective is to improve
application performance of complex and computation-intensive audio, video, and graphical data bit
streams.

Hardware and Software Requirements
You must have the Intel® C++ Compiler version 4.0 or higher installed on your system to use the class
libraries. The Intel® C++ Class Libraries are functions abstracted from the instruction extensions available
on Intel processors as specified in the table that follows.

Processor Requirements for Use of Class Libraries

Header File Extension Set Available on These Processors

ivec.h MMX(TM) technology Pentium® with MMX(TM) technology, Pentium II, Pentium III, Pentium
4, and Itanium(TM) processors

fvec.h Streaming SIMD Extensions Pentium III, Pentium 4 and Itanium processors

dve.ch Streaming SIMD Extensions 2 Pentium 4 processor only

About the Classes
The Intel® C++ Class Libraries for SIMD Operations include:

! Integer vector (Ivec) classes

! Floating-point vector (Fvec) classes

You can find the definitions for these operations in three header files: ivec.h, fvec.h, and dvec.h.
The classes themselves are not partitioned like this. The classes are named according to the underlying
type of operation. The header files are partitioned according to architecture: ivec.h is specific to
architectures with MMX™ technology; fvec.h is specific to architectures with Streaming SIMD
Extensions; dvec.h is specific to architectures with Streaming SIMD Extensions 2. Streaming SIMD
Extensions 2 intrinsics cannot be used on Itanium™-based systems. The mmclass.h header file
includes the classes that are usable on the Itanium architecuture.

 295

This documentation is intended for programmers writing code for the Intel Architecture, particularly code
that would benefit from the use of SIMD instructions. You should be familiar with C++ and the use of C++
classes.

Technical Overview
Details About the Libraries
The Intel® C++ Class Libraries for SIMD Operations provide a convenient interface to access the
underlying instructions for processors as specified in Processor Requirements for Use of Class Libraries.
These processor-instruction extensions enable parallel processing using the single instruction-multiple
data (SIMD) technique as illustrated in the following figure.

SIMD Data Flow

Performing four operations with a single instruction improves efficiency by a factor of four for that
particular instruction.

These new processor instructions can be implemented using assembly inlining, intrinsics, or the C++
SIMD classes. Compare the coding required to add four 32-bit floating-point values, using each of the
available interfaces:

Comparison Between Inlining, Intrinsics and Class Libraries

Assembly Inlining Intrinsics SIMD Class Libraries

... __m128 a,b,c; __asm{
movaps xmm0,b movaps
xmm1,c addps xmm0,xmm1
movaps a, xmm0 } ...

#include <mmintrin.h> ...
__m128 a,b,c; a =
_mm_add_ps(b,c); ...

#include <fvec.h> ...
F32vec4 a,b,c; a = b +c;
...

The table above shows an addition of two single-precision floating-point values using assembly inlining,
intrinsics, and the libraries. You can see how much easier it is to code with the Intel C++ SIMD Class
Libraries. Besides using fewer keystrokes and fewer lines of code, the notation is like the standard
notation in C++, making it much easier to implement over other methods.

 296

C++ Classes and SIMD Operations
The usage of C++ classes for SIMD operations is based on the concept of operating on arrays, or vectors
of data, in parallel. Consider the addition of two vectors, A and B, where each vector contains four
elements. Using the integer vector (Ivec) class, the elements A[i] and B[i] from each array are
summed as shown in the following example.

Typical Method of Adding Elements Using a Loop

short a[4], b[4], c[4];
for (i=0; i<4; i++) /* needs four iterations */
c[i] = a[i] + b[i]; /* returns c[0], c[1], c[2], c[3] */

The following example shows the same results using one operation with Ivec Classes.

SIMD Method of Adding Elements Using Ivec Classes

sIs16vec4 ivecA, ivecB, ivec C; /*needs one iteration */
ivecC = ivecA + ivecB; /*returns ivecC0, ivecC1, ivecC2, ivecC3 */

Available Classes

The Intel® C++ SIMD classes provide parallelism, which is not easily implemented using typical
mechanisms of C++. The following table shows how the Intel C++ SIMD classes use the classes and
libraries.

SIMD Vector Classes

Instruction Set Class Signedness Data Type Size Elements Header File

MMX(TM) technology (available for IA-
32- and Itanium(TM)-based systems)

I64vec1 unspecified __m64 64 1 ivec.h

 I32vec2 unspecified int 32 2 ivec.h

 Is32vec2 signed int 32 2 ivec.h

 Iu32vec2 unsigned int 32 2 ivec.h

 I16vec4 unspecified short 16 4 ivec.h

 Is16vec4 signed short 16 4 ivec.h

 Iu16vec4 unsigned short 16 4 ivec.h

 I8vec8 unspecified char 8 8 ivec.h

 Is8vec8 signed char 8 8 ivec.h

 Iu8vec8 unsigned char 8 8 ivec.h

Streaming SIMD Extensions (available
for IA-32- and Itanium-based systems)

F32vec4 signed float 32 4 fvec.h

 297

Instruction Set Class Signedness Data Type Size Elements Header File

 F32vec1 signed float 32 1 fvec.h

Streaming SIMD Extensions 2 (available
for IA-32-based systems only)

F64vec2 signed double 64 2 dvec.h

 I128vec1 unspecified __m128i 128 1 dvec.h

 I64vec2 unspecified long int 64 4 dvec.h

 Is64vec2 signed long int 64 4 dvec.h

 Iu64vec2 unsigned long int 32 4 dvec.h

 I32vec4 unspecified int 32 4 dvec.h

 Is32vec4 signed int 32 4 dvec.h

 Iu32vec4 unsigned int 32 4 dvec.h

 I16vec8 unspecified int 16 8 dvec.h

 Is16vec8 signed int 16 8 dvec.h

 Iu16vec8 unsigned int 16 8 dvec.h

 I8vec16 unspecified char 8 16 dvec.h

 Is8vec16 signed char 8 16 dvec.h

 Iu8vec16 unsigned char 8 16 dvec.h

Most classes contain similar functionality for all data types and are represented by all available intrinsics.
However, some capabilities do not translate from one data type to another without suffering from poor
performance, and are therefore excluded from individual classes.

Note

Intrinsics that take immediate values and cannot be expressed easily in classes are not implemented.
(For example, _mm_shuffle_ps, _mm_shuffle_pi16, _mm_extract_pi16, _mm_insert_pi16).

Access to Classes Using Header Files

The required class header files are installed in the include directory with the Intel® C++ Compiler. To
enable the classes, use the #include directive in your program file as shown in the table that follows.

 298

Include Directives for Enabling Classes

Instruction Set Extension Include Directive

MMX Technology #include <ivec.h>

Streaming SIMD Extensions #include <fvec.h>

Streaming SIMD Extensions 2 #include <dvec.h>

Each succeeding file from the top down includes the preceding class. You only need to include fvec.h if
you want to use both the Ivec and Fvec classes. Similarly, to use all the classes including those for the
Streaming SIMD Extensions 2, you need only to include the dvec.h file.

Usage Precautions

When using the C++ classes, you should follow some general guidelines. More detailed usage rules for
each class are listed in Integer Vector Classes, and Floating-point Vector Classes.

Clear MMX Registers

If you use both the Ivec and Fvec classes at the same time, your program could mix MMX instructions,
called by Ivec classes, with Intel x87 architecture floating-point instructions, called by Fvec classes.
Floating-point instructions exist in the following Fvec functions:

fvec constructors

debug functions(cout and element access)

rsqrt_nr

Note

MMX registers are aliased on the floating-point registers, so you should clear the MMX state with
the EMMS instruction intrinsic before issuing an x87 floating-point instruction, as in the following
example.

ivecA = ivecA & ivecB; /* Ivec logical operation that uses MMX instructions */

empty (); /* clear state */

cout << f32vec4a; /* F32vec4 operation that uses x87 floating-point instructions */

Caution

Failure to clear the MMX registers can result in incorrect execution or poor performance due to an
incorrect register state.

Follow EMMS Instruction Guidelines

Intel strongly recommends that you follow the guidelines for using the EMMS instruction. Refer to this
topic before coding with the Fvec and Ivec classes.

 299

Capabilities
The fundamental capabilities of each C++ SIMD class include:

! computation

! horizontal data motion

! branch compression/elimination

! caching hints

Understanding each of these capabilities and how they interact is crucial to achieving desired results.

Computation

The SIMD C++ classes contain vertical operator support for most arithmetic operations, including shifting
and saturation.

Computation operations include: +, -, *, /, reciprocal (rcp and rcp_nr), square root (sqrt),
reciprocal square root (rsqrt and rsqrt_nr).

Operations rcp and rsqrt are new approximating instructions with very short latencies that produce
results with at least 12 bits of accuracy. Operations rcp_nr and rsqrt_nr use software refining
techniques to enhance the accuracy of the approximations, with a minimal impact on performance. (The
"nr" stands for Newton-Raphson, a mathematical technique for improving performance using an
approximate result.)

Horizontal Data Support

The C++ SIMD classes provide horizontal support for some arithmetic operations. The term "horizontal"
indicates computation across the elements of one vector, as opposed to the vertical, element-by-element
operations on two different vectors.

The add_horizontal, unpack_low and pack_sat functions are examples of horizontal data support.
This support enables certain algorithms that cannot exploit the full potential of SIMD instructions.

Shuffle intrinsics are another example of horizontal data flow. Shuffle intrinsics are not expressed in the
C++ classes due to their immediate arguments. However, the C++ class implementation enables you to
mix shuffle intrinsics with the other C++ functions. For example:

F32vec4 fveca, fvecb, fvecd;
fveca += fvecb;
fvecd = _mm_shuffle_ps(fveca,fvecb,0);

Typically every instruction with horizontal data flow contains some inefficiency in the implementation. If
possible, implement your algorithms without using the horizontal capabilities.

 300

Branch Compression/Elimination

Branching in SIMD architectures can be complicated and expensive, possibly resulting in poor
predictability and code expansion. The SIMD C++ classes provide functions to eliminate branches, using
logical operations, max and min functions, conditional selects, and compares. Consider the following
example:

short a[4], b[4], c[4];
for (i=0; i<4; i++)
c[i] = a[i] > b[i] ? a[i] : b[i];

This operation is independent of the value of i. For each i, the result could be either A or B depending on
the actual values. A simple way of removing the branch altogether is to use the select_gt function, as
follows:

Is16vec4 a, b, c
c = select_gt(a, b, a, b)

Caching Hints

Streaming SIMD Extensions provide prefetching and streaming hints. Prefetching data can minimize the
effects of memory latency. Streaming hints allow you to indicate that certain data should not be cached.
This results in higher performance for data that should be cached.

Integer Vector Classes
Integer Vector Classes
The Ivec classes provide an interface to SIMD processing using integer vectors of various sizes. The
class hierarchy is represented in the following figure.

Ivec Class Hierarchy

 301

The M64 and M128 classes define the __m64 and __m128i data types from which the rest of the Ivec
classes are derived. The first generation of child classes are derived based solely on bit sizes of 128, 64,
32, 16, and 8 respectively for the I128vec1, I64vec1, 164vec2, I32vec2, I32vec4, I16vec4,
I16vec8, I8vec16, and I8vec8 classes. The latter seven of the these classes require specification of
signedness and saturation.

Caution

Do not intermix the M64 and M128 data types. You will get unexpected behavior if you do.

The signedness is indicated by the s and u in the class names:

Is64vec2

Iu64vec2

Is32vec4

Iu32vec4

Is16vec8

Iu16vec8

Is8vec16

Iu8vec16

Is32vec2

Iu32vec2

Is16vec4

Iu16vec4

Is8vec8

Iu8vec8

Terms, Conventions, and Syntax
The following are special terms and syntax used in this chapter to describe functionality of the classes
with respect to their associated operations.

Ivec Class Syntax Conventions

The name of each class denotes the data type, signedness, bit size, number of elements using the
following generic format:

<type><signedness><bits>vec<elements>

{ F | I } { s | u } { 64 | 32 | 16 | 8 } vec { 8 | 4 | 2 | 1 }

 302

where

Type indicates floating point (F) or integer (I)

signedness indicates signed (s) or unsigned (u). For the Ivec class,
leaving this field blank indicates an intermediate class. There are
no unsigned Fvec classes, therefore for the Fvec classes, this
field is blank.

bits specifies the number of bits per element

elements specifies the number of elements

Special Terms and Conventions

The following terms are used to define the functionality and characteristics of the classes and operations
defined in this manual.

! Nearest Common Ancestor -- This is the intermediate or parent class of two classes of the
same size. For example, the nearest common ancestor of Iu8vec8 and Is8vec8 is I8vec8. Also,
the nearest common ancestor between Iu8vec8 and I16vec4 is M64.

! Casting -- Changes the data type from one class to another. When an operation uses different
data types as operands, the return value of the operation must be assigned to a single data type.
Therefore, one or more of the data types must be converted to a required data type. This
conversion is known as a typecast. Sometimes, typecasting is automatic, other times you must
use special syntax to explicitly typecast it yourself.

! Operator Overloading -- This is the ability to use various operators on the same user-defined
data type of a given class. Once you declare a variable, you can add, subtract, multiply, and
perform a range of operations. Each family of classes accepts a specified range of operators, and
must comply by rules and restrictions regarding typecasting and operator overloading as defined
in the header files. The following table shows the notation used in this documention to address
typecasting, operator overloading, and other rules.

Class Syntax Notation Conventions

Class Name Description

I[s|u][N]vec[N] Any value except I128vec1 nor I64vec1

I64vec1 __m64 data type

I[s|u]64vec2 two 64-bit values of any signedness

I[s|u]32vec4 four 32-bit values of any signedness

I[s|u]8vec16 eight 16-bit values of any signedness

I[s|u]16vec8 sixteen 8-bit values of any signedness

I[s|u]32vec2 two 32-bit values of any signedness

I[s|u]16vec4 four 16-bit values of any signedness

 303

Class Name Description

I[s|u]8vec8 eight 8-bit values of any signedness

Rules for Operators
To use operators with the Ivec classes you must use one of the following three syntax conventions:

[Ivec_Class] R = [Ivec_Class] A [operator][Ivec_Class] B

Example 1: I64vec1 R = I64vec1 A & I64vec1 B;

[Ivec_Class] R =[operator] ([Ivec_Class] A,[Ivec_Class] B)

Example 2: I64vec1 R = andnot(I64vec1 A, I64vec1 B);

[Ivec_Class] R [operator]= [Ivec_Class] A

Example 3: I64vec1 R &= I64vec1 A;

[operator]an operator (for example, &, |, or ^)

[Ivec_Class]an Ivec class

R, A, B variables declared using the pertinent Ivec classes

The table that follows shows automatic and explicit sign and size typecasting. "Explicit" means that it is
illegal to mix different types without an explicit typecasting. "Automatic" means that you can mix types
freely and the compiler will do the typecasting for you.

Summary of Rules Major Operators

Operators Sign Typecasting Size Typecasting Other Typecasting
Requirements

Assignment N/A N/A N/A

Logical Automatic Automatic
 (to left)

Explicit typecasting is required
for different types used in non-
logical expressions on the right
side of the assignment.

See Syntax Usage for Logical
Operators example.

Addition and Subtraction Automatic Explicit N/A

Multiplication Automatic Explicit N/A

Shift Automatic Explicit Casting Required to ensure
arithmetic shift.

Compare Automatic Explicit Explicit casting is required for
signed classes for the less-than
or greater-than operations.

 304

Operators Sign Typecasting Size Typecasting Other Typecasting
Requirements

Conditional Select Automatic Explicit Explicit casting is required for
signed classes for less-than or
greater-than operations.

Data Declaration and Initialization

The following table shows literal examples of constructor declarations and data type initialization for all
class sizes. All values are initialized with the most significant element on the left and the least significant
to the right.

Declaration and Initialization Data Types for Ivec Classes

Operation Class Syntax

Declaration M128 I128vec1 A; Iu8vec16 A;

Declaration M64 I64vec1 A; Iu8vec16 A;

__m128 Initialization M128 I128vec1 A(__m128 m); Iu16vec8(__m128 m);

__m64 Initialization M64 I64vec1 A(__m64 m);Iu8vec8 A(__m64 m);

__int64 Initialization M64 I64vec1 A = __int64 m; Iu8vec8 A =__int64 m;

int i Initialization M64 I64vec1 A = int i; Iu8vec8 A = int i;

int initialization I32vec2 I32vec2 A(int A1, int A0);
Is32vec2 A(signed int A1, signed int A0);
Iu32vec2 A(unsigned int A1, unsigned int A0);

int Initialization) I32vec4 I32vec4 A(short A3, short A2, short A1, short A0);
Is32vec4 A(signed short A3, ..., signed short A0);
Iu32vec4 A(unsigned short A3, ..., unsigned short

A0);

short int
 Initialization

I16vec4 I16vec4 A(short A3, short A2, short A1, short A0);
Is16vec4 A(signed short A3, ..., signed short A0);
Iu16vec4 A(unsigned short A3, ..., unsigned short

A0);

short int
 Initialization

I16vec8 I16vec8 A(short A7, short A6, ..., short A1, short A0);
Is16vec8 A(signed A7, ..., signed short A0);
Iu16vec8 A(unsigned short A7, ..., unsigned short

A0);

char
 Initialization

I8vec8 I8vec8 A(char A7, char A6, ..., char A1, char A0);
Is8vec8 A(signed char A7, ..., signed char A0);
Iu8vec8 A(unsigned char A7, ..., unsigned char A0);

char
 Initialization

I8vec16 I8vec16 A(char A15, ..., char A0);
Is8vec16 A(signed char A15, ..., signed char A0);
Iu8vec16 A(unsigned char A15, ..., unsigned char

A0);

 305

Assignment Operator
Any Ivec object can be assigned to any other Ivec object; conversion on assignment from one Ivec object
to another is automatic.

Assignment Operator Examples

Is16vec4 A;

Is8vec8 B;

I64vec1 C;

A = B; /* assign Is8vec8 to Is16vec4 */

B = C; /* assign I64vec1 to Is8vec8 */

B = A & C; /* assign M64 result of '&' to Is8vec8 */

Logical Operators
The logical operators use the symbols and intrinsics listed in the following table.

Bitwise
Operation

Operator
Symbols

 Syntax
Usage

Corresponding
Intrinsic

Standard w/ assign Standard w/assign

AND & &= R = A & B R &= A _mm_and_si64
_mm_and_si128

OR | |= R = A | B R |= A _mm_and_si64
_mm_and_si128

XOR ^ ^= R = A^B R ^= A _mm_and_si64
_mm_and_si128

ANDNOT andnot N/A R = A andnot B N/A _mm_and_si64
_mm_and_si128

Logical Operators and Miscellaneous Exceptions.

/* A and B converted to M64. Result assigned to Iu8vec8.*/

I64vec1 A;
Is8vec8 B;
Iu8vec8 C;
C = A & B;

/* Same size and signedness operators return the nearest common ancestor.*/
I32vec2 R = Is32vec2 A ^ Iu32vec2 B;
/* A&B returns M64, which is cast to Iu8vec8.*/
C = Iu8vec8(A&B)+ C;

 306

When A and B are of the same class, they return the same type. When A and B are of different classes,
the return value is the return type of the nearest common ancestor.

The logical operator returns values for combinations of classes, listed in the following tables, apply when
A and B are of different classes.

Ivec Logical Operator Overloading

Return (R) AND OR XOR NAND A Operand B Operand

I64vec1 R & | ^ andnot I[s|u]64vec2 A I[s|u]64vec2 B

I64vec2 R & | ^ andnot I[s|u]64vec2 A I[s|u]64vec2 B

I32vec2 R & | ^ andnot I[s|u]32vec2 A I[s|u]32vec2 B

I32vec4 R & | ^ andnot I[s|u]32vec4 A I[s|u]32vec4 B

I16vec4 R & | ^ andnot I[s|u]16vec4 A I[s|u]16vec4 B

I16vec8 R & | ^ andnot I[s|u]16vec8 A I[s|u]16vec8 B

I8vec8 R & | ^ andnot I[s|u]8vec8 A I[s|u]8vec8 B

I8vec16 R & | ^ andnot I[s|u]8vec16 A I[s|u]8vec16 B

For logical operators with assignment, the return value of R is always the same data type as the pre-
declared value of R as listed in the table that follows.

Ivec Logical Operator Overloading with Assignment

Return Type Left Side (R) AND OR XOR Right Side (Any Ivec Type)

I128vec1 I128vec1 R &= |= ^= I[s|u][N]vec[N] A;

I64vec1 I64vec1 R &= |= ^= I[s|u][N]vec[N] A;

I64vec2 I64vec2 R &= |= ^= I[s|u][N]vec[N] A;

I[x]32vec4 I[x]32vec4 R &= |= ^= I[s|u][N]vec[N] A;

I[x]32vec2 I[x]32vec2 R &= |= ^= I[s|u][N]vec[N] A;

I[x]16vec8 I[x]16vec8 R &= |= ^= I[s|u][N]vec[N] A;

I[x]16vec4 I[x]16vec4 R &= |= ^= I[s|u][N]vec[N] A;

I[x]8vec16 I[x]8vec16 R &= |= ^= I[s|u][N]vec[N] A;

I[x]8vec8 I[x]8vec8 R &= |= ^= I[s|u][N]vec[N] A;

 307

Addition and Subtraction Operators
The addition and subtraction operators return the class of the nearest common ancestor when the right-
side operands are of different signs. The following code provides examples of usage and miscellaneous
exceptions.

Syntax Usage for Addition and Subtraction Operators

/* Return nearest common ancestor type, I16vec4 */

Is16vec4 A;

Iu16vec4 B;

I16vec4 C;

C = A + B;

/* Returns type left-hand operand type */

Is16vec4 A;

Iu16vec4 B;

A += B;

B -= A;

/* Explicitly convert B to Is16vec4 */

Is16vec4 A,C;

Iu32vec24 B;

C = A + C;

C = A + (Is16vec4)B;

 308

Addition and Subtraction Operators with Corresponding Intrinsics

Operation Symbols Syntax Corresponding
Intrinsics

Addition +
 +=

R = A + B
 R += A

_mm_add_epi64

_mm_add_epi32

_mm_add_epi16

_mm_add_epi8

_mm_add_pi32

_mm_add_pi16

_mm_add_pi8

Subtraction -
 -=

R = A - B
 R -= A

_mm_sub_epi64

_mm_sub_epi32

_mm_sub_epi16

_mm_sub_epi8

_mm_sub_pi32

_mm_sub_pi16

_mm_sub_pi8

The following table lists addition and subtraction return values for combinations of classes when the right
side operands are of different signedness. The two operands must be the same size, otherwise you must
explicitly indicate the typecasting.

 309

Addition and Subtraction Operator Overloading

Return Value Available
Operators

Right Side
Operands

R Add Sub A B

I64vec2 R + - I[s|u]64vec2 A I[s|u]64vec2 B

I32vec4 R + - I[s|u]32vec4 A I[s|u]32vec4 B

I32vec2 R + - I[s|u]32vec2 A I[s|u]32vec2 B

I16vec8 R + - I[s|u]16vec8 A I[s|u]16vec8 B

I16vec4 R + - I[s|u]16vec4 A I[s|u]16vec4 B

I8vec8 R + - I[s|u]8vec8 A I[s|u]8vec8 B

I8vec16 R + - I[s|u]8vec2 A I[s|u]8vec16 B

The following table shows the return data type values for operands of the addition and subtraction
operators with assignment. The left side operand determines the size and signedness of the return value.
The right side operand must be the same size as the left operand; otherwise, you must use an explicit
typecast.

Addition and Subtraction with Assignment

Return Value
(R)

Left Side (R) Add Sub Right Side (A)

I[x]32vec4 I[x]32vec2 R += -= I[s|u]32vec4 A;

I[x]32vec2 R I[x]32vec2 R += -= I[s|u]32vec2 A;

I[x]16vec8 I[x]16vec8 += -= I[s|u]16vec8 A;

I[x]16vec4 I[x]16vec4 += -= I[s|u]16vec4 A;

I[x]8vec16 I[x]8vec16 += -= I[s|u]8vec16 A;

I[x]8vec8 I[x]8vec8 += -= I[s|u]8vec8 A;

 310

Multiplication Operators
The multiplication operators can only accept and return data types from the I[s|u]16vec4 or
I[s|u]16vec8 classes, as shown in the following example.

Syntax Usage for Multiplication Operators

/* Explicitly convert B to Is16vec4 */

Is16vec4 A,C;

Iu32vec2 B;

C = A * C;

C = A * (Is16vec4)B;

/* Return nearest common ancestor type, I16vec4 */

Is16vec4 A;

Iu16vec4 B;

I16vec4 C;

C = A + B;

/* The mul_high and mul_add functions take Is16vec4 data only */

Is16vec4 A,B,C,D;

C = mul_high(A,B);

D = mul_add(A,B);

 311

Multiplication Operators with Corresponding Intrinsics

Operation Symbols Syntax Usage Intrinsic

* *= R = A * B
 R *= A

_mm_mullo_pi1
6

_mm_mullo_ep
i16

 mul_high N/A R = mul_high(A, B) _mm_mulhi_pi1
6

_mm_mulhi_ep
i16

Multiplication

 mul_add N/A R = mul_high(A, B) _mm_madd_pi1
6

_mm_madd_epi
16

The multiplication return operators always return the nearest common ancestor as listed in the table that
follows. The two operands must be 16 bits in size, otherwise you must explicitly indicate typecasting.

Multiplication Operator Overloading

R Mul A B

I16vec4 R * I[s|u]16vec4 A I[s|u]16vec4 B

I16vec8 R * I[s|u]16vec8 A I[s|u]16vec8 B

Is16vec4 R mul_add Is16vec4 A Is16vec4 B

Is16vec8 mul_add Is16vec8 A Is16vec8 B

Is32vec2 R mul_high Is16vec4 A Is16vec4 B

Is32vec4 R mul_high s16vec8 A Is16vec8 B

The following table shows the return values and data type assignments for operands of the multiplication
operators with assignment. All operands must be 16 bytes in size. If the operands are not the right size,
you must use an explicit typecast.

Multiplication with Assignment

Return Value (R) Left Side (R) Mul Right Side (A)

I[x]16vec8 I[x]16vec8 *= I[s|u]16vec8 A;

I[x]16vec4 I[x]16vec4 *= I[s|u]16vec4 A;

 312

Shift Operators
The right shift argument can be any integer or Ivec value, and is implicitly converted to a M64 data type.
The first or left operand of a << can be of any type except I[s|u]8vec[8|16]

Example Syntax Usage for Shift Operators

/* Automatic size and sign conversion */

Is16vec4 A,C;

Iu32vec2 B;

C = A;

/* A&B returns I16vec4, which must be cast to Iu16vec4

to ensure logical shift, not arithmetic shift */

Is16vec4 A, C;

Iu16vec4 B, R;

R = (Iu16vec4)(A & B) C;

/* A&B returns I16vec4, which must be cast to Is16vec4

to ensure arithmetic shift, not logical shift */

R = (Is16vec4)(A & B) C;

Shift Operators with Corresponding Intrinsics

Operation Symbols Syntax Usage Intrinsic

Shift Left <<
 &=

R = A << B
 R &= A

_mm_sll_si64
_mm_slli_si64
_mm_sll_pi32
_mm_slli_pi32
_mm_sll_pi16
_mm_slli_pi16

Shift Right >> R = A >> B
 R >>= A

_mm_srl_si64
_mm_srli_si64
_mm_srl_pi32
_mm_srli_pi32
_mm_srl_pi16
_mm_srli_pi16
_mm_sra_pi32
_mm_srai_pi32
_mm_sra_pi16
_mm_srai_pi16

 313

Right shift operations with signed data types use arithmetic shifts. All unsigned and intermediate classes
correspond to logical shifts. The table below shows how the return type is determined by the first
argument type.

Shift Operator Overloading

Operati
on

R Right
Shift

Left
Shift

A B

Logical I64vec1 >> >>= << <<= I64vec1 A; I64vec1 B;

Logical I32vec2 >> >>= << <<= I32vec2 A I32vec2 B;

Arithmetic Is32vec2 >> >>= << <<= Is32vec2 A I[s|u][N]vec
[N] B;

Logical Iu32vec2 >> >>= << <<= Iu32vec2 A I[s|u][N]vec
[N] B;

Logical I16vec4 >> >>= << <<= I16vec4 A I16vec4 B

Arithmetic Is16vec4 >> >>= << <<= Is16vec4 A I[s|u][N]vec
[N] B;

Logical Iu16vec4 >> >>= << <<= Iu16vec4 A I[s|u][N]vec
[N] B;

Comparison Operators
The equality and inequality comparison operands can have mixed signedness, but they must be of the
same size. The comparison operators for less-than and greater-than must be of the same sign and size.

Example of Syntax Usage for Comparison Operator

/* The nearest common ancestor is returned for compare

for equal/not-equal operations */

Iu8vec8 A;

Is8vec8 B;

I8vec8 C;

C = cmpneq(A,B);

/* Type cast needed for different-sized elements for

equal/not-equal comparisons */

Iu8vec8 A, C;

Is16vec4 B;

 314

C = cmpeq(A,(Iu8vec8)B);

/* Type cast needed for sign or size differences for

less-than and greater-than comparisons */

Iu16vec4 A;

Is16vec4 B, C;

C = cmpge((Is16vec4)A,B);

C = cmpgt(B,C);

Inequality Comparison Symbols and Corresponding Intrinsics

Compare For: Operators Syntax Intrinsic

Equality cmpeq R = cmpeq(A, B) _mm_cmpeq_
pi32

_mm_cmpeq_p
i16

_mm_cmpeq_p
i8

Inequality cmpneq R = cmpneq(A, B) _mm_cmpeq_
pi32

_mm_cmpeq_p
i16

_mm_cmpeq_p
i8

_mm_andnot_
si64

Greater Than cmpgt R = cmpgt(A, B) _mm_cmpgt_p
i32

_mm_cmpgt_p
i16

_mm_cmpgt_p
i8

Greater Than
 or Equal To

cmpge R = cmpge(A, B) _mm_cmpgt_p
i32

_mm_cmpgt_p
i16

_mm_cmpgt_p
i8

_mm_andnot_
si64

 315

Compare For: Operators Syntax Intrinsic

Less Than cmplt R = cmplt(A, B) _mm_cmpgt_p
i32

_mm_cmpgt_p
i16

_mm_cmpgt_p
i8

Less Than
 or Equal To

cmple R = cmple(A, B) _mm_cmpgt_p
i32

_mm_cmpgt_p
i16

_mm_cmpgt_p
i8

_mm_andnot_
si64

Comparison operators have the restriction that the operands must be the size and sign as listed in the
Compare Operator Overloading table.

Compare Operator Overloading

R Comparison A B

I32vec2 R I[s|u]32vec2 B I[s|u]32vec2 B

I16vec4 R I[s|u]16vec4 B I[s|u]16vec4 B

I8vec8 R

cmpeq
 cmpne

I[s|u]8vec8 B I[s|u]8vec8 B

I32vec2 R Is32vec2 B Is32vec2 B

I16vec4 R Is16vec4 B Is16vec4 B

I8vec8 R

cmpgt
 cmpge
 cmplt
 cmple

Is8vec8 B Is8vec8 B

Conditional Select Operators
For conditional select operands, the third and fourth operands determine the type returned. Third and
fourth operands with same size, but different signedness, return the nearest common ancestor data type.

Conditional Select Syntax Usage

/* Return the nearest common ancestor data type if third and fourth

operands are of the same size, but different signs */

I16vec4 R = select_neq(Is16vec4, Is16vec4, Is16vec4, Iu16vec4);

/* Conditional Select for Equality */

 316

R0 := (A0 == B0) ? C0 : D0;

R1 := (A1 == B1) ? C1 : D1;

R2 := (A2 == B2) ? C2 : D2;

R3 := (A3 == B3) ? C3 : D3;

/* Conditional Select for Inequality */

R0 := (A0 != B0) ? C0 : D0;

R1 := (A1 != B1) ? C1 : D1;

R2 := (A2 != B2) ? C2 : D2;

R3 := (A3 != B3) ? C3 : D3;

Conditional Select Symbols and Corresponding Intrinsics

Conditional
Select For:

Operators Syntax Corresponding
Intrinsic

Additional
Intrinsic (Applies
to All)

Equality select_eq R = select_eq(A,
B, C, D)

_mm_cmpeq_pi3
2

_mm_cmpeq_pi1
6

_mm_cmpeq_pi8

Inequality select_neq R = select_neq(A,
B, C, D)

_mm_cmpeq_pi3
2

_mm_cmpeq_pi1
6

_mm_cmpeq_pi8

Greater Than select_gt R = select_gt(A,
B, C, D)

_mm_cmpgt_pi32

_mm_cmpgt_pi1
6

_mm_cmpgt_pi8

Greater Than
 or Equal To

select_ge R = select_gt(A,
B, C, D)

_mm_cmpge_pi3
2

_mm_cmpge_pi1
6

_mm_cmpge_pi8

_mm_and_si64
_mm_or_si64

_mm_andnot_si6
4

 317

Conditional
Select For:

Operators Syntax Corresponding
Intrinsic

Additional
Intrinsic (Applies
to All)

Less Than select_lt R = select_lt(A, B,
C, D)

_mm_cmplt_pi32

_mm_cmplt_pi1
6

_mm_cmplt_pi8

Less Than
 or Equal To

select_le R = select_le(A,
B, C, D)

_mm_cmple_pi32

_mm_cmple_pi1
6

_mm_cmple_pi8

All conditional select operands must be of the same size. The return data type is the nearest common
ancestor of operands C and D. For conditional select operations using greater-than or less-than
operations, the first and second operands must be signed as listed in the table that follows.

Conditional Select Operator Overloading

R Comparison A and B C D

I32vec2 R I[s|u]32vec2 I[s|u]32vec2 I[s|u]32vec2

I16vec4 R I[s|u]16vec4 I[s|u]16vec4 I[s|u]16vec4

I8vec8 R

select_eq
 select_ne

I[s|u]8vec8 I[s|u]8vec8 I[s|u]8vec8

I32vec2 R Is32vec2 Is32vec2 Is32vec2

I16vec4 R Is16vec4 Is16vec4 Is16vec4

I8vec8 R

select_gt
 select_ge
 select_lt
 select_le

Is8vec8 Is8vec8 Is8vec8

The table below shows the mapping of return values from R0 to R7 for any number of elements. The
same return value mappings also apply when there are fewer than four return values.

 318

Conditional Select Operator Return Value Mapping

Return
Value

A and B
Operands

C and D
operands

A0 Available
Operators

B0

R0:= A0 == != > >= < <= B0 ? C0 :
D0;

R1:= A0 == != > >= < <= B0 ? C1 :
D1;

R2:= A0 == != > >= < <= B0 ? C2 :
D2;

R3:= A0 == != > >= < <= B0 ? C3 :
D3;

R4:= A0 == != > >= < <= B0 ? C4 :
D4;

R5:= A0 == != > >= < <= B0 ? C5 :
D5;

R6:= A0 == != > >= < <= B0 ? C6 :
D6;

R7:= A0 == != > >= < <= B0 ? C7 :
D7;

Debug
The debug operations do not map to any compiler intrinsics for MMX(TM) instructions. They are provided
for debugging programs only. Use of these operations may result in loss of performance, so you should
not use them outside of debugging.

Output

cout << Is32vec4 A;

cout << Iu32vec4 A;

cout << hex << Iu32vec4 A; /* print in hex format */

The four 32-bit values of A are placed in the output buffer and printed in the following format (default in
decimal):

"[3]:A3 [2]:A2 [1]:A1 [0]:A0"

Corresponding Intrinsics: none

 319

cout << Is32vec2 A;

cout << Iu32vec2 A;

cout << hex << Iu32vec2 A; /* print in hex format */

The two 32-bit values of A are placed in the output buffer and printed in the following format (default in
decimal):

"[1]:A1 [0]:A0"

Corresponding Intrinsics: none

cout << Is16vec8 A;

cout << Iu16vec8 A;

cout << hex << Iu16vec8 A; /* print in hex format */

The eight 16-bit values of A are placed in the output buffer and printed in the following format (default in
decimal):

"[7]:A7 [6]:A6 [5]:A5 [4]:A4 [3]:A3 [2]:A2 [1]:A1 [0]:A0"

Corresponding Intrinsics: none

cout << Is16vec4 A;

cout << Iu16vec4 A;

cout << hex << Iu16vec4 A; /* print in hex format */

The four 16-bit values of A are placed in the output buffer and printed in the following format (default in
decimal):

"[3]:A3 [2]:A2 [1]:A1 [0]:A0"

Corresponding Intrinsics: none

cout << Is8vec16 A; cout << Iu8vec16 A; cout << hex << Iu8vec8 A;

/* print in hex format instead of decimal*/

The sixteen 8-bit values of A are placed in the output buffer and printed in the following format (default is
decimal):

"[15]:A15 [14]:A14 [13]:A13 [12]:A12 [11]:A11 [10]:A10 [9]:A9 [8]:A8 [7]:A7 [6]:A6 [5]:A5 [4]:A4 [3]:A3
[2]:A2 [1]:A1 [0]:A0"

Corresponding Intrinsics: none

 320

cout << Is8vec8 A; cout << Iu8vec8 A;cout << hex << Iu8vec8 A;

/* print in hex format instead of decimal*/

The eight 8-bit values of A are placed in the output buffer and printed in the following format (default is
decimal):

"[7]:A7 [6]:A6 [5]:A5 [4]:A4 [3]:A3 [2]:A2 [1]:A1 [0]:A0"

Corresponding Intrinsics: none

Element Access Operators

int R = Is64vec2 A[i];

unsigned int R = Iu64vec2 A[i];

int R = Is32vec4 A[i];

unsigned int R = Iu32vec4 A[i];

int R = Is32vec2 A[i];

unsigned int R = Iu32vec2 A[i];

short R = Is16vec8 A[i];

unsigned short R = Iu16vec8 A[i];

short R = Is16vec4 A[i];

unsigned short R = Iu16vec4 A[i];

signed char R = Is8vec16 A[i];

unsigned char R = Iu8vec16 A[i];

signed char R = Is8vec8 A[i];

unsigned char R = Iu8vec8 A[i];

Access and read element i of A. If DEBUG is enabled and the user tries to access an element outside of
A, a diagnostic message is printed and the program aborts.

Corresponding Intrinsics: none

Element Assignment Operators

Is64vec2 A[i] = int R;

Is32vec4 A[i] = int R;

Iu32vec4 A[i] = unsigned int R;

Is32vec2 A[i] = int R;

Iu32vec2 A[i] = unsigned int R;

Is16vec8 A[i] = short R;

 321

Iu16vec8 A[i] = unsigned short R;

Is16vec4 A[i] = short R;

Iu16vec4 A[i] = unsigned short R;

Is8vec16 A[i] = signed char R;

Iu8vec16 A[i] = unsigned char R;

Is8vec8 A[i] = signed char R;

Iu8vec8 A[i] = unsigned char R;

Assign R to element i of A. If DEBUG is enabled and the user tries to assign a value to an element outside
of A, a diagnostic message is printed and the program aborts.

Corresponding Intrinsics: none

Unpack Operators
I364vec2 unpack_high(I64vec2 A, I64vec2 B)

Is64vec2 unpack_high(Is64vec2 A, Is64vec2 B)

Iu64vec2 unpack_high(Iu64vec2 A, Iu64vec2 B)

Interleave the 64-bit value from the high half of A with the 64-bit value from the high half of B.

R0 = A1;

R1 = B1;

Corresponding intrinsic: _mm_unpackhi_epi64

I32vec4 unpack_high(I32vec4 A, I32vec4 B)

Is32vec4 unpack_high(Is32vec4 A, Is32vec4 B)

Iu32vec4 unpack_high(Iu32vec4 A, Iu32vec4 B)

Interleave the two 32-bit values from the high half of A with the two 32-bit values from the high half of B .

R0 = A1;

R1 = B1;

R2 = A2;

R3 = B2;

Corresponding intrinsic: _mm_unpackhi_epi32

I32vec2 unpack_high(I32vec2 A, I32vec2 B)

Is32vec2 unpack_high(Is32vec2 A, Is32vec2 B)

 322

Iu32vec2 unpack_high(Iu32vec2 A, Iu32vec2 B)

Interleave the 32-bit value from the high half of A with the 32-bit value from the high half of B.

R0 = A1;

R1 = B1;

Corresponding intrinsic: _mm_unpackhi_pi32

I16vec8 unpack_high(I16vec8 A, I16vec8 B)

Is16vec8 unpack_high(Is16vec8 A, Is16vec8 B)

Iu16vec8 unpack_high(Iu16vec8 A, Iu16vec8 B)

Interleave the four 16-bit values from the high half of A with the two 16-bit values from the high half of B.

R0 = A2;

R1 = B2;R2 = A3;

R3 = B3;

Corresponding intrinsic: _mm_unpackhi_epi16

I16vec4 unpack_high(I16vec4 A, I16vec4 B)

Is16vec4 unpack_high(Is16vec4 A, Is16vec4 B)

Iu16vec4 unpack_high(Iu16vec4 A, Iu16vec4 B)

Interleave the two 16-bit values from the high half of A with the two 16-bit values from the high half of B.

R0 = A2;R1 = B2;

R2 = A3;R3 = B3;

Corresponding intrinsic: _mm_unpackhi_pi16

 323

I8vec8 unpack_high(I8vec8 A, I8vec8 B)

Is8vec8 unpack_high(Is8vec8 A, I8vec8 B)

Iu8vec8 unpack_high(Iu8vec8 A, I8vec8 B)

Interleave the four 8-bit values from the high half of A with the four 8-bit values from the high half of B.

R0 = A4;

R1 = B4;

R2 = A5;

R3 = B5;

R4 = A6;

R5 = B6;

R6 = A7;

R7 = B7;

Corresponding intrinsic: _mm_unpackhi_pi8

I8vec16 unpack_high(I8vec16 A, I8vec16 B)

Is8vec16 unpack_high(Is8vec16 A, I8vec16 B)

Iu8vec16 unpack_high(Iu8vec16 A, I8vec16 B)

 324

Interleave the sixteen 8-bit values from the high half of A with the four 8-bit values from the high half of B.

R0 = A8;

R1 = B8;

R2 = A9;

R3 = B9;

R4 = A10;

R5 = B10;

R6 = A11;

R7 = B11;

R8 = A12;

R8 = B12;

R2 = A13;

R3 = B13;

R4 = A14;

R5 = B14;

R6 = A15;

R7 = B15;

Corresponding intrinsic: _mm_unpackhi_epi16

Interleave the 32-bit value from the low half of A with the 32-bit value from the low half of B.

R0 = A0;

R1 = B0;

Corresponding intrinsic: _mm_unpacklo_epi32

 325

I64vec2 unpack_low(I64vec2 A, I64vec2 B);

Is64vec2 unpack_low(Is64vec2 A, Is64vec2 B);

Iu64vec2 unpack_low(Iu64vec2 A, Iu64vec2 B);

Interleave the 64-bit value from the low half of A with the 64-bit values from the low half of B.

R0 = A0;

R1 = B0;

R2 = A1;

R3 = B1;

Corresponding intrinsic: _mm_unpacklo_epi32

I32vec4 unpack_low(I32vec4 A, I32vec4 B);

Is32vec4 unpack_low(Is32vec4 A, Is32vec4 B);

Iu32vec4 unpack_low(Iu32vec4 A, Iu32vec4 B);

Interleave the two 32-bit values from the low half of A with the two 32-bit values from the low half of B.

R0 = A0;R1 = B0;

R2 = A1;R3 = B1;

Corresponding intrinsic: _mm_unpacklo_epi32

I32vec2 unpack_low(I32vec2 A, I32vec2 B);

Is32vec2 unpack_low(Is32vec2 A, Is32vec2 B);

Iu32vec2 unpack_low(Iu32vec2 A, Iu32vec2 B);

Interleave the 32-bit value from the low half of A with the 32-bit value from the low half of B.

R0 = A0;

R1 = B0;

Corresponding intrinsic: _mm_unpacklo_pi32

 326

I16vec8 unpack_low(I16vec8 A, I16vec8 B);

Is16vec8 unpack_low(Is16vec8 A, Is16vec8 B);

Iu16vec8 unpack_low(Iu16vec8 A, Iu16vec8 B);

Interleave the two 16-bit values from the low half of A with the two 16-bit values from the low half of B.

R0 = A0;

R1 = B0;

R2 = A1;

R3 = B1;

R4 = A2;

R5 = B2;

R6 = A3;

R7 = B3;

Corresponding intrinsic: _mm_unpacklo_epi16

I16vec4 unpack_low(I16vec4 A, I16vec4 B);

Is16vec4 unpack_low(Is16vec4 A, Is16vec4 B);

Iu16vec4 unpack_low(Iu16vec4 A, Iu16vec4 B);

Interleave the two 16-bit values from the low half of A with the two 16-bit values from the low half of B.

R0 = A0;

R1 = B0;

R2 = A1;

R3 = B1;

Corresponding intrinsic: _mm_unpacklo_pi16

 327

I8vec16 unpack_low(I8vec16 A, I8vec16 B);

Is8vec16 unpack_low(Is8vec16 A, Is8vec16 B);

Iu8vec16 unpack_low(Iu8vec16 A, Iu8vec16 B);

Interleave the four 8-bit values from the high low of A with the four 8-bit values from the low half of B.

R0 = A0;

R1 = B0;

R2 = A1;

R3 = B1;

R4 = A2;

R5 = B2;

R6 = A3;

R7 = B3;

R8 = A4;

R9 = B4;

R10 = A5;

R11 = B5;

R12 = A6;

R13 = B6;

R14 = A7;

R15 = B7;

Corresponding intrinsic: _mm_unpacklo_epi8

 328

I8vec8 unpack_low(I8vec8 A, I8vec8 B);

Is8vec8 unpack_low(Is8vec8 A, Is8vec8 B);

Iu8vec8 unpack_low(Iu8vec8 A, Iu8vec8 B);

Interleave the four 8-bit values from the high low of A with the four 8-bit values from the low half of B.

R0 = A0;

R1 = B0;

R2 = A1;

R3 = B1;

R4 = A2;

R5 = B2;

R6 = A3;

R7 = B3;

Corresponding intrinsic: _mm_unpacklo_pi8

Pack Operators
Is16vec8 pack_sat(Is32vec2 A,Is32vec2 B);

Pack the eight 32-bit values found in A and B into eight 16-bit values with signed saturation.

Corresponding intrinsic: _mm_packs_epi32

Is16vec4 pack_sat(Is32vec2 A,Is32vec2 B);

Pack the four 32-bit values found in A and B into eight 16-bit values with signed saturation.

Corresponding intrinsic: _mm_packs_pi32

Is8vec16 pack_sat(Is16vec4 A,Is16vec4 B);

Pack the sixteen 16-bit values found in A and B into sixteen 8-bit values with signed saturation.

Corresponding intrinsic: _mm_packs_epi16

Is8vec8 pack_sat(Is16vec4 A,Is16vec4 B);

Pack the eight 16-bit values found in A and B into eight 8-bit values with signed saturation.

Corresponding intrinsic: _mm_packs_pi16

Iu8vec16 packu_sat(Is16vec4 A,Is16vec4 B);

 329

Pack the sixteen 16-bit values found in A and B into sixteen 8-bit values with unsigned saturation .

Corresponding intrinsic: _mm_packus_epi16

Iu8vec8 packu_sat(Is16vec4 A,Is16vec4 B);

Pack the eight 16-bit values found in A and B into eight 8-bit values with unsigned saturation.

Corresponding intrinsic: _mm_packs_pu16

Clear MMX(TM) Instructions State
Operator
void empty(void);

Empty the MMX(TM) registers and clear the MMX state. Read the guidelines for using the EMMS
instruction intrinsic.

Corresponding intrinsic: _mm_empty

Integer Intrinsics for Streaming SIMD
Extensions

Note

You must include fvec.h header file for the following functionality.

Is16vec4 simd_max(Is16vec4 A, Is16vec4 B);

Compute the element-wise maximum of the respective signed integer words in A and B.

Corresponding intrinsic: _mm_max_pi16

Is16vec4 simd_min(Is16vec4 A, Is16vec4 B);

Compute the element-wise minimum of the respective signed integer words in A and B.

Corresponding intrinsic: _mm_min_pi16

 330

Iu8vec8 simd_max(Iu8vec8 A, Iu8vec8 B);

Compute the element-wise maximum of the respective unsigned bytes in A and B.

Corresponding intrinsic: _mm_max_pu8

Iu8vec8 simd_min(Iu8vec8 A, Iu8vec8 B);

Compute the element-wise minimum of the respective unsigned bytes in A and B.

Corresponding intrinsic: _mm_min_pu8

int move_mask(I8vec8 A);

Create an 8-bit mask from the most significant bits of the bytes in A.

Corresponding intrinsic: _mm_movemask_pi8

void mask_move(I8vec8 A, I8vec8 B, signed char *p);

Conditionally store byte elements of A to address p. The high bit of each byte in the selector B determines
whether the corresponding byte in A will be stored.

Corresponding intrinsic: _mm_maskmove_si64

void store_nta(__m64 *p, M64 A);

Store the data in A to the address p without polluting the caches. A can be any Ivec type.

Corresponding intrinsic: _mm_stream_pi

Iu8vec8 simd_avg(Iu8vec8 A, Iu8vec8 B);

Compute the element-wise average of the respective unsigned 8-bit integers in A and B.

Corresponding intrinsic: _mm_avg_pu8

Iu16vec4 simd_avg(Iu16vec4 A, Iu16vec4 B);

Compute the element-wise average of the respective unsigned 16-bit integers in A and B.

Corresponding intrinsic: _mm_avg_pu16

 331

Conversions Between Fvec and Ivec
int F64vec2ToInt(F64vec42 A)

Convert the lower double-precision floating-point value of A to a 32-bit integer with truncation.

r := (int)A0

F64vec2 F32vec4ToF64vec2(F32vec4 A)

Convert the four floating-point values of A to two the tow least significant double-precision floating-point
values.

r0 := (double)A0;

r1 := (double)A1;

F32vec4 F64vec2ToF32vec4(F64vec2 A)

Convert the two double-precision floating-point values of A to two single-precision floating-point values.

r0 := (float)A0;

r1 := (float)A1;

F64vec2 InttoF64vec2(F64vec2 A, int B)

Convert the signed int in B to a double-precision floating-point value and pass the upper double-
precision. value from A through to the result.

r0 := (double)B;

r1 := A1;

int F32vec4ToInt(F32vec4 A)

Convert the lower floating-point value of A to a 32-bit integer with truncation.

r := (int)A0

 332

Is32vec2 F32vec4ToIs32vec2 (F32vec4 A)

Convert the two lower floating-point values of A to two 32-bit integer with truncation, returning the integers
in packed form.

r0 := (int)A0

r1 := (int)A1

F32vec4 IntToF32vec4(F32vec4 A, int B)

Convert the 32-bit integer value B to a floating-point value; the upper three floating-point values are
passed through from A.

r0 := (float)B

r1 := A1;

r2 := A2 ;

r3 := A3

F32vec4 Is32vec2ToF32vec4(F32vec4 A, Is32vec2 B)

Convert the two 32-bit integer values in packed form in B to two floating-point values; the upper two
floating-point values are passed through from A.

r0 := (float)B0

r1 := (float)B1

r2 := A2

r3 := A3

Floating-point Vector Classes
Floating-point Vector Classes
The floating-point vector classes (Fvec), F64vec2, F32vec4, and F32vec1, provide an interface to SIMD
operations. The class specifications are as follows:

F64vec2 A(double x, double y);

F32vec4 A(float z, float y, float x, float w);

F32vec1 B(float w);

The packed floating-point input values are represented with the right-most value lowest as shown in the
following table.

 333

Single-Precision Floating-point Elements

Fvec Notation Conventions
This reference uses the following conventions for syntax and return values.

Fvec Classes Syntax Notation

Fvec classes use the syntax conventions shown the following examples:

[Fvec_Class] R = [Fvec_Class] A [operator][Ivec_Class] B;

Example 1:F64vec2 R = F64vec2 A & F64vec2 B;

[Fvec_Class] R = [operator]([Fvec_Class] A,[Fvec_Class] B);

Example 2:F64vec2 R = andnot(F64vec2 A, F64vec2 B);

[Fvec_Class] R [operator]= [Fvec_Class] A;

Example 3:F64vec2 R &= F64vec2 A;

where

[operator] is an operator (for example, &, |, or ^)

[Fvec_Class] is any Fvec class (F64vec2, F32vec4, or F32vec1)

R, A, B are declared Fvec variables of the type indicated

 334

Return Value Notation

Because the Fvec classes have packed elements, the return values typically follow the conventions
presented in the Return Value Convention Notation Mappings table below. F32vec4 returns four single-
precision, floating-point values (R0, R1, R2, and R3); F64vec2 returns two double-precision, floating-point
values, and F32vec1 returns the lowest single-precision floating-point value (R0).

Return Value Convention Notation Mappings

Example 1: Example 2: Example 3: F32vec4 F64vec2 F32vec1

R0 := A0 & B0; R0 := A0 andnot
B0;

R0 &= A0; x x x

R1 := A1 & B1; R1 := A1 andnot
B1;

R1 &= A1; x x N/A

R2 := A2 & B2; R2 := A2 andnot
B2;

R2 &= A2; x N/A N/A

R3 := A3 & B3 R3 := A3 andhot
B3;

R3 &= A3; x N/A N/A

Data Alignment
Memory operations using the Streaming SIMD Extensions should be performed on 16-byte-aligned data
whenever possible.

F32vec4 and F64vec2 object variables are properly aligned by default. Note that floating point arrays
are not automatically aligned. To get 16-byte alignment, you can use the alignment __declspec.

__declspec(align(16)) float A[4];

Conversions
__m128d mm = A & B; /* where A,B are F64vec2 object variables */

__m128 mm = A & B; /* where A,B are F32vec4 object variables */

__m128 mm = A & B; /* where A,B are F32vec1 object variables */

All Fvec object variables can be implicitly converted to __m128 data types. For example, the results of
computations performed on F32vec4 or F32vec1 object variables can be assigned to __m128 data
types.

 335

Constructors and Initialization
The following table shows how to create and initialize F32vec objects with the Fvec classes.

Constructors and Initialization for Fvec Classes

Example Intrinsic Returns

Constructor
Declaration

F64vec2 A;

F32vec4 B;

F32vec1 C;

N/A N/A

__m128 Object
Initialization

F64vec2 A(__m128d
mm);

F32vec4 B(__m128
mm);

F32vec1 C(__m128
mm);

N/A N/A

Double Initialization

/* Initializes two doubles.
*/
F64vec2 A(double

d0, double d1);
F64vec2 A =

F64vec2(double d0,
double d1);

_mm_set_pd A0 := d0;
 A1 := d1;

F64vec2 A(double d0);

/* Initializes both return
values
with the same

double precision
value */.

_mm_set1_pd A0 := d0;
 A1 := d0;

 336

Float Initialization

F32vec4 A(float f3, float
f2,
float f1, float

f0);

F32vec4 A =
F32vec4(float f3, float f2,
float f1, float

f0);

_mm_set_ps A0 := f0;
 A1 := f1;
 A2 := f2;
 A3 := f3;

F32vec4 A(float f0);

/* Initializes all return
values
with the same

floating point
value. */

_mm_set1_ps A0 := f0;
 A1 := f0;
 A2 := f0;
 A3 := f0;

F32vec4 A(double d0);

/* Initialize all return
values with the same
double-precision value.
*/

_mm_set1_ps(d) A0 := d0;
 A1 := d0;
 A2 := d0;
 A3 := d0;

F32vec1 A(double d0);

/* Initializes the lowest
value of A
with d0 and the

other values with
0.*/

_mm_set_ss(d) A0 := d0;
 A1 := 0;
 A2 := 0;
 A3 := 0;

F32vec1 B(float f0);

/* Initializes the lowest
value of B
with f0 and the

other values with
0.*/

_mm_set_ss B0 := f0;
 B1 := 0;
 B2 := 0;
 B3 := 0;

F32vec1 B(int I);
/* Initializes

the lowest value
of B
with f0, other

values are
undefined.*/

_mm_cvtsi32_ss B0 := f0;
 B1 := {}
 B2 := {}
 B3 := {}

Arithmetic Operators

 337

The following table lists the arithmetic operators of the Fvec classes and generic syntax. The operators
have been divided into standard and advanced operations, which are described in more detail later in this
section.

Fvec Arithmetic Operators

Category Operation Operators Generic Syntax

Addition +
 +=

R = A + B;
 R += A;

Subtraction -
 -=

R = A - B;
 R -= A;

Multiplication *
 *=

R = A * B;
 R *= A;

Standard

Division /
 /=

R = A / B;

R /= A;

Square Root sqrt R = sqrt(A);

Reciprocal
 (Newton-Raphson)

rcp
 rcp_nr

R = rcp(A);
 R = rcp_nr(A);

Advanced

Reciprocal Square
Root
 (Newton-Raphson)

rsqrt
 rsqrt_nr

R = rsqrt(A);
 R = rsqrt_nr(A);

Standard Arithmetic Operator Usage

The following two tables show the return values for each class of the standard arithmetic operators, which
use the syntax styles described earlier in the Return Value Notation section.

Standard Arithmetic Return Value Mapping

R A Operators B F32vec4 F64vec2 F32vec1

R0:= A0 + - * / B0

R1:= A1 + - * / B1 N/A

R2:= A2 + - * / B2 N/A N/A

R3:= A3 + - * / B3 N/A N/A

 338

Arithmetic with Assignment Return Value Mapping

R Operators A F32vec4 F64vec2 F32vec1

R0:= += -= *= /= A0

R1:= += -= *= /= A1 N/A

R2:= += -= *= /= A2 N/A N/A

R3:= += -= *= /= A3 N/A N/A

The table below lists standard arithmetic operator syntax and intrinsics.

Standard Arithmetic Operations for Fvec Classes

Operation Returns Example Syntax
Usage

Intrinsic

Addition 4 floats F32vec4 R = F32vec4
A + F32vec4 B;

F32vec4 R += F32vec4
A;

_mm_add_ps

 2 doubles F64vec2 R = F64vec2
A + F32vec2 B;

F64vec2 R += F64vec2
A;

_mm_add_pd

 1 float F32vec1 R = F32vec1
A + F32vec1 B;

F32vec1 R += F32vec1
A;

_mm_add_ss

Subtraction 4 floats F32vec4 R = F32vec4
A - F32vec4 B;

F32vec4 R -= F32vec4
A;

_mm_sub_ps

 2 doubles F64vec2 R - F64vec2
A + F32vec2 B;

F64vec2 R -= F64vec2
A;

_mm_sub_pd

 1 float F32vec1 R = F32vec1
A - F32vec1 B;
 F32vec1 R -= F32vec1
A;

_mm_sub_ss

Multiplication 4 floats F32vec4 R = F32vec4
A * F32vec4 B;
 F32vec4 R *=
F32vec4 A;

_mm_mul_ps

 339

Operation Returns Example Syntax
Usage

Intrinsic

 2 doubles F64vec2 R = F64vec2
A * F364vec2 B;
 F64vec2 R *=
F64vec2 A;

_mm_mul_pd

 1 float F32vec1 R = F32vec1
A * F32vec1 B;
 F32vec1 R *=
F32vec1 A;

_mm_mul_ss

Division 4 floats F32vec4 R = F32vec4
A / F32vec4 B;
F32vec4 R /= F32vec4

A;

_mm_div_ps

 2 doubles F64vec2 R = F64vec2
A / F64vec2 B;
F64vec2 R /= F64vec2

A;

_mm_div_pd

 1 float F32vec1 R = F32vec1
A / F32vec1 B;
F32vec1 R /= F32vec1

A;

_mm_div_ss

Advanced Arithmetic Operator Usage

The following table shows the return values classes of the advanced arithmetic operators, which use the
syntax styles described earlier in the Return Value Notation section.

Advanced Arithmetic Return Value Mapping

R Operators A F32vec4 F64vec2 F32vec1

R0:= sqrt rcp rsqrt rcp_nr rsqrt_nr A0

R1:= sqrt rcp rsqrt rcp_nr rsqrt_nr A1 N/A

R2:= sqrt rcp rsqrt rcp_nr rsqrt_nr A2 N/A N/A

R3:= sqrt rcp rsqrt rcp_nr rsqrt_nr A3 N/A N/A

f := add_horizontal (A0 + A1 + A2 + A3) N/A N/A

d := add_horizontal (A0 + A1) N/A N/A

The table below shows examples for advanced arithmetic operators.

 340

Advanced Arithmetic Operations for Fvec Classes

Returns Example Syntax Usage Intrinsic

Square Root

4 floats F32vec4 R = sqrt(F32vec4 A); _mm_sqrt_ps

2 doubles F64vec2 R = sqrt(F64vec2 A); _mm_sqrt_pd

1 float F32vec1 R = sqrt(F32vec1 A); _mm_sqrt_ss

Reciprocal

4 floats F32vec4 R = rcp(F32vec4 A); _mm_rcp_ps

2 doubles F64vec2 R = rcp(F64vec2 A); _mm_rcp_pd

1 float F32vec1 R =
rcp(F32vec1 A);

_mm_rcp_ss

Reciprocal Square
Root

4 floats F32vec4 R = rsqrt(F32vec4 A); _mm_rsqrt_ps

2 doubles F64vec2 R = rsqrt(F64vec2 A); _mm_rsqrt_pd

1 float F32vec1 R = rsqrt(F32vec1 A); _mm_rsqrt_ss

Reciprocal Newton
Raphson

4 floats F32vec4 R = rcp_nr(F32vec4
A);

_mm_sub_ps
_mm_add_ps
_mm_mul_ps
_mm_rcp_ps

2 doubles F64vec2 R = rcp_nr(F64vec2
A);

_mm_sub_pd
_mm_add_pd
_mm_mul_pd
_mm_rcp_pd

1 float F32vec1 R = rcp_nr(F32vec1
A);

_mm_sub_ss
_mm_add_ss
_mm_mul_ss
_mm_rcp_ss

Reciprocal Square
Root Newton Raphson

4 float F32vec4 R = rsqrt_nr(F32vec4
A);

_mm_sub_pd
_mm_mul_pd
_mm_rsqrt_ps

 341

Returns Example Syntax Usage Intrinsic

2 doubles F64vec2 R = rsqrt_nr(F64vec2
A);

_mm_sub_pd
_mm_mul_pd
_mm_rsqrt_pd

1 float F32vec1 R = rsqrt_nr(F32vec1
A);

_mm_sub_ss
_mm_mul_ss
_mm_rsqrt_ss

Horizontal Add

1 float float f =
add_horizontal(F32vec4 A);

_mm_add_ss
_mm_shuffle_ss

1 double double d =
add_horizontal(F64vec2 A);

_mm_add_sd

_mm_shuffle_sd

Minimum and Maximum Operators
F64vec2 R = simd_min(F64vec2 A, F64vec2 B)

Compute the minimums of the two double precision floating-point values of A and B.

R0 := min(A0,B0);

R1 := min(A1,B1);

Corresponding intrinsic: _mm_min_pd

F32vec4 R = simd_min(F32vec4 A, F32vec4 B)

Compute the minimums of the four single precision floating-point values of A and B.

R0 := min(A0,B0);

R1 := min(A1,B1);

R2 := min(A2,B2);

R3 := min(A3,B3);

Corresponding intrinsic: _mm_min_ps

 342

F32vec1 R = simd_min(F32vec1 A, F32vec1 B)

Compute the minimum of the lowest single precision floating-point values of A and B.

R0 := min(A0,B0);

Corresponding intrinsic: _mm_min_ss

F64vec2 simd_max(F64vec2 A, F64vec2 B)

Compute the maximums of the two double precision floating-point values of A and B.

R0 := max(A0,B0);

R1 := max(A1,B1);

Corresponding intrinsic: _mm_max_pd

F32vec4 R = simd_man(F32vec4 A, F32vec4 B)

Compute the maximums of the four single precision floating-point values of A and B.

R0 := max(A0,B0);

R1 := max(A1,B1);

R2 := max(A2,B2);

R3 := max(A3,B3);

Corresponding intrinsic: _mm_max_ps

F32vec1 simd_max(F32vec1 A, F32vec1 B)

Compute the maximum of the lowest single precision floating-point values of A and B.

R0 := max(A0,B0);

Corresponding intrinsic: _mm_max_ss

 343

Logical Operators
The "Fvec Logical Operators Return Value Mapping" table lists the logical operators of the Fvec classes
and generic syntax. The logical operators for F32vec1 classes use only the lower 32 bits.

Fvec Logical Operators Return Value Mapping

Bitwise Operation Operators Generic Syntax

AND &
 &=

R = A & B;
 R &= A;

OR |
 |=

R = A | B;
 R |= A;

XOR ^
 ^=

R = A ^ B;
 R ^= A;

andnot andnot R = andnot(A);

The following table lists standard logical operators syntax and corresponding intrinsics. Note that there is
no corresponding scalar intrinsic for the F32vec1 classes, which accesses the lower 32 bits of the
packed vector intrinsics.

Logical Operations for Fvec Classes

Operation Returns Example Syntax
Usage

Intrinsic

AND 4 floats F32vec4 & =
F32vec4 A &
F32vec4 B;
F32vec4 & &=

F32vec4 A;

_mm_and_ps

 2 doubles F64vec2 R =
F64vec2 A &
F32vec2 B;
F64vec2 R &=

F64vec2 A;

_mm_and_pd

 1 float F32vec1 R =
F32vec1 A &
F32vec1 B;
F32vec1 R &=

F32vec1 A;

_mm_and_ps

OR 4 floats F32vec4 R =
F32vec4 A |
F32vec4 B;
F32vec4 R |=

F32vec4 A;

_mm_or_ps

 344

Operation Returns Example Syntax
Usage

Intrinsic

 2 doubles F64vec2 R =
F64vec2 A |
F32vec2 B;
F64vec2 R |=

F64vec2 A;

_mm_or_pd

 1 float F32vec1 R =
F32vec1 A |
F32vec1 B;
F32vec1 R |=

F32vec1 A;

_mm_or_ps

XOR 4 floats F32vec4 R =
F32vec4 A ^
F32vec4 B;
F32vec4 R ^=

F32vec4 A;

_mm_xor_ps

 2 doubles F64vec2 R =
F64vec2 A ^
F364vec2 B;
F64vec2 R ^=

F64vec2 A;

_mm_xor_pd

 1 float F32vec1 R =
F32vec1 A ^
F32vec1 B;
F32vec1 R ^=

F32vec1 A;

_mm_xor_ps

ANDNOT 2 doubles F64vec2 R =
andnot(F64vec2
A,
F64vec2 B);

_mm_andnot_pd

Compare Operators
The operators described in this section compare the single precision floating-point values of A and B.
Comparison between objects of any Fvec class return the same class being compared.

The following table lists the compare operators for the Fvec classes.

 345

Compare Operators and Corresponding Intrinsics

Compare For: Operators Syntax

Equality cmpeq R = cmpeq(A, B)

Inequality cmpneq R = cmpneq(A, B)

Greater Than cmpgt R = cmpgt(A, B)

Greater Than or Equal To cmpge R = cmpge(A, B)

Not Greater Than cmpngt R = cmpngt(A, B)

Not Greater Than or Equal To cmpnge R = cmpnge(A, B)

Less Than cmplt R = cmplt(A, B)

Less Than or Equal To cmple R = cmple(A, B)

Not Less Than cmpnlt R = cmpnlt(A, B)

Not Less Than or Equal To cmpnle R = cmpnle(A, B)

Compare Operators

The mask is set to 0xffffffff for each floating-point value where the comparison is true and
0x00000000 where the comparison is false. The table below shows the return values for each class of
the compare operators, which use the syntax described earlier in the Return Value Notation section.

Compare Operator Return Value Mapping

R A0 For
Any
Operat
ors

B If True If False F32vec4 F64vec2 F32vec1

R0:= (A1

!(A1

cmp[eq |
lt | le | gt |
ge]
 cmp[ne |
nlt | nle |
ngt | nge]

B1)
 B1)

0xffffffff 0x0000000 X X X

R1:= (A1

!(A1

cmp[eq |
lt | le | gt |
ge]
 cmp[ne |
nlt | nle |
ngt | nge]

B2)
 B2)

0xffffffff 0x0000000

X X N/A

 346

R A0 For
Any
Operat
ors

B If True If False F32vec4 F64vec2 F32vec1

R2:= (A1

!(A1

cmp[eq |
lt | le | gt |
ge]
 cmp[ne |
nlt | nle |
ngt | nge]

B3)
 B3)

0xffffffff 0x0000000

X N/A N/A

R3:= A3 cmp[eq |
lt | le | gt |
ge]
 cmp[ne |
nlt | nle |
ngt | nge]

B3)
 B3)

0xffffffff 0x0000000

X N/A N/A

The Compare Operations for Fvec Classes table shows examples for arithmetic operators and intrinsics.

Compare Operations for Fvec Classes

Returns Example Syntax Usage Intrinsic

Compare for Equality

4 floats F32vec4 R =
cmpeq(F32vec4 A);

_mm_cmpeq_ps

2 doubles F64vec2 R =
cmpeq(F64vec2 A);

_mm_cmpeq_pd

1 float F32vec1 R =
cmpeq(F32vec1 A);

_mm_cmpeq_ss

Compare for Inequality

4 floats F32vec4 R =
cmpneq(F32vec4 A);

_mm_cmpneq_ps

2 doubles F64vec2 R =
cmpneq(F64vec2 A);

_mm_cmpneq_pd

1 float F32vec1 R =
cmpneq(F32vec1 A);

_mm_cmpneq_ss

Compare for Less Than

4 floats F32vec4 R =
cmplt(F32vec4 A);

_mm_cmplt_ps

2 doubles F64vec2 R =
cmplt(F64vec2 A);

_mm_cmplt_pd

 347

Returns Example Syntax Usage Intrinsic

1 float F32vec1 R =
cmplt(F32vec1 A);

_mm_cmplt_ss

Compare for Less Than
or Equal

4 floats F32vec4 R =
cmple(F32vec4 A);

_mm_cmple_ps

2 doubles F64vec2 R =
cmple(F64vec2 A);

_mm_cmple_pd

1 float F32vec1 R =
cmple(F32vec1 A);

_mm_cmple_pd

Compare for Greater
Than

4 floats F32vec4 R =
cmpgt(F32vec4 A);

_mm_cmpgt_ps

2 doubles F64vec2 R =
cmpgt(F32vec42 A);

_mm_cmpgt_pd

1 float F32vec1 R =
cmpgt(F32vec1 A);

_mm_cmpgt_ss

Compare for Greater
Than or Equal To

4 floats F32vec4 R =
cmpge(F32vec4 A);

_mm_cmpge_ps

2 doubles F64vec2 R =
cmpge(F64vec2 A);

_mm_cmpge_pd

1 float F32vec1 R =
cmpge(F32vec1 A);

_mm_cmpge_ss

Compare for Not Less
Than

4 floats F32vec4 R =
cmpnlt(F32vec4 A);

_mm_cmpnlt_ps

2 doubles F64vec2 R =
cmpnlt(F64vec2 A);

_mm_cmpnlt_pd

1 float F32vec1 R =
cmpnlt(F32vec1 A);

_mm_cmpnlt_ss

 348

Returns Example Syntax Usage Intrinsic

Compare for Not Less
Than or Equal

4 floats F32vec4 R =
cmpnle(F32vec4 A);

_mm_cmpnle_ps

2 doubles F64vec2 R =
cmpnle(F64vec2 A);

_mm_cmpnle_pd

1 float F32vec1 R =
cmpnle(F32vec1 A);

_mm_cmpnle_ss

Compare for Not
Greater Than

4 floats F32vec4 R =
cmpngt(F32vec4 A);

_mm_cmpngt_ps

2 doubles F64vec2 R =
cmpngt(F64vec2 A);

_mm_cmpngt_pd

1 float F32vec1 R =
cmpngt(F32vec1 A);

_mm_cmpngt_ss

Compare for Not
Greater Than or Equal

4 floats F32vec4 R =
cmpnge(F32vec4 A);

_mm_cmpnge_ps

2 doubles F64vec2 R =
cmpnge(F64vec2 A);

_mm_cmpnge_pd

1 float F32vec1 R =
cmpnge(F32vec1 A);

_mm_cmpnge_ss

Conditional Select Operators for Fvec
Classes
Each conditional function compares single-precision floating-point values of A and B. The C and D
parameters are used for return value. Comparison between objects of any Fvec class returns the same
class.

Conditional Select Operators for Fvec Classes

Conditional Select for: Operators Syntax

 349

Conditional Select for: Operators Syntax

Equality select_eq R = select_eq(A, B)

Inequality select_neq R = select_neq(A, B)

Greater Than select_gt R = select_gt(A, B)

Greater Than or Equal To select_ge R = select_ge(A, B)

Not Greater Than select_gt R = select_gt(A, B)

Not Greater Than or Equal To select_ge R = select_ge(A, B)

Less Than select_lt R = select_lt(A, B)

Less Than or Equal To select_le R = select_le(A, B)

Not Less Than select_nlt R = select_nlt(A, B)

Not Less Than or Equal To select_nle R = select_nle(A, B)

Conditional Select Operator Usage

For conditional select operators, the return value is stored in C if the comparison is true or in D if false.
The following table shows the return values for each class of the conditional select operators, using the
Return Value Notation described earlier.

Compare Operator Return Value Mapping

R A0 Operators B C D F32vec4 F64vec2 F32vec1

R0:= (A1

!(A1

select_[eq | lt | le | gt | ge]
 select_[ne | nlt | nle | ngt |
nge]

B0)
 B0)

C0
 C0

D0
 D0

X X X

R1:= (A2

!(A2

select_[eq | lt | le | gt | ge]
 select_[ne | nlt | nle | ngt |
nge]

B1)
 B1)

C1
 C1

D1
 D1

X X N/A

R2:= (A2

!(A2

select_[eq | lt | le | gt | ge]
 select_[ne | nlt | nle | ngt |
nge]

B2)
 B2)

C2
 C2

D2
 D2

X N/A N/A

R3:= (A3

!(A3

select_[eq | lt | le | gt | ge]
 select_[ne | nlt | nle | ngt |
nge]

B3)
 B3)

C3
 C3

D3
 D3

X N/A N/A

 350

The following table shows examples for conditional select operations and corresponding intrinsics.

Conditional Select Operations for Fvec Classes

Returns Example Syntax Usage Intrinsic

Compare for Equality

4 floats F32vec4 R =
select_eq(F32vec4 A);

_mm_cmpeq_ps

2 doubles F64vec2 R =
select_eq(F64vec2 A);

_mm_cmpeq_pd

1 float F32vec1 R =
select_eq(F32vec1 A);

_mm_cmpeq_ss

Compare for Inequality

4 floats F32vec4 R =
select_neq(F32vec4 A);

_mm_cmpneq_ps

2 doubles F64vec2 R =
select_neq(F64vec2 A);

_mm_cmpneq_pd

1 float F32vec1 R =
select_neq(F32vec1 A);

_mm_cmpneq_ss

Compare for Less Than

4 floats F32vec4 R =
select_lt(F32vec4 A);

_mm_cmplt_ps

2 doubles F64vec2 R =
select_lt(F64vec2 A);

_mm_cmplt_pd

1 float F32vec1 R =
select_lt(F32vec1 A);

_mm_cmplt_ss

Compare for Less Than
or Equal

4 floats F32vec4 R =
select_le(F32vec4 A);

_mm_cmple_ps

2 doubles F64vec2 R =
select_le(F64vec2 A);

_mm_cmple_pd

1 float F32vec1 R =
select_le(F32vec1 A);

_mm_cmple_ps

Compare for Greater
Than

 351

Returns Example Syntax Usage Intrinsic

4 floats F32vec4 R =
select_gt(F32vec4 A);

_mm_cmpgt_ps

2 doubles F64vec2 R =
select_gt(F64vec2 A);

_mm_cmpgt_pd

1 float F32vec1 R =
select_gt(F32vec1 A);

_mm_cmpgt_ss

Compare for Greater
Than or Equal To

4 floats F32vec1 R =
select_ge(F32vec4 A);

_mm_cmpge_ps

2 doubles F64vec2 R =
select_ge(F64vec2 A);

_mm_cmpge_pd

1 float F32vec1 R =
select_ge(F32vec1 A);

_mm_cmpge_ss

Compare for Not Less
Than

4 floats F32vec1 R =
select_nlt(F32vec4 A);

_mm_cmpnlt_ps

2 doubles F64vec2 R =
select_nlt(F64vec2 A);

_mm_cmpnlt_pd

1 float F32vec1 R =
select_nlt(F32vec1 A);

_mm_cmpnlt_ss

Compare for Not Less
Than or Equal

4 floats F32vec1 R =
select_nle(F32vec4 A);

_mm_cmpnle_ps

2 doubles F64vec2 R =
select_nle(F64vec2 A);

_mm_cmpnle_pd

1 float F32vec1 R =
select_nle(F32vec1 A);

_mm_cmpnle_ss

Compare for Not
Greater Than

4 floats F32vec1 R =
select_ngt(F32vec4 A);

_mm_cmpngt_ps

 352

Returns Example Syntax Usage Intrinsic

2 doubles F64vec2 R =
select_ngt(F64vec2 A);

_mm_cmpngt_pd

1 float F32vec1 R =
select_ngt(F32vec1 A);

_mm_cmpngt_ss

Compare for Not
Greater Than or Equal

4 floats F32vec1 R =
select_nge(F32vec4 A);

_mm_cmpnge_ps

2 doubles F64vec2 R =
select_nge(F64vec2 A);

_mm_cmpnge_pd

1 float F32vec1 R =
select_nge(F32vec1 A);

_mm_cmpnge_ss

Cacheability Support Operations
void store_nta(double *p, F64vec2 A);

Stores (non-temporal) the two double-precision floating-point values of A. Requires a 16-byte aligned
address.

Corresponding intrinsic: _mm_stream_pd

void store_nta(float *p, F32vec4 A);

Stores (non-temporal) the four single precision floating-point values of A. Requires a 16-byte aligned
address.

Corresponding intrinsic: _mm_stream_ps

 353

Debugging
The debug operations do not map to any compiler intrinsics for MMX(TM) technology or Streaming SIMD
Extensions. They are provided for debugging programs only. Use of these operations may result in loss of
performance, so you should not use them outside of debugging.

Output Operations

cout << F64vec2 A;

The two single double precision floating-point values of A are placed in the output buffer and printed in
decimal format as follows:

"[1]:A1 [0]:A0"

Corresponding intrinsics: none

cout << F32vec4 A;

The four single precision floating-point values of A are placed in the output buffer and printed in decimal
format as follows:

"[3]:A3 [2]:A2 [1]:A1 [0]:A0"

Corresponding intrinsics: none

cout << F32vec1 A;

The lowest single precision floating-point value of A is placed in the output buffer and printed.

Corresponding intrinsics: none

Element Access Operations

double d = F64vec2 A[int i]

Read one of the two double precision floating-point values of A without modifying the corresponding
floating point value. Permitted values of i are 0 and 1. For example:

double d = F64vec2 A[1];

If DEBUG is enabled and i is not one of the permitted values (0 or 1), a diagnostic message is printed
and the program aborts.

Corresponding intrinsics: none

float f = F32vec4 A[int i]

Read one of the four single precision floating-point values of A without modifying the corresponding
floating point value. Permitted values of i are 0, 1, 2, and 3. For example:

 354

float f = F32vec4 A[2];

If DEBUG is enabled and i is not one of the permitted values (0-3), a diagnostic message is printed and
the program aborts.

Corresponding intrinsics: none

Element Assignment Operations

F64vec4 A[int i] = double d;

Modify one of the two double precision floating-point values of A. Permitted values of int i are 0 and 1.
For example:

F32vec4 A[1] = double d;

F32vec4 A[int i] = float f;

Modify one of the four single precision floating-point values of A. Permitted values of int i are 0, 1, 2, and
3. For example:

F32vec4 A[3] = float f;

If DEBUG is enabled and int i is not one of the permitted values (0-3), a diagnostic message is printed
and the program aborts.

Corresponding intrinsics: none.

Load and Store Operators
void loadu(F64vec2 A, double *p)

Loads two double-precision floating-point values, copying them into the two floating-point values of A. No
assumption is made for alignment.

Corresponding intrinsic: _mm_loadu_pd

void storeu(float *p, F64vec2 A);

Stores the two double-precision floating-point values of A. No assumption is made for alignment.

Corresponding intrinsic: _mm_storeu_pd

void loadu(F32vec4 A, double *p)

Loads four single-precision floating-point values, copying them into the four floating-point values of A. No
assumption is made for alignment.

Corresponding intrinsic: _mm_loadu_ps

 355

void storeu(float *p, F32vec4 A);

Stores the four single-precision floating-point values of A. No assumption is made for alignment.

Corresponding intrinsic: _mm_storeu_ps

Unpack Operators for Fvec Operators
F64vec2 R = unpack_low(F64vec2 A, F64vec2 B);

Selects and interleaves the lower double precision floating-point values from A and B.

Corresponding intrinsic: _mm_unpacklo_pd(a, b)

F64vec2 R = unpack_high(F64vec2 A, F64vec2 B);

Selects and interleaves the higher double precision floating-point values from A and B.

Corresponding intrinsic: _mm_unpackhi_pd(a, b)

F32vec4 R = unpack_low(F32vec4 A, F32vec4 B);

Selects and interleaves the lower two single precision floating-point values from A and B.

Corresponding intrinsic: _mm_unpacklo_ps(a, b)

F32vec4 R = unpack_high(F32vec4 A, F32vec4 B);

Selects and interleaves the higher two single precision floating-point values from A and B.

Corresponding intrinsic: _mm_unpackhi_ps(a, b)

Move Mask Operator
int i = move_mask(F64vec2 A)

Creates a 2-bit mask from the most significant bits of the two double precision floating-point values of A,
as follows:

i := sign(a1)<<1 | sign(a0)<<0

Corresponding intrinsic: _mm_movemask_pd

 356

int i = move_mask(F32vec4 A)

Creates a 4-bit mask from the most significant bits of the four single precision floating-point values of A,
as follows:

i := sign(a3)<<3 | sign(a2)<<2 | sign(a1)<<1 | sign(a0)<<0

Corresponding intrinsic: _mm_movemask_ps

Classes Quick Reference
This appendix contains tables listing the class, functionality, and corresponding intrinsics for each class in
the Intel® C++ Class Libraries for SIMD Operations. The following table lists all Intel C++ Compiler
intrinsics that are not implemented in the C++ SIMD classes.

Logical Operators: Corresponding Intrinsics and Classes

Operators Corresponding
Intrinsics

I128vec1, I64vec2,
I32vec4, I16vec8,
I8vec16

I64vec, I32vec,
I16vec, I8vec8

F64vec2 F32vec4 F32vec1

&, &= _mm_and_[x] si128 si64 pd ps ps

|, |= _mm_or_[x] si128 si64 pd ps ps

^, ^= _mm_xor_[x] si128 si64 pd ps ps

Andnot _mm_andnot_[x] si128 si64 pd N/A N/A

Arithmetic: Corresponding Intrinsics and Classes

Operators Corresponding
Intrinsic

I64ve
c2

I32ve
c4

I16ve
c8

I8vec
16

I32ve
c2

I16ve
c4

I8ve
c8

F64ve
c2

F32ve
c4

F32ve
c1

+, += _mm_add_[x] epi64 epi32 epi16 epi8 pi32 pi16 pi8 pd ps ss

-, -= _mm_sub_[x] epi64 epi32 epi16 epi8 pi32 pi16 pi8 pd ps ss

*, *= _mm_mullo_[x] N/A N/A epi16 N/A N/A pi16 N/A pd ps ss

/, /= _mm_div_[x] N/A N/A N/A N/A N/A N/A N/A pd ps ss

mul_high _mm_mulhi_[x] N/A N/A epi16 N/A N/A pi16 N/A N/A N/A N/A

mul_add _mm_madd_[x] N/A N/A epi16 N/A N/A pi16 N/A N/A N/A N/A

sqrt _mm_sqrt_[x] N/A N/A N/A N/A N/A N/A N/A pd ps ss

rcp _mm_rcp_[x] N/A N/A N/A N/A N/A N/A N/A pd ps ss

 357

Operators Corresponding
Intrinsic

I64ve
c2

I32ve
c4

I16ve
c8

I8vec
16

I32ve
c2

I16ve
c4

I8ve
c8

F64ve
c2

F32ve
c4

F32ve
c1

rcp_nr _mm_rcp_[x]

_mm_add_[x]

_mm_sub_[x]

_mm_mul_[x]

N/A N/A N/A N/A N/A N/A N/A pd ps ss

rsqrt _mm_rsqrt_[x] N/A N/A N/A N/A N/A N/A N/A pd ps ss

rsqrt_nr _mm_rsqrt_[x]

_mm_sub_[x]

_mm_mul_[x]

N/A N/A N/A N/A N/A N/A N/A pd ps ss

Shift Operators: Corresponding Intrinsics and Classes

Operators Corresponding Intrinsic I128v
ec1

I64ve
c2

I32ve
c4

I16ve
c8

I8vec
16

I64v
ec1

I32vec
2

I16vec
4

I8vec
8

>>,>>= _mm_srl_[x]
_mm_srli_[x]
_mm_sra__[x]
_mm_srai_[x]

N/A
 N/A
 N/A
 N/A

epi64
 epi64
 N/A
 N/A

epi32
 epi32
 epi32
 epi32

epi16
 epi16
 epi16
 epi16

N/A
 N/A
 N/A
 N/A

si64
 si64
 N/A
 N/A

pi32
 pi32
 pi32
 pi32

pi16
 pi16
 pi16
 pi16

N/A
 N/A
 N/A
 N/A

<<, <<= _mm_sll_[x]
_mm_slli_[x]

N/A

N/A

epi64
 epi64

epi32
 epi32

epi16
 epi16

N/A
 N/A

si64

si64

pi32
 pi32

pi16
 pi16

N/A
 N/A

Comparison Operators: Corresponding Intrinsics and Classes

Operators Corresponding Intrinsic I32ve
c4

I16ve
c8

I8vec
16

I32ve
c2

I16ve
c4

I8ve
c8

F64ve
c2

F32ve
c4

F32ve
c1

cmpeq _mm_cmpeq_[x] epi32 epi16 epi8 pi32 pi16 pi8 pd ps ss

cmpneq _mm_cmpeq_[x]
_mm_andnot_[y]*

epi32
 si128

epi16
 si128

epi8
 si128

pi32
 si64

pi16
 si64

pi8
 si64

pd ps ss

cmpgt _mm_cmpgt_[x] epi32 epi16 epi8 pi32 pi16 pi8 pd ps ss

cmpge _mm_cmpge_[x]
_mm_andnot_[y]*

epi32
 si128

epi16
 si128

epi8
 si128

pi32
 si64

pi16
 si64

pi8
 si64

pd ps ss

cmplt _mm_cmplt_[x] epi32 epi16 epi8 pi32 pi16 pi8 pd ps ss

cmple _mm_cmple_[x]
_mm_andnot_[y]*

epi32
 si128

epi16
 si128

epi8
 si128

pi32
 si64

pi16
 si64

pi8
 si64

pd ps ss

cmpngt _mm_cmpngt_[x] epi32 epi16 epi8 pi32 pi16 pi8 pd ps ss

cmpnge _mm_cmpnge_[x] N/A N/A N/A N/A N/A N/A pd ps ss

 358

Operators Corresponding Intrinsic I32ve
c4

I16ve
c8

I8vec
16

I32ve
c2

I16ve
c4

I8ve
c8

F64ve
c2

F32ve
c4

F32ve
c1

cmnpnlt _mm_cmpnlt_[x] N/A N/A N/A N/A N/A N/A pd ps ss

cmpnle _mm_cmpnle_[x] N/A N/A N/A N/A N/A N/A pd ps ss

* Note that _mm_andnot_[y] intrinsics do not apply to the fvec classes.

Conditional Select Operators: Corresponding Intrinsics and Classes

Operators Corresponding Intrinsic I32ve
c4

I16ve
c8

I8vec
16

I32ve
c2

I16ve
c4

I8ve
c8

F64ve
c2

F32ve
c4

F32ve
c1

select_eq _mm_cmpeq_[x]
_mm_and_[y]
_mm_andnot_[y]*
_mm_or_[y]

epi32
 si128
 si128
 si128

epi16
 si128
 si128
 si128

epi8
 si128
 si128
 si128

pi32
 si64
 si64
 si64

pi16
 si64
 si64
 si64

pi8
 si64
 si64
 si64

pd ps ss

select_neq _mm_cmpeq_[x]
_mm_and_[y]
_mm_andnot_[y]*
_mm_or_[y]

epi32
 si128
 si128
 si128

epi16
 si128
 si128
 si128

epi8
 si128
 si128
 si128

pi32
 si64
 si64
 si64

pi16
 si64
 si64
 si64

pi8
 si64
 si64
 si64

pd ps ss

select_gt _mm_cmpgt_[x]
_mm_and_[y]
_mm_andnot_[y]*
_mm_or_[y]

epi32
 si128
 si128
 si128

epi16
 si128

si128si
128

epi8
 si128
 si128
 si128

pi32
 si64
 si64
 si64

pi16
 si64
 si64
 si64

pi8
 si64
 si64
 si64

pd ps ss

select_ge _mm_cmpge_[x]
_mm_and_[y]
_mm_andnot_[y]*
_mm_or_[y]

epi32
 si128
 si128
 si128

epi16
 si128
 si128
 si128

epi8
 si128
 si128
 si128

pi32
 si64
 si64
 si64

pi16
 si64
 si64
 si64

pi8
 si64
 si64
 si64

pd ps ss

select_lt _mm_cmplt_[x]
_mm_and_[y]
_mm_andnot_[y]*
_mm_or_[y]

epi32
 si128
 si128
 si128

epi16
 si128
 si128
 si128

epi8
 si128
 si128
 si128

pi32
 si64
 si64
 si64

pi16
 si64
 si64
 si64

pi8
 si64
 si64
 si64

pd ps ss

select_le _mm_cmple_[x]
_mm_and_[y]
_mm_andnot_[y]*
_mm_or_[y]

epi32
 si128
 si128
 si128

epi16
 si128
 si128
 si128

epi8
 si128
 si128
 si128

pi32
 si64
 si64
 si64

pi16
 si64
 si64
 si64

pi8
 si64
 si64
 si64

pd ps ss

select_ngt _mm_cmpgt_[x] N/A N/A N/A N/A N/A N/A pd ps ss

select_nge _mm_cmpge_[x] N/A N/A N/A N/A N/A N/A pd ps ss

select_nlt _mm_cmplt_[x] N/A N/A N/A N/A N/A N/A pd ps ss

select_nle _mm_cmple_[x] N/A N/A N/A N/A N/A N/A pd ps ss

* Note that _mm_andnot_[y] intrinsics do not apply to the fvec classes.

 359

Packing and Unpacking Operators: Corresponding Intrinsics and Classes

Operators Corresponding
Intrinsic

I64ve
c2

I32ve
c4

I16ve
c8

I8ve
c16

I32ve
c2

I16ve
c4

I8ve
c8

F64ve
c2

F32ve
c4

F32ve
c1

unpack_high _mm_unpackhi_[x] epi64 epi32 epi16 epi8 pi32 pi16 pi8 pd ps N/A

unpack_low _mm_unpacklo_[x] epi64 epi32 epi16 epi8 pi32 pi16 pi8 pd ps N/A

pack_sat _mm_packs_[x] N/A epi32 epi16 N/A pi32 pi16 N/A N/A N/A N/A

packu_sat _mm_packus_[x] N/A N/A epi16 N/A N/A pu16 N/A N/A N/A N/A

sat_add _mm_adds_[x] N/A N/A epi16 epi8 N/A pi16 pi8 pd ps ss

sat_sub _mm_subs_[x] N/A N/A epi16 epi8 N/A pi16 pi8 pi16 pi8 pd

Conversions Operators: Corresponding Intrinsics and Classes

Operators Corresponding Intrinsic

F64vec2ToInt _mm_cvttsd_si32

F32vec4ToF64vec2 _mm_cvtps_pd

F64vec2ToF32vec4 _mm_cvtpd_ps

IntToF64vec2 _mm_cvtsi32_sd

F32vec4ToInt _mm_cvtt_ss2si

F32vec4ToIs32vec2 _mm_cvttps_pi32

IntToF32vec4 _mm_cvtsi32_ss

Is32vec2ToF32vec4 _mm_cvtpi32_ps

 360

Programming Example
This sample program uses the F32vec4 class to average the elements of a 20 element floating point
array. This code is also provided as a sample in the file, AvgClass.cpp.

// Include Streaming SIMD Extension Class Definitions

#include <fvec.h>

// Shuffle any 2 single precision floating point from a
// into low 2 SP FP and shuffle any 2 SP FP from b
// into high 2 SP FP of destination

#define SHUFFLE(a,b,i) (F32vec4)_mm_shuffle_ps(a,b,i)
#include <stdio.h>
#define SIZE 20

// Global variables

float result;
_MM_ALIGN 16 float array[SIZE];

//***
// Function: Add20ArrayElements
// Add all the elements of a 20 element array
//***

void Add20ArrayElements (F32vec4 *array, float *result)

{
F32vec4 vec0, vec1;
vec0 = _mm_load_ps ((float *) array); // Load array's first 4 floats

//***
// Add all elements of the array, 4 elements at a time
//**

vec0 += array[1];// Add elements 5-8
vec0 += array[2];// Add elements 9-12
vec0 += array[3];// Add elements 13-16
vec0 += array[4];// Add elements 17-20

//***
// There are now 4 partial sums. Add the 2 lowers to the 2 raises,
// then add those 2 results together
//***

vec1 = SHUFFLE(vec1, vec0, 0x40);
vec0 += vec1;
vec1 = SHUFFLE(vec1, vec0, 0x30);
vec0 += vec1;
vec0 = SHUFFLE(vec0, vec0, 2);

_mm_store_ss (result, vec0); // Store the final sum

}

 361

void main(int argc, char *argv[])
{

int i;
// Initialize the array

for (i=0; i < SIZE; i++)

{
array[i] = (float) i;
}

// Call function to add all array elements
Add20ArrayElements (array, &result);

// Print average array element value
printf ("Average of all array values = %f\n", result/20.);
printf ("The correct answer is %f\n\n\n", 9.5);

}

