
NUMERICAL RELATIVITY

Solving Einstein’s Equations on the Computer

Thomas W. Baumgarte and Stuart L. Shapiro



2



Contents

Preface i

Suggestions for Using this Book vii

1 General Relativity Preliminaries 1

1.1 Einstein’s Equations In 4-Dimensional Spacetime . . . . . . . . . . . . . . . . . . 1

1.2 Black Holes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Oppenheimer-Volkoff Spherical Equilibrium Stars . . . . . . . . . . . . . . . . . . 13

1.4 Oppenheimer-Snyder Spherical Dust Collapse . . . . . . . . . . . . . . . . . . . . 16

2 The 3+1 Decompostion of Einstein’s Equations 21

2.1 Notation and Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2 Maxwell’s Equations in Minkowski Spacetime . . . . . . . . . . . . . . . . . . . . 24

2.3 Foliations of Spacetime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4 The Extrinsic Curvature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.5 The Equations of Gauss, Codazzi and Ricci . . . . . . . . . . . . . . . . . . . . . 33

2.6 The Constraint and Evolution Equations . . . . . . . . . . . . . . . . . . . . . . . 35

2.7 Choosing Basis Vectors: the ADM Equations . . . . . . . . . . . . . . . . . . . . . 39

3 Constructing Initial Data 49

3.1 Conformal Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.1.1 Conformal Transformation of the Spatial Metric . . . . . . . . . . . . . . . 50

3.1.2 Elementary Black Hole Solutions . . . . . . . . . . . . . . . . . . . . . . . 52

3.1.3 Conformal transformation of the extrinsic curvature . . . . . . . . . . . . . 58

3.2 Conformal Transverse-Traceless Decomposition . . . . . . . . . . . . . . . . . . . . 61

3.3 Conformal Thin-Sandwich Decomposition . . . . . . . . . . . . . . . . . . . . . . 68

3.4 A Step Further: the “Waveless” Approximation . . . . . . . . . . . . . . . . . . . 73

3.5 Mass, Momentum and Angular Momentum . . . . . . . . . . . . . . . . . . . . . . 74

4 Choosing Coordinates: The Lapse and Shift 87

4.1 Geodesic Slicing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.2 Maximal Slicing and Singularity Avoidance . . . . . . . . . . . . . . . . . . . . . . 91

4.3 Harmonic Coordinates and Variations . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.4 Quasi-isotropic and Radial Gauge . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.5 Minimal Distortion and Variations . . . . . . . . . . . . . . . . . . . . . . . . . . 103

3



4 CONTENTS

5 Matter Sources 109

5.1 Vacuum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.2 Hydrodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.2.1 Perfect Gases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.2.2 Imperfect Gases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.2.3 Radiation Hydrodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.2.4 Magnetohydrodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5.3 Collisionless Matter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

5.4 Scalar Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

6 Numerical Methods 161

6.1 Classification of Partial Differential Equations . . . . . . . . . . . . . . . . . . . . 161

6.2 Finite Difference Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

6.2.1 Representation of Functions and Derivatives . . . . . . . . . . . . . . . . . 166

6.2.2 Elliptic Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

6.2.3 Hyperbolic Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

6.2.4 Parabolic Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

6.2.5 Mesh Refinement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

6.3 Spectral Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

6.3.1 Representation of Functions and Derivatives . . . . . . . . . . . . . . . . . 187

6.3.2 A simple example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

6.3.3 Pseudo-spectral methods with Chebychev polynomials . . . . . . . . . . . 190

6.3.4 Elliptic equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

6.3.5 Initial value problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

6.3.6 Comparison with finite difference methods . . . . . . . . . . . . . . . . . . 196

6.4 Code validation and calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

7 Locating Black Hole Horizons 201

7.1 Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

7.2 Event Horizons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

7.3 Apparent Horizons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

7.3.1 Spherical Symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

7.3.2 Axisymmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

7.3.3 General Case: No Symmetry Assumptions . . . . . . . . . . . . . . . . . . 216

7.4 Isolated and Dynamical Horizons . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

8 Spherically Symmetric Spacetimes 223

8.1 Black Holes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

8.2 Collisionless Clusters: Stability and Collapse . . . . . . . . . . . . . . . . . . . . . 234

8.2.1 Particle Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236

8.2.2 Phase Space Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252

8.3 Fluid Stars: Collapse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257

8.3.1 Misner-Sharp Formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260

8.3.2 The Hernandez-Misner Equations . . . . . . . . . . . . . . . . . . . . . . . 262

8.4 Scalar Field Collapse: Critical Phenomena . . . . . . . . . . . . . . . . . . . . . . 267



CONTENTS 5

9 Gravitational Waves 275
9.1 Linearized Waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275

9.1.1 Perturbation Theory and the Weak-Field, Slow-Velocity Regime . . . . . . 276
9.1.2 Vacuum Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282

9.2 Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285
9.2.1 The High Frequency Band . . . . . . . . . . . . . . . . . . . . . . . . . . . 286
9.2.2 The Low Frequency Band . . . . . . . . . . . . . . . . . . . . . . . . . . . 290
9.2.3 The Very Low and Ultra Low Frequency Bands . . . . . . . . . . . . . . . 291

9.3 Detectors and Templates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292
9.3.1 Ground-based gravitational wave interferometers . . . . . . . . . . . . . . . 293
9.3.2 Space-based detectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296

9.4 Extracting Gravitational Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . 298
9.4.1 The Gauge-Invariant Moncrief Formalism . . . . . . . . . . . . . . . . . . . 298
9.4.2 The Newman-Penrose Formalism . . . . . . . . . . . . . . . . . . . . . . . 306

10 Collapse of Collisionless Clusters in Axisymmetry 311
10.1 Collapse of Prolate Spheroids to Spindle Singularities . . . . . . . . . . . . . . . . 311
10.2 Head-On Collision of Two Black Holes . . . . . . . . . . . . . . . . . . . . . . . . 317
10.3 Disk Collapse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322
10.4 Collapse of Rotating Toroidal Clusters . . . . . . . . . . . . . . . . . . . . . . . . 326

11 Recasting the Evolution Equations 331
11.1 Notions of Hyperbolicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332
11.2 Recasting Maxwell’s Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334

11.2.1 Generalized Coulomb gauge . . . . . . . . . . . . . . . . . . . . . . . . . . 335
11.2.2 First-order hyperbolic formulations . . . . . . . . . . . . . . . . . . . . . . 335
11.2.3 Auxiliary variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336

11.3 Generalized Harmonic Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . 336
11.4 First-order Symmetric Hyperbolic Formulations . . . . . . . . . . . . . . . . . . . 339
11.5 The BSSN Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341

12 Binary Black Hole Initial Data 349
12.1 Binary Inspiral: Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350
12.2 The Conformal Transverse-Traceless Approach: Bowen-York . . . . . . . . . . . . 357

12.2.1 Solving the momentum constraint . . . . . . . . . . . . . . . . . . . . . . . 357
12.2.2 Solving the Hamiltonian constraint . . . . . . . . . . . . . . . . . . . . . . 359
12.2.3 Identifying circular orbits . . . . . . . . . . . . . . . . . . . . . . . . . . . 360

12.3 The Conformal Thin-Sandwich Approach . . . . . . . . . . . . . . . . . . . . . . . 363
12.3.1 The notion of quasiequilibium . . . . . . . . . . . . . . . . . . . . . . . . . 363
12.3.2 Quasiequilibrium black-hole boundary conditions . . . . . . . . . . . . . . 366
12.3.3 Identifying Circular orbits . . . . . . . . . . . . . . . . . . . . . . . . . . . 371

12.4 Quasiequilibrium Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373

13 Binary Black Hole Evolution 379
13.1 Handling the Black Hole Singularity . . . . . . . . . . . . . . . . . . . . . . . . . . 380

13.1.1 Singularity Avoiding Coordinates . . . . . . . . . . . . . . . . . . . . . . . 380
13.1.2 Black Hole Excision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381



6 CONTENTS

13.1.3 The Moving Puncture Method . . . . . . . . . . . . . . . . . . . . . . . . . 381
13.2 Binary Black Hole Inspiral and Coalescence . . . . . . . . . . . . . . . . . . . . . 385

13.2.1 Equal-Mass Binaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 386
13.2.2 Asymmetric Binaries, Spin and Black Hole Recoil . . . . . . . . . . . . . . 393

14 Rotating Stars 405
14.1 Initial Data: Equilibrium Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 406

14.1.1 Field Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 406
14.1.2 Fluid Stars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 407
14.1.3 Collisionless Clusters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 415

14.2 Evolution: Instabilities and Collapse . . . . . . . . . . . . . . . . . . . . . . . . . 417
14.2.1 Quasi-Radial Stability and Collapse . . . . . . . . . . . . . . . . . . . . . . 417
14.2.2 Bar-mode Instability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 421
14.2.3 Black Hole Excision and Stellar Collapse . . . . . . . . . . . . . . . . . . . 424
14.2.4 Viscous Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 434
14.2.5 MHD Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 436

15 Binary Neutron Star Initial Data 447
15.1 Stationary Fluid Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 447

15.1.1 Newtonian Equations of Stationary Equilibrium . . . . . . . . . . . . . . . 449
15.1.2 Relativistic Equations of Stationary Equilibrium . . . . . . . . . . . . . . . 452

15.2 Corotational Binaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 454
15.3 Irrotational Binaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 462
15.4 Quasiadiabatic inspiral sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . 468

16 Binary Neutron Star Evolution 471
16.1 Peliminary Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 472
16.2 The Conformal Flatness Approximation . . . . . . . . . . . . . . . . . . . . . . . 473
16.3 Fully Relativistic Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 482

17 Binary Black Hole-Neutron Stars: Initial Data and Evolution 499
17.1 Initial Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 501

17.1.1 The conformal thin-sandwich approach . . . . . . . . . . . . . . . . . . . . 502
17.1.2 The conformal transverse-traceless approach . . . . . . . . . . . . . . . . . 508

17.2 Dynamical Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 510
17.2.1 The Conformal Flatness Approximation . . . . . . . . . . . . . . . . . . . 510
17.2.2 Fully Relativistic Simulations . . . . . . . . . . . . . . . . . . . . . . . . . 514

18 Epilogue 531

A Lie Derivatives, Killing Vectors, and Tensor Densities 533
A.1 The Lie Derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 533
A.2 Killing Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 537
A.3 Tensor Densities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 539

B Solving the Vector Laplacian 543

C The Surface Element on the Apparent Horizon 545



CONTENTS 7

D Scalar, Vector and Tensor Spherical Harmonics 549

E Post-Newtonian Results 553

F Collisionless Matter Evolution in Axisymmetry: Basic Equations 565

G Rotating Equilibria: Gravitational Field Equations 571

H Moving-Puncture Representions of Schwarzschild: Analytical Results 575

I Binary Black Hole Puncture Simulations As Test Problems 581



8 CONTENTS



Preface

What is Numerical Relativity?

General relativity – Einstein’s theory of relativistic gravitation – is the cornerstone of modern
cosmology, the physics of neutron stars and black holes, the generation of gravitational radiation,
and countless other cosmic phenomena in which strong-field gravitation plays a dominant role.
Yet the theory remains largely untested, except in the weak-field, slow-velocity regime. Moreover,
solutions to Einstein’s equations, except for a few idealized cases characterized by high degrees of
symmetry, have not been obtained as yet for many of the important dynamical scenarios thought
to occur in nature. Only now, with the advent of supercomputers, is it possible to tackle these
complicated equations numerically and explore these scenarios in detail. That is the main goal
of numerical relativity, the art and science of developing computer algorithms to solve Einstein’s
equations for astrophysically realistic, high-velocity, strong-field systems.

Numerical relativity has become one of the most powerful probes of relativistic spacetimes. It
is the tool that allows us to recreate cataclysmic cosmic phenomena that are otherwise inaccessible
in the conventional laboratory – like gravitational collapse to black holes and neutron stars, the
inspiral and coalescence of binary black holes and neutron stars, and the generation and propaga-
tion of gravitational waves, to name a few. Numerical relativity picks up where post-Newtonian
theory and general relativistic perturbation theory leave off. It enables us to follow the full nonlin-
ear growth of relativistic instabilities and determine the final fate of unstable systems. Numerical
relativity can also be used to address fundamental properties of general relativity, like critical
behavior and cosmic censorship, where analytic methods alone are not adequate. In fact, critical
behavior in gravitational collapse is an example of a previously unknown phenomenon that was
first discovered in numerical experiments, triggering a large number of analytical studies.

Building a numerical spacetime on the computer means solving equations. The equations that
arise in numerical relativity are typically multidimensional, nonlinear, coupled partial differential
equations in space and time. They have in common with other areas of computational physics, like
fluid dynamics, magnetohydrodynamics, and aerodynamics, all of the usual problems associated
with solving such nontrivial systems of equations. However, solving Einstein’s equations poses
some additional complications that are unique to general relativity. The first complication concerns
the choice of coordinates. In general relativity, coordinates are merely labels that distinguish
points in spacetime; by themselves coordinate intervals have no physical significance. To use
coordinate intervals to determine physically measurable proper distances and proper times requires
the spacetime metric, but the metric is known only after Einstein’s equations have been solved.
Moreover, as the numerical integrations that determine the metric proceed, it often turns out that
the original, arbitrary choice of coordinates turns out to be bad, because, for example, singularities
appear in the equations. Encountering such singularities, be they physical or coordinate, results
in some of the terms in Einstein’s equations becoming infinite, potentially causing overflows in
the computer output and premature termination of the numerical integration. It is not always

i
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easy to exploit successfully the gauge freedom inherent in general relativity – the ability to choose
coordinates in an arbitrary way – and avoid these singularities in a numerical routine.

Treating black holes is one of the main goals of numerical relativity, but this poses another
complication. The reason is that black holes contain physical spacetime singularities – regions
where the gravitational tidal field, the matter density and the spacetime curvature all become
infinite. Thus, when dealing with black holes, it is crucial to choose a computational technique
that avoids encountering their interior spacetime singularities in the course of the simulation.

Another complication arises in the context of one of the most pressing goals of numerical
relativity – the calculation of waveforms from promising astrophysical sources of gravitational ra-
diation. Accomplishing this task is necessary in order to provide theoretical waveform templates
both for ground-based and space-borne laser interferometers now being designed, constructed and
placed into operation world-wide. These theoretical templates are essential for the identification
and physical interpretation of gravitational wave sources. However, the gravitational wave compo-
nents of the spacetime metric usually constitute small fractions of the smooth background metric.
Moreover, to extract the waves from the background in a simulation requires that one probe the
numerical spacetime in the far-field, or radiation, zone, which is typically at large distance from the
strong-field central source. Yet it is the strong-field region which usually consumes most the com-
putational resources (e.g. spatial resolution) to guarantee accuracy. Furthermore, waiting for the
wave to propagate to the far-field region usually takes nonnegligible integration time. Overcom-
ing these difficulties to reliably measure the wave content thus requires that a numerical scheme
successfully cope with the problem of vast dynamic range – the presence of disparate length and
time scales – inherent in a numerical relativity simulation.

These are just some of the subtleties that must be confronted when doing numerical relativity.
The payoff is the ability to build a spacetime on the computer that simulates the unfolding of some
of the most exciting and exotic dynamical phenomena believed to occur in the physical universe.
Generating such a spacetime – “spacetime engineering” – then allows for an intimate probing of
events and physical regimes that cannot be reproduced on earth and may even be difficult to
observe with telescopes. For those that can be detected, numerical relativity is a tool that can be
called upon to interpret the observed features.

About This Book

The purpose of this book is to provide a basic introduction to numerical relativity for nonexperts.
It is a summary of the fundamental concepts as well as a broad survey of some of its most important
applications. The book was conceived and written as a guide for readers who want to acquire a
working knowledge of the subject, so that on mastery of the material, they can read and critique
the scientific literature and begin active research in the field. Our book was born out of necessity:
we needed a comprehensive guide to train our own students who want to pursue research with us
in numerical relativity. Since we could not identify a suitable text to provide such an overview,
we decided to write a book ourselves and fill the void. As constructed, the book should also
serve as a useful reference for researchers in the field of numerical relativity, as well as a primer
for scientists in other areas desiring to get acquainted with our discipline and some of its most
significant achievements.

Readers of our book are assumed to have a solid background in the basic theory of general
relativity. There are several excellent textbooks that provide such a background. We are most
familiar with Gravitation by C. W. Misner, K. S. Thorne and J. A. Wheeler (MTW), and will
occasionally refer readers to this book for background material. We assume that our readers
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already have mathematical familiarity with tensors and differential geometry at the level of MTW,
or a comparable graduate-level textbook on general relativity, and that they already have surveyed
most of the physical applications covered in that book. This prerequisite roughly translates into a
basic understanding of the geometric concepts and objects that enter the Einstein field equations,
as well as the equations of motion for geodesics and relativistic fluids, the equations of hydrostatic
equilibrium for spherical relativistic stars, the geometric and physical properties of black holes, the
nature of gravitational radiation, and the concept of gravitational collapse. Beyond these standard
topics, which we briefly review in Chapter 1, our book is essentially self-contained.

The question arises as to whether readers either with little or no acquaintance with general
relativity can learn something about numerical relativity by reading this book. The question might
be especially relevant for experts in other disciplines with related skills, such as computational
physicists and astrophysicists, computer scientists, or mathematicians. The answer is that we
don’t know the answer, but we are eager to find out! It is a fact that when expressed in numerical
terms, many of the equations arising in numerical relativity have a form similar to equations found
in many other computational disciplines (e.g. fluid dynamics). It is also a fact that advances in
the field of numerical relativity have benefited enormously from developments in other fields of
computational physics and computer science. We thus hope that colleagues in these and other
areas continue to venture into numerical relativity and we look forward to learning from them to
what extent our book can be of assistance.

To be useful as a textbook, our book contains 300 exercises scattered throughout the text.
These exercises vary in scope and difficulty. They are included to assist students and instructors
alike in calibrating the degree to which the material has been assimilated. The exercises comprise
integral components of the main discussion in the book, so that is why they are inserted throughout
the main body of text and not at the end of each chapter. The results of the exercises, and the
equations derived therein, are often referred to in the book. We thus urge even casual readers
who may not be interested in working through the exercises to peruse the problems and to make
a mental note of what is being proven.

The book is designed as a general survey and a practical guide for learning how to use numerical
relativity as a powerful tool for tackling diverse physical and astrophysical applications. Not
surprisingly, the flavor of the book reflects our own backgrounds and interests. The mathematical
presentation is not formal, but it is sound. We believe our overall approach is adequate for the
main task of training students who seek to work in the field.

The organization of the book follows a systematic development. We begin in Chapter 1 with
a very brief review (more of a reminder) of some elementary results in general relativity. In
Chapter 2 we recast the equations of general relativity into a form suitable for solving an initial
value problem in general relativity, i.e., a problem whereby we determine the future evolution of a
spacetime, given a set of well-posed initial conditions at some initial instant of time. Specifically,
we recast the familiar covariant, 4-dimensional form of the Einstein gravitational field equations
into the equivalent 3 + 1-dimensional Arnowitt-Deser-Misner (ADM) set of equations. This ADM
decomposition effectively slices 4-dimensional spacetime into a continuous stack of 3-dimensional,
space-like hypersurfaces that pile up along a 1-dimensional time axis. Two distinct types of
equations emerge for the gravitational field in the course of this decomposition: “constraint”
equations, which specify the field on a given spatial hypersurface (or “time slice”), and “evolution”
equations, which describe how the field changes in time in advancing from one time slice to the
next. In Chapter 3 we discuss approaches for solving the constraint equations for the construction
of suitable initial data, and we provide some simple examples. In Chapter 4 we summarize a
few different coordinate choices (gauge conditions) that have proven useful in numerical evolution
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calculations. Chapter 5 deals with the right-hand side of Einstein’s equations, cataloging some
different relativistic stress-energy sources that arise in realistic astrophysical applications, together
with their equations of motion. Hydrodynamic and magnetohydrodynamic fluids, collisionless
gases, electromagnetic radiation, and scalar fields are all represented here.

This is not a book on numerical methods per se. Rather, our emphasis is on deriving and
interpreting geometrically various formulations of Einstein’s equations that have proven useful
for numerical implementation and then illustrating their utility by showing results of numerical
simulations that employ them. We do not, for example, present finite-difference or other discrete
forms of the continuum equations, nor do we provide numerical code. But in Chapter 6 we
do review some of the basic numerical techniques used to integrate standard elliptic, hyperbolic
and parabolic partial differential equations and we discuss some methods that help calibrate the
accuracy of numerical solutions. These basic techniques comprise the building blocks on which all
numerical implementations of the continuum formulations of Einstein’s equations are based.

No object is more central to numerical relativity than the black hole. Black holes are featured
throughout the book. Chapter 7 discusses some of the quantities (i.e. horizons) that help us locate
and diagnose the properties of black holes residing in a numerical spacetime.

As we turn toward physical applications, our discussion proceeds in order of decreasing space-
time symmetry and increasing computational challenge. Some of the spacetimes we build involve
vacuum black holes, others contain relativistic matter in various forms. Many of the examples
address topical issues in relativistic gravitation or relativistic astrophysics. A substantial fraction
are drawn from our own work, a choice triggered by our familiarity with this material and its
accessibility, including illustrations. We hope that our colleagues will understand, and forgive us,
if we seem to have overrepresented our own work as a result of this choice.

Chapter 8 constructs numerical spacetimes in spherical symmetry, which provides useful in-
sight into gravitational collapse and black hole formation with minimal resources, but is devoid
of gravitational waves. To treat gravitational waves we need to abandon spherical symmetry
(Birkhoff’s theorem!). To set the stage, Chapter 9 reviews some of the basic properties, plausibe
astrophysical sources, and current and future detectors of gravitational waves, as well as standard
extraction techniques for gravitational waves in numerical spacetimes. Chapter 10 then begins our
discussion of nonspherical, radiating spacetimes by featuring the collapse of collisionless clusters
in axisymmetry.

To maintain long-term numerical stability during simulations in 3 + 1 dimensions, it proves
necessary to modify the ADM system of equations. Chapter 11 shows why this is true and provides
alternative formulations in common use that are stable and robust.

Chapters 12 and 13 focus on the inspiral and coalescence of binary black holes, one of the most
important applications of numerical relativity and a promising source of detectable gravitational
radiation. These chapters treat the two-body problem in classical general relativity theory, and its
solution represents one of the major triumphs of numerical relativity. Chapter 12 generates initial
data for two black holes in quasistationary circular orbit, the astrophysically most realistic prelude
to coalescence. Chapter 13 discusses dynamical simulations of the plunge, merger and ringdown
of the two black holes and the associated wave forms. Chapter 14 treats rotating relativistic fluid
stars, including numerical equilibrium models and simulations dealing with secular and dynamical
instabilities and catastrophic collapse to black holes and neutron stars. Chapter 15 and 16 are
the analogs of Chapters 12 and 13 for binary neutron stars. The merger and inspiral of binary
neutron stars is not only a promising source of gravitational waves, but also a plausible candidate
for at least one class of gamma-ray burst sources. So are black hole-neutron star binaries, which
we take up in Chapter 17.
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As the numerical algorithms continue to be refined and incorporate more physics, and as com-
puter technology continues to advance, we anticipate that numerical relativity will accelerate in
importance and use in the future. We can already foreshadow the day when youngsters are rou-
tinely downloading simulations of black hole binary coalescence on their iPods, or playing video
games involving colliding neutron stars on their video cell phones, or on some new device that
we cannot yet imagine! It is our fervent hope that some of the more curious will be motivated
to dial into our book and learn something about the physics and mathematics underlying these
remarkable simulations, so that they, in turn, may be inspired to produce the next generation of
simulations that can go further to unraveling the mysteries of nature.

Thomas W. Baumgarte
Stuart L. Shapiro
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Suggestions for Using this Book

Our book is intended both as a general reference for researchers and as a textbook for use in a
formal course that treats numerical relativity. We envision that there are at least two different
ways in which the book will be used in the classroom: as the main text for a one-semester course
on numerical relativity for students who have already taken an introductory course in general
relativity, or as supplementary reading in numerical relativity at the end of an introductory course
in general relativity. There may be more material in the book than can be covered comfortably in
a single semester devoted entirely to numerical relativity. There certainly is more material than
can be integrated into a supplementary unit on numerical relativity in an introductory course on
general relativity. The later may be true even when such a course is taught as a two-semester
sequence, if the course is already broad and comprehensive without numerical relativity.

There are several ways to design a shortened presentation of the material in our book without
sacrificing the core concepts or interfering with the logical flow. The amount of material that must
be cut out from any course depends, naturally, on the amount of time that is available to devote
to the subject. One means of reducing the content while retaining the fundamental ideas in a
self-contained format is to restrict the discussion to pure vacuum spacetimes, i.e. spacetimes with
no matter sources. Such spacetimes can contain gravitational waves and black holes, including
binary black holes, but nothing else. Since the solution of the binary black hole problem in
vacuum constitutes one of the main triumphs of numerical relativity, and since binary black hole
inspiral and merger constitutes one of the most promising sources of detectable gravitational
waves, one can still explore a seminal and timely topic in its entirety, even with the restriction
to vacuum spacetimes. Of course, all astrophysical applications involving either hydrodynamic or
magnetohydrodynamic matter, collisionless matter, or scalar fields, and whole classes of relativistic
objects, like neutron stars, supernovae, collapsars, supermassive stars, collisionless clusters, etc,
must then be omitted.

We provide a “roadmap” through our book in Table 1 for instructors who wish to restrict their
discussion to vacuum spacetimes. The chapters and sections earmarked for inclusion constitute
a respectable and self-contained “minicourse” on numerical relativity. Pointers to the relevant
appendices are found in these chapters at the appropriate places. In all the sections designated in
the table, all matter source terms that are retained in the gravitational field equations can be set to
zero. Instructors who have time to cover more ground, but not the entire book, can then augment
their discussion by adding material in the book involving matter sources on a selective basis.
For example, scalar field collapse and critical phenomena are developed in Chapters 5.4 and 8.4.
Collisionless matter evolution and cluster collapse and collisions are discussed in Chapters 1.4, 5.3,
8.2, 10, and 14.1.3. Hydrodynamic and magnetohydrodynamic matter evolution, stellar collapse
and stellar collisions are treated in Chapters 1.3, 1.4, 5.2, 8.3, 9.2, and 14-17. Each of these topics
is developed independently of the others in the book, to first approximation, but they do rely on
material covered in earlier chapters of the “minicourse”.

vii
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Chapter Sections
1 1.1, 1.2
2 all
3 all
4 all
5 omit
6 all
7 all
8 8.1
9 all, but black holes only in 9.2
10 omit
11 all
12 all
13 all
14 omit
15 omit
16 omit
17 omit

Table 1: Vacuum spacetime “minicourse”.

There are, of course, other ways to parse and select from the material in the book to fit into a
given course schedule. We shall leave it to individual instructors to arrange an alternative program
that best suits their aims and the needs of their students.



Chapter 1

General Relativity Preliminaries

In this chapter we assemble some of the elements of Einstein’s theory of general relativity that
we will be working with in later chapters. We assume that the geometric objects and equations
that we list, as well as their interpretation, are already very familiar to readers.1 The discussion
below should serve simply as checklist of a few of the basics that we need to pack with us before
embarking on our voyage into numerical spacetime.

Throughout this book we adopt the (− + ++) metric signature together with all the sign
conventions of Misner et al. (1973). Following that book, but in this chapter only, we will display
a tensor in spacetime by a symbol in boldface when emphasizing its coordinate-free character,
or by its components when the tensor has been expanded in a particular set of basis tensors.
However, unlike that book, we will use Latin indices a, b, . . . instead of Greek letters to denote the
spacetime indices of the tensor components, with the values of the indices running from 0 to 3.
This choice anticipates a switch we will make to abstract index notation in all subsequent chapters
of this book. We will introduce this switch in Section 2.1. Finally, here and throughout we will
use geometrized units in which both the gravitational constant and the speed of light are assigned
the values of one, G = c = 1.

1.1 Einstein’s Equations In 4-Dimensional Spacetime

Cast of Characters

The metric tensor of four-dimensional spacetime (i.e. the 4-metric) is denoted by gab and determines
the invariant interval (distance) between two nearby events in spacetime according to

ds2 = gabdx
adxb . (1.1)

Here dxa are the differences in the coordinates xa that label events, or points, in spacetime. For
a flat spacetime, gab becomes the Minkowski metric ηab. In Cartesian coordinates with x0 = t,
x1 = x, x2 = y and x3 = z, the Minkowski metric components are

ηab = diag(−1, 1, 1, 1) , (1.2)

representing a global inertial or Lorentz frame.

1They are treated in depth in introductory textbooks on general relativity, such as Misner et al. (1973), Weinberg
(1972), Wald (1984) and Carroll (2004), to name a few.

1



2 CHAPTER 1. GENERAL RELATIVITY PRELIMINARIES

In general, the components of the metric tensor are given by the scalar dot products between
the four basis vectors ea that span the vector space tangent to the spacetime manifold,2

gab = ea · eb. (1.3)

In a coordinate basis, the basis vectors are tangent vectors to coordinate lines and may be written
as ea = ∂/∂xa ≡ ∂a. Clearly coordinate basis vectors commute. It is sometimes useful to set up
orthonormal basis vectors at a point (an orthonormal tetrad) for which

eâ · eb̂ = ηâb̂ . (1.4)

We denote an orthonormal tetrad by carets. In general, orthonormal basis vectors do not form a
coordinate basis and do not commute. However, in flat spacetime it is always possible to transform
to coordinates which are everywhere orthonormal or globally inertial, whereby the metric is given
by equation (1.2) everywhere. For a general spacetime, this is not possible. But we can always
choose any particular event in spacetime to be the origin of a local inertial coordinate frame,
where gab = ηab at that point and where, in addition, the first derivatives of the metric tensor at
that point vanish, i.e., ∂agbc = 0. An observer in such a coordinate frame is called a local inertial
or local Lorentz observer and can use a coordinate basis that forms a local orthonornal tetrad
to make measurements as in special relativity. In fact, such an observer will find that all the
(nongravitational) laws of physics in this frame are the same as in special relativity (“Principle of
Equivalence”).

For any set of basis vectors, a four-vector A can be expanded in contravariant components,

A = Aaea . (1.5)

The scalar product of two four-vectors A and B is

A ·B = (Aaea) · (Bbeb) = gabA
aBb . (1.6)

Now introduce a set of basis 1-forms ω̃a dual to the basis vectors ea. An arbitrary 1-form B̃
can be expanded in its covariant components according to

B̃ = Baω̃
a . (1.7)

The scalar product of two 1-forms Ã and B̃ is

Ã · B̃ = (Aaω̃
a) · (Bbω̃

b) = gabAaBb , (1.8)

where gab = ω̃a · ω̃b is the inverse of gab. A basis of 1-forms dual to the basis ea always satisfies

ω̃a · eb = δab . (1.9)

Accordingly, the scalar product of a vector with a 1-form does not involve the metric, but only a
summation over an index:

A · B̃ = (Aaea) · (Bbω̃
b) = Aaδa

bBb = AaBa . (1.10)

2Recall that the subscript a in ea denotes the a-th basis vector, and not the a-component of a basis vector. In
four-dimensional spacetime, there are four independent basis vectors.
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The vector A carries the same information as the corresponding 1-form Ã, and we often will
not make a distinction between them. Their components are related by

Aa = gabA
b , (1.11)

or
Aa = gabAb , (1.12)

A coordinate basis of 1-forms may be written ω̃a = d̃x
a
; geometrically, the basis form d̃x

a
may

be thought of as piercing surfaces of constant coordinate xa. An orthonormal basis ω̃â is denoted
by a caret and satisfies the relation

ω̃â · ω̃b̂ = ηâb̂ . (1.13)

A particularly useful one-form is d̃f , the gradient of an arbitrary scalar function f . In a coordinate

basis, it may be expanded according to d̃f = ∂af d̃x
a
, whereby its components are ordinary partial

derivatives.3 The scalar product between an arbitrary vector v and the one-form d̃f gives the
directional derivative of f along v

v · d̃f = (vaea) · (∂bf d̃x
b
) = va∂af. (1.14)

A change of basis is always allowed, whereby ea′ = ebM
b
a′ , ω̃

a′ = Ma′
bω̃

b. Here ||M b
a′|| is an

arbitrary, nonsingular matrix; its inverse is ||Ma′
b|| = ||M b′

a||−1. Under such a change, components
of vectors and 1-forms transform according to

Aa
′
= Ma′

bA
b, Ba′ = BbM

b
a′ . (1.15)

When both of the bases are coordinate bases, then M b
a′ = ∂a′x

b.
The generalization of the above concepts to tensors of arbitrary rank is straightforward. A

four-vector A and 1-form B̃ are both tensors of rank 1. An arbitrary tensor can be expanded in
its components, given a set of basis vectors and corresponding basis 1-forms. As an example, a
mixed rank-2 tensor T can be expanded in components according to T = T abeaω̃

b. Here eaω̃
b is

a direct, or outer, tensor product. The componets of T transform according to

T a
′
b′ = Ma′

cT
c
dM

d
b′ . (1.16)

The covariant derivative of an arbitrary tensor T is also a tensor and it measures the change
of T with respect to parallel transport. For the above example of a mixed rank-2 tensor with
components T ab, the covariant derivative is a tensor of rank 3 and its components are4

∇cT
a
b = ∂cT

a
b +(4) ΓadcT

d
b −(4) ΓdbcT

a
d , (1.17)

where the quantities (4)Γabc are connection coefficients or, in the special case of coordinate bases,
Christoffel symbols, associated with the spacetime metric gab. The connection coefficients measure
the change in the basis vectors and 1-forms with respect to parallel transport. In a coordinate
basis they are related to partial derivatives of the metric by5

(4)Γabc = gad (4)Γdbc =
1

2
gad(∂cgdb + ∂bgdc − ∂dgbc) , (1.18)

3We use the standard notation ∂a = ∂/∂xa.
4Sometimes the components of the covariant derivative of a tensor are written with a semi-colon as T a

b;c ≡
∇cT

a
b.

5The expression for a noncoordinate basis involves additional commutation coefficient terms; see, e.g., Misner
et al. (1973), equation (8.24b).
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where the above relation defines (4)Γdbc. In a local Lorentz frame, the Christoffel symbols vanish.
The covariant derivative of a scalar function f is the gradient one-form; in components, ∇af = ∂af .
The corresponding vector ∇af is normal to the hypersurface f = constant.

Curvature is the true measure of the gravitational field. The Riemann curvature tensor is given
by

(4)Ra
bcd = ∂c

(4)Γabd − ∂d
(4)Γabc +(4) Γaec

(4)Γebd −(4) Γaed
(4)Γebc (1.19)

in a coordinate basis. Curvature vanishes if and only if the spacetime is flat. Second covariant
derivatives of tensor fields do not commute in general and their difference is related to the Riemann
tensor, e.g.,

∇a∇bvc −∇b∇avc = vd
(4)Rd

cab . (1.20)

The Riemann tensor obeys a number of symmetries and identities, such as

(4)Rabcd = − (4)Rbacd,
(4)Rabcd = − (4)Rabdc,

(4)Rabcd = (4)Rcdab (1.21)

as well as the cyclic identity
(4)Rabcd +(4) Radbc +(4) Racdb = 0 (1.22)

and the Bianchi identities

∇e
(4)Rabcd +∇d

(4)Rabec +∇c
(4)Rabde = 0 . (1.23)

The symmetric Ricci tensor and Ricci scalar are formed from the Riemann tensor:

(4)Rab = (4)Rc
acb (1.24)

(4)R = (4)Ra
a . (1.25)

The Ricci tensor (4)Rab is thus the trace of the Riemann tensor. The “trace-free part” is called
the Weyl conformal tensor (4)Cabcd and, in four dimensions, is given by

(4)Cabcd = (4)Rabcd−
1

2
(gac

(4)Rbd− gad(4)Rbc− gbc(4)Rad+ gbd
(4)Rac) +

1

6
(gacgbd− gadgbc)(4)R . (1.26)

It is invariant under conformal transformations and vanishes if and only if the metric is confor-
mally flat (i.e. can be transformed to Minkowski spacetime by a conformal transformation). For
manifolds with dimensions ≤ 3, the Weyl tensor is identically zero and the Ricci tensor completely
determines the Riemann tensor. In vacuum spacetimes, the Weyl tensor and the Riemann tensor
are identical (by virtue of Einstein’s equations (1.32) below).

Geodesics

Freely-falling test particles move along geodesic curves in spacetime. The tangent vector ua of a
geodesic curve is parallel propagated, ub∇bu

a = 0. If we introduce coordinates to construct the
trajectores and set ua = dxa/dλ, then the geodesic equation becomes

0 = ub∇bu
a =

d2xa

dλ2
+ Γabc

dxb

dλ

dxc

dλ
, (1.27)

where λ is an affine parameter along the curve. For time-like particles with finite rest mass, we can
identify ua with the particle four-velocity and λ with proper time. In this case the quantity aa =
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ub∇bu
a is the four-acceleration of the particle and is zero for geodesic motion. To accommodate

null particles with zero rest mass, we can always define an affine parameter by setting pa = dxa/dλ,
where pa is the particle four-momentum. In terms of pa the geodesic equation can be written as

0 = pb∇bp
a =

dpa

dλ
+ Γabcp

bpc = 0 , (1.28)

and may be expressed exactly as in the right-hand side of equation (1.27) in a coordinate repre-
sentation.

The function

L =
1

2
gabẋ

aẋb , (1.29)

where ẋa ≡ dxa/dλ, provides a useful Lagrangian for geodesics. That is, the Euler-Lagrange
equations derived from L = L(xa, ẋa) yield equations (1.27). The canonically conjugate momentum
to the coordinate xa is defined by

pa ≡
∂L

∂ẋa
, (1.30)

and is just a covariant component of the four-momentum of a particle. If the metric is independent
of any coordinate xa, then L is independent of the coordinate and pa is a constant of the motion.
In this case we say that ea = ∂a is a Killing vector of the spacetime, in which case the component
pa = P · ea is conserved, where P is the particle four-momentum vector.

The importance of Riemann curvature is reflected in the behavior of two nearby, freely-falling
particles moving along two nearby geodesics with nearly equal affine parameters. If ua = dxa/dλ is
the tangent vector to one of the geodesics and na is the differential vector connecting the particles
at equal values of affine parameter, then na satisfies the equation of geodesic deviation,

uc∇c(u
d∇dn

a) = −(4)Ra
cbdn

bucud . (1.31)

The quantity on the left measures the relative acceleration of the two particles and it will be zero
if and only if the tidal gravitational field, measured by Riemann curvature, is zero.

The Einstein field equations

In general relativity, the gravitational field is measured by the curvature of spacetime, and cur-
vature is generated by the presence of matter, or, more properly, mass-energy. The energy, mo-
mentum and stress of matter is represented by the symmetric energy-momentum, or stress-energy,
tensor T ab. All nongravitational sources of energy and momentum in the universe contribute to
T ab – all particles, fluids, fields, etc. For pure vacuum spacetimes we have T ab = 0.

Einstein’s field equations of general relativity relate the geometry of spacetime to the local
matter content in the universe according to

Gab = 8πTab , (1.32)

where Gab is the symmetric Einstein tensor defined by

Gab = (4)Rab −
1

2
gab

(4)R . (1.33)

A geometric property of Gab is that it’s covariant divergence vanishes i.e. ∇bG
ab = 0, so equation

(1.32) automatically guarantees that
∇bT

ab = 0 . (1.34)
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Equation (1.34) is the equation of motion governing the flow of energy and momentum for the
matter. This equation is the statement that the total energy-momentum of the universe is con-
served. Solving equation (1.32) completely determines the spacetime metric, up to coordinate
(gauge) transformations.

Astute readers will notice that a cosmological constant term has been omitted from equation
(1.32). This omission has occurred in spite of cosmological evidence6 that there exists such a term,
as Einstein originally proposed, and that the actual field equations are in fact

Gab + Λgab = (4)Rab −
1

2
gab

(4)R . (1.35)

However, the tiny magnitude inferred for the cosmological constant Λ makes this term completely
unimportant for determining the dynamical behavior of relativistic stars, black holes, and most of
the applications we treat in this book. Only when considering problems on cosmological scales,
like the expansion of the universe (which certainly affects the the propagation of electromagnetic
and gravitational waves produced by local sources at large redshift), or the growth of primoridal
fluctuations and large-scale structure in the early universe, is the presence of the Λ term impor-
tant. For the applications we discuss in this book, and unless specifically stated otherwise, the
cosmological constant will be taken to be zero and we will assume that our sources are immersed
in an asymptotically flat vacuum spacetime.7

Gravitational Radiation

Gravitational waves are ripples in the curvature of spacetime that propagate at the speed of light.
Once the waves move away from their source in the near zone, their wavelengths are generally much
smaller than the radius of curvature of the background spacetime through which they propagate.
The waves usually can be described by linearized theory in this far zone region. Introducing
Minkowski coordinates, one has

gab = ηab + hab, |hab| � 1 , (1.36)

where we assume Cartesian coordinates and, ignoring any quasistatic contributions to the per-
turbations hab from weak-field sources, consider only the wave contributions. Defining the trace-
reversed wave perturbation h̄ab according to

h̄ab ≡ hab −
1

2
hccηab , (1.37)

the key equation governing the propagation of a linear wave in vacuum is

�h̄ab ≡ ∇c∇ch̄ab = 0 , (1.38)

6Measurements from the Wilkinson Microwave Anisotropy Probe (WMAP) combined with the Hubble Space
Telescope yield a value for the cosmological constant of Λ = 3.73×10−56cm−2, corresponding to ΩΛ ≡ Λ/(3H0)2 =
0.721±0.015, where H0 = 70.1±1.3 km/s/Mpc is Hubble’s constant; Freedman et al. (2001); Spergel et al. (2007);
Hinshaw et al. (2009).

7It is also possible to restore the cosmological constant, or a slowly-varying term that mimicks its effects, by
incorporating an appropriate matter source term on the right-hand side of equation (1.32). Such a “dark energy”
contribution might arise from the stress-energy associated with the residual vacuum energy density (Zel’dovich
1967), or from an as yet unknown cosmic field, like a dynamical scalar field, sometimes referred to as “quintessence”
(see, e.g., Peebles and Ratra 1988; Caldwell et al. 1998; see Chapter 5.4 for a discussion of dynamical scalar fields).
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assuming it satisfies the Lorentz gauge condition

∇bh̄
ab = 0 . (1.39)

The Lorentz gauge condition does not yet define the gauge uniquely. Using the remaining gauge
freedom we can introduce the transverse-traceless or “TT” gauge, defined by

hTTa0 = 0, hTT aa = 0 , (1.40)

which is particularly useful for describing gravitational waves. Gravitational waves are completely
specified by two dimensionless amplitudes, h+ and h×, representing the two possible polarization
states of a gravitational wave. In terms of the polarization tensors e+ab and e×ab we may write a
general gravitational wave as

hTTjk = h+e
+
ij + h×e

×
ij , (1.41)

where the letters i, j, k, . . . run over spatial indices only. For example, for a linear plane wave
propagating in the z−direction, the amplitudes h+ and h× are functions of t−z only and the only
non-vanishing components of the polarization tensors are

e+xx = −e+yy = 1 , e×xy = e×yx = 1 . (1.42)

A passing gravitational wave drives the relative acceleration of two nearby test particles at a
spatial separation ξi,

ξ̈j =
1

2
ḧTTjk ξ

k . (1.43)

According to equation (1.43), the wave amplitude measures the relative strain between the parti-
cles, δξ/ξ ∼ h. Equation (1.43) is the basis of most gravitational wave detectors.

Gravitational waves carry energy and momentum. The effective stress-energy tensor for grav-
itational waves is

TGW
ab =

1

32π

〈
∂ah

TT
jk ∂bh

TT
jk

〉
, (1.44)

where < > denotes an average over several wavelengths and where repeated indices are summed.
The power generated in the form of gravitational waves by a weak-field, slow-motion (v � 1)
source is given to leading order by the quadrupole formula,

LGW = −dE
dt

=
1

5

〈
I(3)
ij I

(3)
ij

〉
, (1.45)

where I is the “reduced quadrupole moment tensor” of the emitting source, given by

Iij ≡
∫
ρ

(
xixj −

1

3
δijr

2

)
d3x . (1.46)

Here < > denotes an average over several periods of the source, and r = (x2 + y2 + z2)1/2. The
superscript (3) in the above formula indicates the third time derivative, E is the energy of the
source, and, once again, repeated indices are summed. The angular momentum of the source is
also being carried off by gravitational waves at a rate

dJi
dt

= −2

5
εijk

〈
I(2)
jmI

(3)
km

〉
. (1.47)



8 CHAPTER 1. GENERAL RELATIVITY PRELIMINARIES

Note, however, that no angular momentum is carried off if the source is axisymmetric, a result
that is quite general. In the slow-velocity, weak-field approximation, the gravitational wave per-
turbation as measured by a distant observer is given by

hTTjk (t, xj) =
2

r
ITT (2)
jk (t− r) . (1.48)

Here the “TT” part of the reduced mass quadrupole moment is evaluated at retarded time t′ = t−r
and is found from

ITTjk ≡ PjlPkmIlm −
1

2
Pjk(PlmIlm) , (1.49)

where Pjk ≡ δjk − njnk is the projection tensor that projects out the “TT” components and
nj = xj/r is a unit vector along the direction of propagation. In the same limit, one can add a
radiation-reaction potential Φreact, given by

Φreact =
1

5
I(5)
jk x

jxk , (1.50)

to the Newtonian potential in the equations of motion of the source.8 Such a radiation-reaction
potential correctly drains the source of energy and angular-momentum at just the rate at which
gravitational waves carry off these quantities, but otherwise does not properly account for the
post-Newtonian motion of the source.

A self-consistent treatment of gravitational waves that correctly describes their generation
in a strong gravitational field to all orders, their evolution in the near-zone and their ultimate
emergence and propagation in the far-zone, requires the full machinery of numerical relativity.
The same machinery automatically accounts for the back-reaction of the radiation on the source.
Forging such machinery is one of the goals of this book.

1.2 Black Holes

A black hole is a region of spacetime that cannot communicate with the outside universe. The
boundary of this region is a three-dimensional hypersurface in spacetime (a spatial 2-surface prop-
agating in time) called the surface of the black hole or the event horizon. Nothing can escape from
the interior of a black hole, not even light. Spacetime singularities inevitably form inside black
holes. Provided the singularity is enclosed by the event horizon, it is “causally disconnected” from
the exterior universe and cannot influence it. Einstein’s equations continue to describe the outside
universe, but they break down inside the black hole due to the singularity.

The most general stationary black hole solution to Einstein’s equations is the analytically
known Kerr-Newman metric.9 It is uniquely specified by just three paramters: the mass M ,
angular momentum J and the charge Q of the black hole. Special cases are the Kerr metric
(Q = 0), the Reissner-Nordstrom metric (J = 0) and the Schwarzschild metric (J = 0, Q = 0).

Schwarzschild Black Holes

The Schwarzschild solution10 for a vacuum spherical spacetime may be written as

ds2 = −
(

1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2dθ2 + r2sin2θdφ2 . (1.51)

8Burke (1971).
9Kerr (1963); Newman et al. (1965)

10Schwarzschild (1916).
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Written in this form, the radial coordinate r is called the areal radius since it is related to the
area A of a spherical surface at r centered on the black hole according to the Euclidean expression
r = (A/4π)1/2. The Schwarzschild solution holds in the vacuum region of any spherical spacetime,
including a spacetime containing matter; it thus applies to the vacuum exterior of a static or
collapsing star (Birkhoff’s theorem). The mass of this spacetime, as measured by a distant static
observer in the vacuum exterior, is M . When the vacuum extends down to r = 2M , the exterior
spacetime corresponds to a vacuum black hole of mass M . The black hole event horizon is located
at r = 2M and is sometimes called the Schwarzschild radius. It is also referred to as the “static
limit”, because static observers cannot exist inside r = 2M , and the “surface of infinite redshift”,
because photons emitted by a static source just outside r = 2M will have infinite wavelength when
measured by a static observer at infinity.

Schwarzschild geometry admits the two Killing vectors, et = ∂t and eφ = ∂φ. Freely-falling
test particles in Schwarzschild geometry thus conserve their energy E = −pt and orbital angular
momentum l = pφ. Circular orbits of test particles exist down to r = 3M . The energy and angular
momentum of a particle of rest-mass µ in circular orbit are given by

(E/µ)2 =
(r − 2M)2

r(r − 3M)
, (1.52)

(l/µ)2 =
Mr2

r − 3M
. (1.53)

The circular orbit at r = 3M corresponds to a photon orbit (E/µ→∞). Circular Schwarzschild
orbits are stable if r > 6M , unstable if r < 6M .

The singularity in the metric at r = 2M is a coordinate singularity, removable by coordinate
transformation, while the singularity at r = 0 is a physical spacetime singularity. In fact, the
curvature invariant

I ≡ (4)Rabcd
(4)Rabcd = 48M2/r6 (1.54)

clearly blows up at the origin, showing that the tidal gravitational field becomes infinite at the
center of the black hole.

One alternative coordinate choice that removes the coordinate singularity at r = 2M is the
Kruskal-Szekeres coordinate system.11 In these coordinates, the metric (1.51) takes the form

ds2 =
32M3

r
e−r/2M

(
−dv2 + du2

)
+ r2dθ2 + r2sin2θdφ2 . (1.55)

The original Schwarzschild coordinate system covers only half of the spacetime manifold, while
Kruskal-Szekeres coordinates cover the entire manifold. This situation is revealed in the Kruskal-
Szekeres diagram shown in Figure 1.1. In this spacetime diagram the timelike coordinate v is
plotted vertically and the spacelike coordinate u is plotted horizontally. Region I corresponds
to the original region r > 2M , “our universe”. Region II is the region r < 2M , the “black
hole interior”. Regions III and IV represent the “other universe”: region III has r > 2M and is
asymptotically flat, while region IV has r < 2M and can describe a “white hole”. The relationship
between Kruskal-Szekeres coordinates u and v and Schwarzschild coordinates t and r depends on
the quadrant in the u− v plane. We have

u = ± (r/2M − 1)1/2 er/4M cosh(t/4M)

v = ± (r/2M − 1)1/2 er/4M sinh(t/4M)

}
r ≥ 2M , (1.56)

11Kruskal (1960); Szekeres (1960).
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Figure 1.1: A Kruskal-Szekeres diagram. [After Shapiro and Teukolsky (1983).]

where the upper sign refers to region I and the lower to region III, while

u = ± (r/2M − 1)1/2 er/4M sinh(t/4M)

v = ± (r/2M − 1)1/2 er/4M cosh(t/4M)

}
r ≤ 2M . (1.57)

where the upper sign refers to region II, and the lower sign to region IV. The inverse transforma-
tions are

(r/2M − 1)er/2M = u2 − v2 in I, II, III, IV ; (1.58)

and

t =

{
4M tanh−1(v/u) in regions I and III ,
4M tanh−1(u/v) in regions II and IV .

(1.59)

In the Kruskal-Szekeres diagram, curves of constant r are hyperbolae with asymptotes u = ±v,
while curves of constant t are straight lines through the origin.12 From equation (1.58) we see
that the singularity at r = 0 is at v = ±(1 + u2)1/2 and is shown in Figure 1.1 as a saw-toothed
curve. Note that radial light rays propagate along 45◦ lines in the Kruskal-Szekeres diagram. Thus
timelike wordlines propagating in region II cannot escape the black hole interior and must hit the
singularity at r = 0.

12See also Figure 8.1 for a more detailed plot of region I; there rs denotes areal radius.
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Other forms of the Schwarzschild metric are useful, particularly in numerical computations.
For example, the Schwarzschild metric in isotropic radial coordinates is

ds2 = −
(

1−M/2r̄

1 +M/2r̄

)2

dt2 +

(
1 +

M

2r̄

)4 [
dr̄2 + r̄2

(
dθ2 + sin2θdφ2

)]
, (1.60)

where the transformation between areal and isotropic coordinates is

r = r̄ (1 +M/2r̄)2 . (1.61)

The inverse transformation is

r̄ =
1

2

[
r −M ± ((r − 2M))1/2

]
, (1.62)

and is double valued. Note that the isotropic coordinate r̄ describes only the region of Schwarz-
schild geometry with r ≥ 2M . The black hole event horizon is located at r̄ = M/2 in these coordi-
nates. We will have occasion to use this and other coordinate systems for analyzing Schwarzschild
black holes in later chapters.

Kerr Black Holes

The solution to Einstein’s equations describing a stationary, rotating, uncharged black hole of
mass M and angular momentum J in vacuum may be expressed in Boyer-Lindquist coordinates13

in the form

ds2 = −
(

1− 2Mr

Σ

)
dt2− 4aMrsin2θ

Σ
dtdφ+

Σ

∆
dr2 + Σdθ2 +

(
r2 + a2 +

2a2Mrsin2θ

Σ

)
sin2θdφ2 ,

(1.63)
where

a ≡ J/M, ∆ ≡ r2 − 2Mr + a2, Σ ≡ r2 + a2cos2θ , (1.64)

and where the black hole is rotating in the +φ direction. Note that when the angular momentum
parameter a is zero, the solution reduces to the Schwarzschild metric (1.51). The spin is restricted
to the range 0 ≤ a/M ≤ 1. The rotating black is stationary and axisymmetric, hence the spacetime
possesses two Killing vectors ∂t and ∂φ. Thus, test particles moving in the field of a rotating black
hole conserve their energy E = −pt and axial component of angular momentum l = pφ.14 Circular
orbit parameters for particles moving in the equatorial plane of a rotating black hole are analytic
and discussed in many references.15

The horizon of the black hole is located at r+, the largest root of the equation ∆ = 0,

r+ = M +
(
M2 − a2

)1/2
. (1.65)

The static limit is the surface within which no static observers exist; it resides at r0, the largest
root of gtt = 0:

r0 = M +
(
M2 − a2cos2θ

)1/2
. (1.66)

The region between the horizon and static limit is called the ergosphere; in this region all time-like
observers are dragged around the hole with angular velocity Ω > 0.

13Boyer and Lindquist (1967).
14There is an additional constant of the motion, called Carter’s “fourth constant” that is related to total angular

momentum; Carter (1968).
15Bardeen et al. (1972); Shapiro and Teukolsky (1983).
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Global Theorems

A number of extraordinary theorems have been proven over the years that address very general,
global properties of black hole spacetimes. We defer to other textbooks for detailed derivation
and discussion of these elegant results.16 Some of these results are encapsulated in the “four
laws of black-hole mechanics”, which are remarkably similar to the laws of thermodynamics and
demonstrate that black holes act like thermodynamic systems. As an example, consider the second
law of black hole dynamics, proven by Hawking17: In an isolated system, the sum of the surface
areas of all black holes can never decrease. Consider the implication of this area theorem for a
Kerr black hole. The surface area is the area A of the horizon at some instant of time. Setting
r = r+ and t = constant and using equation (1.63) gives the 2-metric on the horizon,

(2)ds2 =
(
r2
+ + a2cos2θ

)
dθ2 +

(2Mr+)2

r2
+ + a2cos2θ

sin2θdφ2 , (1.67)

from which we may derive A according to

A =

∫ ∫ √
(2)gdθdφ , (1.68)

where g is the determinant of the 2-metric. Evaluating equation (1.68) yields

A = 8πM
[
M + (M2 − a2)1/2

]
, (1.69)

which reduces to A = 4π(2M)2 when a = 0. If we define an irreducible mass Mirr according to

A ≡ 16πM2
irr , (1.70)

then we may write (1.69) as

M2 = M2
irr +

J2

4M2
irr

. (1.71)

Equation (1.71) states that the mass of a Kerr black hole is composed of an irreducible contribution
plus a rotational kinetic energy contribution.18 According to the area theorem, only the rotational
energy contribution can be tapped as a source of energy by an external system interacting with
the hole, since the irreducible mass can never decrease. For a system of black holes, the sum of
the squares of the irreducible masses of all black holes can never decrease, at least classically.

Taking quantum mechanics into account, a black hole is characterized by a well-defined tem-
perature T , emits thermal Hawking radiation, and has an entropy S proportional to its area
according to

S =
kc3

G~
A
4
, (1.72)

where k is Boltzmann’s constant, h is Planck’s constant, and where we have temporarily restored G
and c.19 When black hole evaporation via Hawking radiation is taken into account, the generalized
second law of black hole thermodynamics states that the total entropy, the sum of black hole and
radiation entropies, never decreases.20

16Hawking and Ellis (1973); Misner et al. (1973); Wald (1984); Poisson (2004), and references therein.
17Hawking (1971, 1972, 1973).
18Christodoulou (1970); Christodoulou and Ruffini (1971).
19Bekenstein (1973, 1975); Hawking (1974, 1975).
20Our treatment throughout focusses on classical general relativity, since it provides an excellent description for

the astrophysical systems that we shall consider. Only for “mini” black holes of mass M <∼ 1015 g is the evaporation
timescale shorter than the age of the universe.
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1.3 Oppenheimer-Volkoff Spherical Equilibrium Stars

The metric describing the gravitational field of a spherical star may be written in the form

ds2 = −e2Φdt2 + e2λdr2 + r2dΩ2 , (1.73)

where Φ and λ are functions of t and r in general, but functions of areal radius r alone in the case
of static equilibrium, and dΩ2 = dθ2 + sin2θdφ2. Suppose that the stellar matter can be described
as a perfect fluid and that the equation of state can be written in the form ρ = ρ(nb, s) , where ρ
is the total mass-energy density, nb is the baryon density and s is the specific entropy. The first
law of thermodynamics then yields the pressure,

P = n2
b

∂(ρ/nb)

∂nb
= P (nb, s) . (1.74)

In many applications the equation of state reduces to a one-parameter equation of state of the
form

P = P (ρ) . (1.75)

Such is the case, for example, when the mattter is isentropic, as in the case of cold nuclear matter
(s = 0) or matter in a supermassive star (s = constant).

The equations of stellar structure for spherical equilibrium stars in general relativity are cou-
pled, first-order, ordinary differential equations. Defining a new metric function m(r) by

eλ ≡
(

1− 2m

r

)−1

, (1.76)

Einstein’s equations give

dm

dr
= 4πr2ρ , (1.77)

dP

dr
= −ρm

r2

(
1 +

P

ρ

)(
1 +

4πPr3

m

)(
1− 2m

r

)−1

, (1.78)

dΦ

dr
= −1

ρ

dP

dr

(
1 +

P

ρ

)−1

. (1.79)

The above set of equations is sometimes called the Oppenheimer-Volkoff or OV equations, and
sometimes the Tolman-Oppenheimer-Volkoff or TOV equations, of spherical equilibrium.21 The
Newtonian limit is recovered by choosing P � ρ and m� r.

The quantity m(r) can be interpreted as the “mass interior to radius r”. The total mass of
the star is given by equation (1.77),

M =

∫ R

0

4πr2ρdr , (1.80)

where R is the stellar radius (the point where P = ρ = 0). Note that the quantity m(R) must
equal M so that the interior metric coefficient (1.76) will match smoothly onto the exterior vacuum
Schwarzschild metric (1.51). The total rest-mass M0 is determined from

M0 =

∫ R

0

4πr2ρ0(1− 2m/r)−1/2dr , (1.81)

21Oppenheimer and Volkoff (1939); Tolman (1939).
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where ρ0 is the rest-mass density. The quantities ρ and ρ0 are related by

ρ = ρ0 (1 + ε) , (1.82)

where ε is the internal energy density per unit rest mass. For baryonic matter, ρ0 = nbmb, where
mb is the mean baryonic rest-mass. For bound configurations we have M < M0: the total mass-
energy M includes negative gravitational potential energy in addition to the rest mass-energy M0

and internal energy.
Equations (1.77) - (1.79) are straightforward to integrate numerically to construct a stellar

model: First choose a central density, ρc, for which the equation of state (1.75) gives the central
pressure Pc. The central boundary conditions

m = 0 and P = Pc at r = 0 , (1.83)

allow one to integrate equations (1.77) and (1.78) beginning at the origin, to get m(r) and P (r),
hence ρ(r), for all 0 ≤ r ≤ R. It is useful to integrate equation (1.79) simultaneously with the
other two equations, choosing an arbitrary value for Φ(r = 0). Since equation (1.79) is linear
in Φ, one can then add a constant value to Φ everywhere so that it matches smoothly onto the
Schwarzschild solution at the surface:

Φ(R) =
1

2
ln

(
1− 2M

R

)
. (1.84)

Integrating the OV equations analytically for a uniform density, incompressible star shows that
equilibrium is possible only if

2M

R
<

8

9
. (1.85)

In fact, the above limit for the maximum “compaction” M/R of a uniform density sphere applies
to spheres of arbitrary density profile, provided the density does not increase outwards.22

Polytropes

Some of the simplest and most useful families of equilibrium models are constructed from an
isentropic equation of state of the form,

P = Kρ0
Γ (K, Γ constants) , (1.86)

where ρ0 is the rest-mass density. The constant K is the polytropic gas constant and the quantity
n defined by Γ ≡ 1 + 1/n is called the polytropic index. Stellar models constructed from such
an equation of state are called polytropes. For an equation of state give by equation (1.86), we
find from the first law of thermodynamics (or from equation (1.74)) that ρ0ε = P/(Γ − 1) and
ρ = ρ0 + P/(Γ− 1).

There are a number of physically interesting stars that can be modeled as polytropes in a first
approximation. For example, stars supported against collapse by the pressure of noninteracting,
nonrelativistic, degenerate fermions can be modeled as n = 3/2 polytropes, while stars supported
by noninteracting, ultrarelativistic, degenerate fermions can be modeled as n = 3 polytropes. In
such cases, lower-mass objects are constructed from nonrelativistic fermions, while higher-mass

22See, e.g., Weinberg (1972), Section 11.6. Note that this limit is sometimes referred to as the “Buchdahl limit”;
Buchdahl (1959).



1.3. OPPENHEIMER-VOLKOFF SPHERICAL EQUILIBRIUM STARS 15

Figure 1.2: Equilibrium sequence for n = 1 spherical polytropes. The total mass-energy M̄ (solid
line) and the rest-mass M̄0 (dotted line) are plotted as functions of the central mass-energy density
ρ̄c along the sequence. The dots indicate the turning points, or the location of the maximum mass
configuration, on each curve. The turning points occur at the same density along the two curves.

objects are constructed from highly relativistic fermions. White dwarfs, which are supported
by the pressure of degenerate electrons, and neutron stars, which are supported by degenerate
neutrons, are members of this class of models.23 When nuclear interactions are included, high
mass neutron stars are better represented by a “stiffer” equation of state, but the resulting models
are often crudely modeled as n = 1 relativistic polytropes. Another example is a star supported
by thermal radiation pressure at constant specific entropy, which can be modeled as an n = 3
polytrope.24

When using a polytropic equation of state to construct stellar equilibrium models, it is always
possible to scale out the constant K. In gravitational units Kn/2 has units of length, so that we

23For ultrarelativistic degenerate fermions there is a maximum mass limit, which for a white dwarf is called the
Chandrasekhar limit and is about 1.4M�. S. Chandrasekhar received the Nobel prize in 1983, in part for identifying
this important limit (Chandrasekhar 1931).

24For a thorough discussion of polytropes and more detailed models of compact objects like white dwarfs, neutron
stars and supermassive stars and their stability properties, see Shapiro and Teukolsky (1983) and references therein.
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can introduce a new set of nondimensional quantities, often denoted by a bar:

r̄ ≡ K−n/2r , ρ̄0 ≡ Knρ0 , ρ̄ ≡ Knρ ,

P̄ ≡ KnP , M̄ ≡ K−n/2M , M̄0 ≡ K−n/2M0 . (1.87)

One can thus set K = 1 in numerical integrations and either use the above relations to scale the
results to more physical values of K, or express answers in terms of nondimensional ratios that
are independent of K (e.g. R/M, M2ρ0, etc.).

In Figure 1.2 we plot the equilibrium sequence for n = 1 polytropes as an example. The
turning point along a curve of equilibrium mass versus central density, like the ones plotted
here, identifies the maximum mass configuration. It also marks the onset of radial dynamical
instability along the sequence. In particular, configurations to the left of the turning point, where
dM/dρc > 0, are dynamically stable to small radial perturbations and will undergo small amplitude
radial oscillations when subjected to such perturbations, while configurations to the right, where
dM/dρc < 0, are unstable and will undergo catastrophic collapse. For the case of an n = 1
polytrope, the turning point occurs at ρ̄c = 0.420 where M̄ = 0.164 and M̄0 = 0.180.25

1.4 Oppenheimer-Snyder Spherical Dust Collapse

Among the most useful analytical solutions the Einstein equations is the solution of Oppenheimer
and Snyder (1939) describing the collapse of a spherical star with uniform density and zero pressure
to a Schwarzschild black hole. Though it treats a highly idealized collapse scenario, the analysis
is exact and fully nonlinear. The Oppenheimer-Snyder, or OS, solution illustrates many generic
features of gravitational collapse and black hole formation. Since the solution is analytic, it is
simple to work with and is often used to test and calibrate numerical codes designed to deal with
more complicated cases, as we shall see later. Because of the important role that it plays in
numerical relativity, we present this classic solution here.

In the OS solution, each fluid element in the star of mass M follows a radial geodesic, as there
is no pressure. The interior metric is given by the familiar (closed Friedmann) line element

ds2 = −dτ 2 + a2(dχ2 + sin2 χdΩ2) . (1.88)

Here τ is the time coordinate, measured from the onset of collapse, χ is a Lagrangian or comoving
radial coordinate and a is related to τ implicitly through the conformal time parameter η,

a =
1

2
am(1 + cos η) , (1.89)

τ =
1

2
am(η + sin η) . (1.90)

The parameter η varies between 0 and π. The spatial coordinates of a fluid element are comoving,
with χ, θ and φ remaining fixed during the collapse, and the time coordinate τ measures the
proper time of a fluid element. This choice of coordinates is called synchronous, Gaussian normal
or geodesic. The surface of the star is located at some fixed radial coordinate χ = χ0.

25We recommend that students newly aquainted with computational physics integrate the OV equations numer-
ically for an n = 1 polytrope and reproduce Figure 1.2, together with the quoted values at the turning points,
before moving on to some of the more difficult computational challenges that lie ahead.
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The exterior metric is given by the Schwarzschild line element,

ds2 = −
(

1− 2M

rs

)
dt2 +

(
1− 2M

rs

)−1

dr2
s + r2

sdΩ2 . (1.91)

The surface of the star in these coordinates is at rs = R(τ) and follows a radial geodesic according
to

R =
1

2
R0(1 + cos η) , (1.92)

τ =

(
R3

0

8M

)1/2

(η + sin η) , (1.93)

where the subscript ‘0’ denotes the value of the radius at t = 0. Matching the interior and exterior
solutions at the surface yields

am =

(
R3

0

2M

)1/2

, (1.94)

sinχ0 =

(
2M

R0

)1/2

. (1.95)

According to the above equation, χ0 must lie in the range 0 ≤ χ0 ≤ π/2.
The fluid four-velocity ua = ∂τ satisfies the geodesic equations (1.27). In these coordinates,

the rest-mass density ρ0 (which equals the total mass-energy density ρ, since, in the absence of
pressure, there is no internal energy either) is a function of proper time alone,

ρ0(τ)

ρ0(0)
= Q−3(τ) , (1.96)

where

Q(τ) =
a

am
=

1

2
(1 + cos η) . (1.97)

In our synchronous coordinate system the star thus remains homogeneous throughout the collapse.
The proper time for the star to undergo complete collapse is τcoll = π(R3

0/8M)1/2, as is evident
from equations (1.92) and (1.93). At this time a central singularity forms at the center of the star.

It is both instructive and straightforward to probe the spacetime geometry of OS collapse.
The spacetime diagram in Figure 1.3 shows the worldlines of infalling Lagrangian fluid elements
as well as the location of the black hole event horizon. The event horizon first forms at the center
and grows monotonically outward to encompass the entire star. Determining the event horizon
requires that the global spacetime be known. Since it is known analytically in this example, the
location of the event horizon can be determined quite easily: Outgoing null rays in the interior
satisfy ds2 = 0 or dτ = a(τ)dχ from equation (1.88). Using equations (1.89) and (1.90) this yields
dχ/dη = 1. Thus an outgoing ray emitted at η = ηe, χ = χe follows the trajectory

χ = χe + (η − ηe) . (1.98)

The event horizon is the trajectory of an outgoing null ray that originates at the stellar center
and intersets the surface of the star just when the surface crosses R = 2M . This trajectory
traces the worldline of the the last ray that manages to escape to infinity from any point in the
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Figure 1.3: Spacetime diagram for Oppenheimer-Synder spherical collapse to a Schwarzschild
black hole. The initial stellar (areal) radius is R/M = 5. Worldlines of spherical fluid shells are
shown as solid lines and labeled by the interior mass fraction. The event horizon is indicated by
the dotted line. The shaded area denotes the region of trapped surfaces and its outer boundary
is the apparent horizon. The inner boundary of the region of trapped surfaces is denoted by the
dashed line. The spacetime singularity that forms at the center is indicated by the zig-zag line.

interior. According to equation (1.92) the stellar surface crosses R = 2M when η ≡ ηAH =
2 cos−1(2M/R0)

1/2 – the reason for calling this value ηAH will become “apparent” shortly. This
yields for the event horizon trajectory inside the star

χ = χ0 + (η − ηAH) , (1.99)

which holds from ηEH ≤ η ≤ ηAH , where ηEH = ηAH − χ0 is the value of η at which the event
horizon first forms at the origin. For η ≥ ηAH , and for all τ ≥ τ(ηAH), the entire star is inside
the event horizon, which remains frozen at rs = 2M , the areal radius of the event horizon for a
static Schwarzschild black hole. As is evident in the spacetime diagram, the spacetime singularity
which forms at the center is “clothed” by the black hole event horizon, and therefore the black
hole exterior is casually disconnected from the singularity. This result is in accord with Penrose’s
Cosmic Censorship Conjecture,26 which states that gravitational collapse from well-behaved initial
conditions never gives rise to a “naked” singularity (i.e. a singularity not clothed by an event
horizon). We shall return to this Conjecture later on.

A region of trapped surfaces is also shown in the spacetime diagram. It has the property
that an outgoing bundle of null rays emitted at any point within such a region converges, i.e., its
cross-sectional area instantaneously decreases. The apparent horizon is the outer boundary of the
region of trapped surfaces. The significance of an apparent horizon is that it can be identified

26Penrose (1969).
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by knowing the local spacetime geometry and, when it exists, it always resides inside the event
horizon. As we will see later on, the appearance of an apparent horizon is gauge dependent; for
some time coordinates, an apparent horizon does not appear even when a black hole forms. But
the converse is not true, hence whenever an apparent horizon can be identified, it signifies that
a black hole has been formed. For stationary spacetimes, the apparent horizon always coincides
with the event horizon. Therefore, once the spacetime settles down to a stationary state, finding
the apparent horizon is an easy way to locate the event horizon.

For spherical collapse it is particularly easy to locate a region of trapped surfaces, if it exists.
Consider a spherical flash of light emitted at χ = χe in the matter interior. As it propagates
outward, the areal radius of the flash satisfies

rs(η) = a sinχ =
1

2
am(1 + cosη)sin(χe + η − ηe) , (1.100)

where we have used equation (1.98). If the bundle lies in a region of trapped surfaces then its area
must decrease,

d(4πr2
s)

dη

∣∣∣∣
η=ηe

≤ 0 , (1.101)

or equivalently
drs
dη

∣∣∣∣
η=ηe

≤ 0 , (1.102)

where equality identifies the boundary of the region of trapped surfaces. Using equation (1.100),
equation (1.102) may be evaluated to give

ηe ≥ π − 2χe . (1.103)

For a flash emitted inside the matter, we have χe ≤ χ0, in which case the earliest that equa-
tion (1.103) is satisfied is at

ηe = π − 2χ0 = 2cos−1

(
2M

R0

)1/2

= ηAH , (1.104)

where we have used equation (1.95). The apparent horizon first appears at the value of η at
which the matter surface crosses rs = 2M . For τ ≥ τ(ηAH) the apparent horizon remains fixed
at rs = 2M , coinciding with the event horizon. The inner and outer boundaries of the region of
trapped surfaces coincide when the surface is at R = 2M . Thereafter, the inner boundary moves
inside the matter. According to equation (1.103), it is located at χ = π/2 − η/2 for η ≥ ηAH ,
hence its areal radius is given by

rI = a sinχ =
1

2
am(1 + cosη)sin(π/2− η/2) =

(
R3

0

2M

)1/2

cos3(η/2) . (1.105)
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Chapter 2

The 3+1 Decompostion of Einstein’s
Equations

The major purpose of this book is to describe how to determine the dynamical evolution of a
physical system governed by Einstein’s equations of general relativity. For all but the simplest
systems, analytic solutions for the evolution of such systems do not exist. Hence the task of solving
Einstein’s equations must be performed numerically on a computer. To construct algorithms to
do this we first have to recast Einstein’s four-dimensional field equations (1.32) into a form that
is suitable for numerical integration. In this chapter we present such a formulation.

The problem of evolving the gravitational field in general relativity can be posed in terms of
a traditional initial value problem or “Cauchy” problem. This is a fundamental problem arising
in the mathematical theory of partial differential equations. In classical dynamics, the evolution
of a system is uniquely determined by the initial positions and velocities of its constituents. By
analogy, the evolution of a general relativistic gravitational field is determined by specifying the
metric quantities gab and ∂tgab at a given (initial) instant of time t. In particular, we need to
specify the metric field components and their first time derivatives everywhere on some three-
dimensional spacelike hypersurface labeled by coordinate x0 = t = constant. The different points
on this surface are distinguished by their spatial coordinates xi. Now these metric quantities can
be integrated forward in time provided we can obtain from the Einstein field equations expressions
for ∂2

t gab at all points on the hypersurface. That way we can integrate these expressions to compute
gab and ∂tgab on a new spacelike hypersurface at some new time t+ δt, and then, by repeating the
process, obtain gab for all other points x0 and xi in the (future) spacetime.1

Obtaining the appropriate expressions for ∂2
t gab for such an integration is not so trivial. We

require 10 second derivatives and, at first sight, there appear to be 10 field equations, Gab = 8πTab,
that might furnish them. But note that the Bianchi identities ∇bG

ab = 0 give

∂tG
a0 = −∂iGai −GbcΓabc −GabΓcbc . (2.1)

Since no term on the right hand side of equation (2.1) contains third time derivatives or higher,
the four quantities Ga0 cannot contain second time derivatives. Hence the four equations

Ga0 = 8πT a0 (2.2)

do not furnish any of the information required for the dynamical evolution of the fields. Rather,
they supply four constraints on the initial data, i.e. four relations between gab and ∂tgab on the

1Here we are assuming, of course, that suitable boundary conditions and initial data are chosen so that these
solutions do indeed exist.
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initial hypersurface at x0 = t. The only truly dynamical equations must be provided by the six
remaining relations

Gij = 8πT ij . (2.3)

It is not surprising that there is a mismatch between the required number (10) of second time
derivatives ∂2

t gab and the available number (6) of dynamical field equations. After all, there is
always a fourfold ambiguity associated with the freedom to choose four different coordinates to
label points in spacetime. So, for example, we could always choose Gaussian normal coordinates
and set g00 = −1 and g0i = 0. That way we have 6 metric variables gij to evolve, 6 dynamical
equations (2.3) to provide the required quantities ∂2

t gij, and four constraint equations (2.2) that
relate gij and ∂tgij on the initial hypersurface. The initial value problem thus appears to be solved,
at least in principle.2

Exercise 2.1 Demonstrate that the constraint equations (2.2), if satisfied initially, are automatically
satisfied at later times when the gravitational field is evolved by using the dynamical equations (2.3).
Equivalently, show that the relation ∂t(Ga0 − 8πT a0) = 0 will be satisfied at the initial time x0 = t,
hence conclude that equation (2.2) will be satisfied at x0 = t+ δt, etc.
Hint: Use the Bianchi identities together with the equations of energy-momentum conservation to
evaluate ∇b(Gab − 8πT ab) at x0 = t.

The above discussion reveals that formulating the Cauchy problem in general relativity log-
ically involves a decomposition of four-dimensional spacetime into three dimensional space and
one-dimensional time. In this chapter we will explore how this split induces a natural “3 + 1”
decomposition of Einstein’s equations and leads to the standard “3 + 1” equations of general rela-
tivity. The 3+1 equations are entirely equivalent to the usual field equations (1.32) but they focus
on the evolution of 12 purely spatial quantities closely related to gij and ∂tgij and the constraints
that they must satisfy on spatial hypersurfaces. Once these spatial field quantities are specified on
some initial “time slice” (i.e. spatial hypersurface) consistent with the 3 + 1 constraint equations,
the 3 + 1 evolution equations can then be integrated, together with evolution equations for the
matter sources, to determine these field quantities at all later times.

The 3+1 formalism has some advantages over the usual four-dimensional spacetime viewpoint
for treating the Cauchy problem. It provides a nice geometric interpretation of the “foliation” of
spacetime, i.e., the way in which successive time slices are chosen to fill spacetime. It furnishes (i) 4
constraint equations that contain no time derivatives but provide relations between the spatial field
quantities and their matter sources that must be satisfied on any time slice, and (ii) a convenient
set of 12 coupled, first-order, time-evolution equations for the spatial field variables in terms of field
and source quantities residing on the slice. The 3 + 1 formalism also identifies 4 freely specifiable
functions appearing in the metric that are directly associated with the fourfold freedom to choose
time and space coordinates arbitrarily. Understanding the geometric role that these 4 “gauge”
functions play in choosing both the foliation of spacetime and the labeling of points on spatial

2Only 4 of the 12 functions gij and ∂tgij represent true dynamical degrees of freedom that can be independently
specified on the initial hypersurface. The reason is as follows: In addition to the 4 constraint equations, one
can choose 3 arbitrary functions to induce coordinate transformations on the hypersurface without changing its
geometry. Plus there exists the freedom to choose the initial hypersurface in the embedding spacetime, which can
be accomplished by specifying one other arbitrary function. The remaining 12 − 4 − 3 − 1 = 4 freely specifiable
quantities can be identified with 2 sets of the pair of metric functions (gij ,∂tgij), i.e., the three-metric and its
“velocity”. These four functions specify the 2 dynamical degrees of freedom characterizing a gravitational field in
general relativity (e.g., the 2 polarization states of a gravitational wave). For further discussion, see Chapter 3
below and Wald (1984), Chapter 10.2.
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hypersurfaces facilitates our making convenient choices for their values as a numerical evolution
unfolds.

The origin of the 3+1 decomposition of Einstein’s equations has a long and rich history. Much
of the original work was related to the study of the Cauchy problem and the solution of the initial
value equations.3 Other early work was directed toward a Hamiltonian formulation of general
relativity in 3+1 dimensions, with an eye toward building a theory of quantum gravity. The work
of Arnowitt et al. (1962), often referred to as “ADM”, has been the most frequently cited study in
this category. ADM construct a Hamiltonian density and use it to formulate an action principle to
derive a set of evolution equations for the metric functions and their “geometrodynamic conjugate
momenta”, which are quantities containing first-order time derivatives of the metric. Because of
the wide influence of this paper, the standard 3 + 1 equations that we will derive in this chapter
are sometimes referred to as the “ADM equations”, which, though equivalent, are not identical to
the ones obtained in Arnowitt et al. (1962).

Most of the modern focus on the 3 + 1 approach has been triggered by the necessity of solving
Einstein’s equations numerically on computers to obtain solutions to physically realistic dynam-
ical systems and to probe fundamental aspects of the theory of general relativity that analytic
techniques have been unable to resolve. These are the motivations underlying the treatment pre-
sented here. We shall see in later chapters that the goal of achieving numerically stable computer
solutions, especially when the absence of spatial symmetries requires us to work in all three spatial
dimensions, has led to alternative formulations and to crucial modifications of the standard 3 + 1
equations. But before we describe these modifications, we will derive the standard set of 3 + 1
equations in this chapter.

To introduce the subject, we shall begin by discussing the initial value problem in electrody-
namics, a simpler field theory than general relativity, but often a good place to gain intuition.
Specifically, we will cast Maxwell’s equations into 3 + 1 form in Minkowski spacetime. We will
then return to general relativity, introduce a foliation of spacetime, and define the “intrinsic” and
and “extrinsic” curvature of spacelike hypersurfaces. Next we will relate the three-dimensional
curvature intrinsic to these hypersurfaces to the four-dimensional curvature of spacetime, and this
will give rise to the equations of Gauss, Codazzi and Ricci. Finally, we will use these equations
to rewrite the Einstein’s field equations (1.32) in terms of the three-dimensional curvatures. The
end result will be the complete set of 3 + 1 equations in standard form, summarized in Box 2.1,
and a roadmap for building dynamical spacetimes.

2.1 Notation and Conventions

Throughout the remainder of the book we shall, for the most part, adopt abstract index nota-
tion4 to represent tensors, as is commonly done in numerical relativity. Specifically, we will use
the convention that a variable with Latin indices does not represent a tensor component, but
instead represents the abstract, coordinate-free tensor itself. For example, the symbol Tab no
longer stands for the covariant “ab” component in a particular basis of the tensor heretofore re-
ferred to as T. Instead, Tab represents the second-rank, coordinate-free tensor T itself. Likewise,
the equation Gab = 8πTab is no longer a relation between tensor components, but is instead a

3Darmois (1927); Lichnerowicz (1944); Fourès-Bruhat (1956); see also York, Jr. (1979) and references therein.
4See, e.g., Wald (1984).
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coordinate-independent tensor equation.5 In fact, many equations in this Chapter, including Ein-
stein’s equations (1.32), may be interpreted as tensor equations in abstract index notation, rather
than relations equating tensor components.

In light of our switch in notation, it is useful to revisit some of the other objects and a few
representative equations that we have encountered in this Chapter. In abstract index notation, we
denote a basis vector ea as eb(a), for example, where the superscript b indicates that this object is a
vector, and the subscript a in parenthesis means that this is the a-th basis vector. In the abstract
index notation of Wald (1984) components of tensors in a particular basis are distinguished from
the abstract tensor itself by displaying the components with Greek indices. For example, the
β-component of the a-th basis vector, when expanded in its own basis, is eβ(a) = δa

β. Only rarely
might we have need to borrow this notation; hence, our references to components of tensors in a
specific basis will appear with Latin indices, but the meaning should be clear from the context.
For example, the dot product between two vectors can be written as AaBa or gabA

aBb. In a few,
very rare instances in the following chapters, we may slip back to boldface for clarity or emphasis
when representing a particular tensor.

We shall also adopt the standard convention whereby the letters a− h and o− z are used for
four-dimensional spacetime indices that run from 0 to 3, while the letters i − n are reserved for
three-dimensional spatial indices that run from 1 to 3.

We denote the four-dimensional spacetime metric by gab, the three-dimensional spatial metric
by γij, and its conformally related metric by γ̄ij. All of these are objects that we will encounter
in later Chapters. Four-dimensional objects associated with gab are denoted with a superscript (4)

in front of the symbol, objects associated with γ̄ij carry a bar, and objects related to γij carry
no decorations. For example, Γijk is associated with γij, Γ̄ijk with γ̄ij, and (4)Γijk with gab. The
covariant derivative operator is denoted with Di and D̄i when associated with the spatial metric
and the conformally related metric, respectively, but with the nabla symbol ∇a when associated
with the four-dimensional metric gab. We occasionally use the symbol ∆flat for the flat scalar
Laplace operator.

We denote the symmetric and antisymmetric parts of a tensor with brackets () and [] around
indices in the usual way. For example

T(ab) =
1

2
(Tab + Tba) and T[ab] =

1

2
(Tab − Tba) (2.4)

represent the symmetrized and antisymmetrized tensors constructed from Tab. We write a flat four-
dimensional spacetime metric as ηab (Minkowski spacetime) and a flat three-dimensional spatial
metric as ηij; these symbols are meant to apply in any coordinate system. Only when specifically
stated will ηab denote the Minkowski metric in Cartesian (inertial) coordinates with components
diag(−1, 1, 1, 1). Finally, we refer to a four-dimensional line interval in spacetime as ds2 and a
three-dimensional line interval on a spatial hypersurface as dl2.

2.2 Maxwell’s Equations in Minkowski Spacetime

Many of the concepts that we will encounter in this chapter are more transparent in the simpler
framework of electromagnetisim in special relativity as described by Maxwell’s equations. In

5Recall, though, that an equality that holds between components of tensors in one frame holds in all frames and
in this sense also constitutes a tensor equation.
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several places throughout this book we will return to electromagnetism to illustrate various features
of Einstein’s equations.

Maxwell’s equations naturally split into two groups. The first group can be written as

CE ≡ DiE
i − 4πρ = 0 (2.5)

CB ≡ DiB
i = 0, (2.6)

where Ei and Bi are the electric and the magnetic fields and ρ is the charge density. Here and
throughout, Di denotes a spatial, covariant derivative with respect to the coordinate xi. In flat
space and cartesian coordinates, it reduces to an ordinary partial derivative. The reader should
refer to Chapter 2.1 for a summary of the notation adopted in this book.

The above equations involve only spatial derivatives of the electric and magnetic fields and
hold at each instant of time independently of the prior or subsequent evolution of the fields. They
therefore constrain any possible configurations of the fields, and are correspondingly called the
constraint equations.

The second group of Maxwell equations is

∂tEi = εijkD
jBk − 4πji (2.7)

∂tBi = −εijkDjEk, (2.8)

where ji is the charge 3-current. These equations describe how the fields evolve forward in time,
and are therefore called the evolution equations. To completely determine the time evolution of the
electromagnetic fields we also have to specify how the sources ρ and ji evolve according to the net
force acting on them. Their motion depends on what forces are acting on them, but the motion of
the sources is less relevant for our discussion here. We do note, however, that the total charge is
conserved, as can be seen by taking the spatial divergence of equation (2.7) and substituting the
constraint (2.5) to get the continuity equation,

∂ρ

∂t
= Dij

i. (2.9)

It is possible to bring Maxwell’s equations into a form that is closer to the 3+1 form of
Einstein’s equations that we will derive in this chapter. To do so, we introduce the vector potential
Aa = (Φ, Ai) and write Bi as

Bi = εijkD
jAk. (2.10)

By construction, Bi automatically satisfies the constraint (2.6). The two evolution equations (2.7)
and (2.8) can be rewritten in terms of Ei and Ai

∂tAi = −Ei −DiΦ (2.11)

∂tEi = DiD
jAj −DjDjAi − 4πji. (2.12)

Exercise 2.2 Show that the evolution equations (2.11) and (2.12) preserve the constraint (2.5);
i.e. show that

∂

∂t
CE = 0. (2.13)

With the vector potential Ai we have introduced a gauge freedom into electrodynamics which
is expressed in the freely specifiable gauge variable Φ.
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Exercise 2.3 Show that a transformation to a new “tilded” gauge according to

Φ̃ = Φ− ∂Λ
∂t

(2.14)

Ãi = Ai +DiΛ (2.15)

leaves the physical fields Ei and Bi unchanged.

The initial value problem in electrodynamics can now be solved in two steps. In the first step,
initial data (Ai, Ei), together with the sources (ρ, ji), are specified that satisfy the constraint (2.5).
In the second step, these fields are evolved according to the evolution equations (2.11) and (2.12).
Before the evolution equations can be solved, a suitable gauge condition has to be chosen.

Exercise 2.4 In the so-called radiation, Coulomb or transverse gauge, the divergence (or longitudinal
part) of Ai is chosen to vanish

DiA
i = 0, (2.16)

so that Ai is purely transverse. Show that in this gauge Φ plays the role of a Coulomb potential,

DiDiΦ = −4πρ, (2.17)

and that the vector potential Ai satisfies a simple inhomogeneous wave equation

�Ai ≡ −∂2
tAi +DjDjAi = −4πji +Di(∂tΦ). (2.18)

As we will see, the initial value problem in general relativity shares many features with that in
electrodynamics. In the remainder of this chapter we will show how Einstein’s equations can be
split into a set of constraint and evolution equations. We will also see how the coordinate freedom
inherent in Einstein’s equations manifests itself as a gauge freedom that is very similar to that
associated with the vector potential Ai. Later chapters will deal with how the constraint equations
can be solved, how suitable coordinate conditions can be defined, and how this formalism can be
used to construct interesting solutions to Einstein’s equations.

2.3 Foliations of Spacetime

We will assume that the spacetime manifold M we aim to model is four-dimensional, and will
denote the metric in this spacetime by gab (see Chapter 2.1 for an explanation of our abstract
index convention.) Casting Einstein’s equations in a 3+1 form amounts to carving this spacetime
M into a stack of spatial slices and expressing the four-dimensional spacetime curvature quantities
in terms of three-dimensional curvature quantities related to the spatial slices.

More formally, we assume that the spacetime (M, gab) can be foliated into a family of non-
intersecting spacelike three-surfaces Σ, which arise, at least locally, as the level surfaces of a scalar
function t that can be interpreted as a global time function (see Fig. 2.1 for an illustration). From
t we can define the 1-form

Ωa = ∇at , (2.19)

which is closed by construction,6

∇[aΩb] = ∇[a∇b]t = 0. (2.20)

6Equivalently, we may define the vector field Ωa = ∇at, which is everywhere normal to the t = constant
hypersurface Σ. Like any vector formed from the gradient of a scalar function, the curl of Ωa must vanish. In
the language of differential forms and the exterior calculus, we have Ω̃ = d̃t, from which equation (2.20) follows
automatically from the general rules of exterior differentiation: d̃Ω̃ = d̃d̃t = 0; see, e.g., Lightman et al. (1975),
Problem 8.5.
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Figure 2.1: A foliation of the spacetime M . The hypersurfaces Σ are level surfaces of the coordinate
time t, Ωa = ∇at. The normal vector na is orthogonal to these t = constant spatial hypersurfaces.

The 4-metric gab allows us to compute the norm of Ω̃, which we call −α−2

‖Ω‖2 = gab∇at∇bt ≡ − 1

α2
. (2.21)

As we will see more clearly later, α measures how much proper time elapses between neighboring
time slices along the normal vector Ωa to the slice, and is therefore called the lapse function. We
assume that α > 0, so that Ωa is timelike and the hypersurface Σ is spacelike everywhere.

Exercise 2.5 Show that the normalized 1-form

ωa ≡ αΩa (2.22)

is rotation-free
ω[a∇bωc] = 0. (2.23)

We can now define the unit normal to the slices as

na ≡ −gabωb. (2.24)

Here the negative sign has been chosen so that na points in the direction of increasing t,

naωa = −gabωaωb = 1. (2.25)

By construction, ni is a normalized and timelike

nana = gabωaωb = −1 (2.26)
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and may therefore be thought of as the four-velocity of a “normal” observer whose worldline is
always normal to the spatial slices Σ.

With the normal vector we can now construct the spatial metric γab that is induced by gab on
the three-dimensional hypersurfaces Σ

γab = gab + nanb. (2.27)

Thus γab is a projection tensor that projects out all geometric objects lying along na. This metric
allows us to compute distances within a slice Σ. To see that γab is purely spatial, i.e., resides
entirely in Σ with no piece along na, we contract it with the normal na,

naγab = nagab + nananb = nb − nb = 0. (2.28)

Intuitively, γab calculates the spacetime distance with gab and then kills off the timelike contribution
(normal to the spatial surface) with nanb. The inverse spatial metric can be found by raising the
indices of γab with gab,

γab = gacgbdγcd = gab + nanb. (2.29)

Next we break up 4-dimensional tensors by decomposing them into a purely spatial part, which
lies in the hypersurfaces Σ, and a timelike part, which is normal to the spatial surface. To do
so, we need two projection operators. The first one, which projects a 4-dimensional tensor into a
spatial slice, can be found by raising only one index of the spatial metric γab

γab = gab + nanb = δab + nanb. (2.30)

Exercise 2.6 Show that γa
bv

b, where va is an arbitrary spacetime vector, is purely spatial.

To project higher rank tensors into the spatial surface, each free index has to be contracted
with a projection operator. It is sometimes convenient to denote this projection with a symbol ⊥,
e.g.

⊥ Tab = γ c
a γ

d
b Tcd. (2.31)

Similarly, we may define the normal projection operator as

Na
b ≡ −nanb = δab − γab, (2.32)

even though in most cases it is just as easy to write out the normal vectors nanb. We can now use
these two projection operators to decompose any tensor into its spatial and timelike parts. For
example, we can write an arbitrary vector va as

va = δabv
b = (γab +Na

b)v
b =⊥ va − nanbv

b. (2.33)

Exercise 2.7 Show that for the second rank tensor Tab we have

Tab =⊥ Tab − nan
c ⊥ Tcb − nbn

c ⊥ Tac + nanbn
cndTcd. (2.34)

Exercise 2.7 illustrates that the ⊥ symbol has to be used with some care, since it applies only
to the free indices of the tensor that it operates on. To avoid confusion, we will usually write out
the projection operators explicitly.
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It may be useful to illustrate the above concepts for a familiar example. Consider a Schwarz-
schild spacetime in isotropic spherical polar coordinates7

ds2 = −
(

1−M/(2r)

1 +M/(2r)

)2

dt2 +

(
1 +

M

2r

)4

(dr2 + r2dθ2r2 sin2 θdφ2) (2.35)

and identify the spatial slices Σ with hypersurfaces of constant coordinate time t. Then the 1-form
Ω is simply

Ωa = (1, 0, 0, 0) (2.36)

and from its normalization (2.21) we find the lapse

α =
1−M/(2r)

1 +M/(2r)
. (2.37)

The normal vector na is then

na = −gabωb =
1 +M/(2r)

1−M/(2r)
(1, 0, 0, 0), (2.38)

and the spatial metric (2.27) becomes

γab =

(
1 +

M

2r

)4

diag
(
0, 1, r2, r2 sin2 θ

)
. (2.39)

It is evident that this metric eliminates any t-components.
Returning to our formal derivation of the 3 + 1 decomposition we will also need a three-

dimensional covariant derivative that maps spatial tensors into spatial tensors. It is uniquely
defined by requiring that it be compatible with the three-dimensional metric γab. We can construct
this derivative by projecting all indices present in a 4-dimensional covariant derivative into Σ. For
a scalar f , for example, we define

Daf ≡ γ b
a ∇bf, (2.40)

and for a rank (1
1) tensor T ab

DaT
b
c ≡ γ d

a γ
b
e γ

f
c ∇dT

e
f . (2.41)

The extension to other type tensors is obvious.

Exercise 2.8 Show that the three-dimensional covariant derivative is compatible with the spatial
metric γab, that is, show that

Daγbc = 0. (2.42)

Exercise 2.9 Show that for a scalar product vawa, the Leibnitz rule

Da(vbwb) = vbDawb + wbDav
b (2.43)

holds only if va and wa are purely spatial.

The three-dimensional covariant derivative can be expressed in terms of three-dimensional
connection coefficients, which, in a coordinate basis, are given by

Γabc =
1

2
γad(∂cγdb + ∂bγdc − ∂dγbc). (2.44)

7See, e.g, Misner et al. (1973), equation (31.22).
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Figure 2.2: The extrinsic curvature of a hypersurface in an enveloping spacetime measures how
much normal vectors to the hypersurface differ at neighboring points. It therefore measures the
rate at which the hypersurface warps as it is carried forward along a normal vector.

The three-dimensional Riemann tensor associated with γij is defined by requiring that8

2D[aDb]wc = Rd
cbawd Rd

cband = 0 (2.45)

for any spatial vector wd. In terms of coordinate components, Riemann can be computed from

R d
abc = ∂bΓ

d
ac − ∂aΓ

d
bc + ΓeacΓ

d
eb − ΓebcΓ

d
ea. (2.46)

Contracting the Riemann tensor yields the three-dimensional Ricci tensor Rab = Rc
acb and the

three-dimensional Ricci scalar R = Ra
a.

Einstein’s equations (1.32) relate contractions of the four-dimensional Riemann tensor (4)Ra
bcd

to the stress energy tensor. Since we want to rewrite these equations in terms of three-dimensional
objects, we decompose (4)Ra

bcd into spatial tensors. Not surprisingly, this decomposition involves
its three-dimensional cousin Ra

bcd, but obviously this cannot contain all the information needed.
Rd

abc is a purely spatial object and can be computed from spatial derivatives of the spatial metric
alone, while (4)Rd

abc is a spacetime creature which also contains time-derivatives of the four-
dimensional metric. Stated differently, the three-dimensional curvature Ra

bcd only contains infor-
mation about the curvature intrinsic to a slice Σ, but it gives no information about what shape
this slice takes in the spacetime M in which it is embedded. This information is contained in a
tensor called extrinsic curvature.

2.4 The Extrinsic Curvature

The extrinsic curvature Kab can be found by projecting gradients of the normal vector into the
slice Σ (see Fig. 2.2). We will also see that the extrinsic curvature is related to the first time

8See equation (1.20) for the four-dimensional analog of this expression.
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derivative of the spatial metric γab. The metric and the extrinsic curvature (γab, Kab) can therefore
be considered as the equivalent of positions and velocities in classical mechanics – they measure
the “instantaneous” state of the gravitational field, and form the fundamental variables in our
initial value formulation. Mathematicians often refer to the metric as the first, and the extrinsic
curvature the second, fundamental form.

The projection of the gradient of the normal vector γ c
a γ

d
b ∇cnd can be split into a symmetric

part, also known as the expansion tensor

θab = γ c
a γ

d
b ∇(cnd), (2.47)

and an antisymmetric part, also known as the rotation 2-form or twist,

ωab = γ c
a γ

d
b ∇[cnd]. (2.48)

Exercise 2.10 Show that the twist ωab has to vanish as a consequence of na being rotation-free (see
exercise 2.5).

We now define the extrinsic curvature, Kab, as the negative expansion

Kab ≡ −γ c
a γ

d
b ∇(cnd) = −γ c

a γ
d
b ∇cnd. (2.49)

By definition, the extrinsic curvature is symmetric and purely spatial. It measures the gradient
of the normal vectors na. Since the latter are normalized, they can only differ in the direction in
which they are pointing, and the extrinsic curvature therefore provides information on how much
this direction changes from point to point across a spatial hypersurface, as illustrated in Fig 2.2.
As a consequence, the extrinsic curvature measures the rate at which the hypersurface deforms as
it is carried forward along a normal.

Exercise 2.11 Show that the extrinsic curvature of t = const hypersurfaces of the Schwarzschild metric
(2.35) vanishes.

Alternatively, we can express the extrinsic curvature in terms of the acceleration of the unit
normal vector field

aa = nb∇bna. (2.50)

Exercise 2.12 Show that the acceleration aa is purely spatial, naaa = 0.

Exercise 2.13 Show that the acceleration aa is related to the lapse α according to

aa ≡ Da lnα. (2.51)

Exercise 2.14 Find the acceleration aa for the normal observer (2.38) in a Schwarzschild spacetime.

Expanding the right hand side of (2.49) and using the identity nd∇cnd = 0 together with the
definition of ab we find

Kab = −γ c
a γ

d
b ∇cnd = −(δ c

a + nan
c)(δ d

b + nbn
d)∇cnd

= −(δ c
a + nan

c)δ d
b ∇cnd = −∇anb − naab. (2.52)
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Finally, we can write the extrinsic curvature as

Kab = −1

2
Lnγab, (2.53)

where Ln denotes the Lie derivative along na. The concept and properties of the Lie derivative
are sketched in Apppendix A. Here we simply note that the Lie derivative along a vector field
Xa measures by how much the changes in a tensor field along Xa differ from a mere infinitesimal
coordinate transformation generated by Xa. For a scalar f , the Lie derivative reduces to the
partial derivative

LXf = XbDbf = Xb∂bf ; (2.54)

for a vector field va the Lie derivative is the commutator, so that in a coordinate basis,

LXv
a = Xb∂bv

a − vb∂bX
a = [X, v]a, (2.55)

and for a 1-form ωa the Lie derivative is given by

LXωa = Xb∂bωa + ωb∂aX
b. (2.56)

It then follows that for a tensor T ab of rank (1
1) the Lie derivative is

LXT
a
b = Xc∂cT

a
b − T cb∂cX

a + T ac∂bX
c. (2.57)

Generalization to tensors of arbitrary rank follows naturally. Lie differentiation satisfies the chain
rule and the usual addition properties obeyed by covariant differentiation. Also, in all of the above
expressions for the Lie derivative one may replace the partial derivatives with covariant derivatives.

Since na is a timelike vector, equation (2.53) illustrates the intuitive interpretation of the
extrinsic curvature as a geometric generalization of the “time derivative” of the spatial metric γab.
Obviously, the spatial metric γab on two different slices Σ may differ by virtue of a coordinate
transformation. Equation (2.53) states that, in addition to a mere coordinate transformation
(which by itself would yield Lnγab = 0, see Appendix A), γab changes proportionally to Kab.

To derive equation (2.53), we write γab in terms of gab and na and use (A.13) and (A.19)

Lnγab = Ln(gab + nanb) = 2∇(anb) + naLnnb + nbLnna

= 2(∇(anb) + n(aab)) = −2Kab. (2.58)

The last equality results from equation (2.52). The extrinsic curvature is often defined by equa-
tion (2.53), from which our definition (2.49) as well as (2.52) can be derived. Obviously, this
logical development is completely equivalent and the choice is merely a matter of taste.

The trace of the extrinsic curvature, often called the mean curvature,

K = gabKab = γabKab, (2.59)

also has a nice geometrical interpretation. To see this, we take the trace of (2.53) to find

K = γabKab = −1

2
γabLnγab = − 1

2γ
Lnγ = − 1

γ1/2
Lnγ

1/2 = −Ln ln γ1/2. (2.60)

Since γ1/2d3x is the proper volume element in the spatial slice Σ, the negative of the extrinsic
curvature measures the fractional change in the proper 3-volume along na.9

9See also Poisson (2004), Section 2.3.8. Alternatively, from equation (2.49) or (4.7) we have that K = −∇an
a =

−(1/V )dV/dτ , henceK measures the expansion of normal observers, or the fractional rate of change, with respect to
proper time τ , of the proper volume V of a bundle of normal observers; see, e.g., Misner et al. (1973), equation (22.2).
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2.5 The Equations of Gauss, Codazzi and Ricci

The metric γab and the extrinsic curvature Kab cannot be chosen arbitrarily. Instead, they have
to satisfy certain constraints, so that the spatial slices “fit” into the spacetime M . In order to
find these relations, we have to relate the three-dimensional Riemann tensor Ra

bcd of the the
hypersurfaces Σ to the four-dimensional Riemann tensor (4)Ra

bcd of M . To do so, we first take
a completely spatial projection of (4)Ra

bcd, then a projection with one index projected in the
normal direction, and finally a projection with two indices projected in the normal direction.
All other projections vanish identically because of the symmetries of the Riemann tensor. A
decomposition of (4)Ra

bcd into spatial and normal pieces therefore involves these three different
types of projections.

Exercise 2.15 Following the example of Exercise 2.7, show that the four-dimensional Riemann tensor
(4)Rabcd can be written as

(4)Rabcd = γ p
a γ

q
b γ

r
c γ

s
d

(4)Rpqrs − 2γ p
a γ

q
b γ

r
[c nd]n

s (4)Rpqrs − 2γ p
c γ

q
d γ

r
[anb]n

s (4)Rpqrs

+2γ p
a γ

r
[c nd]nbn

qns (4)Rpqrs − 2γ p
b γ

r
[c nd]nan

qns (4)Rpqrs. (2.61)

The above projections give rise to the equations of Gauss, Codazzi and Ricci, which we will
derive below. Given that (4)Ra

bcd involves up to second time derivatives of the metric, while Ra
bcd

only contains space derivatives, we may already anticipate that these relations will involve the
extrinsic curvature and its time derivative.

The Riemann tensor is defined in terms of second covariant derivatives of a vector. To relate
the four-dimensional Riemann tensor to its three-dimensional counterpart, it is therefore natural
to start by relating the corresponding covariant derivatives to each other. We first expand the
definition of the spatial gradient of a spatial vector V b as

DaV
b = γ p

a γ
b
q ∇pV

q = γ p
a (g b

q + nqn
b)∇pV

q = γ p
a ∇pV

b − γ p
a n

bV q∇pnq

= γ p
a ∇pV

b − nbV eγ p
a γ

q
e ∇pnq = γ p

a ∇pV
b + nbV eKae, (2.62)

where we have used nqV
q = 0, and hence nq∇pV

q = −V q∇pnq, as well the definition of the
extrinsic curvature (2.49).

Exercise 2.16 Show that
∇aV

a =
1
α
Da(αV a) (2.63)

for any spatial vector V a.
Hint: One possible derivation uses equations (2.51) and (2.62); a more elegant approach starts with
the identity (A.44).

Exercise 2.17 Show that

DaDbV
c = γp

aγ
q
bγ

c
r∇p∇qV

r −Kabγ
c
rn

p∇pV
r −K c

a KbpV
p. (2.64)

We can now use equation (2.64) to relate the three and four-dimensional Riemann tensors to
each other. Writing the definition of the three-dimensional Riemann tensor (2.45) as

Rdc
baVd = 2D[aDb]V

c (2.65)

we can insert the second derivative (2.64) to find

Rdc
baVd = 2γpaγ

q
bγ
c
r∇[p∇q]V

r − 2K[ab]γ
c
rn

p∇pV
r − 2K c

[aKb]pV
p. (2.66)



34 CHAPTER 2. THE 3+1 DECOMPOSTION OF EINSTEIN’S EQUATIONS

The second term on the right hand side vanishes because Kab is symmetric, and the first term can
be rewritten in terms of the four-dimensional Riemann tensor, which yields

RdcbaV
d = γpaγ

q
bγ
r
c

(4)RdrqpV
d − 2Kc[aKb]dV

d (2.67)

after relabeling some indices and lowering the index c. Since this relation has to hold for any
arbitrary spatial vector V d, we have

Rabcd +KacKbd −KadKcb = γpaγ
q
bγ
r
cγ
s
d

(4)Rpqrs. (2.68)

This equation is called Gauss’ equation. It relates the full spatial projection of (4)Ra
bcd to the

three-dimensional Ra
bcd and terms quadradic in the extrinsic curvature.

Next, we want to consider projections of (4)Ra
bcd with one index projected in the normal

direction. This will involve a spatial derivative of the extrinsic curvature

DaKbc = γpaγ
q
bγ
r
c∇pKqr = −γpaγ

q
bγ
r
c(∇p∇qnr +∇p(nqar)). (2.69)

Since γqbnq = 0, only the gradient of nq will give a non-zero contribution in the second term,
namely

γpaγ
q
bγ
r
car∇pnq = −acKab (2.70)

We therefore have
DaKbc = −γpaγ

q
bγ
r
c∇p∇qnr + acKab (2.71)

Since Kab is symmetric, the last term disappears when antisymmetrizing to give

D[aKb]c = −γpaγ
q
bγ
r
c∇[p∇q]nr (2.72)

By the definition of the Riemann tensor, this can be rewritten as

DbKac −DaKbc = γpaγ
q
bγ
r
cn

s (4)Rpqrs, (2.73)

This equation is known as the Codazzi equation. Note that Gauss’ equation (2.68) and the Co-
dazzi equation (2.73) depend only on the spatial metric, the extrinsic curvature and their spatial
derivatives. They can be thought of as the integrability conditions allowing the embedding of a
three-dimensional slice Σ with data (γab, Kab) inside a four-dimensional manifold M with gab. As
we will see in the next section, these two equations give rise to the “constraint” equations.

However, before deriving the constraint equations in the next section, we first consider the last
remaining projection of (4)Ra

bcd, namely with two indices projected in the normal direction. This
will involve a “time” derivative of Kab, and therefore we first compute

LnKab = nc∇cKab + 2Kc(a∇b)n
c

= −nc∇c∇anb − nc∇c(naab)− 2Kc(aK
c
b) − 2Kc(anb)a

c. (2.74)

Here we have used equation (2.52) to expand both terms. We can now insert

(4)Rdbacn
d = 2∇[c∇a]nb, (2.75)

which yields

LnKab = −ndnc (4)Rdbac − nc∇a∇cnb − ncab∇cna −
ncna∇cab − 2Kc

(aKb)c − 2Kc(anb)a
c. (2.76)
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Using the definition of ab = nc∇cnb and the relation

nc∇a∇cnb = ∇aab − (∇an
c)(∇cnb) = ∇aab −K c

a Kcb − naa
cKcb (2.77)

several terms cancel and we find

LnKab = −ndnc (4)Rdbac −∇aab − ncna∇cab − aaab −Kc
bKac −Kcanba

c. (2.78)

Exercise 2.18 Show that LnKab is purely spatial,

naLnKab = 0. (2.79)

Since LnKab is purely spatial, projecting the two free indices in (2.78) leaves the left hand side
unchanged and results in

LnKab = −ndncγqaγrb (4)Rdrqc − γqaγ
r
b∇qar − aaab −Kc

bKac. (2.80)

Exercise 2.19 Show that
Daab = −aaab +

1
α
DaDbα. (2.81)

Finally, we simplify (2.80) with the help of equation (2.81), and find

LnKab = ndncγqaγ
r
b

(4)Rdrcq −
1

α
DaDbα−Kc

bKac. (2.82)

Equation (2.82) is Ricci’s equation.10 It relates the “time” derivative of Kab to a projection of the
four-dimensional Rieman tensor with two indices projected in the “time” direction.

2.6 The Constraint and Evolution Equations

Now we have assembled all the necessary tools, and can rewrite Einstein’s field equations in a 3+1
form. Basically, we just need to take the equations of Gauss, Codazzi and Ricci and eliminate the
four-dimensional Rieman tensor using Einstein’s equations

Gab ≡ (4)Rab −
1

2
(4)Rgab = 8πTab. (2.83)

The last few sections dealt with purely geometrical objects; we will now invoke Einstein’s equations
to link these geometrical objects to physical properties of spacetimes. We will first derive the
constraint equations from Gauss’ equation (2.68) and the Codazzi equation (2.73), and will then
derive the evolution equations from (2.53) and the Ricci equation (2.82).

Contracting Gauss’ equation (2.68) once, we find

γprγqbγ
s
d

(4)Rpqrs = Rbd +KKbd −Kc
dKcb, (2.84)

10In the general relativity literature, equations (2.68) and (2.73) are often jointly referred to as the Gauss-Codazzi
equations. In the differential geometry literature, however, (2.68) is known as the Gauss equation (which represents
a generalization of Gauss’s Theorema Egregium), while (2.73) is called the Codazzi or Codazzi-Mainardi relation.
The name Ricci equation for (2.82) is also more commonly used in differential geometry books than in general
relativity books.
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where K is the trace of the extrinsic curvature, K = Ka
a. A further contraction yields

γprγqs (4)Rpqrs = R +K2 −KabK
ab. (2.85)

The left-hand side can be expanded into

γprγqs (4)Rpqrs = (gpr + npnr)(gqs + nqns) (4)Rpqrs = (4)R + 2npnr (4)Rpr. (2.86)

Note that the term npnrnqns (4)Rpqrs vanishes identically because of the symmetry properties of
the Riemann tensor. We also have

2npnrGpr = 2npnr (4)Rpr − npnrgpr
(4)R = 2npnr (4)Rpr − npnr(γpr − npnr)

(4)R

= 2npnr (4)Rpr + (4)R = γprγqs (4)Rpqrs, (2.87)

where we have used equation (2.86) in the last equality. Inserting this into the contracted Gauss’
equation (2.85) yields

2npnrGpr = R +K2 −KabK
ab. (2.88)

We now define the energy density ρ to be the total energy density as measured by a normal
observer na,

ρ ≡ nanbT
ab. (2.89)

Using Einstein’s equation (2.83) together with equations (2.88) and (2.89), we obtain

R +K2 −KabK
ab = 16πρ. (2.90)

Equation (2.90) is the Hamiltonian constraint.
Contracting the Codazzi equation (2.73) once yields

DbK
b
a −DaK = γpaγ

qrns (4)Rpqrs. (2.91)

The right hand side is

γpaγ
qrns (4)Rpqrs = −γpa(gqr + nqnr)ns (4)Rqprs = −γpans (4)Rps − γpan

qnrns (4)Rqprs. (2.92)

The last term vanishes again because of the symmetries of (4)Refgd, while the first term on the
right hand side can be rewritten using

γqan
sGqs = γqan

s (4)Rqs −
1

2
γqan

sgqs
(4)R = γqan

s (4)Rqs. (2.93)

Here the last equality holds because γqan
sgqs = γasn

s = 0. Collecting terms and inserting into
equation (2.91) we obtain

DbK
b
a −DaK = −γqansGqs. (2.94)

We now define Sa to be the momentum density as measured by a normal observer na,

Sa ≡ −γbancTbc, (2.95)

and find
DbK

b
a −DaK = 8πSa. (2.96)

Equation (2.96) is the momentum constraint.
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Exercise 2.20 Consider a swarm of particles of rest-mass m and proper (comoving) number density n,
all moving with the same 4-velocity ua. The stress-energy tensor for such a swarm is T ab = mnuaub.
Determine the energy density ρ and momentum density Sa for the swarm and provide a simple physical
interpretation for the terms in your expressions.

The Hamiltonian constraint (2.90) and the momentum constraint (2.96) are the direct equiv-
alent of the constraints (2.5) and (2.6) in electrodynamics. They involve only the spatial metric,
the extrinsic curvature, and their spatial derivatives. They are the conditions that allow a three-
dimensional slice Σ with data (γab, Kab) to be embedded in a four-dimensional manifold M with
data (gab). Field data (γab, Kab) that are being imposed on a timeslice Σ have to satisfy the two
constraint equations. We will discuss strategies for solving the constraint equations and finding
initial data that represent a snapshot of the gravitational fields at a certain instant of time in
Chapter 3.

The evolution equations that evolve the data (γab, Kab) forward in time can be found from
(2.53), which can be considered as the definition of the extrinsic curvature, and the Ricci equation
(2.82). However, the Lie derivative along na, Ln, is not a natural time derivative since na is not
dual to the surface 1-form Ωa, i.e. their dot product is not unity but rather

naΩa = −αgab∇at∇bt = α−1. (2.97)

Instead, consider the vector
ta = αna + βa , (2.98)

which is dual to Ωa for any spatial shift vector βa,

taΩa = αnaΩa + βaΩa = 1. (2.99)

It will prove useful to choose ta to be the congruence along which we propagate the spatial
coordinate grid from one time slice to the next slice. In other words, ta will connect points with
the same spatial coordinates on neighboring time slices. Then the shift vector βa will measure
the amount by which the spatial coordinates are shifted within a slice with respect to the normal
vector, as illustrated in Figure 2.4. As we have noted before, the lapse function α measures how
much proper time elapses between neighboring time slices along the normal vector. The lapse
and the shift therefore determine how the coordinates evolve in time. The choice of α and βa is
quite arbitrary, and we will postpone a discussion of some common choices to Chapter 4. The
freedom to choose these four gauge functions α and βa completely arbitrarily embodies the four-
fold coordinate degrees of freedom inherent in general relativity.11 Specifically, the lapse function
reflects the freedom to choose the sequence of time slices, pushing them forward by different
amounts of proper time at different spatial points on a slice and thus exploiting “the many-
fingered nature of time”.12 The shift vector reflects the freedom to relabel spatial coordinates on
each slice in an arbitrary way. Observers who are “at rest” relative to the slices follow the normal
congruence na and are called either normal or Eulerian observers. while observers following the
congruence ta are called coordinate observers. If matter is present it moves entirely independently
of the coordinates with four-velocity ua.

The duality ta∇at = 1 implies that the integral curves of ta are naturally parametrized by t.
As a consequence, all (infinitesimal) vectors tadt (and hence αnadt) originating on one spatial slice

11Recall that βa is spatial and therefore subject to the constraint that naβa = 0, hence only three of its compo-
nents may be freely specified.

12See, e.g., Misner et al. (1973), p. 527
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Σt will end on the same spatial slice Σt+dt (unlike the corresponding vectors nadt, which generally
would end on different slices).13 This also implies that the Lie derivative of any spatial tensor
along ta is again spatial (see also exercise 2.18).

Exercise 2.21 (a) Show that the Lie derivative of the projection operator along αna vanishes

Lαnγ
a
b = 0. (2.100)

(b) Show that the Lie derivative of any spatial tensor along αna is again spatial.

Consider now the Lie derivative of Kab along ta

LtKab = Lαn+βKab = αLnKab + LβKab, (2.101)

which follows from the definition of the Lie derivative. Here we can insert the Ricci equation (2.82)
to eliminate LnKab.

Before we do so, we first rewrite the projection of (4)Rabcd that appears in equation (2.82) as

ndncγqaγ
r
b

(4)Rdrcq = γcdγqaγ
r
b

(4)Rdrcq − γqaγ
r
b

(4)Rrq . (2.102)

Next we can replace the first term on the right-hand side above by substituting Gauss’ equa-
tion (2.84) and the second term by substituting Einstein’s equations:

ndncγqaγ
r
b

(4)Rdrcq = Rab +KKab −KacK
c
b − 8πγqaγ

r
b(Trq −

1

2
grqT ) (2.103)

where T = Tabg
ab. We now define the spatial stress and its trace according to

Sab ≡ γcaγ
d
bTcd S ≡ Saa. (2.104)

We can then evaluate the last term in equation (2.103) as

γqaγ
r
bgrqg

efTef = γab(γ
ef − nenf )Tef = γab(S − ρ), (2.105)

Inserting these expressions into (2.82) and (2.101), we find

LtKab = −DaDbα + α(Rab − 2KacK
c
b +KKab)− 8πα(Sab −

1

2
γab(S − ρ)) + LβKab. (2.106)

This is the evolution equation for the extrinsic curvature. Note that all differential operators and
the Ricci tensor Rab are associated with the spatial metric γab.

Exercise 2.22 Show that raising an index in equation (2.106) yields

LtK
a
b = −DaDbα+ α(Ra

b +KKa
b)− 8πα(Sa

b −
1
2
γa

b(S − ρ)) + LβK
a
b. (2.107)

13 Simply stated, the change in t along the vector ta is dt = ta∇at = 1 and is thus the same value at all
points on the hypersurface Σt. Hence the vector congruence ta connects the hypersurface t = constant (Σt) to the
hypersurface t+dt = constant (Σt+dt). In the language of differential forms, the spatial slice Σt represented by the 1-
form d̃t is pierced by the vector ta by the same amount everywhere on the hypersurface surface, 〈d̃t, ta〉 = ta∇at = 1,
implying that ta connects the two neighboring hypersurfaces.
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Figure 2.3: Spatial basis vectors ea(i) are Lie dragged from one spacelike slice to the next along
the coordinate congruence ta. Consequently, these basis vectors connect points with the same
spatial coordinates on neighboring slices (e.g., points A, B and C on slice t have the same spatial
coordinates as points A′, B′ and C ′, respectively, on slice t+ dt).

The evolution equation for the spatial metric γab, the last missing piece, can be found directly
from equation (2.53), again using equation (2.98),

Ltγab = −2αKab + Lβγab. (2.108)

The coupled evolution equations (2.106) and (2.108) determine the evolution of the gravita-
tional field data (γab, Kab). Together with the constraint equations (2.90) and (2.96) they are
completely equivalent to Einstein’s equations (2.83). Note we have succeeded in recasting Ein-
stein’s equations, which are second order in time in their original form, as a coupled set of partial
differential equations that are now first order in time. As in electrodynamics, the evolution equa-
tions conserve the constraint equations, i.e. if the field data (γab, Kab) satisfy the constraints at
some time t and are evolved with the evolution equations, then the data will also satisfy the
constraint equations at all later times (see exercises 2.1 and 2.2).

2.7 Choosing Basis Vectors: the ADM Equations

So far, we have expressed our equations in a covariant, coordinate independent manner, i.e. the
basis vectors ea have been completely arbitrary and have no particular relationship to the 1-form
Ωa or to the congruence defined by ta. It is quite intuitive, though, that things will simplify if we
adopt a coordinate system that reflects our 3 + 1 split of spacetime in a natural way. We will see
that the Lie derivative in the evolution equations (2.106) and (2.108) then reduces to a partial
derivative with respect to coordinate time and, as an additional benefit, we will be able to ignore
all timelike components of spatial tensors.

To do so, we first introduce a basis of three spatial vectors ea(i) (the subscript i = 1, 2, 3
distinguishes the vectors, not the components; we again refer the reader to Chapter 2.1 for a
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summary of our notation) that reside in a particular time slice Σ14

Ωae
a
(i) = 0. (2.109)

We extend our spatial vectors to other slices Σ by Lie dragging along ta,

Lte
a
(i) = 0, (2.110)

as illustrated in Fig. 2.3.

Exercise 2.23 Show that a spatial vector ea
(i) that is Lie dragged along ta remains spatial, i.e. show

that
Lt(Ωae

a
(i)) = 0. (2.111)

As the fourth basis vector we pick ea(0) = ta. Recall that we want to set the vector congruence
ta to be tangent to the coordinate line congruence and therefore connect points with the same
spatial coordinates on neighboring time slices. The duality condition (2.99) then implies that ea(0)
has the components15

ta = ea(0) = (1, 0, 0, 0). (2.112)

This means that the Lie derivative along ta reduces to a partial derivative with respect to t : Lt =
∂t (see equation (A.10)).

From equation (2.109) we now find

Ωae
a
(i) = − 1

α
nae

a
(i) = 0, (2.113)

which, since the ea(i) span Σ, implies that the covariant spatial components of the normal vector
have to vanish,

ni = 0. (2.114)

Since spatial tensors vanish when contracted with the normal vector, this also means that all
components of spatial tensors with a contravariant index equal to zero must vanish. For the shift
vector, for example, this implies naβ

a = n0β
0 = 0 and hence

βa = (0, βi). (2.115)

Solving equation (2.98) for na then yields the contravariant components

na = (α−1,−α−1βi), (2.116)

and from the normalization condition nan
a = −1 we find

na = (−α, 0, 0, 0). (2.117)

14In the language of differential forms, the spatial vectors ea
(i) do not pierce the spatial hypersurface Σ: 〈Ω̃, e(i)〉 =

Ωae
a
(i) = 0.

15Strictly, equation (2.112) is not a tensor equation, but rather a specification of components in the adopted
basis. In the abstract index notation of Wald (1984), the index a appearing on the left-hand side would be denoted
with a greek letter. Since the meaning is clear from the context, we do not make this distinction in the few places
that it arises in this book.
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From the definition of the spatial metric (2.27) we have

γij = gij, (2.118)

meaning that the metric on Σ is just the spatial part of the four-metric. Since zeroth components
of spatial contravariant tensors have to vanish, we also have γa0 = 0. The inverse metric can
therefore be expressed as

gab = γab − nanb =

(
−α−2 α−2βi

α−2βj γij − α−2βiβj

)
. (2.119)

Exercise 2.24 Show that
γikγkj = δi

j . (2.120)

Equation (2.120) implies that γij and γij are three-dimensional inverses, and can hence be used
to raise and lower spatial indices of spatial tensors. For example, the covariant form of the shift
vector is

βi = γijβ
j. (2.121)

We can now invert (2.119) and find the components of the four-dimensional metric

gab =

(
−α2 + βlβ

l βi
βj γij

)
. (2.122)

Equivalently, the line element may be decomposed as

ds2 = −α2dt2 + γij(dx
i + βidt)(dxj + βjdt), (2.123)

which is often refered to as the metric in 3 + 1 form. We may interpret this line element as the
Pythagorean Theorem for a 4-dimensional spacetime, ds2 = - (proper time between neighboring
spatial hypersurfaces)2 + (proper distance within the spatial hypersurface)2. This equation thus
determines the invariant interval between neighboring points A and B, as illustrated in Fig. 2.4.

Exercise 2.25 Show that the determinant g = det(gab) of the spacetime metric gab can be written as
√
−g = α

√
γ, (2.124)

where γ = det(γij) is the determinant of the spatial metric γij .
Hint: Recall that for any square matrix Aij the following is true: (A−1)ij = cofactor of Aji/detA.

Exercise 2.26 Use equation (2.123) directly to determine the proper time dτ measured by a clock
carried by a normal observer na in a coordinate time interval dt.

The entire content of any spatial tensor is available from their spatial components. This
is obviously true for contravariant components, since their zeroth component vanishes, but also
holds covariant components. Therefore, the entire content of the decomposed Einstein equations is
contained in their spatial components alone, and we can rewrite the Hamiltonian constraint (2.90),

R +K2 −KijK
ij = 16πρ, (2.125)

the momentum constraint (2.96),

Dj(K
ij − γijK) = 8πSi, (2.126)
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Figure 2.4: Pythagorean Theorem in 3+1 dimensional spacetime. The normal vector αna and
the time vector ta connect points on two neighboring spatial slices. The shift vector βi resides in
the slice and measures their difference. The infinitesimal displacement vector dxa connects two
nearby, but otherwise arbitrary, points on neighboring slices (e.g. the point A at xi on slice t and
the point B at xi + dxi on slice t+ dt). The total displacement vector dxa = tadt+ dxi, where dxi

is the spatial vector drawn in the figure, may be decomposed alternatively into two vectors that
form the legs of a right-triangle, dxa = (αnadt)+(dxi+βidt), as shown. Using this decomposition
to evaluate the invariant interval ds2 = dxadxa, commonly expanded as in equation (1.1), yields
the Pythagorean Theorem, equation (2.123).

the evolution equation for the extrinsic curvature (2.106),

∂tKij = −DiDjα + α(Rij − 2KikK
k
j +KKij)− 8πα(Sij − 1

2
γij(S − ρ))

+βkDkKij +KikDjβ
k +KkjDiβ

k,
(2.127)

and the evolution equation for the spatial metric (2.108),

∂tγij = −2αKij +Diβj +Djβi. (2.128)

Equations (2.125–2.128) are equivalent to Einstein’s equations (2.83) and comprise the “standard”
3 + 1 equations. Sometimes they are referred to as the “ADM” equations after Arnowitt, Deser
and Misner,16 even though these equations had been derived earlier,17 and even though Arnowitt
et al. (1962) derived the equations in a different form.18

The shift terms in (2.127) and (2.128) arise from the Lie derivatives Lβγij and LβKij. In
(2.128) it is convenient to express the Lie derivative in terms of the covariant derivative Di to
eliminate the term βkDkγij, but in (2.127) the covariant derivatives in the shift terms may be
replaced with the partial derivatives ∂i (see Appendix A).

Exercise 2.27 Show that the determinant γ = det(γij) of the spatial metric and the trace K = Ki
i

of the extrinsic curvature satisfy the equations

∂t ln γ1/2 = −αK +Diβ
i (2.129)

16Arnowitt et al. (1962).
17E.g. Darmois (1927); Lichnerowicz (1944); Fourès-Bruhat (1956).
18See, e.g., Anderson and York, Jr. (1998) for a discussion.
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and
∂tK = −D2α+ α

(
KijK

ij + 4π(ρ+ S)
)

+ βiDiK, (2.130)

where D2 = γijDiDj is the Laplace operator associated with γij .

Exercise 2.28 Argue that when treating the weak-field, slow-velocity (Newtonian) limit of general
relativity in nearly inertial coordinates, the lapse function is given by

α = 1 + Φ, (2.131)

where Φ is the Newtonian gravitational potential (which we assume to vanish at spatial infinity).

Box 2.1: The standard 3 + 1 or ADM equations

In the standard 3 + 1 decomposition, the metric is written as

ds2 = −α2dt2 + γij(dx
i + βidt)(dxj + βjdt). (2.132)

Einstein’s equations are then decomposed into the Hamiltonian constraint,

R +K2 −KijK
ij = 16πρ, (2.133)

the momentum constraint,
Dj(K

ij − γijK) = 8πSi, (2.134)

the evolution equation for the spatial metric,

∂tγij = −2αKij +Diβj +Djβi (2.135)

(which is really a definition of the extrinsic curvature), and the evolution equation for the
extrinsic curvature,

∂tKij = α(Rij − 2KikK
k
j +KKij)−DiDjα− 8πα(Sij − 1

2
γij(S − ρ))

+βk∂kKij +Kik∂jβ
k +Kkj∂iβ

k.
(2.136)

Useful contractions of the two evolution equations are

∂t ln γ1/2 = −αK +Diβ
i (2.137)

and
∂tK = −D2α + α

(
KijK

ij + 4π(ρ+ S)
)

+ βiDiK, (2.138)

where we have used the Hamiltonian constraint (2.133) in deriving (2.138). The matter
source terms appearing in the above equations are defined by

ρ = nanbT
ab, Si = −γijnaTaj, Sij = γiaγjbT

ab, S = γijSij. (2.139)

It is instructive to compare the standard 3 + 1 gravitational field equations (2.125–2.128) with
Maxwell’s equations of electrodynamics as summarized in Section 2.2. Evidently, the two sets of
equations have a very similar structure. The two 3 + 1 evolution equations (2.127) and (2.128) are
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quite similar to Maxwell’s evolution equations (2.11) and (2.12) if we identify the vector potential
Ai with the spatial metric γij and the electric field Ei with the extrinsic curvature Kij. The
right-hand sides of both (2.128) and (2.11) involve a field variable and a spatial derivative of a
gauge variable, while the right-hand sides of both (2.127) and (2.12) involve matter source terms
as well as second spatial derivatives of the second field variable (which in (2.127) are hidden in
the Ricci tensor). The constraint (2.5) constrains the divergence of the electric field and can
therefore be identified with the momentum constraint (2.126), which constrains the divergence of
the extrinsic curvature. The most important differences between the two theories are also obvious:
electromagnetism is a linear, vector field theory, while general relativity is a nonlinear, tensor field
theory.

Equations (2.125–2.128) represent the spatial components of the corresponding equations (2.90),
(2.96), (2.106) and (2.108). As a further simplification, it turns out that in evaluating the right
hand sides of equations (2.125–2.128), which involves expanding derivatives or evaluating the Ricci
tensor Rij, we can disregard all components with indices equal to 0. Expanding the term DaDbα
in (2.106), for example, yields ∂a∂bα − ∂cαΓcba. Here, the index c runs from 0 to 3, even if we
restrict a and b to be spatial. From their definition (2.44) with γa0 = 0, it is clear that

Γ0
ba = 0 , (2.140)

so that we can ignore the component with c = 0, and the connection coefficients can be computed
from spatial components alone

Γijk =
1

2
γil(∂kγlj + ∂jγlk − ∂lγjk). (2.141)

Similarily, the Ricci tensor Rij can be found from the spatial components γij alone,

Rij = ∂kΓ
k
ij − ∂jΓ

k
ik + ΓkijΓ

l
kl − ΓkilΓ

l
jk, (2.142)

or, in terms of second derivatives of the metric,

Rij =
1

2
γkl
(
∂i∂lγkj + ∂k∂jγil − ∂i∂jγkl − ∂k∂lγij

)
+ γkl

(
Γmil Γmkj − ΓmijΓmkl

)
. (2.143)

Exercise 2.29 Find the connection coefficients for a spherically symmetric spatial metric of the form

γij = ψ4 ηij = ψ4 diag
(
1, r2, r2 sin2 θ

)
, (2.144)

where the function ψ, which we will refer to as the conformal factor in Chapter 3, depends on r alone.
Hint: Problem 7.6 in Lightman et al. (1975).

Exercise 2.30 Show that for any spatial vector V i, ∇iVj = DiVj , but that, in general, ∇iV
j 6= DiV

j

and ∇iVj 6= DiVj .
Hint Use equation (2.62).

As a consistency check, it is useful to return to the Schwarzschild spacetime in isotropic spher-
ical polar coordinates that we considered earlier in Section 2.3. Comparing the spacetime metric
(2.35) with the 3 + 1 metric (2.123) we can identify the lapse as

α =
1−M/(2r)

1 +M/(2r)
(2.145)
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(as we have already noted), the shift
βi = 0 (2.146)

and the spatial metric

γij =

(
1 +

M

2r

)4

diag
(
1, r2, r2 sin2 θ

)
. (2.147)

Since γij is independent of time and βi = 0, the evolution equation (2.128) immediately yields

Kij = 0, (2.148)

as we have previously discovered in exercise 2.11. The connection coefficients can be found from
exercise 2.29 with ψ = 1 +M/(2r). The non-vanishing components of the three-dimensional Ricci
tensor are

Rrr = − 8rM

(2r2 +Mr)2
, Rθθ =

4r3M

(2r2 +Mr)2
, Rφφ = sin2 θRθθ. (2.149)

Recall that in vacuum the four-dimensional Ricci tensor vanishes, of course, (4)Rij = 0. Here,
however, we are computing the three-dimensional Ricci tensor Rij, which is non-zero.

We can now convince ourselves that this solution indeed satisfies the constraint and evolution
equations (2.125–2.128). Taking the trace of the Ricci tensor (2.149) yields R = 0, as it must
to satisfy the Hamiltonian constraint (2.125) with Kij = ρ = 0. In vacuum the momentum
constraint (2.126) only involves the extrinsic curvature, which is zero, so that this equation is
satisfied trivially. We have used the evolution equation for the metric (2.128) to compute the
extrinsic curvature, so it is obviously satisfied. The only non-trivial equation is the evolution
equation for the extrinsic curvature (2.127). In addition to the Ricci tensor (2.149) it involves the
second derivatives of the lapse, DiDjα.

Exercise 2.31 Compute the second derivatives DiDjα for the Schwarzschild solution in isotropic
coordinates.

Exercise 2.31 demonstrates that the two terms cancel exactly so that ∂tKij = 0. This is not a
surprising result, of course, but it is reassuring to see that the formalism works as we expect.

Identifying the lapse, shift and spatial metric from a given spacetime metric gab is straightfor-
ward whenever the shift vanishes, since the lapse and spatial metric can be read off immediately
from (2.122). For nonzero shift the spatial metric and the covariant components of the shift βi
can be identified from (2.122). By inverting the spatial metric the contravariant components of
the shift βi can be determined, after which the lapse can be found from g00, again using equa-
tion (2.122).

In the following exercises we encourage the reader to work through this formalism for several
well-known solutions to Einstein’s equations. We summarize some of the results for a Schwarzschild
spacetime, expressed in a number of different coordinate systems, in Table 2.1.19

Exercise 2.32 In spherical polar Painlevé-Gullstrand coordinates the line element of a Schwarzschild
spacetime is

ds2 = −dt2 +

(
dr +

(
2M
r

)1/2

dt

)2

+ r2(dθ2 + sin2 θdφ2). (2.150)

19In Table 2.1, the column ”isotropic” refers to spatial slices of constant Schwarzschild time t represented in an
isotropic spatial coordinate system. Other slices of the Schwarzschild spacetime may also be expressed in isotropic
coordinates; see exercise H.1.
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Schwarzschild isotropic Painlevé-Gullstrand Kerr-Schild

α
(
1− 2M

r

)1/2 1−M/(2r)
1+M/(2r)

1
(
1 + 2M

r

)−1/2

βi 0 0
(

2M
r

)1/2
li 2M

r
α2li

γij diag(
(
1− 2M

r

)−1
, r2, r2 sin2 θ)

(
1 + M

2r

)4
ηij ηij ηij + 2M

r
lilj

Kij 0 0
(

2M
r3

)1/2 (
ηij − 3

2
lilj
)

2Mα
r2

(
ηij − (2 + M

r
)lilj

)
K 0 0 3

2

(
2M
r3

)1/2 2Mα3

r2
(1 + 3M

r
)

Table 2.1: The lapse α, shift βi, spatial metric γij, extrinsic curvature Kij and mean curvature K
for a Schwarzschild spacetime in different coordinate systems. Here ηij = δij and li = li = xi/r
with r2 = x2 + y2 + z2 in Cartesian coordinates, or ηij = diag(1, r2, r2 sin2 θ) and li = li = (1, 0, 0)
in spherical polar coordinates.

(a) Identify the lapse α, the shift βi and note that the spatial metric γij is flat, which is a remarkable
property.
(b) Compute the extrinsic curvature Kij and the Ricci tensor Rij .
(c) Verify that this solution satisfies the constraint and evolution equations (2.125–2.128) with ∂tKij =
0.

Exercise 2.33 In Kerr-Schild coordinates, or ingoing Eddington-Finkelstein coordinates, the line ele-
ment of a Schwarzschild spacetime is

ds2 = (ηab + 2Hlalb) dxadxb. (2.151)

Here the four-vector la is null with respect to both gab and ηab, ηabl
alb = gabl

alb = 0, and, in Cartesian
coordinates, can be written

lt = −lt = 1, li = li =
xi

r
(2.152)

with r2 = x2 + y2 + z2. We have also defined

H =
M

r
. (2.153)

Recall that in Cartesian coordinates ηab = diag(−1, 1, 1, 1). Identify the lapse α, the shift βi and the
spatial metric γij , and show that the extrinsic curvature is

Kij =
2Hα
r

(ηij − (2 +H)lilj). (2.154)

Exercise 2.34 In Boyer-Linquist coordinates, the spacetime metric of a rotating Kerr black hole is

ds2 = −
(

1− 2GMr

ρ2

)
dt2 − 4

Mar sin2 θ

ρ2
dtdφ

+
ρ2

∆
dr2 + ρ2dθ2 +

sin2 θ

ρ2

(
(r2 + a2)2 − a2∆ sin2 θ

)
dφ2 (2.155)

where
∆ = r2 − 2Mr + a2 (2.156)
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and
ρ2 = r2 + a2 cos2 θ, (2.157)

and where a = J/M is the angular momentum per unit mass.
(a) Identify the lapse α, the shift βi and the spatial metric γij . Evaluate tata and determine its sign
both inside and outside the ergosphere.
(b) Show that in the asymptotic region where r � M and r � a the only non-vanishing component
of the extrinsic curvature is given by

Krφ =
3Ma

r2
sin2 θ. (2.158)

Another useful set of coordinates for rotating Kerr black holes is the Kerr-Schild coordinate
system employed in Exercise 2.33 for a Schwarzschild black hole. In fact, the metric, lapse and
shift still take the same form as in equation (2.151) of Exercise 2.33, except that the vectors la

and the function H now depend on the angular momentum parameter a = J/M . Specifically, la

takes the form

la =

(
1,
rx+ ay

r2 + a2
,
ry − ax

r2 + a2
,
z

r

)
, (2.159)

where we assume that the axis of rotation is aligned with the z-axis, and the function H is

H =
Mr

r2 + a2 cos2 θ
, (2.160)

where cos θ = z/r. From ηabl
alb = 0 we find that r must be related to the Cartesian coordinates

x, y and z by
x2 + y2

r2 + a2
+
z2

r2
= 1. (2.161)

All these functions reduce to their nonrotating counterparts in Exercise 2.33 when a = 0.
We close this chapter with two final comments about the role of the lapse α and the shift βi.

The constraint equations (2.125) and (2.126) are independent of these functions. This is what we
should expect, since the lapse and the shift determine how the coordinates evolve from one time
slice Σ to the next, whereas the constraint equations represent integrability conditions which have
to be satisfied within each slice. Therefore, the constraints have to be independent of how the
coordinates evolve, and the lapse and the shift can enter only the evolution equations.

We also point out that the decomposed Einstein equations (2.125)–(2.128) do not provide any
equations for α and βi. Again, this is not surprising, since these functions represent the coordinate
freedom of general relativity. The lapse and shift are therefore arbitrary, and must be determined
by imposing gauge conditions. Clearly, different gauge conditions will lead to different functions
for the spatial metric γij and the extrinsic curvature Kij when they are used in the evolution
equations. Even for a stationary spacetime, like Schwarzschild, most choices for the lapse and
shift will lead to a time-dependent spatial metric function. Only for special choices of the lapse
and the shift will the spatial metric of a stationary spacetime remain time-independent. This will
be the case if our time-vector ta, defined in equation (2.98), is aligned with a Killing-vector of the
spacetime,

ξa = ta = αna + βa. (2.162)

We refer to a lapse and shift that generate a Killing vector according to equation (2.162) as a
Killing lapse and Killing shift. The lapses and shifts that we listed in Table 2.1 are examples
of such Killing lapses and Killing shifts. In that context we identified them directly from the
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stationary spacetime metric. If we used those lapses and shifts in a dynamical evolution, the
metric would indeed remain time-independent.

In Chapter 4 we will discuss and compare a few canonical gauge conditions that form the basis
of choices frequently adopted in dynamical simulations. We will further highlight some specific
choices when we summarize some of these simulations in subsequent chapters.



Chapter 3

Constructing Initial Data

As we have seen in Chapter 2, the spatial metric γij, the extrinsic curvature Kij and any matter
fields have to satisfy the Hamiltonian constraint (2.133),

R +K2 −KijK
ij = 16πρ , (3.1)

and the momentum constraint (2.134),

Dj(K
ij − γijK) = 8πSi (3.2)

on every spacelike hypersurface Σ. Before we can evolve the fields to obtain a spacetime that
satisfies Einstein’s equations, we have to specify gravitational fields (γij, Kij) on some initial
spatial slice Σ that are compatible with the constraint equations. These fields can then be used as
“starting values” for a dynamical evolution obtained by integrating the evolution equations (2.136)
and (2.135).1

Clearly, the four constraint equations (3.1) and (3.2) cannot determine all of the gravitational
fields (γij, Kij). Since both γij and Kij are symmetric, three-dimensional tensors, they together
have twelve independent components. The four constraint equations can only determine four
of these, leaving eight undetermined. Four of these eight undetermined functions are related to
coordinate choices: Three specify the spatial coordinates within the slice Σ, and these coordinates
can be chosen arbitrarily without changing the physical properties of the slice. One function,
associated with the time coordinate, can be used to specify the choice of the hypersurface Σ. For
any given spacetime solution to Einstein’s equations, choosing different hypersurfaces on which to
obtain initial data, and then propagating these data, regenerates physically equivalent spacetimes.
This leaves four undetermined functions that represent the two dynamical degrees of freedom
characterizing a gravitational field in general relativity, e.g., two independent sets of values for
the conjugate pair (γij, Kij). These two dynamical degress of freedom correspond to the two
polarization modes of a gravitational wave in general relativity.2

It is quite intuitive that the state of a dynamical field, like a gravitational wave, cannot be
determined from constraint equations. Waves satisfy hyperbolic equations, and their state at any

1If there is any matter present, then the matter fields must be specified on the initial hypersurface as well, and
the matter evolution equations, ∇bT

ab = 0, must be integrated simultaneously with the field evolution equations
to build a spacetime. Some typical matter sources and their evolution equations are discussed in Chapter 5.

2This is the same number of degrees of freedom in the linearized theory of general relativity appropriate for a
weak gravitational field; the field equations in this limit reduce to propagation equations for a spin-2 linear field in
Minkowski spacetime.

49
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time depends on their past history. Constraint equations, on the other hand, tend to be elliptic in
nature and constrain the fields in space at one instant of time, independently of their past history.
It is therefore natural that the constraint equations serve to constrain only the “longitudinal” parts
of the fields, while the “transverse” parts, related to the dynamical degrees of freedom, remain
freely specifiable.

Ideally one would like to separate unambiguously the longitudinal from the transverse parts of
the fields at some initial time, freely specifying the latter and then solving the constraints for the
former. Given the nonlinear nature of general relativity such a rigorous separation is not possible;
instead, all these fields are entangled in the spatial metric and the extrinsic curvature. We can
nevertheless introduce decompositions of γij and Kij that allow for a convenient split of constrained
from freely specifiable variables. These decompositions often amount to an approximate split of
transverese from longitudinal pieces of the field and, in any case, serve to simplify the solution of
the resulting constraint equations.

Typically, then, the solution of Einstein’s initial value equations proceeds along the following
lines. We first decide which field variables we want to determine by solving constraint equations.
This amounts to choosing a particular decomposition of the constraint equations. We then have
to make choices for the remaining, freely specifiable variables. These choices should reflect the
physical or astrophysical situation at hand, but may also be guided by any resulting simplifica-
tions that they induce in the constraint equations. Lastly, we must solve these equations for the
constrained field variables.

We point out that this situation is similar to what we encounter in electrodynamics. As we
have seen in Section 2.2, Maxwell’s equations also split into constraint and evolution equations.
The constraint equations 2.5 and 2.6 have to be satisfied by any electric and magnetic field at
each instant of time, but they are not sufficient to completely determine these fields. Consider the
equation for the electric field Ei,

DiE
i = 4πρ. (3.3)

Given an electrical charge density ρ, we can solve this equation for one of the components of Ei, but
not all three of them. For example, we could make certain choices for Ex and Ey, and then solve
(3.3) for Ez, even though we might be troubled by the asymmetry in singling out one particular
component in this approach. Alternatively, we may prefer to write Ei as some “background” field
Ēi times some overall scaling factor, say ψ4

Ei = ψ4Ēi. (3.4)

We could now insert (3.4) into (3.3), make certain choices for all three components of the back-
ground field Ēi, and then solve (3.3) for the scaling factor ψ4. Though it might not be so useful for
treating Maxwell’s equations, such an approach leads to a very convenient and tractable system
for Einstein’s equations, as we shall discuss in the following Sections.

3.1 Conformal Transformations

3.1.1 Conformal Transformation of the Spatial Metric

By analogy with our electromagnetic example (3.4) we begin by writing the spatial metric γij as
a product of some power of a positive scaling factor ψ and a background metric γ̄ij,

γij = ψ4γ̄ij. (3.5)
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This identification is a conformal transformation of the spatial metric.3 We call ψ the conformal
factor, and γ̄ij the conformally related metric. Taking ψ to the fourth power turns out to be
convenient, but is otherwise arbitrary. In three dimensions it is natural to use

γ̄ij = γ−1/3γij, (3.6)

where γ is the determinant of γij and γ = ψ12. This particular choice results in γ̄ = 1, but we
can instead choose any normalization for γ̄. Loosely speaking, the conformal factor absorbs the
overall scale of the metric, which leaves five degrees of freedom in the conformally related metric.

To avoid any misunderstandings, we would like to emphasize that in this book we only consider
conformal transformations of the spatial metric. In a different context it may also be useful to
study conformal transformations of the spacetime metric. While many of the general properties
remain the same, some of the specific results that we derive below hold only in three (spatial)
dimensions.4

Superficially, the conformal transformation (3.5) is just a mathematical trick, namely, rewriting
one unknown as a product of two unknowns in order to make solving some equations easier. At
a deeper level, however, the conformal transformation serves to define an equivalence class of
manifolds and metrics.5

Inserting the transformation law (3.5) into (2.141) we find that, in three dimensions, the
connection coefficients must transform according to

Γijk = Γ̄ijk + 2(δijD̄k lnψ + δikD̄j lnψ − γ̄jkγ̄
ilD̄l lnψ). (3.7)

Here we have used
γij = ψ−4γ̄ij , (3.8)

where γ̄ij is the inverse of γ̄ij. From now on we will denote all objects associated with the conformal
metric γ̄ij with a bar. In the above equations ψ must be treated as a scalar function in covariant
derivatives (as opposed to a scalar density; cf. Appendix A.3).

Exercise 3.1 Verify the transformation law (3.7) from (2.141).

Exercise 3.2 Show that the covariant derivative associated with the connection (3.7) is compatible
with the conformally related metric,

D̄iγ̄jk = 0. (3.9)

For the Ricci tensor we similarly find

Rij = R̄ij − 2
(
D̄iD̄j lnψ + γ̄ij γ̄

lmD̄lD̄m lnψ
)

+4
(

(D̄i lnψ)(D̄j lnψ)− γ̄ij γ̄
lm(D̄l lnψ)(D̄m lnψ)

)
, (3.10)

3See Lichnerowicz (1944); York, Jr. (1971).
4Note that the Weyl, or conformal, tensor (1.26), is invariant only under conformal transformations of the

spacetime metric.
5Equivalence classes of conformally related manifolds share some geometric properties. For conformally related

spacetimes, for example, the Weyl tensor (1.26) is identical up to a coordinate transformation. For three-dimensional
spaces that are conformally related the Bach tensor (3.15) below will be the same, again up to a coordinate
transformation. One class of manifolds that we will encounter repeatedly are conformally flat, for which the Bach
tensor (3.15) vanishes.
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and for the scalar curvature

R = ψ−4R̄− 8ψ−5D̄2ψ. (3.11)

Here D̄2 = γ̄ijD̄iD̄j is the covariant Laplace operator associated with γ̄ij.

Exercise 3.3 Verify equations (3.10) and (3.11).

Inserting the scalar curvature (3.11) into the Hamiltonian constraint (3.1) yields

8D̄2ψ − ψR̄− ψ5K2 + ψ5KijK
ij = −16πψ5ρ, (3.12)

which, for a given choice of the conformally related metric γ̄ij, we may interpret as an equation
for the conformal factor ψ. The extrinsic curvature Kij has to satisfy the momentum constraint
(3.2), and it will be useful to rescale Kij conformally as well. We will do that in Section 3.1.3,
after discussing in Section 3.1.2 some elementary solutions to (3.12) for which Kij = 0.

3.1.2 Elementary Black Hole Solutions

At this point it is instructive to consider some simple, but physically interesting, solutions to
the constraint equation. Consider vacuum solutions for which the matter source terms vanish
(ρ = 0 = Si, etc.) and focus on a “moment of time symmetry”. At a moment of time symmetry,
all time derivatives of γij are zero and the 4−dimensional line interval has to be invariant under
time reversal, t → −t. The latter condition implies that the shift must satisfy βi = 0 and,
hence, by equation (2.135), the extrinsic curvature also has to vanish everywhere on the slice, i.e.
Kij = 0 = K.6 On such a time slice the momentum constraints (3.2) are satisfied trivially. The
Hamiltonian constraint (3.12) reduces to

D̄2ψ =
1

8
ψR̄. (3.13)

Let us further choose the conformally related metric to be flat,

γ̄ij = ηij. (3.14)

Whenever this is the case, we call the physical spatial metric γij conformally flat.
We again emphasize that we only consider conformal transformations of the spatial metric in

this text. Accordingly, “conformal flatness” refers, for our purposes, to the spatial metric and
not the spacetime metric. In four or any higher dimensions, we can evaluate the Weyl tensor to
examine whether any given metric is conformally flat. This is a consequence of the fact that the
Weyl tensor (1.26) is invariant under conformal transformations of the spacetime metric – this
explains why it is often called the conformal tensor.7 Since it vanishes for a flat metric, it must
also vanish for all geometries that are conformally related to the flat metric. In three dimensions,
however, the Weyl tensor vanishes identically, so that it no longer provides a useful diagnostic.
For a spatial metric, we may instead evaluate the Bach or Cotton-York tensor

Bij = γ1/3[ikl]Dk

(
R j
l −

1

4
δ j
l R

)
, (3.15)

6A 4-geometry is said to be time-symmetric if there exists such a time slice.
7See, e.g., page 130 in Carroll (2004).
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which vanishes if and only if the spatial geometry is conformally flat.8 In equation (3.15), [ikl] is
the completely antisymmetric, or permutation, symbol, with [123] = 1.

As an aside, we note that any spherically symmetric spatial metric is always conformally flat,
meaning that we can always write such a metric as γij = ψ4ηij. For any spherically symmetric
space, we may hence assume conformal flatness without loss of generality.

Assuming conformal flatness dramatically simplifies all calculations, since D̄i reduces to the flat
covariant derivative (and in particular to partial derivatives in cartesian coordinates). Moreover,
the Ricci tensor and scalar curvature associated with the conformally related metric must now
vanish, R̄ij = R̄ = 0. Under this assumption, the Hamiltonian constraint becomes the remarkably
simple Laplace equation

D̄2ψ = 0, (3.16)

where D̄2 is now the flat Laplace operator. We will be interested in asymptotically flat solutions
that satisfy

ψ → 1 +O(r−1) for r →∞ (3.17)

where r is the coordinate radius. Spherically symmetric solutions are

ψ = 1 +
M
2r

(3.18)

We will show in exercise 3.20 below that, in this particular case, the constant M is in fact the black
hole mass M . It shouldn’t come as a great surprise that this is just the Schwarzschild solution in
isotropic coordinates, which we have seen before in Chapter 2. Inspection of the metric (2.147)

dl2 = γijdx
idxj =

(
1 +

M

2r

)4

ηijdx
idxj =

(
1 +

M

2r

)4 (
dr2 + r2(dθ2 + sin2 θdφ2)

)
(3.19)

shows that it is explicitly written in the form (3.5), where the conformally related metric is the
flat metric in spherical polar coordinates. This solution forms the basis of the so-called puncture
methods for black holes, which we will discuss in much greater detail in Chapters 12.2.2 and 13.1.3.

While the formalism of conformal decomposition may appear unnecessarily technical and per-
haps confusing initially, this example demonstrates that it provides an extremely powerful tool for
constructing solutions to Einstein’s equations. In fact, once the formalism has been developed, it
is much easier to derive the Schwarzschild solution by going through the above steps then deriving
it from Einstein’s equations directly. Perhaps even more impressively, we will see below that we
can trivially generalize this method to construct multiple black hole initial data. Before we do
that, though, it is useful to discuss the single black hole solution in more detail.

The solution (3.19) is singular at r = 0. However, we can show that this singularity is only a
coordinate singularity by considering the coordinate transformation

r =

(
M
2

)2
1

r̂
, (3.20)

under which the isotropic Schwarzschild metric (3.19) becomes

dl2 =

(
1 +

M
2r̂

)4 (
dr̂2 + r̂2(dθ2 + sin2 θdφ2)

)
. (3.21)

8See Eisenhart (1926); York, Jr. (1971); see also Problem 21.22 in Misner et al. (1973). Note that the Bach
tensor is a tensor density rather than a tensor; see Appendix A.3.
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Figure 3.1: Schematic embedding diagram of Schwarzschild geometry at a moment of time sym-
metry with one degree of rotational freedom suppressed (θ = π/2). The spatial metric is given
by equation (3.19). Here a spatial slice of Schwarzschild in the equatorial plane is embedded as a
2−dimensional surface (paraboloid) in a Euclidean 3−space.

The geometry described by metric (3.21) evaluated at a radius r̂ = a is identical to that of the
metric (3.19) evaluated at r = a. The mapping (3.20) therefore maps the metric into itself, and
is hence an isometry. In particular, this demonstrates that the origin r = 0 is isomorphic to
spatial infinity, which is perfectly regular. The same conclusion can be reached by considering
a coordinate transformation between the isotropic radius r to a Schwarzschild areal radius R.
This demonstrates that the isotropic radius r covers only the black hole exterior, and that each
Schwarzschild R corresponds to two values of the isotropic radius r.

Exercise 3.4 Find the coordinate transformation between isotropic radius r and Schwarzschild radius
R that brings the isotropic Schwarzschild metric (3.19) into the Schwarzschild form

dl2 =
(

1− 2M
R

)−1

dR2 +R2(dθ2 + sin2 θdφ2). (3.22)

The isotropic radius r corresponding to the smallest areal (or circumferential) radius R is
r = M/2, which we refer to as the black hole throat. The throat is located in the horizontal
symmetry plane on the circle of smallest circumference in the embedding diagram9 in Figure 3.1.
In Chapter 7.2 (equation (7.26)) we will see that, for a single Schwarzschild black hole, the throat
coincides with both the apparent and event horizons.

The isometry (3.20) maps points on the throat into themselves, and applying the isometry

9See, e.g., Misner et al. (1973), Chapters 23.8 and 31.6 for construction of embedding diagrams for Schwarzschild
geometry.



3.1. CONFORMAL TRANSFORMATIONS 55

Figure 3.2: Schematic embedding diagram of the geometry described by metric (3.23) for two
black holes at a moment of time symmetry. This is the three-sheeted topology, which does not
satisfy an isometry across each throat.

twice yields the identity transformation. We can therefore think of (3.20) as a reflection in the
throat. In the embedding diagram in Figure 3.1 this is a reflection across the horizontal symmetry
plane. The geometry close to the origin (r → 0) is identical to the geometry near infinity (r →∞).
We can therefore think of the geometry described by the solution (3.19) as two separate, identical
universes, which are connected by a throat, or a so-called Einstein-Rosen bridge. Equivalently, a
time-symmetric slice of Schwarzschild as depicted in Figure 3.1 corresponds to the v = 0 (t = 0)
hypersurface in the Kruskal-Szekeres diagram in Figure 1.1. On this diagram the throat at areal
radius R = 2M connecting the two asymptotically flat universes is located at the origin, (u, v) =
(0, 0).

So far we have only rediscovered the vacuum Schwarzschild solution, and that alone would
hardly justify the effort of having developed all this decomposition formalism. The formalism
is very powerful, however, and allows for the construction of much more general solutions. In
Chapters 12 and 15, for example, we will use this approach to construct binary black hole and
neutron star initial data. To catch a glimpse of how useful this formalism is, we point out that it
is almost trivial to generalize our one black hole solution (3.18) to an arbitrary number of black
holes at a moment of time symmetry.10 Since (3.16) is linear, we obtain the solution simply by
adding the individual contribution of each black hole according to

ψ = 1 +
∑
α

Mα

2rα
. (3.23)

Here rα = |xi − Ci
α| is the (coordinate) separation from the center Ci

α of the αth black hole. The
total mass of the spacetime is the sum of the coefficients Mα. However, since the total mass will
also include contributions from the black hole interactions, Mα can be identified with the mass of
the α-th black hole only in the limit of large separations. Particularly interesting astrophysically

10E.g. Brill and Lindquist (1963)
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Figure 3.3: Schematic embedding diagram of a “symmetrized” two black hole solution. This is a
two-sheeted topology, in which two Einstein-Rosen bridges connect two identical, asymptotically
flat universes.

and for the generation of gravitational waves is the case of binary black holes, in which case (3.23)
reduces to

ψ = 1 +
M1

2r1
+
M2

2r2
. (3.24)

This simple solution to the constraint equations for two black holes instantaneously at rest at a
moment of time symmetry can be used as initial data for head-on collisions of black holes (see
Chapter 13.2).

We can now define mappings equivalent to (3.20), which represent reflections through the α-th
throat. In general, the existence of other black holes destroys the symmetry that we found for a
single black hole. Each Einstein-Rosen bridge therefore connects to its own asymptotically flat
universe. Drawing an embedding diagram for such a geometry yields several different “sheets”,
where each sheet corresponds to one universe. A geometry containing N black holes may contain
up to N + 1 different asymptotically flat universes (see Fig. 3.2).

If desired, however, the isometry across the throats can be restored as follows. Recall that
equation (3.16) is equivalent to the Laplace equation in electrostatics, so that we can borrow
the method of spherical inversion images11 to analyze it. For each throat in (3.23) we can add
terms inside that throat that correspond to images of the other black holes. Doing so, the solu-
tion (3.23) becomes “symmetrized” so that the reflection through each throat is again an isometry.
In other words, each Einstein-Rosen bridge connects to the same asymptotically flat universe, and
the geometry consists of only two asymptotically flat universes, which are connected by several
Einstein-Rosen bridges (see Fig. 3.3).

For two equal-mass black holes we may also interpret this solution as a wormhole black hole
solution. To see this, consider the solution illustrated in Fig. 3.3 for two throats of equal mass. Cut
off the bottom universe at the two throats, which leaves two “open-ended” throats hanging down

11See Misner (1963); Lindquist (1963).
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Figure 3.4: Illustration of a wormhole black hole solution.

from the top universe. We can now identify these two open ends with each other, effectively gluing
them together. As illustrated in Fig. 3.4, the two throats now form a “wormhole” that connects
to a single, asymptotically flat (but multiply connected) universe. Given the original isometry
conditions across the throats, and given that they have the same mass, the resulting metric is
smooth across the throat and a valid solution to the Hamiltonian constraint.12 In cylindrical
coordinates the metric becomes

dl2 = ψ4(dρ2 + dz2 + ρ2dφ2) , (3.25)

where the corresponding conformal factor is given by13

ψ = 1 +
∞∑
n=1

1

sinh(nµ)

(
1√

ρ2 + (z + zn)2
+

1√
ρ2 + (z − zn)2

)
. (3.26)

Here zn = coth(nµ), and µ is a free parameter. In Exercise 3.21 we will see that the total mass of
this system, which we will identify with the “ADM mass” in Section 3.5, is

MADM = 4
∞∑
n=1

1

sinh(nµ)
. (3.27)

The proper distance L along the spacelike geodesic connecting the throats, or equivalently the
proper length of a geodesic loop through the wormhole, is

L = 2

(
1 + 2µ

∞∑
n=1

n

sinh(nµ)

)
. (3.28)

12Misner (1960) originally derived this solution by starting with a three-dimensional “donut” solution. Part of
this donut ultimately forms the tube of the wormhole, while one point on the original donut is pulled apart towards
infinity to form the asymptotically flat universe.

13See, e.g., Anninos et al. (1994).
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The parameter µ is seen to parameterize both the mass and separation of the two holes. Since
the solution can be rescaled to arbitrary physical mass, µ effectively determines the dimensionless
ratio L/MADM, the parameter that, apart from mass, distinguishes one binary from another in
this class of initial data.

As we have seen, the solution to the Hamiltonian constraint equation for a system containing
more than one vacuum black hole at a moment of time symmetry is by no means unique. The
different solutions satisfy different inversion properties on the throats, and represent solutions to
the Hamiltonian constraint in different topologies. If viewed from only one “universe”, the different
solutions satisfy different boundary conditions on the throats. This difference leads to a different
initial gravitational wave content in the sense that the dynamical evolution of these initial data
would lead to different gravitational wave signals, at least for the initial burst. We will discuss
initial data for multiple black holes in much more detail in Chapter 12, and will postpone a further
discussion of these issues until then.

Exercise 3.5 Brill waves are defined as nonlinear, axisymmetric gravitational waves in vacuum space-
times that admit a moment of time symmetry.14 Consider a spatial metric in cylindrical coordinates

dl2 = ψ4
(
eq(dρ2 + dz2) + ρ2dφ2

)
, (3.29)

where q(ρ, z) is an arbitrary, axisymmetric function that introduces a deviation from conformal flatness
and that can be considered a measure of the gravitational wave amplitude. Show that at a moment of
time symmetry the conformal factor ψ satisfies

∇2ψ = −ψ
8

(
∂2q

∂ρ2
+
∂2q

∂z2

)
, (3.30)

where ∇2 is the flat space Laplace operator in three dimensions. Solving this nonlinear elliptic equation
provides a surprisingly simple way of constructing nonlinear gravitational wave initial data.

3.1.3 Conformal transformation of the extrinsic curvature

Return now to the development of the conformal decomposition of the constraint equations. We
have conformally transformed the spatial metric, but before we proceed we also have to decompose
the extrinsic curvature. It is convenient to split Kij into its trace K and a traceless part Aij
according to

Kij = Aij +
1

3
γijK (3.31)

and to conformally transform K and Aij separately. A priori it is not clear how to transform K
and Aij, and our only guidance for inventing rules is that the transformation should bring the
constraint equations into a simple and solvable form. Consider the transformations

Aij = ψαĀij (3.32)

K = ψβK̄, (3.33)

where α and β are two so far undetermined exponents.

Exercise 3.6 Show that the divergence of any symmetric, traceless tensor Aij which transforms
according to (3.32) satisfies

DjA
ij = ψ−10D̄j(ψ10+αĀij). (3.34)

14Brill (1959). See also Eppley (1977) as well as a number of later publications.
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Exercise 3.6 immediately suggests the choice α = −10, i.e.

Aij = ψ−10Āij, (3.35)

which implies Aij = ψ−2Āij. With this choice a symmetric traceless tensor Aij has zero divergence
if and only if Āij does. This is not the only possible choice for the exponent α, though, and we
will use a different scaling in Chapter 11.

Inserting the above expressions into the momentum constraint (3.2) yields

ψ−10D̄jĀ
ij − 2

3
ψβ−4γ̄ijD̄jK̄ − 2

3
βψβ−5K̄γ̄ijD̄jψ = 8πSi. (3.36)

Our desire to simplify equations motivates the choice β = 0, so that we treat K as a conformal
invariant, K = K̄. With these choices, the Hamiltonian constraint now becomes

8D̄2ψ − ψR̄− 2

3
ψ5K2 + ψ−7ĀijĀ

ij = −16πψ5ρ, (3.37)

and the momentum constraint is

D̄jĀ
ij − 2

3
ψ6γ̄ijD̄jK = 8πψ10Si (3.38)

Exercise 3.7 Consider the weak-field limit of equation (3.37) under the same assumptions as in
Exercise 2.28. Then compare with the Poisson equation for the Newtonian gravitational potential φ
to show that

ψ = 1− 1
2
φ (3.39)

in the weak-field limit, assuming suitable boundary conditions for ψ and φ.

In addition to the spatial metric and extrinsic curvature, it may also be necessary to transform
the matter sources ρ and Si in (3.37) and (3.38) to insure uniqueness of solutions.15 We will largely
ignore this issue in this chapter, but it is nevertheless instructive to discuss its origin in passing.

We start by considering the linear equation

∇2u = fu (3.40)

on some domain Ω. Here f is some given function, and we will assume u = 0 on the boundary
∂Ω. If f is non-negative everywhere, we can apply the maximum principle to show that u = 0
everywhere. The point is that if u were non-zero somewhere in Ω, say positive, then it must have
a maximum somewhere. At the maximum the left hand side of (3.40) must be negative, but the
right hand side is non-negative if f ≥ 0, which is a contradiction. Clearly, the argument works
the same way if u is negative somewhere, implying that u = 0 everywhere if f ≥ 0.

Now consider the non-linear equation

∇2u = fun, (3.41)

and assume there exist two positive solutions u1 and u2 ≥ u1 that are identical, u1 = u2, on the
boundary ∂Ω. The difference ∆u = u2 − u1 must then satisfy an equation

∇2∆u = nfũn−1∆u, (3.42)

15See, e.g., York, Jr. (1979).
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where ũ is some positive function satisfying u1 ≤ ũ ≤ u2. Applying the above argument to ∆u,
we see that the maximum principle implies ∆u = 0 and hence uniqueness of solutions if and only
if nf ≥ 0, i.e. if the coefficient and exponent in the source term of (3.41) have the same sign.

Inspecting the Hamiltonian constraint (3.37) we see that the matter term −16πψ5ρ features
the “wrong signs”: it has a negative coefficient (assuming a positive matter density ρ), but a
positive exponent for ψ. Therefore the maximum principle cannot be applied, and the uniqueness
of solutions cannot be established. Exercise 3.8 explores this issue for an analytical example.

Exercise 3.8 Consider the Hamiltonian constraint (3.37) at a moment of time symmetry, Kij = 0, and
under the assumption of conformal flatness and spherical symmetry. Also assume boundary conditions
∂rψ = 0 at r = 0, and ψ → 1 for r →∞. Now consider a constant density star with

ρ(r) =
{
ρ0, r < r0
0, r ≥ r0,

(3.43)

In the following we will consider r0 as given, and will study the solutions as a function of the density
ρ0.

(a) Show that the Sobolev functions

uν(r) ≡ (νr0)1/2

(r2 + (νr0)2)
1/2

(3.44)

satisfy the equation

D̄2uν =
1
r2

∂

∂r

(
r2
∂uν

∂r

)
= −3u5

ν (3.45)

for any constant ν. Conclude that for r < r0 the solution for ψ is given by ψint = Cuν , and find the
value of C.

(b) For r ≥ r0 the solution is given by ψex = 1+µ/r, where µ is another yet undetermined constant.
The interior and exterior solutions already satisfy the differential equation and boundary conditions
individually, but to obtain a global solution we still need to enforce that their function values and first
derivatives match at r = r0. These two conditions fix the constants µ and ν for a given background
density ρ0. Show that the conditions can be combined to yield an equation for ν,

ρ0r
2
0 =

3
2π
f2(ν), (3.46)

where f(ν) ≡ ν5/(1 + ν2)3.
(c) Exploring the properties of the function f(ν) show that no solutions exist if

ρ0 > ρcrit =
3

2πr20

55

66
. (3.47)

Further show that for any ρ0 < ρcrit, there are two solutions ν, and hence two distinct solutions ψ that
satisfy the Hamiltonian constraint for the matter distribution (3.43). Clearly, the solutions are not
unique.16

Uniqueness of solutions can be restored, however, by introducing a conformal rescaling of the
density. With ρ = ψδρ̄, where δ ≤ −5 and where ρ̄ is now considered a given function, the
matter term carries the “right signs”, and the maximum principle can be applied to establish the

16See Baumgarte et al. (2007) for a further exploration of this solution as well as related issues. Note that for
homogeneous fluid stars in hydrostatic equilibrium, there is only one physically relevant solution to the Hamiltonian
constraint equation. Moreover, the critical density at which the central pressure becomes infinite in an equilibrium
star, which occurs when M/R = 4/9, is smaller than the critical density given by equation (3.47). Hence the later
density is never reached along an equilibrium sequence of stars of constant mass M but increasing density and
compaction.
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uniqueness of solutions. Furthermore, in the example of Exercise 3.8 the solutions are unique
locally even for unscaled density sources – at least for matter densities smaller than the critical
density – and there is some evidence that this property is generic.17 If so, a numerical algorithm can
still iterate towards the desired solution, given suitable background data, as long as the iteration
starts with a sufficiently “close” initial guess.

Most decompositions use the conformal rescaling of the spatial metric and the extrinsic curva-
ture as introduced above. Different decompositions then proceed by decomposing Āij in different
ways. In the following sections we will discuss the transverse-traceless and the conformal thin-
sandwich decomposition.

3.2 Conformal Transverse-Traceless Decomposition

Any symmetric, traceless tensor can be split into a transverse-traceless part that is divergenceless
and a longitudinal part that can be written as a symmetric, traceless gradient of a vector. We can
therefore decompose Āij as

Āij = ĀijTT + ĀijL (3.48)

where the transverse part is divergenceless

D̄jĀ
ij
TT = 0 (3.49)

and where the longitudinal part satisfies

ĀijL = D̄iW j + D̄jW i − 2

3
γ̄ijD̄kW

k ≡ (L̄W )ij. (3.50)

Here W i is a vector potential, and it is easy to see that the longitudinal operator or vector gradient
L̄ produces a symmetric, traceless tensor.18 We can now write the divergence of Āij as

D̄jA
ij = D̄jA

ij
L = D̄j(L̄W )ij = D̄2W i +

1

3
D̄i(D̄jW

j) + R̄i
jW

j ≡ (∆̄LW )i, (3.51)

where ∆̄L is the vector Laplacian.

Exercise 3.9 Consider a flat conformally related metric γ̄ij = ηij in spherical polar coordinates, and
assume that the only non-vanishing components of the vector W i is the radial component W r. Then
show that the only non-zero component of the vector Laplacian is

(∆̄LW )r = ∂2
rW

r +
2
r
∂rW

r − 2
r2
W r =

∂

∂r

(
1
r2

∂

∂r

(
r2W r

))
. (3.52)

Note that ĀijTT and ĀijL are transverse and longitudinal with respect to the conformal metric γ̄ij,
which is why this decomposition is called the conformal transverse-traceless decomposition. Alter-
natively one can also adopt a physical transverse-traceless decomposition, where the corresponding
tensors are transverse and longitudinal with respect to the physical metric γij.

Inserting the conformally related quantities into the momentum constraint (3.38) yields

(∆̄LW )i − 2

3
ψ6γ̄ijD̄jK = 8πψ10Si. (3.53)

17Compare Baumgarte et al. (2007); Walsh (2007).
18Vectors ξi satisfying (L̄ξ)ij = 0 are called conformal Killing vectors (see Exercise A.7 in Appendix A), which

suggests why L̄ is also called the conformal Killing operator.
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The Hamiltonian constraint remains in its form (3.37). We now see that we can freely choose the
conformally related metric γ̄ij, the mean curvature K and transverse-traceless part of the confor-
mally related extrinsic curvature, ĀijTT . Given these choices, we can then solve the Hamiltonian
constraint (3.37) for the conformal factor ψ and the momentum constraint (3.53) for the vector
potential W i. Knowing these quantities, we can construct finally the physical solutions γij and
Kij. We summarize this conformal transverse-traceless, or “CTT”, decomposition in Box 3.1.

Box 3.1: The conformal transverse-traceless (CTT) decomposition

Freely specifiable variables are γ̄ij, K and ĀijTT . Given these, the momentum constraint

(∆̄LW )i − 2

3
ψ6γ̄ijD̄jK = 8πψ10Si (3.54)

is solved for W i, and the Hamiltonian constraint

8D̄2ψ − ψR̄− 2

3
ψ5K2 + ψ−7ĀijĀ

ij = −16πψ5ρ, (3.55)

where
Āij = ĀijTT + ĀijL = ĀijTT + (L̄W )ij, (3.56)

is solved for ψ. The physical solution is then constructed from

γij = ψ4γ̄ij (3.57)

and

Kij = Aij +
1

3
γijK = ψ−2Āij +

1

3
γijK. (3.58)

Before discussing some simple solutions to equation (3.53), it is useful to count degrees of
freedom again, as we did at the beginning of Section 2.2. We started out with six independent
variables in both the spatial metric γij and the extrinsic curvature Kij. Splitting off the conformal
factor ψ left five degrees of freedom in the conformally related metric γ̄ij (once we have specified its
determinant γ̄). Of the six independent variables in Kij we moved one into its trace K, two into
ĀijTT (which is symmetric, traceless, and divergenceless), and three into ĀijL (which is reflected in
its representation by a vector). Of the twelve original degrees of freedom, the constraint equations
determine only four, namely the conformal factor ψ (Hamiltonian constraint) and the longitudinal
part of the traceless extrinsic curvature ĀijL (momentum constraint). Four of the remaining eight
degrees of freedom are associated with the coordinate freedom – three spatial coordinates hidden in
the spatial metric and a time coordinate that is associated withK. This leaves four physical degrees
of freedom undetermined – two in the conformally related metric γ̄ij, and two in the transverse
part of traceless extrinsic curvature ĀijTT . These two freely specifiable degrees of freedom carry
the dynamical degrees of freedom of the gravitational fields. All others are either fixed by the
constraint equations or represent coordinate freedom.

We have reduced the Hamiltonian and momentum constraint to equations for the conformal
factor ψ and the vector potential W i, from which the longitudinal part of the extrinsic curvature is
constructed. These quantities can be solved for only after choices have been made for the remaining
quantities in the equations, namely the conformally related metric γ̄ij, the transverse-traceless part
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of the extrinsic curvature ĀijTT , the trace of the extrinsic curvature K, and, if present, any matter
sources. The choice of these background data has to be made in accordance with the physical or
astrophysical situation that one wants to represent. Physically, the choice affects the gravitational
wave content present in the initial data, in the sense that a dynamical evolution of data constructed
with different background data leads to different amounts of emitted gravitational radiation. It is
often not clear how a suitable background can be constructed precisely, and we will return to this
issue on several occasions. Given its loose association with the transverse parts of the gravitational
fields, one often sets ĀijTT equal to zero in an attempt to minimize the gravitational wave content
in the initial data.

The freedom in choosing the background data can also be used to simplify the equations.
Focus again on vacuum solutions, so that ρ = Si = 0. We will now assume maximal slicing K = 0
(see Chapter 4.2), which amounts to assuming that the initial slice Σ has a certain shape in the
spacetime M – namely one that maximizes its volume. In this case the momentum constraint
(3.53) decouples from the Hamiltonian constraint

(∆̄LW )i = 0. (3.59)

and can therefore be solved independently. If we further assume conformal flatness, γ̄ij = ηij, the
vector Laplacian simplies and, in cartesian coordinates, reduces to

∂j∂jW
i +

1

3
∂i∂jW

j = 0. (3.60)

Solutions to this equation are often called Bowen-York solutions.19 We will encounter the above
operator on several occasions, and two different approaches for solving it in the presence of non-zero
right-hand sides are discussed in Appendix B. As examples of these two approaches we will derive
next two well-known Bowen-York solutions to the momentum constraints (3.60), one describing a
spinning black hole and one describing a boosted black hole. These solutions form the basis for
many numerical solutions to the constraint equations, for example the “puncture” initial data for
binary black holes that we shall discuss in Chapter 12.2.

A spinning black hole

In one approach, the vector W i is decomposed as

Wi = Vi + ∂iU, (3.61)

in which case equation (3.60) reduces to the coupled set of Possion equations

∂j∂jU = −1

4
∂jV

j (3.62)

∂j∂jVi = 0 (3.63)

(see Appendix B). We can derive a simple solution by assuming Vi = 0. The general spherically
symmetric solution for U is then given by U = a− b/r, where a and b are arbitrary constants and
where r2 = x2 + y2 + z2. Inserting this into the decomposition (3.61) we find

W i = ηij∂jU = b
xi

r3
= b

li

r2
= bX i, (3.64)

19After Bowen and York, Jr. (1980).
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where we have used the normal vector li = xi/r and defined X i = li/r2 for convenience. In
spherical polar coordinates the only nonvanishing component of W i is W r = b/r2 and, given that
this solution is spherically symmetric, we can use equation (3.52) to verify immediately that this
solution satisfies the momentum constraint (3.59). We can also use X i to generate another solution
that is not spherically symmetric, as shown in exercise 3.10.

Exercise 3.10 Show that
W i = ε̄ijkXjJk (3.65)

is a solution to equation (3.59), assuming conformal flatness and that J i is some vector satisfying
D̄iJj = 0. Here ε̄ijk is the three-dimensional Levi-Civita tensor associated with the conformally
related metric γ̄ij , so that D̄iε̄

jkl = 0.

Inserting the solution (3.65) into equation (3.50) we now find

ĀijL = (L̄W )ij =
6

r3
l(iε̄j)klJkll. (3.66)

Since Ji satisfies D̄iJj = 0, it must be a vector with constant coefficients when expressed in
cartesian coordinates. Exercise 3.11 shows that for large r the extrinsic curvature (3.66) agrees
with that of a Kerr black hole (see exercise 2.34), suggesting that our solution describes a rotating
black hole with angular momentum Ji. We will confirm this identification in exercise 3.29.

Exercise 3.11 Show that in spherical polar coordinates the only nonvanishing components of W i in
equation (3.65) and the extrinsic curvature Āij

L in equation (3.66) are

Wφ = − J

r3
(3.67)

and

ĀL
rφ =

3J
r2

sin2 θ. (3.68)

Here J is the magnitude of the vector J i aligned with the polar axis. Further show that, with suitable
choices for ĀTT

ij and ψ, this solution agrees asymptotically with the Kerr solution of exercise 2.34.

In order to construct a complete solution to the constraint equations we would have to insert the
extrinsic curvature (3.66) back into the Hamiltonian constraint (3.37) and solve for the conformal
factor ψ. This equation is nonlinear and in general can only be solved numerically. We will
return to this problem in several places throughout this book; in Chapter 12.2.2, for example, we
will discuss two approaches for solving this equation in the context of binary black holes. In the
meantime, we can find an approximate, analytical solution by expanding around the nonrotating
case J = 0, as outlined in exercise 3.12.

Exercise 3.12 Consider the solution (3.68) for a rotating black hole and assume Āij
TT = 0 to show

that the only non-vanishing source term in the Hamiltonian constraint (3.37) arises from

ĀijĀ
ij =

18J2

r6
sin2 θ. (3.69)

For J = 0 we recover the solution (3.18), which we will denote here as ψ(0). The leading-order correction
to this solution must therefore scale with J2, which suggests the ansatz

ψ = ψ(0) +
J2

M4
ψ(2) +O(J4) = 1 +

M
2r

+
J2

M4
ψ(2) +O(J4). (3.70)
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Show that inserting this ansatz into the Hamiltonian constraint (3.37) yields

D̄2ψ(2) = −9
4

M4r

(r +M/2)7
sin2 θ. (3.71)

Now express the angular dependence sin2 θ in terms of the Legendre polynomials P0(cos θ) = 1 and
P2(cos θ) = (3 cos2 θ − 1)/2, split ψ(2) into

ψ(2) = ψ
(2)
0 (r)P0(cos θ) + ψ

(2)
2 (r)P2(cos θ), (3.72)

and show that the resulting equations are solved by20

ψ
(2)
0 (r) = −

(
1 +

M
2r

)−5 M
5r

(
5
(
M
2r

)3

+ 4
(
M
2r

)4

+
(
M
2r

)5
)

(3.73)

and

ψ
(2)
2 (r) = − 1

10

(
1 +

M
2r

)−5(M
r

)3

. (3.74)

With the conformal factor ψ we now have a complete solution to the constraint equations
describing a rotating black hole. But we already know that the solution for a stationary, rotating
black hole is given by the Kerr solution of exercise 2.34. This raises an interesting question, namely
whether the above Bowen-York rotating black hole is identical to the Kerr black hole. The answer
is no, even though it is not as easy to see this as one might think.

One complication is that the Kerr solution describes a spacetime solution, whereas the Bowen-
York solution describes initial data only. These initial data represent the solution on a certain
time slice Σ, but a priori it is not clear on which slice. For example, there is no reason to expect
that this slice corresponds to a slice of constant Boyer-Linquist time t (see exercise 2.34), making
any direct comparison very difficult. We could evolve the Bowen-York initial data dynamically,
thereby constructing a spacetime solution. Again, we would have no reason to expect that this
spacetime solution would be represented in Boyer-Linquist or any other coordinate system in which
the Kerr solution is known, and it would be hard to decide whether or not the two spacetimes
are identical, i.e. whether or not there exists a coordinate transformation that relates the two.
One way to distinguish the resulting spacetimes is to compare gauge-invariant quantities, and one
such example is the emitted gravitational radiation as measured by a distant observer. The Kerr
solution is stationary and does not emit any gravitational radiation, but a dynamical evolution
of the Bowen-York initial data does lead to a burst of gravitational radiation before it settles
down into a stationary solution.21 This demonstrates that the Bowen-York data do not represent
a spatial slice of the Kerr solution. Instead, it may be considered a Kerr solution plus an initial
perturbation.

This observation raises the next question: how does this perturbation arise in the CTT decom-
position? All evidence points towards our assumption of conformal flatness, γ̄ij = ηij. Given this
assumption, the resulting data can possibly represent a Kerr black hole only if the Kerr spacetime
admits a slicing on which the spatial metric is conformally flat. Whether or not the Kerr spacetime
admits such a slicing is again difficult to decide, since we have no a priori knowledge of which
slicing this might be. We can nevertheless consider certain families of slices Σ and evaluate the
Bach tensor (3.15). Slices of constant Boyer-Linquist time t, for example, are not conformally
flat, nor are axisymmetric foliations that smoothly reduce to slices of constant Schwarzschild time

20See Gleiser et al. (1998).
21See Gleiser et al. (1998) as well as the discussion in Burko et al. (2006).
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in the Schwarzschild limit.22 This suggests very strongly (but does not prove) that, for nonzero
angular momentum, the Kerr spacetime does not admit spatial slices that are conformally flat.

A boosted black hole

In an alternative approach to solve (3.60) we decompose W i as

Wi =
7

8
Vi −

1

8

(
∂iU + xk∂iVk

)
(3.75)

(see Appendix (B.7)), in which case (3.60) becomes equivalent to the set

∂j∂jU = 0 (3.76)

∂j∂jVi = 0. (3.77)

Note that both equations are now homogeneous. We can construct a simple solution by assuming
U = 0 and writing the solution for Vi as

Vi = −2Pi
r
, (3.78)

where Pi is an arbitrary vector with constant coefficients when expressed in cartesian coordinates
(the general solution also allows for an arbitrary constant term, which would drop out, however,
when we compute ĀijL below). Inserting Vi into the decomposition (3.75) yields

W i = − 1

4r
(7P i + liljP

j), (3.79)

where again li = xi/r, and, from equation (3.50),

ĀijL = (L̄W )ij =
3

2r2

(
P ilj + P jli − (ηij − lilj)lkP

k
)
. (3.80)

In exercise 3.32 we will see that the linear momentum of this solution is P i. By virtue of the
linearity of the momentum constraint (3.60) we can add several terms of this form to obtain a
solution describing multiple, boosted black holes. If we would like these black holes to spin, we
could further add terms of the form (3.66). In fact, these solutions form the basis of the binary
black hole initial data that we discuss in Section 12.2. To complete these data, of course, we still
need to solve the Hamiltonian constraint (3.37), as described in Section 12.2.2. As for the spinning
black holes, this can in general only be done numerically, but we can again compute approximate
solutions as an expansion around the known Schwarzschild solution for P i = 0.

Exercise 3.13 Follow the approach outlined in Exercise 3.12 to construct an approximate, analytical
solution to the Hamiltonian constraint (3.37) for the extrinsic curvature (3.80). First show that

ĀijĀ
ij =

9P 2

2r4
(
1 + 2 cos2 θ

)
, (3.81)

where P 2 = PiP
i is the square of the momentum’s magnitude. Then make an ansatz

ψ = ψ(0) +
P 2

M2
ψ(2) +O(P 4) = 1 +

M
2r

+
P 2

M2
ψ(2) +O(P 4) (3.82)

22See Garat and Price (2000).
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and show that the Hamilton constraint is solved, to first order in P 2, by

ψ(2) = ψ
(2)
0 (r)P0(cos θ) + ψ

(2)
2 (r)P2(cos θ) (3.83)

where23

ψ
(2)
0 =

(
1 +

M
2r

)−5 M
16r

[(
M
2r

)4

+ 5
(
M
2r

)3

+ 10
(
M
2r

)2

+ 10
(
M
2r

)
+ 5

]
(3.84)

and

ψ
(2)
2 =

1
20

(
1 +

M
2r

)−5 (M
2r

)2
[
84
(
M
2r

)5

+ 378
(
M
2r

)4

+ 658
(
M
2r

)3

+539
(
M
2r

)2

+ 192
(
M
2r

)
+ 15

]
+

21
5

(
M
2r

)3

ln
(

M/(2r)
1 +M/(2r)

)
. (3.85)

Before closing this section it may be useful to discuss one more technical aspect.24 We have
seen that the longitudinal part ĀijL is constructed from the vector potential W i. According to the
decomposition (3.48) we can add to this longitudinal part a transverse part ĀijTT to construct a
general solution to the momentum constraint. According to equation (3.49) the transverse part
ĀijTT has to be divergence-free, and we want to discuss briefly how a divergence-free tensor can be
constructed from a symmetric tracefree tensor M̄ ij. Consider a solution Y i to the equation

∆̄LY
i = D̄jM̄

ij. (3.86)

If we define

ĀijTT = M̄ ij − (L̄Y )ij, (3.87)

then ĀijTT is clearly divergence-free

D̄jĀ
ij
TT = D̄jM̄

ij − D̄j(L̄Y )ij = D̄jM̄
ij − ∆̄LY

i = 0. (3.88)

In fact, this construction can be conveniently embedded in the above solution of the constraint
equations. Given that L̄ is linear, equation (3.48) can be written

Āij = ĀijTT + ĀijL = M̄ ij − (L̄Y )ij + (L̄W )ij = M̄ ij + (L̄V )ij, (3.89)

where we have defined

V i = W i − Y i. (3.90)

Given that the vector Laplacian is linear, we also have

∆̄LV
i = ∆̄LW

i − ∆̄LY
i =

2

3
ψ6γ̄ijD̄jK − D̄jM̄

ij + 8πψ10Si. (3.91)

Solving this equation for V i instead of equation (3.53) for W i allows us to construct a general
solution Āij from an arbitrary symmetric tracefree tensor M̄ ij (equation (3.89)) directly, rather
than having to first find a transverse part ĀijTT .

23See Gleiser et al. (2002).
24See Cook (2000).
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3.3 Conformal Thin-Sandwich Decomposition

Solving the conformal transverse-traceless decomposition yields data γij and Kij intrinsic to one
spatial slice Σ, but this solution does not tell us anything about how it will evolve in time away from
Σ, nor does the formalism allow us to determine any such time-evolution. In some circumstances,
for example when we are interested in constructing equilibrium or quasi-equilibrium solutions,
we would like to construct data in such a way that they do have a certain time-evolution. The
conformal thin-sandwich, or “CTS” approach25 offers an alternative to the transverse-traceless
decomposition that does allow us to determine the evolution of the spatial metric. Instead of
providing data for γij and Kij on one timeslice, it provides data for γij on two timeslices, or, in
the limit of infinitesimal separation of the two slices, data for γij and its time derivative.

We start by defining uij as the traceless part of the time derivative of the spatial metric,

uij ≡ γ1/3∂t(γ
−1/3γij), (3.92)

in terms of which the evolution equation (2.135) becomes

uij = −2αAij + (Lβ)ij. (3.93)

Here L is the vector gradient defined in equation (3.50), except that the “unbarred” L is defined
in terms of the physical metric γij. We also define

ūij ≡ ∂tγ̄ij (3.94)

and
γ̄ijūij ≡ 0 (3.95)

It may seem odd that we need both of these definitions to specify ūij. The reason for this is the
arbitrariness in choosing the determinant of the conformal metric γ̄. So far we have only chosen
γ̄ij and hence γ̄ on the slice Σ, but we have not yet specified a normalization γ̄ away from Σ. If
defined from equation (3.94) alone, this would leave ūij defined only up to some overall factor.
This factor is fixed with the help of equation (3.95), which in effect determines the time derivative
of γ̄

0 = γ̄ijūij = γ̄ij∂tγ̄ij = ∂t ln γ̄. (3.96)

With this result we can now show that

uij = ψ4ūij. (3.97)

Exercise 3.14 Derive equation (3.97).

Exercise 3.15 Show that
(Lβ)ij = ψ−4(L̄β)ij (3.98)

From equations (3.97) and (3.98), together with the scaling relation (3.35), we can conformally
transform equation (3.93) to obtain

Āij =
ψ6

2α

(
(L̄β)ij − ūij

)
. (3.99)

25See York, Jr. (1999), as well as Isenberg (1978); Wilson and Mathews (1995) for related earlier approaches.
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At this point it seems natural to introduce a conformally rescaled or “densitized” lapse

α = ψ6ᾱ, (3.100)

in terms of which (3.99) becomes

Āij =
1

2ᾱ

(
(L̄β)ij − ūij

)
. (3.101)

This equation relates Āij to the shift vector βi. Inserting this equation into the momentum
constraint (3.38), yields an equation for the shift,

(∆̄Lβ)i − (L̄β)ijD̄j ln(ᾱ) = ᾱD̄j(ᾱ
−1ūij) +

4

3
ᾱψ6D̄iK + 16πᾱψ10Si. (3.102)

We can now construct a solution of the thin-sandwich formulation as summarized in Box 3.2.
We first choose the background metric γ̄ij as well as its time derivative ūij. Given choices for the
densitized lapse ᾱ and the trace of the extrinsic curvature K, we can then solve the Hamiltonian
constraint (3.37) and the momentum constraint (3.102) for the conformal factor ψ and the shift
βi. With these solutions, we can then construct Āij from equation (3.101) and finally the physical
quantities γij and Kij. This version of the conformal thin-sandwich formalism is sometimes called
the “original” version, in contrast to the “extended” version that we will discuss below.

Box 3.2: The original conformal thin-sandwich (CTS) decomposition

Freely specifiable variables are γ̄ij, ūij, K and ᾱ. Given these, the momentum constraint

(∆̄Lβ)i − (L̄β)ijD̄j ln(ᾱ) = ᾱD̄j(ᾱ
−1ūij) +

4

3
ᾱψ6D̄iK + 16πᾱψ10Si (3.103)

is solved for βi, and the Hamiltonian constraint

D̄2ψ − 1

8
ψR̄− 1

12
ψ5K2 +

1

8
ψ−7ĀijĀ

ij = −2πψ5ρ, (3.104)

where

Āij =
1

2ᾱ

(
(L̄β)ij − ūij

)
, (3.105)

is solved for ψ. The physical solution is then constructed from

γij = ψ4γ̄ij

Kij = Aij +
1

3
γijK = ψ−2Āij +

1

3
γijK

α = ψ6ᾱ.

(3.106)

It is again instructive to count the degrees of freedom, and to compare with the transverse-
traceless decomposition of Section 3.2. There, we found that of the twelve independent variables in
γij and Kij, four were determined by the constraint equations, four were related to the coordinate
freedom, and four represented the dynamical degrees of freedom of general relativity. The latter
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eight conditions can be chosen freely. In the thin-sandwich formalism we count a total of sixteen
independent variables, of which we can freely choose twelve: five each in γ̄ij and ūij, and one
each for ᾱ and K. The four remaining variables, ψ and βi, are then determined by the constraint
equations. The four new independent variables are accounted for by the lapse ᾱ and the shift
βi, which are absent in the transverse-traceless decomposition. The CTT approach only deals
with quantities intrinsic to one spatial slice Σ, and hence only requires coordinates on Σ. The
thin-sandwich approach, on the other hand, also takes into account the evolution of the metric off
the slice, and therefore requires coordinates in a neighborhood of Σ. As a consequence, the lapse
α and the shift βi, which describe the evolution of the coordinates away from Σ, appear in the
CTS approach, but not in the CTT decomposition. The four new degrees of freedom hence reflect
the time derivatives of the coordinates.

Instead of fixing the densitized lapse ᾱ, we can specify alternatively the time derivative of the
mean curvature ∂tK together with K. From equation (2.138) we can then solve

D2α = −∂tK + α
(
KijK

ij + 4π(ρ+ S)
)

+ βiDiK (3.107)

for the lapse together with equations (3.37) and (3.102). Condition (3.107) involves the physical
Laplace operator D2, but in this context the conformal Laplace operator D̄2 would be more handy
to evaluate. As it turns out, we can express equation (3.107) in terms of D̄2 by combining it with
the Hamiltonian constraint to yield (3.37)

D̄2(αψ) = αψ

(
7

8
ψ−8ĀijĀ

ij +
5

15
ψ4K2 +

1

8
R̄ + 2πψ4(ρ+ 2S)

)
− ψ5∂tK + ψ5βiD̄iK. (3.108)

The freely specifiable quantities are now the mean curvature K and the conformal metric γ̄ij,
together with their time derivatives ∂tK and ūij. We can then solve the Hamiltonian constraint
(3.37) for the conformal factor ψ, the momentum constraint (3.102) for the shift βi, and equation
(3.108) for the lapse α. We summarize this “extended” version of the conformal thin-sandwich
decomposition in Box 3.3.26

Exercise 3.16 Derive equation (3.108) from equations (3.107) and (3.37).

The extended version of the thin-sandwich formalism seems particularly useful for the con-
struction of equilibrium or quasi-equilibrium data, since it allows us to set the time derivatives of
the conformal metric and the mean curvature to zero

ūij = 0 and ∂tK = 0. (3.114)

In this case equation (3.99) reduces to

Āij =
ψ6

2α
(L̄β)ij, (3.115)

which looks very similar to expression (3.50) for ĀijL in the conformal transverse-traceless de-
composition. Here, however, Āij is not longitudinal because of the extra factor of ψ6/α. Further

26See Pfeiffer and York, Jr. (2003). For some recent results on the uniqueness and nonuniqueness of solutions to
these equations see Pfeiffer and York, Jr. (2005); Baumgarte et al. (2007); Walsh (2007); and references therein.
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Box 3.3: The extended conformal thin-sandwich (CTS) decomposition

Freely specifiable variables are γ̄ij, ūij, K and ∂tK. Given these, the momentum constraint

(∆̄Lβ)i − (L̄β)ijD̄j ln(ᾱ) = ᾱD̄j(ᾱ
−1ūij) +

4

3
ᾱψ6D̄iK + 16πᾱψ10Si (3.109)

is solved for βi, the Hamiltonian constraint

D̄2ψ − 1

8
ψR̄− 1

12
ψ5K2 +

1

8
ψ−7ĀijĀ

ij = −2πψ5ρ (3.110)

is solved for ψ, and a combination of the Hamiltonian constraint and the trace of the
evolution equation for Kij

D̄2(αψ) = αψ

(
7

8
ψ−8ĀijĀ

ij +
5

15
ψ4K2 +

1

8
R̄ + 2πψ4(ρ+ 2S)

)
− ψ5∂tK + ψ5βiD̄iK

(3.111)
is solved for the product αψ = ᾱψ7. In the above equations Āij is given by

Āij =
1

2ᾱ

(
(L̄β)ij − ūij

)
. (3.112)

The physical solution is then constructed from

γij = ψ4γ̄ij

Kij = Aij +
1

3
γijK = ψ−2Āij +

1

3
γijK.

(3.113)

assuming maximal time-slicing, K = 0, equations (3.37), (3.102) and (3.108) now form the coupled
system

D̄2ψ =
1

8
ψR̄− 1

8
ψ−7ĀijĀ

ij − 2πψ5ρ (3.116)

(∆̄Lβ)i = 2ĀijD̄j(αψ
−6) + 16παψ4Si (3.117)

D̄2(αψ) = αψ

(
7

8
ψ−8ĀijĀ

ij +
1

8
R̄ + 2πψ4(ρ+ 2S)

)
. (3.118)

for ψ, βi and α. With ūij = 0, K = 0 and ∂tK = 0 the only remaining freely specifiable quantity
is the conformal metric γ̄ij. The equations further simplify under the assumption of conformal
flatness γ̄ij = ηij, in which case R̄ = 0 and the differential operators become much easier to invert.

Exercise 3.17 Show that under the additional assumption of conformal flatness, the CTS equations
(3.116) to (3.118) reduce to

∂i∂iψ = −1
8
ψ−7ĀijĀ

ij − 2πψ5ρ, (3.119)

∂j∂jβ
i +

1
3
∂i∂jβ

j = 2Āij∂j(αψ−6) + 16παψ4Si, (3.120)

∂i∂i(αψ) = αψ

(
7
8
ψ−8ĀijĀ

ij + 2πψ4(ρ+ 2S)
)
, (3.121)
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in cartesian coordinates.

The equations for the shift (3.117) and (3.120) again involve the vector Laplacian, which we
previously encountered in the conformal transverse-traceless decomposition of Section 3.2.27 We
discuss strategies for solving this operator in Appendix B. Interestingly, we will re-discover the shift
condition (3.117) in Chapter 4.5, where we will find that it is identical to the “minimal distortion”
condition. The conformal thin-sandwich formalism therefore reduces to the Hamiltonian constraint
for the conformal factor, the minimal distortion condition for the shift, and the maximal slicing
condition for the lapse.

If initial data for a time evolution calculation are constructed from the CTT decomposition,
then the lapse and shift have to be chosen independently of the construction of initial data. The
CTS formalism, on the other hand, provides a lapse and a shift together with the initial data γij
and Kij. Obviously, once the initial data are determined, the lapse and shift can always be chosen
freely in performing subsequent evolution calculations. However, the original relation between the
time derivative of γij and ūij only applies when the lapse and shift as obtained from the CTS
solution are employed in the dynamical simulation.

Before closing this Section it may be of interest to consider the circumstances under which
the CTS formalism can reproduce a complete spacetime solution, in the sense that a dynamical
evolution of the initial data, using the lapse and the shift obtained from the CTS solution, would
lead to a time-independent solution. We would expect this to be possible only if the spacetime
is stationary, i.e. possesses a timelike Killing vector field ξa. For the metric coefficients to be
independent of time during an evolution, our time-vector ta, defined in (2.98), then has to be be
aligned with ξa. This is the case if the lapse and the shift are the Killing lapse and Killing shift,
as we discussed in the context of equation (2.162).

To obtain a Killing lapse and shift we need to choose ūij = 0 and ∂tK = 0 in the extended
CTS formalism, but these conditions are not sufficient. The point is that we also have to choose
the conformally related metric γ̄ij, as well as K, and these choices may or may not represent the
stationary slices of the spacetime that we are seeking. For simple spherical spacetimes, and suitable
boundary conditions, the choice K = 0 always gives rise to a static solution of Einstein’s equations.
For example, in vacuum with γ̄ij chosen to be conformally flat and K = 0, there is a particular
choice of boundary conditions that yields the familiar isotropic form of the Schwarzschild metric
(2.35); other choices of boundary conditions yield different static solutions, also with maximal
slicing.28 In the presence of matter, static solutions to the equations of motion ∇bT

ab must be
solved simultaneously to obtain static spacetimes.

By contrast, as we discussed in Section 3.2, there exists strong evidence that rotating Kerr
black holes do not admit spatial slices that are conformally flat. Adopting conformal flatness,
then, would preclude our obtaining a spatial slice of a rotating Kerr black hole. The dynamical
evolution of any CTS initial data that we might construct for a rotating black hole in vacuum thus
must display some time dependence that we can interpret as a gravitational wave perturbation
of our rotating hole. This issue serves as a motivation for the “waveless” approximation, yet an-
other decomposition of the constraint equations, which we discuss briefly in the following Section.
Before discussing this approach, we note that numerical CTS solutions for a rotating black hole,
adopting conformal flatness and maximal slicing, appear to give a maximum dimensionless spin of

27Recall equation (3.60) in cartesian coordinates and the discussion of Bowen-York solutions that follow.
28See equations (4.23) - (4.25). Given that these solutions are spherically symmetric they are automatically

conformally flat. A coordinate transformation from the areal radius R in equations (4.23) - (4.25) to an isotropic
coordinate r (see exercise H.1) brings the spatial metric into the form ψ4ηij .
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JADM/M
2
ADM

<∼ 0.94 and not unity, as we would obtain for a slice of Kerr.29 The ADM measure of
the total angular momentum (JADM) and mass (MADM) quoted here are defined in Section 3.5.30

3.4 A Step Further: the “Waveless” Approximation

The conformal thin-sandwich formalism of Section 3.3 seems more suitable for the construction
of equilibrium or quasiequilibrium initial data than the transverse-traceless formalism of Section
3.2 because we can freely determine some time derivatives of quantities rather than the quantities
themselves. Basically, in the CTT formalism the freely specifiable variables are the conformally
related metric and parts of the extrinsic curvature, and in the CTS formalism the latter are
replaced with the time derivative of the conformally related metric. For equilibrium data it is
much easier to make a well-motivated choice for the time derivative of a quantity – typically zero
– than for a quantity itself.

In the CTS formalism, we therefore have a natural choice for the time derivative of the confor-
mally related metric when constructing equilibrium data, but there still is very little guidance as to
how to choose the conformally related metric itself. Many applications adopt conformal flatness,
so that the conformally related metric is simply a flat metric. This choice simplifies the equations
quite dramatically, but a priori it is not clear whether or not it leads to a good approximation for
quasiequilibrium, for example, for binary black holes or neutron stars in nearly circular orbit (see
Chapters 12 and 15).

To address this problem, the “waveless” approximation31 goes one step further and replaces the
conformally related metric as a freely specifiable variable with the time derivative of the extrinsic
curvature.32 Here we will discuss this approximation only qualitatively and refer the reader to the
literature for details.

Recall that to replace pieces of the extrinsic curvature with the time derivative of the con-
formally related metric as freely specifiable variables, the CTS formalism employs the evolution
equation for the metric, e.g. equations (2.135) or (3.93). The waveless approximation is an ex-
tension of this proceedure. The key idea is to replace the conformally related metric with the
time derivative of the extrinsic curvature as freely specifiable variables, now employing the evolu-
tion equation for the extrinsic curvature, equation (2.136). In addition, one can choose the time
derivatives of both γ̄ij and Āij to satisfy a helical symmetry in a near-zone, and to set them to
zero in the far zone.33 The asymptotic behavior of these quantities is so chosen to eliminate any
standing waves in the far zone, which explains the name of this approximation.

In the context of Chapter 2 we have considered equation (2.136) as an equation that determines
the time derivative of the extrinsic curvature for a given spatial metric. Instead, we now consider
the time derivative of the extrinsic curvature to be given, and we would like to solve for the spatial
metric, or at least its conformally related part. To do so we focus on the Ricci tensor Rij that
appears on the right hand side of equation (2.136). Using equation (3.10) we can write this in

29Lovelace et al. (2008).
30Measured in terms of the quasi-local spin JS and mass MS of the black hole (see Chapter 7.4 for definitions),

the maximum dimensionless spin for such a CTS solution is JS/M
2
S

<∼ 0.99; Lovelace et al. (2008).
31Shibata et al. (2004).
32Several other approaches have been suggested for the construction of equilibrium models; see, e.g. Blackburn

and Detweiler (1992); Andrade et al. (2004); Friedman and Uryū (2006).
33A helical symmetry makes the system appear stationary in the rotating frame of the binary; compare Chapters

12.3.1 and 15.1. Imposing a (non-trivial) helical symmetry globally is generally not compatible with asymptotic
flatness.
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terms of the Ricci tensor R̄ij associated with the conformally related metric γ̄ij. When expressed
in the form (2.143) this tensor contains a combination of second-order spatial derivatives of the
conformally related metric, making it a rather complicated differential operator. Fortunately we
still have a gauge freedom that we can use to our advantage. As it turns out, we can make a
certain gauge choice under which these second derivatives simplify dramatically, leaving only the
last second-order term in (2.143).34 This last second-order term forms an elliptic operator that we
can invert to find the conformally related metric.35

In summary, the “waveless” approximation uses the equations of the CTS formalism, as in
Box 3.3, together with equation (2.136). Given a suitable gauge choice, the Ricci tensor in equa-
tion (2.136) turns into an elliptic operator on γ̄ij. The freely specifiable quantities are now K
and its time derivative, as well as the time derivatives of both γ̄ij and Āij. Instead of making an
ad-hoc choice for γ̄ij we can now choose the time derivative of Āij and obtain γ̄ij as a solution of
equation (2.136). Presumably, this approach provides a further advantage over the CTS formalism
of Section 3.3 for the construction of equilibrium and quasiequilibrium initial data, since we can
freely set more time derivatives of quantities equal to zero, rather than specifying (i.e guessing)
the quantities themselves.

As a concrete example we may return to the example of a rotating black hole. As we discussed
in both Section 3.2 and at the end of Section 3.3, assuming conformal flatness γ̄ij = ηij in either
the CTT or CTS decomposition never leads to a spatial slice of a vacuum, stationary, rotating
Kerr black hole solution, but instead to a solution that may be interpreted as a rotating black
hole plus some gravitational radiation. In the “waveless” approximation, by contrast, we would
choose the time derivatives of γ̄ij, Āij and K to vanish, and would then obtain the conformally
related metric γ̄ij as a result of the calculation. In this approach we could indeed find a slice of
the Kerr solution, without any gravitational wave perturbation.36

More generally, the “waveless” approximation allows us to construct stationary slices of sta-
tionary spacetimes exactly, independently of any choice of the conformally related metric. In many
parts of this book we will be more interested in solutions that do not possess exact Killing vectors,
for example black hole or neutron star binaries. We will see, however, that these spacetimes do
admit approximate helical Killing vectors. For these situations it is possible that the “waveless”
approximation produces initial data that represent this symmetry more accurately than initial data
that require an ad-hoc choice for the conformally related metric. We will discuss some results for
binary neutron stars obtained with the “waveless” approximation in Chapter 15.3.

3.5 Mass, Momentum and Angular Momentum

There are several important global conserved quantities that characterize an isolated system, such
as its total mass and angular momentum. Associated with these global parameters, which are
well-defined only for asymptotically flat spacetimes, are conservation laws that state that the rate
of loss of these quantities from an isolated system is equal to the rate at which matter, fields
and gravitational waves carry them away.37 Once we have solved the constraint equations and

34We will use similar gauges leading to this simplification of the Ricci tensors in several places in later Chapters;
see Sections 4.3, 11.3 and 11.5.

35One sutlety arises from the fact that the differential operator acting on γ̄ij involves γ̄ij itself. To avoid this
problem it is possible to express this operator – or, in fact, all differential operators in the problem – in terms of a
flat reference metric.

36Assuming, of course, that we have imposed suitable boundary conditions.
37See, e.g., Misner et al. (1973), Chapters 19 and 20.
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Figure 3.5: A “pill-box”-shaped spacetime region Ω is bounded by a 3-dimensional surface ∂Ω
consisting of two spatial slices Σ1 and Σ2, as well as a timelike hypersurface that lies in the
exterior vacuum. An isolated, gravitating source in the interior is confined within the shaded
worldtube. The outward-pointing normal vectors Na to δΩ are also shown.

constructed a complete set of initial data for a system, we can then determine the values of the
global conserved parameters associated with the system. During a numerical evolution, monitoring
the degree to which these parameters are conserved provides a very useful check on the accuracy
of the numerical integration. Here we assemble a few useful formulae for evaluating some of these
parameters.

Suppose the system contains matter. Then we can derive an expression for its conserved
rest-mass M0 (sometimes called the baryon mass, if the matter is composed of baryons) from the
continuity equation,

∇a(ρ0u
a) = 0, (3.122)

where ρ0 is the rest-mass density. Integrating this expression over a 4-dimensional region of
spacetime Ω yields ∫

Ω

d4x
√
−g∇a(ρ0u

a) = 0. (3.123)

Using Gauss’s theorem we can relate the divergence of ρ0u
a inside the region Ω to the value of

ρ0u
a on the region’s 3-dimensional boundary ∂Ω∫

Ω

d4x
√
−g∇a(ρ0u

a) =

∫
∂Ω

d3Σaρ0u
a , (3.124)
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where d3Σa = εNa
√
γd3x and N a is the outward-pointing unit normal vector on ∂Ω. When ∂Ω is

spacelike, the factor ε = −1 and when ∂Ω is timelike, ε = +1.
Now imagine a “pill-box”-shaped spacetime region that is bounded by two spatial slices Σ1

and Σ2 as well as a timelike hypersurface residing entirely outside the source, as illustrated in
Figure 3.5. In this case only the spatial surfaces contribute to the surface integral. On Σ2 the
normal vector N a points toward the future, and therefore coincides with the normal vector na of
the spacetime foliation introduced in Section 2.3. From equation (2.117) we then have

Nau
a = nau

a = −αut. (3.125)

On Σ1, N a points toward the past, while na points toward the future, which introduces a negative
sign between them. The conservation law (3.124) can therefore be written as∫

Σ1

d3x
√
γαutρ0 −

∫
Σ2

d3x
√
γαutρ0 = 0. (3.126)

Equation (3.126) immediately implies that the rest mass, defined as

M0 =

∫
Σ

d3x
√
γαutρ0, (3.127)

is conserved. The rest-mass is thus determined by a 3−dimensional volume integral over a spatial
region spanning the matter source.

Defining the total mass-energy of the system is more subtle, since it cannot be defined locally
in general relativity. One useful measure of mass-energy is provided by the ADM mass, MADM,
named after Arnowitt, Deser and Misner.38 The ADM mass measures the total mass-energy of
an isolated gravitating system at any instant of time measured within a spatial surface enclosing
the system at infinity. Formally, MADM is defined by an integral over the 2-dimensional surface at
infinity, ∂Σ∞, of a spatial slice Σ according to39

MADM =
1

16π

∫
∂Σ∞

√
γγjnγim(∂jγmn − ∂mγjn)dSi. (3.128)

Here dSi = σi
√
γ∂Σ∞d2z is the outward-oriented surface element, where the zi’s are coordinates

on ∂Σ∞, γ∂Σ∞
ij is the induced metric on ∂Σ∞, and σi is the unit normal (σiσi = 1) to ∂Σ∞.40 This

definition requires the spacetime to be asymptotically flat and the spacetime metric to approach
the Minkowski metric sufficiently quickly with increasing distance from the source,

gab − ηab = O(r−1). (3.129)

The form of the integrand appearing in equation (3.128) is clearly not covariant and gives the
correct answer only when it is evaluated in asymptotically Cartesian coordinates (in which case

38See Arnowitt et al. (1962).
39Ó Murchadha and York (1974), equation (7). See also Misner et al. (1973), equation (20.7), or Wald (1984),

equation (11.2.14), for equivalent expressions.
40The surface element dSi can be written alternatively as dSi = 1

2εilmd̃x
l
∧ d̃x

m
(= εilmdx

ldxm in an integral),
where εilm =

√
γ[ilm] is the 3-dimensional Levi-Civita symbol and [ilm] is the total antisymmetrization symbol.

See, e.g., Lightman et al. (1975), Problem 8.10; see also Appendix C and Poisson (2004), Section 3.2.1 for discussion
of alternative expressions for surface elements and Section 3.3 for a derivation of Gauss’s theorem.
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√
γ = 1 on ∂Σ∞). We will provide a covariant expression shortly (see equation (3.145)).41 The

existence of such a surface integral to determine the mass-energy of an isolated system is consistent
with the principle that the total mass-energy of such a system can always by determined by a
measurement performed by a distant observer (e.g. using Kepler’s Third Law).

By definition, the spatial surface ∂Σ∞ must be taken out to infinity, in which case MADM

is rigorously conserved. In numerical applications, the integral is often evaluated on a large
surface at a distant, but finite, radius from the gravitating source, in the asymptotically flat
region of spacetime. In this case, MADM will change in time whenever there is a flux of matter
or gravitational radiation passing across the surface. However, the rate of change of MADM will
exactly reflect the rate at which mass-energy is carried across the surface by these fluxes.

Using the identity
∂jγmn − ∂mγjn = Γmnj − Γjmn , (3.130)

the integral (3.128) can be rewritten as

MADM =
1

16π

∫
∂Σ∞

γjnγim(Γmnj − Γjmn)dSi =
1

16π

∫
∂Σ∞

(Γi − γimΓnmn)dSi (3.131)

where Γi = γnjΓinj.
To get comfortable with the above formulation of MADM, we will evaluate this mass for a

Schwarzschild spacetime as described by the Kerr-Schild metric (see exercise 2.33 and Table 2.1).
Taking derivatives of the spatial metric

γij = ηij + 2Hlilj, (3.132)

where H = M/r and li = xi/r with r2 = x2 + y2 + z2, we find

Γi =
α4H

r
(3 + 8H)li and γimΓnmn = −α

4H

r
li. (3.133)

The metric evaluated on a two-sphere S2 at large radius r �M is

γ∂Σ∞
ij dzidzj = r2(dθ2 + sin2 θdφ2) , (3.134)

so that the oriented surface element becomes

dSi = σi
√
γ∂Σ∞d2z = lir

2 sin θdθdφ . (3.135)

Inserting these expressions into equation (3.131) we obtain

MADM = lim
r→∞

1

16π

∫
S2

α4H

r
(4 + 8H)lilir

2 sin θdθdφ = M. (3.136)

While this result is not surprising, the identification of MADM with the parameter M appearing
in the Kerr-Schild metric is reassuring.

To bring the expression for MADM into a more familiar and useful form for numerical applica-
tions, we employ the conformal transform of the spatial metric according to equation (3.5). With
equation (3.7) the integrand in equation (3.131) can then we expressed as

Γi − γimΓnmn = ψ−4(Γ̄i − γ̄imΓ̄nmn)− 8ψ−5D̄iψ. (3.137)

41A “gauge-invariant” form of equation (3.128) for asymptotic Minkowski spacetimes is provided by equation (85)
in York, Jr. (1979): MADM = 1

16π

∫
∂Σ∞

Dj(hi
j − δi

j tr h)dSi, where γij = ηij + hij , and where hk
i = O(r−1).
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Substituting this relation into the integrand in equation (3.131) and assuming that the asymptotic
behavior of the conformal factor satisfies

ψ = 1 +O(r−1) , (3.138)

we find

MADM =
1

16π

∫
∂Σ∞

(Γ̄i − γ̄imΓ̄nmn)dS̄i −
1

2π

∫
∂Σ∞

D̄iψdS̄i. (3.139)

Note that in writing the above expression we used the fact that dSi is conformally invariant on
∂Σ∞, i.e., dS̄i = dSi.

Exercise 3.18 Show that in Cartesian coordinates, when the conformal metric is flat so that γ̄ = 1,
then Γ̄n

mn = 0, so that equation (3.139) simplies to

MADM =
1

16π

∫
∂Σ∞

Γ̄idS̄i −
1
2π

∫
∂Σ∞

D̄iψdS̄i , (3.140)

where Γ̄i = −∂j γ̄
ij .

Exercise 3.19 Consider again a Schwarzschild spacetime described in Kerr-Schild coordinates (see
exercise 2.33 and Table 2.1). Now assume a conformal decomposition of the spatial metric as in
equation (3.6), so that the conformal factor becomes

ψ = γ1/12 =
(

1 +
2M
r

)1/12

. (3.141)

(a) Verify that the conformally related metric satisfies

γ̄ij =
(

1 +
2M
r

)−1/3(
δij +

2M
r
lilj

)
= δij +

(
2M
r
lilj −

2M
3r

δij

)
+O

(
1
r2

)
, (3.142)

and that its inverse satisfies

γ̄ij = δij −
(

2M
r
ninj − 2M

3r
δij

)
+O

(
1
r2

)
. (3.143)

(b) Apply equation (3.140) to determine MADM. In particular, show that the first integral in that
expression contributes 2M/3 and the second contributes M/3 to MADM.

If the conformal metric falls off sufficiently fast,

γ̄ij = ηij +O(r−1+a) , (3.144)

with a > 0, then the first integral vanishes and the ADM mass reduces to

MADM = − 1

2π

∫
∂Σ∞

D̄iψdS̄i = − 1

2π

∫
∂Σ∞

DiψdSi . (3.145)

In the writing the last expression we used the fact that we are evaluating the surface integral at
infinity, whereby we can drop the bar over the variables in the integrand. Similarly, we can replace
the operator D by its flat-space counterpart. We note, however, that not every conformal metric
satisfies the fall-off condition 3.144; we have already seen in Exercise 3.19, for example, that in
the case of the Kerr-Schild metric it does not.
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Exercise 3.20 Show that the constant M appearing in the isotropic form of the metric for a Schwarz-
schild spacetime, equation (2.35), is the ADM mass MADM.

Exercise 3.21 Show that the ADM mass of the wormhole solution (3.26) is given by equation (3.27).

With the help of Gauss’s theorem the 2-dimensional surface integral (3.145) can be converted
into a 3-dimensional volume integral,42

MADM = − 1

2π

∫
∂Σ∞

D̄iψdS̄i = − 1

2π

∫
Σ

d3x
√
γ̄D̄2ψ. (3.146)

Substituting the Hamiltonian constraint (3.37) then yields43

MADM =
1

16π

∫
Σ

d3x
√
γ̄

(
16πψ5ρ+ ψ−7ĀijĀ

ij − ψR̄− 2

3
ψ5K2

)
. (3.147)

Of course, equations (3.146) and (3.147) only apply if the integrand is regular everywhere
inside the volume Σ. They therefore do not apply, for example, if Σ contains a singularity arising
from a black hole. In this case equation (3.146) must be modified so that Σ does not contain the
singularity:

MADM = − 1

2π

∫
∂Σ∞

D̄iψdS̄i = − 1

2π

∫
Σ

d3x
√
γ̄D̄2ψ − 1

2π

∫
∂Σex

D̄iψdS̄i , (3.148)

where ∂Σex is some suitable inner surface of Σ that surrounds the black hole singularity, excising
it from the interior of Σ. Generalization of equation (3.148) for multiple black holes is obvious, as
is the substitution of the Hamiltonian constraint (3.37) for D̄2ψ in the integrand of the first term
on the right-hand side.

Exercise 3.22 Use equation (3.140) with γ̃ = 1, together with Hamiltonian constraint (3.37), to derive
the following general expression for MADM, which allows for a black hole singularity inside ∂Σex:

MADM =
1

16π

∫
Σ

d3x

(
16πψ5ρ+ ψ−7ĀijĀ

ij − ψR̄− 2
3
ψ5K2 + ∂iΓ̃i

)
+

1
16π

∫
Σex

(Γ̃i − 8D̃iψ)dS̄i .

(3.149)
This formula for evaluating MADM has proven very useful as a diagnostic in numerical simulations
involving black holes.44

Exercise 3.23 Assume a perfect gas, so that the stress energy tensor is given by

T ab = (ρ0 + ερ0 + P )uaub + Pgab (3.150)

where ε is the specific internal energy density and P the pressure (see Section 5.2.1). Show that under
the assumptions of exercise 2.28 the difference between the ADM mass MADM and the rest mass M0

is given by
MADM −M0 = T +W + U (3.151)

42An identical integral can be written in terms of the unbarred (physical) metric: MADM = − 1
2π

∫
Σ
d3x

√
γD2ψ.

In fact, the interior metric can be replaced by a flat spatial metric, in which case MADM = − 1
2π

∫
Σ
d3x∇2ψ, where

∇2 is the flat-space Laplacian operator. The choice is usually made depending on which form of the integrand is
particularly useful numerically.

43 Note that in Chapter 11.5 we adopt a different convention for the conformal rescaling ofAij via equation (11.34),
whereby ψ = eφ, the second term in equation (3.147) becomes ψ5ÃijÃ

ij , and γ̄ = 1.
44Cao et al. (2008); see footnote 43.
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in the Newtonian limit, where T is the kinetic energy,

T =
1
2

∫
ρ0v

2d3x, (3.152)

W the gravitational potential energy,

W =
1
2

∫
ρ0φd

3x, (3.153)

and U is the internal energy,

U =
∫
ρ0εd

3x. (3.154)

Exercise 3.23 reinforces our interpretation of the ADM mass as the total mass-energy. Given
this interpretation, the ADM mass for the boosted black hole solution of exercise 3.13 may seem
quite confusing at first sight.

Exercise 3.24 Show that the ADM mass of the boosted black hole solution of exercise 3.13 is

MADM = M+
5
8
P 2

M
+O(P 4). (3.155)

This result seems to suggest that the kinetic energy of a black hole is 5P 2/(8M), and not
P 2/(2M), as we might have expected. However, the blame for this result does not go to ADM
mass, but instead to our incorrect interpretation of the parameter M as the black hole’s mass.
In Section 7.1 we will find that the irreducible mass Mirr, based on the black hole’s horizon area
(see equations (1.70) and (7.2)), is a suitable definition for the black hole’s quasi-local mass. This
mass differs from M for non-zero momentum P . In exercise 7.20 we will find that if the ADM
mass (3.155) is expressed in terms of Mirr instead of M, we indeed find the expected Newtonian
expression P 2/(2Mirr) for the kinetic energy.

The boosted black hole solution treated in exercises 3.13 and 3.24 is constructed by specifying
initial data on a conformally flat, t = const slice for a nonspinning black hole endowed with some
linear momentum Pi . As we discussed in Section 3.2, the analogous approach for constructing a
rotating black hole did not lead to a slice of a rotating Kerr black hole (recall that this approach
generates a solution that has a perturbation containing gravitational radiation). Likewise, there
is no reason to expect that the same approach to constructing nonspinning ”boosted” black hole
initial data will lead to a time slice of a Schwarzschild black hole spacetime that has been ”boosted”
by applying a conventional Lorentz boost to the static Schwarzschild solution. We follow the
later approach to constructing a boosted black hole in exercise 3.25 and show that it leads to the
expected result for the ADM mass on t = const slices in a boosted coordinate system. Specifically,
if the black hole mass is M in a static frame, then we find MADM = γM in an asymptotic frame in
which the black hole is observed to be moving with velocity v, where γ = 1/

√
1− v2. This result

is reassuring.

Exercise 3.25 Consider the Schwarzschild metric (2.35), expressed in cartesian isotropic coordinates,
in the limit of r = (x2 + y2 + z2)1/2 �M ,

ds2 = −
(

1− 2M
r

)
dt2 +

(
1 +

2M
r

)
(dx2 + dy2 + dz2). (3.156)

Now boost this metric in the z direction by applying a Lorentz transformation

x = x̄, y = ȳ, z = γ(z̄ − vt̄), t = γ(t̄− vz̄) (3.157)
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where γ = (1− v2)−1/2.
(a) Find the new spacetime metric in the boosted (barred) coordinate system and show that the

spatial metric on t̄ = const slices is given by

γı̄̄ =
(

1 +
2M
r

)
ηı̄̄ + 2γ2v2 2M

r
zı̄̄, (3.158)

where r is now given in terms of the boosted coordinates as r = (x̄2 + ȳ2 + γ2(z̄ − vt̄)2)1/2, and where
we have defined zı̄̄ = diag(0, 0, 1).

(b) The easiest approach for evaluating the ADM mass may be to use expression (3.128), keeping
only leading-order terms when evaluating the integral on a sphere of constant r̄ = (x̄2 + ȳ2 + z̄2)1/2

with r̄ �M and r̄ � vt̄. Without loss of generality, we may set t̄ = 0. Show that

∂̄γm̄n̄ = −2M
r2

m̄(ηm̄n̄ + 2γ2v2zm̄n̄), (3.159)

where m̄ = ∂r/∂x̄ = (x̄, ȳ, γ2z̄)/r, and note that the surface element is dSı̄ = lı̄r̄
2 sin θdθdφ, where

lı̄ = xı̄/r̄ = (x̄, ȳ, z̄)/r̄.
(c) Now show that r̄/r = (1+γ2v2µ2)−1/2, where µ = z̄/r̄ = cos θ, insert all the above expressions

into (3.128), carry out the trivial integration over φ, and show that the integral reduces to

MADM = γ2M

2

∫ 1

−1

dµ

(1 + γ2v2µ2)3/2
. (3.160)

(d) Finally, evaluate the integral (3.160) to find

MADM = γM. (3.161)

Exercise 3.26 Consider the Brill wave defined in exercise 3.5, subject only to the following regularity
and asymptotic restrictions on q:

q = 0 for ρ = 0 , (3.162)
∂ρq = 0 for ρ = 0 , (3.163)
∂zq = 0 for z = 0 , (3.164)
q ∼ r−a, a ≥ 2 . (3.165)

(a) Show that MADM can be evaluated as

MADM =
1
2π

∫ (
Diψ

ψ

)2

d3x , (3.166)

and thereby prove that the mass-energy is positive definite for any q 6= 0.45 In the context of a
gravitational wave at a moment of time symmetry, the mass-energy is sometimes referred to as the
Brill mass.
(b) Consider the following form for q,

q =
Aρ2

1 + (r/λ)n
, (3.167)

where A and λ are constants, r2 = ρ2 + z2, and n ≥ 4. Choose n = 5 and λ = 1, integrate either
equation (3.146) or equation (3.166) numerically for different A between 10−2 ≤ A ≤ 16 and make
a plot of MADM vs. A. Check your integrations by showing that for small amplitude A, the mass is
proportional to A2 and satisfies MADM/A

2 ≈ 1.4× 10−2.

45Brill (1959); Eppley (1977).
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On further probing, things can sometimes get a little confusing, as when evaluating the ADM
mass for Schwarzschild spacetime in Painlevé-Gullstrand coordinates (see exercise 2.32 or Table
2.1). All the above expressions yield an ADM mass of zero in these coordinates. The reason for
this is that the shift in Painlevé-Gullstrand coordinates does not fall off sufficiently fast, violating
the condition (3.129). If nothing else, this result provides a warning to us that we must be careful
to check that the metric satisfies the correct asymptotic conditions in the adopted coordinates
when applying the above formulae to calculate the mass. It also motivates a search for other mass
definitions.

For example, another possibility for determining the mass is the Bondi-Sachs mass. For sta-
tionary spacetimes, the ADM and Bondi-Sachs mass are identical. But they are different for
dynamical spacetimes emitting radiation (gravitational or otherwise). The ADM mass, evaluated
at spatial infinity, remains strictly conserved, while the Bondi-Sachs mass, evaluated at null infin-
ity, decreases in response to the outgoing radiation. We refer the reader to other references for a
detailed discussion and formulae for the Bondi-Sachs mass.46

One other measure of mass that has proven particularly useful in recent numerical applications
is the Komar mass,47 MK, which can be defined for a spacetime that admits a timelike Killing
vector, say ξa(t). Contracting this Killing vector with the (4-dimentional) Ricci tensor we can define
a current

Ja(t) = ξb(t)
(4)Ra

b. (3.168)

The Ricci tensor is related to the stress-energy tensor through Einstein’s equations, suggesting
that this current may lead to a reasonable mass definition. As it turns out, the current (3.168) is
conserved, meaning that its divergence vanishes. To see this, we compute

∇aJ
a
(t) = (∇aξ

b
(t))

(4)Ra
b + ξb(t)∇a

(4)Ra
b. (3.169)

Here the first term vanishes because of Killing’s equation and the second one can be rewritten
using the contracted Bianchi identity

∇aJ
a
(t) =

1

2
ξb(t)∇b

(4)R = 0, (3.170)

where the second term vanishes because the directional derivative of (4)R along a Killing vector
has to be zero. Just as the existence of the conserved matter current ρ0u

a gave rise to a conserved
rest mass (3.127) in the beginning of this Section, the conserved current (3.168) gives rise to the
conserved Komar mass,

MK =
1

4π

∫
Σ

d3x
√
γnaJ

a
(t). (3.171)

Assuming that the Killing field ξa(t) is properly normalized in the asymptotically flat region of

spacetime (ξa(t)ξ
(t)
a = −1), the above definition of the Komar mass leads to the expected result for

the value of the mass in familiar cases, as we shall see below. On the other hand, in a vacuum
spacetime we have (4)Rab = 0, so that Ja(t) = 0, so we might conclude from equation (3.171) that
the Komar mass vanishes for a black hole. This conclusion is incorrect, however, since for a black
hole the volume integral (3.171) contains a singularity at which (4)Rab is not defined.48 However,

46See, e.g., Poisson (2004), Sections 4.3, and Section 11.2, and references therein.
47See Komar (1959). Our discussion is adapted from Carroll (2004), Section 6.4.
48We already faced a similar issue above when we discussed volume integrals for MADM in the case of spacetimes

containing singularities.
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the current (3.168) can be written as a total derivative. As a consequence we can convert the
volume integral into a surface integral at infinity that can be evaluated even for black holes.

To show that Ja(t) can be written as a total derivative we start with the definition of the Riemann
tensor,

∇a∇bξ
c
(t) −∇b∇aξ

c
(t) = (4)Rc

dabξ
d
(t). (3.172)

Contracting this equation and using the relation ∇aξ
a
(t) = 0, which holds for any Killing vector,

we find
∇b∇aξ

b
(t) = (4)Rabξ

b
(t) , (3.173)

so that, by equation (3.168), we have

Ja(t) = ∇b∇aξb(t). (3.174)

Inserting equation (3.174) into equation (3.171) we then have

MK =
1

4π

∫
Σ

d3x
√
γna∇b∇aξb(t). (3.175)

Since ∇aξb(t) is antisymmetric, we can use Gauss’s theorem to convert this volume integral into the
surface integral at infinity,

MK =
1

4π

∫
∂Σ∞

dSbna∇aξb(t). (3.176)

Equation (3.176), which can be used even in the case of black holes, could have been the starting
point for our derivation of the Komar mass.

We now bring this expression into a form that is easier to evaluate in terms of standard 3 + 1
variables. We assume that the coordinates are chosen to reflect the symmetry imposed by the
Killing vector ξa(t), meaning that our lapse and shift are the Killing lapse and shift as defined in

equation (2.162), and thus satisfy
ξa(t) = ta = αna + βa. (3.177)

Recalling that dSb = d2z
√
γ∂Σ∞σb, we can rewrite the integrand in equation (3.176) as

naσb∇aξb(t) = −naσb∇bξa(t) = −naσb∇b(αna + βa)

= −naσb(na∇bα + α∇bna +∇bβa) = σb∇bα + σbβ
a∇bna

= σb∇bα− σbβ
aKb

a = σiD
iα− σiβ

jKi
j, (3.178)

where we have used Killing’s equation, and equation (2.52), as well as the relations nan
a = −1,

naβ
a = 0 and naσa = 0. Inserting this into equation (3.176) finally yields

MK =
1

4π

∫
∂Σ∞

dSi(D
iα− βjKi

j) (3.179)

In many cases, the term βjKi
j falls off rapidly enough so that it can be neglected in the integral

(3.179). A counterexample is the Schwarzschild spacetime in Painlevé-Gullstrand coordinates, for
which the shift term carries the entire contribution to the Komar mass.

Exercise 3.27 Evaluate the Komar mass MK for a Schwarzschild black hole in (1) Schwarzschild
coordinates and (2) Painlevé-Gullstrand coordinates.
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Evidently, exercise 3.27 shows that the Komar mass can handle Painlevé-Gullstrand coordi-
nates while the ADM mass cannot. On the other hand, the definition of the Komar mass assumes
the existence of a timelike Killing vector, which the ADM mass does not. This property of the
Komar mass in fact provides a powerful diagnostic tool for numerical spacetimes: by searching
for solutions for which the ADM mass and Komar mass are both well-defined and identical, we
can identify spacetimes that admit a timelike Killing vector and are hence in stationary equilib-
rium. For example, we shall apply this diagnostic in Chapter 12.3.3 to construct (quasi-)stationary
spacetimes containing binary black holes in circular equilibrium.

Finally, we can turn the surface integral (3.179) back into the volume integral

MK =
1

4π

∫
Σ

d3x
√
γ(D2α− βjDiKij −KijD

iβj) , (3.180)

provided the integrand contains no singularities. Otherwise, we can excise the singularity and
restrict the volume integral to the region outside the excision surface just as we did in deriving
equation (3.148). With the help of equation (2.138), the momentum constraint (2.134) and the
evolution equation (2.135) this integral can be converted into

MK =

∫
Σ

d3x
√
γ
(
α(ρ+ S)− 2βiSi

)
, (3.181)

where we have assumed again that ξa(t) = ta is a Killing vector, so that we have ∂tγij = ∂tK = 0.
For vacuum spacetimes this volume integral vanishes, which is not surprising in the light of the
discussion following equation (3.171). In practice, this realization means that the Komar mass in
equation (3.179) can be evaluated on any surface ∂Σ enclosing all matter sources and singularities,
and does not need to be evaluated at infinity on ∂Σ∞ (in contrast to the ADM mass).

Exercise 3.28 Show that, under the same weak-field, slow-velocity assumptions as in exercises 2.28,
3.7 and 3.23, the difference between the Komar mass MK and the rest mass M0 becomes

MK −M0 = 3T + 2W + U + 3Π, (3.182)

in the Newtonian limit. Here we have defined the quantity

Π =
∫
Pd3x. (3.183)

Equation (3.182) may seem strange at first. Recall, however, that the Komar mass is defined
only in the presence of a timelike Killing vector, that is, for stationary spacetimes. Such spacetimes
are in dynamical equilibrium, so that they obey the virial theorem given by

2T +W + 3Π = 0 (3.184)

in the Newtonian limit.49 Combining equation (3.184) with (3.182) shows that, just like the ADM
mass, the Komar mass may be interpreted as the total mass-energy (cf. exercise 3.23). As we have
discussed above, this argument can be turned around to identify systems in dynamical equilibrium
by searching for spacetimes for which the ADM and Komar mass are equal. In fact, a relativistic
formulation of the virial theorem can be derived by imposing the equality of the ADM and Komar
mass.50

49See. e.g. Shapiro and Teukolsky (1983), equation (7.1.21).
50See Gourgoulhon and Bonazzola (1994).
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We now turn to the angular momentum of an isolated system. First we shall treat the case
of an axisymmetric spacetime, for which there exists is a global rotational Killing vector, ξa(φ).

Retracing the steps that lead to the Komar mass integral (3.176), we can construct a surface
integral for a conserved angular momentum according to

JK = − 1

8π

∫
∂Σ∞

dSbna∇aξb(φ) . (3.185)

Equation (3.185) is the Komar angular momentum expression for an asymptotically flat, axisym-
metric spacetime. This quantity measures the angular momentum about the symmetry axis and
gives the expected magnitude in familiar examples, as we will see in exercise 3.29 below. The fact
that the surface can be chosen arbitrarily can be used to prove that in an axisymmetric spacetime
gravitational radiation carries no angular momentum.51 The integrand can be rewritten as

σbna∇aξb(φ) = −σbna∇bξa(φ) = σbξ
a
(φ)∇bna = −σjξi(φ)K

j
i , (3.186)

where we have used Killing’s equation, the relation ξa(φ)na = 0, equation (2.52) and, in the last

step, the fact that both ξa(φ) and σb are spatial. Inserting the above expression into equation (3.185)
yields

JK =
1

8π

∫
∂Σ∞

dSjξ
i
(φ)K

j
i . (3.187)

Adopting cartesian coordinates, we can assign the symmetry axis to be along xi, in which case
the spatial rotational Killing vector about this axis becomes52

ξ
(φ)
k = ξ

(i)
k = εkmle

m
(i)x

l , (3.188)

where em(i) = δ m
i is the basis vector along xi and εkml is the 3−dimensional Levi-Civita tensor,

both evaluated in the asymptotically flat region. The angular momentum about the xi axis may
then be calculated from

JK
i =

εijk
8π

∫
∂Σ∞

dSlx
jKkl. (3.189)

If desired, this integral can also be converted into a volume integral.

Exercise 3.29 Show that the angular momentum of solution (3.66) is Ji (which, by virtue of exercises
3.11 and 2.34 also shows that the angular momentum of a Kerr black hole is J = aM).

In the absence of axisymmetry, it is often useful to evaluate the ADM angular momentum,
which is defined as

JADM
i =

1

8π

∫
∂Σ∞

dSm(Km
n − δmnK)ξn(i) , (3.190)

or, substituting equation (3.188),

JADM
i =

1

8π
εijn

∫
∂Σ∞

dSmx
j(Kmn − δmnK) . (3.191)

51Lightman et al. (1975), Problem 18.9
52See, e.g., Lightman et al. (1975), Problem 10.9.
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This expression requires some stronger asymptotic gauge conditions beyond asymptotic flatness,
but these conditions are met by a conformally flat metric, γ̄ij = ηij.

53

Exercise 3.30 Prove that JADM
i reduces to JK

i in axisymmetry.
Hint: First choose the surface ∂Σ∞ to be a 2−sphere and show that the piece of the integral involving
K in the expressions for JADM

i vanishes. Now generalize to arbitrary surfaces.

Exercise 3.31 Show that in a stationary, axisymmetric and non-singular spacetime the mass-energy
can be calculated from

MADM = MK =
∫

Σ

d3x
√
γna(2T a

b − δa
bT )ξb

(t) , (3.192)

and the angular momentum can be calculated from

JADM = JK = −
∫

Σ

d3x
√
γnaT

a
bξ

b
(φ) . (3.193)

Here we assume that the interior volume Σ covers the entire matter distribution and contains no
singularities.

Finally, if we replace the rotational Killing vector in equation (3.190) by the spatial translational
Killing vector, we obtain an expression for the ADM linear momentum. A spatial translational
Killing vector along xi in the asymptotically flat region takes the form

ξn(i) = en(i) . (3.194)

Inserting this relation into (3.190) yields the linear momentum along xi:

PADM
i =

1

8π

∫
∂Σ∞

dSm(Km
i − δmiK) . (3.195)

Once again, the surface integrals given above for JADMi and PADM
i can be converted into volume

integrals, if desired.

Exercise 3.32 Show that the linear momentum of solution (3.80) is PADM
i . (Recall that this solution

assumes K = 0.)

Exercise 3.33 Show that the linear momentum of the boosted black hole in exercise 3.25 is given by
PADM

i = γMvi, where γ = 1/
√

1− v2.

The importance of monitoring the conserved quantities assembled here when performing a
numerical simulation of an evolving system cannot be overstated. As we mentioned earlier, the
degree to which they are conserved helps calibrate the accuracy of the simulation. Often these
quantities are evaluated on a large, but finite, surface in the asymptotically flat region near the
outer boundary of the computational grid. In this case, any changes in the calculated mass,
angular momentum or linear momentum of the system must be accounted for by the integrated
flux of these quantities carried off by any matter or gravitational waves crossing the surface. We
will see how well this principle works in action in some representative simulations described in
later chapters.

53York, Jr. (1979); Gourgoulhon et al. (2002).



Chapter 4

Choosing Coordinates: The Lapse and
Shift

In Chapter 2 we performed a 3 + 1 decomposition of Einstein’s field equations and have seen
that these can be split into two distinct sets: constraint equations and evolution equations. The
constraint equations contain no time derivatives and relate field quantities on a given t = constant
spacelike hypersurface. The evolution equations contain first-order time derivatives that tell us
how the field quantities change from one hypersurface to the next. In Chapter 3 we have brought
the constraint equations into a form that is suitable for numerical implementation, that is, we
cast the equations in terms of spatial differential operators that can be inverted with standard
numerical techniques. We will provide a brief introduction to some common numerical algorithms
for solving these (elliptic) equations in Chapter 6. The 3+1 evolution equations that we derived,
e.g., equation (2.135) for γij, and equation (2.136) for Kij, are not quite ready for numerical
integration. For one thing, we have yet to impose coordinate conditions by specifying the lapse
function α and the shift vector βi that appear in these equations. The lapse and shift are freely
specifiable gauge variables that need to be chosen in order to advance the field data from one time
slice to the next. As it turns out, finding kinematical conditions for the coordinates that allow
for a well-behaved, long time evolution is nontrivial in general. However, geometric insight and
numerical experimentation can be combined to produce good gauge choices for treating many of
the most important physical and astrophysical problems requiring numerical relativity for solution,
as we shall see.

What constitutes a “good” coordinate system? Clearly, the adopted coordinates must not
allow the appearance of any singularities, which could have dire consequences for a numerical
simulation. Such a singularity, which is often associated with a black hole, could be either a
coordinate singularity or a physical singularity. Recall, for example, the case of a Schwarzschild
black hole in Schwarzschild coordinates. Singularities associated with the Schwarzschild radius
rs = 2M (the horizon) are coordinate in origin and are removable by a coordinate transformation.
Singularities at rs = 0, however, are physical and invariant, resulting from the infinite curvature at
the origin, and are not removable by a coordinate transformation. We know that encountering such
a physical singularity during space voyage would be disastrous for any traveler; be assured that
encountering one in a numerical simulation would be equally disastrous for a numerical relativist.1

Such a singularity will result in one or more of the field variables blowing up to infinity, leading
to underflows and overflows in the output and eventually causing the code to crash.

1Unless the code is specifically designed to explore the nature of singularities; see, e.g., Berger (2002).
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To avoid coordinate singularities associated with horizons, like the one at rs = 2M that we dis-
cussed above, black hole simulations have sometimes been carried out using “horizon penetrating”
coordinates in which light cones do not pinch-off at the horizon as they do in Schwarzschild coordi-
nates. Kerr-Schild coordinates provide one example of a “horizon penetrating” coordinate system
that is well-behaved at rs = 2M . Many simulations also have relied on “singularity-avoiding”
gauge conditions to prevent or postpone the appearance of physical singularities in the computa-
tional domain. These gauges have been especially important in treating stellar collapse to black
holes, where physical singularities are not present in the initial spacetime, but inevitably arise
following the formation of a black hole. More recently, black hole “excision” gauge conditions to
prevent or postpone techniques have been developed whereby the black hole interior and its cur-
vature singularity are excised from the computational domain altogether. In codes that solve the
partial differential equations on a discrete spacetime coordinate lattice, it has proven adequate in
some cases to retain the black hole interior and its singularity within the computational domain by
simply avoiding placing the singularity on any lattice point on which the variables are evaluated.
This is the trick commonly used to evolve “puncture” gauge conditions to prevent or postpone
black holes, which contain interior coordinate singularities, rather than physical singularities, as
we discussed in Chapter 3.1.2.2 In these simulations it is again the particular choice of coordinates
that prevents numerical lattice points from reaching the physical spacetime singularity.3

In fact, it has even been possible in some simulations to replace the black hole interior and
its spacetime singularity with smooth, but otherwise arbitrary, initial data in order to evolve the
spacetime numerically. The interior data in such cases is “junk” in that it typically fails to satisfy
the constraint equations. However, this “junk-filling” initial data is completely adequate to permit
a reliable evolution of the exterior field, as long as suitable gauge conditions are implemented to
insure that the computational scheme allows no information to leak out from the black hole interior
to the exterior during the evolution. Given the causal nature of the black hole event horizon, it is
not surprising that such a scheme can be implemented. Examples of all of these approaches will
be discussed later on.

But now we are jumping ahead ourselves. First we must step back and note that the problem
of picking an appropriate coordinate system typically is split into two parts: choosing a time
slicing (i.e., a time coordinate), and picking a spatial gauge (i.e., spatial coordinates). The time
slicing determines what shape the spatial slices Σ take in the enveloping spacetime. The lapse α
determines how the shape of the slices Σ changes in time, since it relates the advance of proper
time to coordinate time along the normal vector na connecting one spatial slice to the next, as
illustrated in Figure 2.4. Picking a time slicing or a time coordinate therefore amounts to making
a choice for the lapse function. Letting the lapse vary with position across the spatial slice takes
advantage of the freedom that proper time can advance at different rates at different points on
a given slice (“the many-fingered nature of time”). The shift βi, on the other hand, determines
how spatial points at rest with respect to a normal observer na are relabeled on neighboring slices.
The spatial gauge or spatial coordinates is therefore imposed by a choice for the shift vector.

In the rest of this chapter we will discuss a few different gauge choices that are commonly
used in numerical simulations. We will focus here on some of the simpler conditions that lend
themselves to straightforward geometric interpretation and provide us with valuable intuition. In
later chapters we will observe these and other choices in action when we study actual simulations
that construct numerical spacetimes. There we will see how well different gauge conditions perform

2Recall the discussion following equation (3.19).
3See Section 4.5 and Chapter 13.1.3.
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in different physical situations. A brief summary of a few common gauge choices is provided in
Box 4.1 for the reader eager and willing to order from a limited, but representative, menu.

4.1 Geodesic Slicing

Since the lapse α and the shift βi can be chosen freely, let us first consider the simplest possible
choice,

α = 1, βi = 0. (4.1)

In the context of numerical relativity this gauge choice is often called geodesic slicing; the resulting
coordinates are also known as Gaussian-normal coordinates.4

Recall that coordinate observers move with 4−velocities ua = ta = ea(0) (i.e. spatial velocities

ui = 0). Thus with βi = 0, coordinate observers coincide with normal observers (ua = na). With
α = 1, the proper time intervals that they measure agree with coordinate time intervals. Their
acceleration is given by equation (2.51),

ab = Db lnα = 0 . (4.2)

Evidently, since their acceleration vanishes, normal observers are freely-falling and therefore follow
geodesics, hence the name of this slicing condition. Clearly, the evolution equations (2.135) and
(2.136) simplify significantly when geodesic slicing is adopted.

Exercise 4.1 Consider the Robertson-Walker metric for a flat Friedmann cosmology,

ds2 = −dt2 + a2(t) ηijdx
idxj , (4.3)

where the expansion factor a(t) is a function of time only. We can immediately read off the lapse and
shift to be α = 1 and βi = 0, showing that this spacetime is geodesically sliced.
(a) Identify the spatial metric γij and find the extrinsic curvature Kij .
(b) Assume that the matter stress-energy tensor can be described by a homogeneous and isotropic
perfect fluid comoving with coordinate observers,

Tab = (ρ∗ + P )uaub + Pgab , (4.4)

whereby the fluid 4−velocity satisfies ua = na. Here ρ∗ is the total mass-energy density and P is the
pressure of the fluid. Derive the Friedmann equations

ä

a
+ 2

(
ȧ

a

)2

− 4π(ρ∗ − P ) = 0

3
ä

a
+ 4π(ρ∗ + 3P ) = 0 (4.5)

from the constraint and evolution equations.

Despite its simplicity, geodesic slicing tends to form coordinate singularities very quickly dur-
ing an evolution. This result is not surprising, since geodesics tend to focus in the presence of
gravitating sources. Coordinate observers therefore approach each other, collide, and thereby form
a coordinate singularity. This can be seen quite easily from the evolution equation (2.138) for the
trace of the extrinsic curvature which, for geodesic slicing and a comoving, perfect fluid, reduces
to

∂tK = KijK
ij + 4π(ρ+ 3P ) ≥ 0. (4.6)

4Darmois (1927) used these coordinates in his very early development of the 3+1 decomposition.
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The above inequality holds since KijK
ij is non-negative, and so is ρ+3P , provided that the strong

energy condition holds.5 This means that K grows monotonically in time, and that the expansion
of normal observers,

∇an
a = gab∇anb = (gab + nanb)∇anb = γab∇anb = −K (4.7)

decreases monotonically in time. In geodesic slicing, equation (2.137) becomes

∂t ln γ1/2 = −K, (4.8)

which shows that the coordinate volume element of the normal observers goes to zero when K
grows without bound.6 The geometric situation is depicted in Figure 2.2. This behavior results
in a coordinate singularity.

As an example, consider a weak gravitational wave that is initially centered on the origin of an
otherwise flat vacuum spacetime. After a brief interaction the wave disperses and leaves behind
flat space. Also consider a set of coordinate observers that are at rest with respect to each other
initially. The gravitational wave packet carries energy and hence attracts the observers gravita-
tionally, who, initially, start moving toward the origin of the spacetime. Once the gravitational
wave has dispersed, the observers are no longer attracted gravitationally to the center, but they
continue to coast toward each other until they form a coordinate singularity. As the following
exercise demonstrates, we can even estimate the time scale after which this singularity will form.

Exercise 4.2 Consider a weak gravitational wave packet centered on the origin in a vacuum spacetime
at a moment of time symmetry (Kij = 0.)
(a) Argue that after some finite time t0, the trace of the extrinsic curvature at the origin will acquire
a positive-definite value, K0 > 0.
(b) Split Kij into its trace and its traceless part, and integrate equation (4.6) to find a lower bound
for K as a function of time.
(c) Find an upper limit for the time at which a coordinate singularity will develop, as K →∞. Express
your answer in terms of t0 and K0.

For a Friedmann cosmology represented by a Robertson-Walker metric, geodesic slicing presents
no such difficulty. For the case described in exericse 4.1, for example, K certainly increases mono-
tonically, but it starts out at negative infinity when a = 0 at t = 0 and approaches zero as a→∞
and t → ∞. For this special case of a homogeneous, expanding universe, K thus does not grow
without bound, and, away from the initial curvature singularity (the “big bang”), the coordinates
remain regular. Small density enhancements or other perturbations on the homogenous back-
ground, however, can cause a local focussing of geodesic observers, and then geodesic slicing might
again develop coordinate singularities.

Exercise 4.3 Consider evolving the vacuum spacetime for a Schwarzschild black hole of mass M .
Refer to the Kruskal-Szekeres diagram depicted in Figure 1.1 and take the initial time slice to be the
v = 0 hypersurface at a moment of time symmetry. Suppose we adopt geodesic slicing to perform the
evolution. Show that the coordinate time at which the geodesic slices will hit the physical curvature
singularity at the origin, and thereby bring the evolution to a screeching halt, is t = πM .
Hint: Follow the motion of the normal observer located at the point u = 0 on the initial slice.

5See Hawking and Ellis (1973), Section 4.3 for a discussion of energy conditions.
6See the discussion following equation (2.60) and the related footnote.
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Figure 4.1: [CAMBRIDGE: Change label rsch to rs in Figures.] The shaded regions on the Kruskal-
Szekeres diagrams represent the development of the initial v = 0 time slice in a Schwarzschild
spacetime for geodesic slicing in the left panel (a) and maximal slicing in the right panel (b).
The geodesic slices hit the singularity at (areal) radius rs = 0 after a coordinate time t = πM
(= proper time for any normal observer), during which only a small fraction of the black hole
exterior is covered. The maximal slices, on the other hand, cover the entire black hole exterior
and approach a limiting surface at rs = (3/2)M in the interior as t→∞. (After Smarr and York
(1978a).)

The situation explored in exercise 4.3 reveals the difficulty of evolving a vacuum spacetime
containing a black hole with geodesic slicing. The problem is further elucidated in the left-
hand panel in Figure 4.1. There it is shown how geodesic slices, beginning at a moment of time
symmetry, fail to cover a substantial portion of the black hole exterior by the time they hit
the central singularity. We cannot evolve the spacetime into the future once we encounter the
singularity, because of the breakdown of the equations. Were we to use the same slicing condition
to treat a more realistic spacetime containing, say, by some additional matter or radiation in the
exterior of the black hole, any exploration of potentially interesting physical phenomena associated
with these exterior sources would have to terminate once the slices hit the singularity. We thus
might never learn what observable features the presence of a black hole might imprint on these
exterior sources. Such an unfortunate situation motivates our search for a better gauge choice.

4.2 Maximal Slicing and Singularity Avoidance

From equation (4.7) it is evident that the divergence of normal observers can be controlled by
imposing a suitable condition on the mean curvature K. If K is specified as a function of both
space and time, equation (2.138) becomes an elliptic equation for the lapse α,

D2α = −∂tK + α
(
KijK

ij + 4π(ρ+ S)
)

+ βiDiK. (4.9)
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Evidently this condition simplifies when K is chosen to be a constant in both space and time. A
common choice is the maximal slicing condition

K = 0, (4.10)

which we have already encountered in the context of initial data.7 If we assume maximal slicing
not only on one slice, but at all times, then the time derivative of K must vanish as well,

K = 0 = ∂tK. (4.11)

With this choice equation (4.9) reduces to

D2α = α
(
KijK

ij + 4π(ρ+ S)
)
, (4.12)

which we can solve for the lapse α independently of the shift βi.
The maximal slicing condition (4.12) can be expressed in various ways. Combining with the

Hamiltonian constraint (2.133) we obtain

D2α = α
(
R− 4π(3ρ− S)

)
. (4.13)

Alternatively, we have already found in Chapter 3.3 that a combination with the conformally
decomposed Hamiltonian constraint (3.37) yields

D̄2(αψ) = αψ

(
7

8
ψ−8ĀijĀ

ij +
1

8
R̄ + 2πψ4(ρ+ 2S)

)
(4.14)

(see equation 3.108).

Exercise 4.4 Prove that choosing K = 0 extremizes the volume of spatial slices.
Hint: Define the volume of a bounded portion S of the slice Σ according to vol(S) =

∫
S
d3x

√
γ. Deform

Σ infinitesimally along a vector da = cna + ba, where c is a (small) arbitrary constant, naba = 0, and
c = 0 = ba on the boundary δS of S. Show that δvol(S) =

∫
S
d3x

√
γ(−cK) and conclude.8

Maximal slicing is not an entirely unfamiliar concept. Consider a soap film spanning a fixed
closed wire loop, which then forms a two-dimensional hypersurface in a three-dimensional Euclidian
space. If gravity can be neglected, the potential energy of the soap film is due only to surface
tension and hence is proportional to its surface area. The film therefore assumes a shape of
minimal area. With an argument similar to the one in exercise (4.4) it can be shown9 that this
shape satisfies K = 0. In a Euclidean geometry, such extremal surfaces with K = 0 are minimal,
while in a pseudo-Riemannian geometry they are maximal.

By construction, maximal slicing prevents the focussing of normal observers that we have
found for geodesic slicing. Equation (4.7) implies that in maximal slicing the divergence of normal
observers vanishes, or equivalently that the normal congruence is expansion free. This means that
maximal slices are “volume preserving” along the normal congruence na, which can also be seen

7For some applications it may be advantageous to choose K to be a constant value different from zero. It can
be shown that this choice leads to time slices that are asymptotically null in asymptotically flat spacetimes.

8See York, Jr. (1979), Section 8.5 for futher discussion.
9See, e.g., Lightman et al. (1975), Problem 9.31.
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from equation (2.60) and the discussion which immediately follows it. In exercise 2.5 we have also
established that the normal congruence is irrotational. Together this means that normal observers
in maximal slicing move like irrotational and incompressible fluid elements. The incompressible
property prevents the focussing of normal observers that occurs in geodesic slicing.

In exercise 2.11 we found that the extrinsic curvature of t = const slices of a Schwarzschild
black hole in isotropic coordinates, equation (1.60), vanishes. We now realize that in this time
coordinate the foliation of Schwarzschild spacetime is maximally sliced. It is straight-forward to
verify that the lapse function characterizing this metric satisfies the maximal slicing condition,
equation (4.12). The same statements must apply to a Schwarzschild black hole in Schwarzschild
coordinates, equation (1.51), since the t = const time slices are the same as in isotropic coordinates,
as only the radial coordinate is different. Slices of constant coordinate time in Kerr-Schild and
Painlevé-Gullstrand coordinates, on the other hand, are not maximally sliced.

Exercise 4.5 Verify explicitly that the lapse function for a Schwarzschild black hole in isotropic or
Schwarzschild coordinates in Table 2.1 satisfies the maximal slicing condition (4.12), but that the lapse
functions in Kerr-Schild and Painlevé-Gullstrand coordinates do not.

We point out that the t = const slices of Schwarzschild for the isotropic and Schwarzschild
metrics in Table 2.1 are by no means the only maximal slices of Schwarzschild spacetime. In fact,
we can derive an entire family of time-independent, maximal slices of Schwarzschild as follows.10

Start with the Schwarzschild solution in Schwarzschild coordinates

ds2 = −f0dt
2 + f−1

0 dr2
s + r2

sdΩ2, (4.15)

where we have introduced the function f0(rs) = 1 − 2M/rs for ease of notation. Now consider a
new time coordinate t̄ that is related to the old time coordinate t according to

t̄ = t+ h(rs), (4.16)

where h(rs) is the so-called “height” function. By allowing h(rs) to depend on rs alone we ensure
that the resulting metric will again be time-independent.11 In a spacetime diagram, h(rs) measures
how far t̄ = const surfaces “lift off” the familiar t = const surfaces. Using dt = dt̄− h′drs, where
h′ ≡ dh/drs, we can now transform the metric (4.15) to find

ds2 = −f0dt̄
2 + 2f0h

′dt̄drs + (f−1
0 − f0h

′2)dr2
s + r2

sdΩ2. (4.17)

Comparing (4.17) with the line element in the 3+1 form (2.123) we can identify the spatial metric,
shift and lapse associated with t̄ = const surfaces as

γij = diag
(
(1− f 2

0h
′2)/f0, r

2
s , r

2
s sin2 θ

)
, βrs =

f 2
0h

′

1− f 2
0h

′2 , α2 =
f0

1− f 2
0h

′2 . (4.18)

Not surprisingly, we recover the familiar t = const slices for h = const. From equation (2.116) we
then construct the normal vector na = α−1(1,−βi). For the t̄ = const slices to be maximal we
must have

K = −∇an
a = −|g|−1/2∂a(|g|1/2na) = 0. (4.19)

10See Reinhart (1973); Estabrook et al. (1973); Beig and Ó Murchadha (1998); see also our discussion in Chapter
8.1.

11We could relax this assumption, but will instead postpone a derivation of time-dependent maximal slices to
Chapter 8.1.
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Using |g|1/2 = αγ1/2 = r2
s sin θ (see exercise 2.25), and noting that all time derivatives must vanish,

equation (4.19) reduces to

d

drs

(
r2
s

(
f0

1− f 2
0h

′2

)1/2

f0h
′

)
= 0. (4.20)

As we might expect, equation (4.20) forms a second-order differential equation for h. We can
immediately obtain a first integral,

r2
s

(
f0

1− f 2
0h

′2

)1/2

f0h
′ = C, (4.21)

where C is some constant of integration, or

f 2
0h

′2 =
C2

f0r4
s + C2

. (4.22)

Inserting (4.22) into the expressions (4.18) we obtain the spatial metric

dl2 = f−2(rs;C)dr2
s + r2

s(d
2θ + sin2 θd2φ), (4.23)

the lapse
α = f(rs;C) (4.24)

and the shift

βrs =
Cf(rs;C)

r2
s

, (4.25)

where the function f(rs;C) is given by

f(rs;C) =

(
1− 2M

rs
+
C2

r4
s

)1/2

. (4.26)

The constant C parametrizes each member of the family. Evidently, the familiar t = const slices
of a Schwarzschild spacetime in Schwarzschild coordinates are recovered for C = 0.

Exercise 4.6 Show that in the spherical polar coordinates of the metric (4.23) the extrinsic curvature
is given by

Ki
j =

C

r3s
diag(−2, 1, 1), (4.27)

which confirms immediately that the slices given by equations (4.23) – (4.25) are indeed maximal for
all values of C. More adventurous readers may also verify that these slices satisfy the 3 + 1 constraint
and evolution equations.

Since the maximal slicing expressions (4.12) through (4.14) constitute spatial second-order,
partial differential equations for the lapse, two boundary conditions are required to specify a unique
solution. For asymptotically flat spacetimes it is natural to require α→ 1 for the outer boundary
at rs → ∞. The second boundary condition depends on the physical situation, the location
of the inner boundary, the adopted spatial coordinates (e.g., Cartesian versus spherical polar
coordinates), etc. For example, for spherically symmetric spacetimes without singularities, one
might adopt spherical polar coordinates and impose regularity at the origin, whereby ∂rsα = 0. In
other cases there may be some freedom associated with the choice of an inner boundary condition,
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as we will now illustrate. Consider a Schwarzschild spacetime and again take the initial time
slice to be at a moment of time symmetry, e.g., the v = 0 hypersurface in the Kruskal-Szekeres
diagram, Figure 1.1. Focus on the upper-right hand quadrant in the diagram (i.e., u > 0) and
take the black hole throat at u = 0 to be the inner boundary. Now consider the lapse function
appearing in the Schwarzschild or isotropic metric in Table 2.1; the two functions represent the
same lapse, but in different radial coordinates. Note that this lapse satisfies α = 0 at our inner
boundary, where the isotropic radius is r = M/2 and the areal radius rs = 2M . Adopting α = 0 as
our inner boundary condition we find that the resulting maximal slices will be the hypersurfaces
of constant Schwarzschild time t appearing as straight lines through the origin in the Kruskal-
Szekeres diagram. The situation is illustrated in Figure 8.1. The lapse function obtained by
solving equation (4.12) will be the same function that we have been looking at in Table 2.1. If
we combine this lapse with a vanishing shift we obtain a Killing lapse and shift, meaning we can
construct the Killing vector ta from equation (2.98). As a consequence, no metric coefficients
change in time for this gauge choice (making this a “static slicing” of Schwarzschild) and they are
given by the familiar static metric coefficients in standard Schwarzschild or isotropic coordinates.
As seen in the figure, the slices terminate at Schwarzschild time t = ∞ and never penetrate the
black hole interior.

Suppose instead we choose the inner boundary condition on the lapse to be symmetric across
the throat by setting ∂rsα = 0 there. Again take the initial time slice to be the moment of
time symmetry on the v = 0 axis for u > 0, so that the solution of equation (4.12) at t = 0 is
α = 1.12 As shown in Figure 8.1, the resulting foliation is now quite different from the previous
foliation, although both are maximal. We postpone a detailed discussion of this particular slicing
until Chapter 8.1, where we shall derive the complete solution for the spacetime analytically.
For now it suffices to note that the resulting metric on successive time slices changes with time
(this is therefore an example of a “dynamical slicing” of Schwarzschild). More significantly, the
time slices manage to penetrate the black hole interior, but they never encounter the central
singularity. Instead, the slices asymptote to a limiting surface at areal radius rs = 3M/2 in
the black hole hole interior. This property makes maximal slicing an example of a “singularity
avoiding” slicing condition. The situation is summarized in the right-hand panel of Figure 4.1,
where we see that these maximal slices succeed in covering the entire black hole exterior by
t = ∞. Able to penetrate into the interior, this dynamic slicing solution yields a lapse and other
metric coefficients that do not exhibit the familiar coordinate singularities at rs = 2M that plague
the previous nonpenetrating, static solution. By avoiding the central singularity, this particular
dynamic slicing solution13 is able to cover the entire black hole exterior and thereby follow future
evolution in the exterior “forever”, at least in principle. This capability is in stark contrast to
geodesic slicing and is the main reason why dynamic maximal slicing is considered a “good” gauge
choice for building numerical spacetimes containing black holes.14

It may be helpful to clarify the relation between these two maximal slicings of Schwarzschild
with the family of time-independent slicings in equations (4.23)-(4.25). In the latter, the lapse
and shift are the Killing lapse and shift, which makes this solution time-independent. This Killing
lapse satisfies the boundary conditions that we described above only for two special cases. For
C = 0, we have α = 0 at rs = 2M , and we recover “static slicing”, yielding hypersurfaces of

12The shift is zero initially (moment of time symmetry), but we shall allow for a nonzero shift as the evolution
proceeds in order to require the radial coordinate to be the areal radius.

13Sometimes it is referred to as the “extended maximal foliation” of Schwarzschild.
14“Grid stretching” near the throat and other complications that can arise to make late-time black hole evolution

numerically inaccurate when adopting dynamic maximal slicing will be discussed in Chapter 8.
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constant Schwarzschild time. For C = 3
√

3M2/4, we have ∂rsα = 0 on the limiting surface at
rs = 3M/2; this is the slice to which the “dynamical slicing” of above asymptotes as t → ∞.15

We will return to this discussion in Chapters 8.1 and 13.1.3.
How do these maximal slices manage to avoid hitting the central singularity after penetrating

the black hole interior? After all, the maximum proper time it takes any timelike observer in
the black interior (rs < 2M) to reach the central singularity is πM , the value approached by a
freely-falling observer who starts from rest just outside the horizon (see exercise 4.3). Since the
advance of proper time of a normal observer is given by dτ = αdt, it is necessary that the lapse
function plummet to zero at late times in the black hole interior in order to prevent the observer
from reaching the singularity as t → ∞. This behavior is sometimes referred to as the “collapse
of the lapse”, which we will now explore.

The collapse of the lapse can be illustrated in the following simple model problem.16 In vaccum,
the maximal slicing condition (4.13) is

D2α− αR = 0. (4.28)

Obviously, both the Laplace operator D2 and the Ricci scalar R depend on the spatial metric γij.
Our simplification now lies in taking γij to be flat, and the Ricci scalar R to be some positive
constant R0 inside some radius r0, and zero outside. The curvature and metric are no longer
consistent, but it turns out that this model has a qualitative behavior not unlike the dynamical
maximal slicing solution described above for a vacuum Schwarzschild spacetime.

In spherical symmetry, general solutions to (4.28) can be found quite easily both inside and
outside r0. Imposing the boundary conditions α = 1 at r = ∞ and dα/dr = 0 at r = 0, and
matching both α and its first derivative at r0, yields the solution

α =


1

coshx0

sinh x

x
x < x0

1 +
tanh x0 − x0

x
x ≥ x0,

(4.29)

where

x = r
√
R0, and x0 = r0

√
R0 . (4.30)

The solutions are naturally parametrized by the dimensionless parameter x0, which is a measure
of the strength of the scalar curvature R0.

Exercise 4.7 Verify that equation (4.29) is the desired solution to the model problem (4.28).

The minimum value for α occurs at the origin and takes the value

αmin =
1

coshx0

. (4.31)

As x0 increases, αmin approaches zero; see Figure 4.2. For strong fields, and hence large x0, we
find the asymptotic behavior

αmin ∼ exp(−x0) . (4.32)

15See also Hannam et al. (2008) for a more detailed discussion.
16See Smarr and York (1978a); York, Jr. (1979).
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Figure 4.2: The lapse α as a function of dimensionless radius x for select values of the parameter
x0, plotted according to the analytic model. The parameter x0 varies between x0 = 0 (top curve,
α = 1) and x0 = 8 (bottom curve) in increments of unity. The “collapse of the lapse” is evident
in the strong-field region. (After Smarr and York (1978a).)

This relation is responsible for the collapse of the lapse, which we can see as follows: Suppose we
guess that as the maximal foliation proceeds, the interior field-strength parameter x0 increases
linearly with time t according to

x0 = t/τe + constant , (4.33)

where τe is some constant. We then would expect that at late times the minimum lapse will decay
as

αmin ∼ exp(−t/τe) . (4.34)

We might also guess that the e-folding time constant τe would be comparable to M , the mass of
the source. In fact, such late-time exponential decay of the lapse has been found in numerous
numerical simulations employing maximal slicing.17 For the dynamic maximally-sliced Schwarz-
schild spacetime discussed above and derived in Chapter 8.1, it can be shown analytically18 that
the e-folding time is given by τe = 3

√
6/4M ∼ 1.837M , which is very close to the value 1.82

inferred from some of the earliest numerical calculations.19 Profiles of the lapse for the exact
solution are shown in Figure 8.4.

While many of its geometric properties are very desirable, maximal slicing also has some
computational disadvantages. The conditions (4.12)–(4.14) are spatial elliptic equations for the
lapse function α. Even though they are linear, such equations are often costly to invert numerically

17See, e.g., Smarr and York (1978a); Evans (1984); Petrich et al. (1985).
18Petrich et al. (1985); Beig and Ó Murchadha (1998).
19Smarr and York (1978a).
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in two and three dimensions. Since maximal slicing is only a coordinate gauge condition, truly
physical results extracted from a simulation should not be affected at all if the maximal slicing
condition is modified, or if the condition is satisfied only approximately. This realization suggests
that, instead of solving an elliptic equation, one could convert that equation into a parabolic
equation, which is much faster to solve numerically.20 In fact, one way of solving an elliptic
equation, called “relaxation”, is to introduce a time variable, recast the equation as a parabolic
equation, and look for steady-state solutions.21

An evolution that adopts an “approximate” maximal slicing condition presumably will gen-
erate data that satisfy condition (4.10) only approximately. Suppose that during the course of
the evolution the data give rise to nonzero values of the mean curvature, K, in violation of con-
ditions (4.10). Maintaining the condition ∂tK = 0 after this occurs would allow K to remain
nonzero, which would not be consistent with maximal slicing. It would be better to impose an
alternative condition that drives K back to zero. We can accomplish this task by employing the
condition

∂tK = −cK , (4.35)

where c is some positive constant. Note that the above condition is completely consistent with
(4.11). Inserting the above relation into equation (4.9) we now find

D2α = α
(
KijK

ij + 4π(ρ+ S)
)

+ βiDiK + cK , (4.36)

which is still an elliptic equation for the lapse α.
We now convert equation (4.36) into a parabolic equation by adding a “time” derivative of the

lapse,

∂λα = D2α− α
(
KijK

ij + 4π(ρ+ S)
)
− βiDiK − cK, (4.37)

where λ is some time parameter. Setting λ = εt, we can convert this expression into

∂tα = εD2α− εα
(
KijK

ij + 4π(ρ+ S)
)
− εβiDiK − εcK, (4.38)

where the parameter ε now acts as an effective diffusion constant. We note that we can write the
new lapse condition (4.38) more compactly as

∂tα = −ε(∂tK + cK). (4.39)

This slicing condition is often referred to as a K-driver condition.
Equation (4.35), corresponding to the exponential decay of K to zero as time increases, is the

solution to equation (4.39) as ε→∞. However, setting ε too large may produce a numerical insta-
bility, since some numerical prescriptions for solving parabolic equations must satisfy a Courant
condition that limits the size of the allowed time step (see Chapter 6.2.4). For sufficiently large
ε, this timestep may have to be chosen significantly smaller than the one used to evolve the grav-
itational field equations. In this case equation (4.38) or (4.39) can be solved by breaking up each
evolution time step into several substeps. This approach is equivalent to solving equation (4.36)
by relaxation, except that the relaxation process is not necessarily carried out to convergence,
since it suffices to impose maximal slicing only approximately.22

20Balakrishna et al. (1996); Shibata (1999a).
21See Chapter 6, where we discuss the classification of partial differential equations, as well as computational

strategies for solving them.
22See also Duez et al. (2003), who typically use 5 substeps per evolution time step, with ε ≈ 0.6 and c ≈ 0.1.
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4.3 Harmonic Coordinates and Variations

Consider a contraction of the four dimensional connection coefficients

(4)Γa ≡ gbc (4)Γabc = − 1

|g|1/2
∂b

(
|g|1/2gab

)
. (4.40)

One way to impose a gauge condition is to set these quantities equal to some pre-determined gauge
source functions Ha,

(4)Γa = Ha. (4.41)

In particular, we may choose these gauge source functions to vanish, which defines harmonic
coordinates

(4)Γa = 0. (4.42)

Exercise 4.8 explains why these coordinates are called “harmonic”.

Exercise 4.8 Show that in harmonic coordinates, the coordinates xa themselves are harmonic func-
tions,

∇2xa ≡ ∇b∇bx
a = 0 . (4.43)

Inserting the metric (2.119) into equation (4.40) shows that in harmonic coordinates the lapse
and shift satisfy the coupled set of hyperbolic equations23

(∂t − βj∂j)α = −α2K (4.44)

(∂t − βj∂j) β
i = −α2

(
γij∂j lnα + γjkΓijk

)
. (4.45)

Exercise 4.9 Derive equations (4.44) and (4.45).

Harmonic coordinates have played an important role in the mathematical development of
general relativity, since they bring the four-dimensional Ricci tensor (4)Rab into a particularly
simple form.

Exercise 4.10 Show that in terms of (4)Γa, the Ricci tensor (4)Rab can be written

(4)Rab = −1
2
gcd∂d∂cgab + gc(a∂b)

(4)Γc + (4)Γc (4)Γ(ab)c

+2ged (4)Γc
e(a

(4)Γb)cd + gcd (4)Γe
ad

(4)Γecb (4.46)

Writing the Ricci tensor in terms of second derivatives of the metric (as in equation (2.143)),
these second derivatives appear in four different terms with the free indices appearing in all possible
different positions. As demonstrated in exercise 4.10, three of these four terms can be absorbed
in the derivative of the connection coefficients (4)Γa, leaving only one term that acts as a wave
operator. In harmonic coordinates, where (4)Γa = 0, Einstein’s equations therefore reduce to a set
of nonlinear wave equations,24 which is why all of the early hyperbolic formulations of Einstein’s
equations are based on these coordinates.25 We will return to these considerations in Chapter 11.

23See Smarr and York (1978b); York, Jr. (1979).
24De Donder (1921); Lanczos (1922).
25E.g. Choquet-Bruhat (1952); Fischer and Marsden (1972).
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Completely harmonic coordinates have been adopted in only a few 3+1 simulations,26 although
a formalism based on “generalized harmonic coordinates”, has recently been employed very suc-
cessfully.27 We will discuss this approach in much greater detail in Chapter 11.3. More common
in 3+1 calculations is harmonic slicing, in which only the time-component (4)Γ0 is set to zero.
Combining harmonic slicing with a zero shift yields a particularly simple equation for the lapse,

∂tα = −α2K, (4.47)

which, after inserting equations (2.137) for αK, can be integrated to yield

α = C(xi)γ1/2. (4.48)

Here C(xi) is a constant of integration that may depend on the spatial coordinates xi, but not on
time. This condition is identical to keeping the densitized lapse ᾱ = γ−1/2α constant (see (3.100)).

Exercise 4.11 Show that t = const slices of the Schwarzschild spacetime in isotropic coordinates
(equations (2.145) through (2.148)) are harmonic.28

The harmonic slicing condition (4.48) is just about as simple as the geodesic slicing condition
(4.1), but it provides for a much more stable numerical evolution.29 It does not focus coordinate
observers and in some cases has allowed for long time evolutions.30 However, there is no guarantee
that harmonic slicing will lead to well-behaved coordinates in more general situations31 and it has
been pointed out that the singularity avoidance properties of harmonic slicing are weaker than
those, for example, of maximal slicing.32

Equation (4.48) is an example of a coordinate condition in which the lapse can be found
algebraically, without having to solve complicated and computer intensive differential equations,
as is necessary for maximal slicing. To generalize this condition, we can decorate the right hand
side of equation (4.47) with a positive but otherwise arbitrary function f(α),33

∂tα = −α2f(α)K. (4.49)

For f = 1 this condition obviously reduces to the harmonic slicing condition (4.47) above. For
f = 0 (and α = 1 initially), it reduces to geodesic slicing (Section 4.1). Formally, maximal slicing
(Section 4.2) corresponds to f → ∞.34 For f = 2/α, the condition (4.49) can be integrated to
yield

α = 1 + ln γ, (4.50)

where we have used equation (2.137) and have chosen the constant of integration to be unity. This
quite popular slicing condition is often called “1+log” slicing. As an algebraic slicing condition it

26See Landry and Teukolsky (1999); Garfinkle (2002).
27See Pretorius (2005b,a).
28Other time-independent harmonic slices of Schwarzschild and Kerr-Newman spacetimes for which the lapse

does not vanish on the horizon have been derived by Bona and Massó (1988) and Cook and Scheel (1997).
29See, e.g., Shibata and Nakamura (1995); Baumgarte and Shapiro (1999b).
30See Cook and Scheel (1997) and Baumgarte et al. (1999) for some examples.
31See, e.g., Alcubierre (1997); Alcubierre and Massó (1998); Khokhlov and Novikov (2002).
32Shibata and Nakamura (1995); Garfinkle (2002).
33See Bona et al. (1995).
34See exercise H.4 for an example.
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has the virtue of being extremely simple to implement and fast to solve. It has also been found to
have stronger singularity avoidance properties than harmonic slicing. The latter can be motivated
by the observation that f becomes large when α becomes small, so that it probably behaves more
like maximal slicing than harmonic slicing.

In the above derivation we assumed βi = 0, which may or may not be a good choice. Allowing
for a nonzero shift, the condition (4.49) with f = 2/α may be generalized to include an advective
shift term,

(∂t − βj∂j)α = −2αK. (4.51)

Equation (4.51) deserves to be boxed, since it has proven to be an extremely successful and robust
(hyperbolic) slicing condition. It is currently adopted in in many “moving puncture” binary black
hole simulations. We will discuss these simulations, and the role of the slicing condition (4.51) in
much greater detail in Chapter 13.1.3.

Before proceeding we point out that the “advective” version of the 1+log condition, equation
(4.51), can be written as

na∇aα = Lnα = −2K. (4.52)

This means that this slicing condition is covariant in the sense that it does not depend on the
choice of the shift. The “nonadvective” version (4.49), on the other hand, is not covariant, since
the “direction” of the partial derivative ∂tα does depend on the shift. Stated differently, the
nonadvective derivative ∂tα takes a derivative in the direction of the time vector ta, which is
coordinate dependent, whereas the advective term −βj∂jα shifts the direction back along the
normal vector na, which has a geometric, coordinate-independent meaning.

4.4 Quasi-isotropic and Radial Gauge

In the previous Sections we have focused primarily on time slicing conditions that specify the
lapse function α. We now turn to gauge conditions for the spatial coordinates, i.e., conditions that
specify the shift vector βi. As is the case when picking a lapse, an important goal when choosing
a shift is to provide for a stable, long-term dynamical evolution. In addition, it is often desirable
to bring the spatial metric into a simple form. For asymptotically flat spacetimes, for example,
one might like the metric at large distances to be related straightforwardly to the Schwarzschild
metric in some familiar coordinate system. One might also like gravitational radiation to be easily
identifiable as, for example, the transverse-traceless components of an asymptotically flat metric.

Loosely speaking, two different strategies can be employed when constructing a spatial gauge
condition. One strategy is to define a geometric condition on the spatial metric from which a gauge
condition can be derived. An example of such a condition is the minimal distortion gauge, which
will discuss in Section 4.5. Alternatively, we can impose an algebraic condition on the spatial
metric directly. For example, we can set some of its components to zero in order to simplify
the Einstein equations. This latter approach is the basis of the quasi-isotropic and radial gauge
conditions, which we will discuss in this Section. Both of these gauges have played important roles
in the evolution of axisymmetric spacetimes. We shall assume that the spacetimes considered in
this Section are axisymmetric and we will adopt spherical polar coordinates to treat them.

In general the spatial metric γij has six independent components. Using our three degrees of
spatial coordinate freedom we can impose three conditions on the metric, and thereby reduce the
number of its independent variables to three. In spherical polar coordinates, quasi-isotropic gauge
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is defined by the three conditions
γrθ = γrφ = 0 (4.53)

and
γθθγφφ − (γθφ)2 = γrrγφφr

2 (4.54)

which reduces the metric to the form35

dl2 = A2(dr2 + r2dθ2) +B2r2(sin θdφ+ ξdθ)2. (4.55)

Demanding that conditions (4.53) and (4.54) hold at all times, we can insert them into into the
evolution equation (2.135), and this results a set of three coupled differential equations for the
three components of the shift βi.

Exercise 4.12 For axisymmetric spacetimes in the absence of net angular momentum we can set ξ = 0
and Kr

φ = 0. Argue that in this case the quasi-isotropic shift satisfies βφ = 0 and

r∂r

(
βr

r

)
− ∂θβ

θ = α(2Kr
r +Kφ

φ) , (4.56)

r∂rβ
θ + ∂θ

(
βr

r

)
= 2α

Kr
θ

r
. (4.57)

To introduce a somewhat more “natural” set of variables, we can replace A and B by the
conformal factor

ψ6 = A2B (4.58)

and define a new variable,
η = ln(A/B) , (4.59)

which is a measure of the anisotropy of the spatial slices. The two variables η and ξ are “dy-
namical” or “radiative” variables that serve to measure gravitational waves at large distance from
the gravitating source. We will explore some concrete examples that use these variables in Chap-
ter 10.36 In terms of ψ, η and ξ, the line element (4.55) now takes the form

dl2 = ψ4
[
e2η/3(dr2 + r2dθ2) + e−4η/3r2(sin θdφ+ ξdθ)2

]
. (4.60)

In spherical symmetry we can set, without loss of generality, η = ξ = 0, in which case the spatial
metric reduces to the familiar form ψ4ηij. In vacuum we therefore recover the Schwarzschild
solution in isotropic coordinates, which explains the name “quasi-isotropic” gauge.

A related coordinate condition is radial gauge, for which the condition (4.54) is replaced by
the relation

γθθγφφ − (γθφ)2 = r4 sin2 θ , (4.61)

while conditions (4.53) remain unchanged. The spatial metric then takes the form

dl2 = A2dr2 +B−2r2dθ2 +B2r2(sin θdφ+ ξdθ)2. (4.62)

Equations for the shift vector can again be derived from equation (2.135) by demanding that the
conditions (4.53) and (4.61) hold at all times.

35See, e.g., Smarr (1979b); Bardeen and Piran (1983); Evans (1984); Abrahams and Evans (1988); Shapiro and
Teukolsky (1992a); Abrahams et al. (1994).

36See also Appendix F.
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In spherical symmetry we can set B = 1 and ξ = 0 without loss of generality, in which case the
metric (4.62) takes the form of the Schwarzschild metric in Schwarzschild coordinates (see (3.22)).
This result again suggests that natural dynamical variables in the radial gauge are ξ and η.37

Exercise 4.13 The radial gauge has been used quite often with polar slicing in axisymmetry.38 Polar
slicing is defined by

KT ≡ Kθ
θ +Kφ

φ = 0. (4.63)

Show that in spherical symmetry (for which βθ = βφ = 0) the radial gauge and polar slicing conditions
in vacuum imply βr = 0.

While both the quasi-isotropic and radial gauges have been used extensively for calculations
in spherical symmetry and axisymmetry, they are particularly convenient only in spherical polar
coordinates. Such coordinates are natural for spherical and axisymmetric spacetimes, but they
suffer from coordinate singularities at r = 0 and along the symmetry axis where θ = 0 and
θ = π. Most of the recent calculations in full 3+1 dimensions have adopted cartesian coordinates,
which do not have such singularities. In addition, given that in spherical symmetry the radial
gauge reduces to Schwarzschild coordinates, this gauge condition is susceptible quite generally to
developing coordinate singularities near the horizon of any black hole that may be present in the
spacetime.

4.5 Minimal Distortion and Variations

In Chapter 3 we found that the conformally related metric γ̄ij has five independent functions,
two of which correspond to true dynamical degrees of freedom and three to coordinate freedom.
For a stable and accurate numerical evolution it is desirable to eliminate purely coordinate-related
fluctuations in γ̄ij. To accomplish this, one may want to construct a gauge condition that minimizes
the time rate of change of the conformally related metric. This gauge condition is called minimal
distortion.39 A related but recently less popular gauge condition is minimal strain, which minimizes
the time rate of change in the spatial metric instead of the conformally related metric.

In Chapter 3.3 we introduced uij as the traceless part of the time derivative of the spatial
metric,

uij ≡ γ1/3∂t(γ
−1/3γij), (4.64)

(see equation (3.92)). Since uij is traceless, we can decompose it into a transverse-traceless and a
longitudinal part

uij = uTTij + uLij, (4.65)

similar to the decomposition of the traceless part of the extrinsic curvature in Chapter 3.2. The
divergence of the transverse part vanishes,

DjuTTij = 0 , (4.66)

and the longitudinal part can we written as the vector gradient of a vector X i,

uLij = DiXj +DjXi −
2

3
γijD

kXk = (LX)ij . (4.67)

37Bardeen and Piran (1983) take η = B2 − 1 for the dynamical variable in place of equation (4.59).
38See, e.g., Bardeen and Piran (1983); Shapiro and Teukolsky (1986).
39See Smarr and York (1978b,a), whose derivation we will follow closely.
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Since γ̄ij = γ−1/3γij is a vector density of weight −2/3, the right hand side of (4.67) can be
identified with the Lie derivative of γ̄ij along the vector X i,

uLij = γ1/3LXγ̄ij (4.68)

(see exercise A.10 in Appendix A). Evidently, the longitudinal part can be interpreted as arising
from a change of coordinates, generated by X i. It represents the coordinate effects in the time
development, which can therefore be eliminated by choosing uLij to vanish. This leaves only the
transverse part uTTij , which implies that the divergence of uij itself must vanish

Djuij = 0. (4.69)

Combining this with equation (3.99) yields

Dj(Lβ)ij = 2Dj(αAij) (4.70)

or

(∆Lβ)i = 2AijDjα +
4

3
αγijDjK + 16παSi, (4.71)

where we have replaced the divergence of Aij with the momentum constraint, equation (3.38).40

Equation (4.71) is the minimal distortion condition for the shift vector βi. The geometric inter-
pretation of minimal distortion is elucidated in exercise 4.14 and Figure 4.3. The quantity uij can
be viewed as a “distortion tensor” that measures the change in the shape (but not the size) of a
small spheroid as it evolves from one time slice to a neighboring one. It is analogous to the shear
strain instrinsic to a thin shell as it is deformed.41

Exercise 4.14 Derive the minimal distortion condition (4.71) by varying the action

A ≡
∫
uiju

ijγ1/2d3x (4.72)

with respect to βi, keeping the boundary fixed, and requiring δA = 0. Note that A it is a nonnegative
global measure of the magnitude of the time rate of change of the conformal metric. The quantity
uiju

ij is analogous to the energy density and the integral A to the total shear stretching energy of a
deformed thin shell. Taking a second variation with respect to βi shows that equation (4.71) minimizes
A.
Hint Substitute equation (3.93) into equation (4.72).

It is also useful to express equation (4.71) in terms of conformally related quantities. Using
(Lβ)ij = ψ−4(L̄β)ij and DjS

ij = ψ−10D̄j(ψ
10Sij) for any symmetric, traceless tensor, we find

(∆Lβ)i = ψ−4
(
(∆̄Lβ)i + (L̄β)ijD̄j lnψ6

)
, (4.73)

and hence

(∆̄Lβ)i + (L̄β)ijD̄j lnψ6 = 2ψ−6ÃijD̄jα +
4

3
αγ̄ijDjK + 16πψ4αSi. (4.74)

Exercise 4.15 Adopt the conformal scaling relation of equation (3.97), uij = ψ4ūij , and show that
condition (4.69) is equivalent to the relation

D̄i(ψ6ūij) = 0 . (4.75)

40Equation (4.71) also follows from equation (3.102), using equation (4.69).
41York, Jr. (1979).
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Figure 4.3: Schematic illustration of mimimal distortion, where the shift vector is chosen so that
it minimizes coordinate shear in the metric. If a sphere is transported from one time slice at t to
a neighboring slice at t + dt along the normal vector, it typically will be sheared into an ellipse.
By adopting a minimal distortion shift vector, some of the shear can be eliminated, depending on
the spacetime geometry and the choice of time coordinate. (After Smarr and York (1978a); York,
Jr. (1979).)

Then derive equation (4.74) directly from equation (4.75).

The relation between the shift condition that we found in the context of the conformal thin-
sandwich formalism (see Chapter 3.3) and the minimal distortion shift is explored in exercise
4.16.

Exercise 4.16 Derive the minimal distortion shift condition (4.74) by starting with the momentum
constraint as expressed by equation (3.102). Adopt equation (4.75) and use equation (3.101) to elimi-
nate ūij .

The minimal distortion condition (4.74) is a set of coupled elliptic equations for the components
of the shift vector. In higher dimensions, it requires appreciable computational resources to solve
such a system numerically. But just as we discussed in Section 4.2 for the case of maximal slicing,
it is reasonable to expect that an “approximate minimal distortion” condition may lead to a
coordinate system with similar geometric properties. One possible simplification lies in replacing
the covariant derivative operators in equation (4.74) with the corresponding flat space operators.42

The operators then become ordinary partial derivatives in cartesian coordinates, which simplifies
the form of the equations and reduces the computational effort required to solve them.

A related spatial gauge condition is based on the “connection functions”

Γ̄i ≡ γ̄klΓ̄ikl (4.76)

that we shall introduce in Chapter 11.5 in connection with the BSSN formulation of the 3 + 1
equations. The BSSN formulation also assumes that γ̄ = det(γ̄ij) = 1 in Cartesian coordinates,
so that

Γ̄i = −∂j γ̄ij . (4.77)

42See Shibata (1999b).
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In Section 4.3 we introduced their four-dimensional counterparts (4.40) which we set to zero to
define harmonic coordinates. In complete analogy we could now set the connection functions
Γ̄i to define “conformal three-harmonic” coordinates. Alternatively, consider setting their time
derivative to zero43

∂tΓ̄
i = 0. (4.78)

We can compute the time derivative of the connection functions by combining equation (4.77) with
the evolution equation for the spatial metric, equation (2.135). Inserting the result (see equation
(11.43)) into equation (4.78) then yields the Gamma freezing condition

γ̄lj∂j∂lβ
i +

1

3
γ̄liβj,jl + βj∂jΓ̄

i − Γ̄j∂jβ
i +

2

3
Γ̄i∂jβ

j

= 2Ãij∂jα− 2α
(

Γ̄ijkÃ
kj − 2

3
γ̄ij∂jK − γ̄ijSj + 6Ãij∂j lnψ

)
.

(4.79)

Here we have used the rescaling law
Āij = ψ4Aij, (4.80)

that is used more commonly in the context of the BSSN formulation than the law (3.35) that
we employed earlier. To distinguish the two rescaling laws we use a tilde instead of a bar in
equation (4.80). The relation to minimal distortion can be seen by combining equations (4.78),
(4.77) and (3.94), which yields

∂j(ū
ij) = 0 . (4.81)

Exercise 4.17 Derive equation (4.81).

Equation (4.81) can now be compared to the corresponding divergence criterion (4.75) for
minimal distortion.

The condition (4.79) forms a complicated set of coupled elliptic equations for the components
of the shift vector. In analogy to our conversion of maximal slicing into a parabolic evolution
equation via the K-driver condition (4.39), we can convert these elliptic equations for the shift
into parabolic evolution equations by approximating the Gamma freezing condition (4.78) with
the Gamma-driver,44

∂tβ
i = k(∂tΓ̄

i + ηΓ̄i), (4.82)

where k and η are positive constants. Inserting equation (11.43) for ∂tΓ̄
i results in a parabolic

equation for βi, in complete analogy to the K-driver condition (4.38) for the lapse. We can go a
step further and construct a hyperbolic Gamma-driver as follows45

∂tβ
i = 3

4
Bi

∂tB
i = ∂tΓ̄

i − ηBi.
(4.83)

Here the factor of 3/4 is somewhat arbitrary, but leads to good numerical results, and the param-
eter η is typically on the order of 1/(2M), where M measures the total mass of the spacetime.
The condition (4.83) is sometimes called the “non-shifting shift”, in contrast to the “shifting shift”
condition for which all time derivatives ∂t in equation (4.83) are replaced with advective derivatives
∂t − βj∂j. This replacement has the effect of advecting various unstable “gauge” modes off the

43Alcubierre and Brügmann (2001).
44See Alcubierre and Brügmann (2001); Duez et al. (2003).
45See Campanelli et al. (2006).
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computational grid. Various versions of these gauge conditions have been adopted in simulations,
and we refer the reader to the literature for comparative studies and analysis.46 The hyperbolic
Gamma-driver condition (4.83), together with the “1+log” slicing condition (4.51), have been ex-
tremely successful in dynamical “moving puncture” black hole simulations, which we will discuss
in detail in Chapter 13.1.3.

Box 4.1: Lapse and Shift Conditions: A Sampler

Geodesic slicing, or Gaussian normal coordinates, are defined by

α = 1 βi = 0. (4.84)

Maximal slicing assumes K = 0 = ∂tK, which results in the lapse equation

D2α = α
(
KijK

ij + 4π(ρ+ S)
)
. (4.85)

Sometimes maximal slicing is imposed “approximately” via a K-driver, as in equa-
tion (4.39). Harmonic coordinates satisfy

(4)Γa = 0, (4.86)

which results in conditions (4.44) and (4.45) for the lapse and shift. An important variation
is 1+log slicing

(∂t − βj∂j)α = −2αK. (4.87)

For the minimal distortion gauge condition, the shift satisfies

(∆Lβ)i = 2AijDjα +
4

3
αγijDjK + 16παSi. (4.88)

A related condition may be defined in terms of the “conformal connection functions” Γ̄i,
which leads to the hyperbolic Gamma-driver condition for the shift,

∂tβ
i =

3

4
Bi, ∂tB

i = ∂tΓ̄
i − ηBi , (4.89)

where η is a constant of order 1/(2M). Replacing the time derivatives ∂t in equation (4.89)
with advective derivatives ∂t − βj∂j is one useful variation.

We note in closing that in simulations of gravitational collapse to black holes, minimal dis-
tortion and its close relatives often lead to poor coordinate resolution in the strong field central
regions. The reason for this behavior can be understood in terms of a simplified model equation47

for condition (4.74),
D̄2βi = 16πSi , (4.90)

where we shall assume conformal flatness γ̄ij = ηij so that D̄2 is a flat Laplace operator. If

46van Meter et al. (2006); see also Gundlach and Martin-Garcia (2006b) for a discussion of the mathematical
properties of the resulting evolution system.

47cf., Shibata (1999b).
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matter is collapsing, the density is increasing, which, according to the continuity equation (e.g.,
equation (5.12)), leads to a negative divergence of the matter flux Si. Taking the divergence of
equation (4.90) we therefore find

D̄2D̄iβ
i = 16πD̄iS

i < 0. (4.91)

Adopting boundary conditions to insure that βi vanishes assymptotically, we find from equa-
tion (4.91) that the divergence of the shift is positive, D̄iβ

i > 0.48 This means that the shift
moves coordinate observers away from the collapsing matter, thereby decreasing the coordinate
resolution of this matter. This response is unfortunate, since it is precisely the strong field that
forms around the high-density, collapsing matter that leads to black hole formation and hence is
where we desire maximum resolution. To compensate for this coordinate “blow-out” arising in
minimal distortion (and related gauge choices), it is possible to add an extra contribution to the
shift vector that points inward towards the collapsing region and increases the resolution there.49

48Viewed as Poisson’s equation D̄2Φ = −4πρq for the electromagnetic “potential” Φ ≡ D̄iβ
i, equation (4.91) has

a positive “charge density” ρq ≡ −4D̄iS
i on the right-hand side, for which the potential must then be positive.

49See Shibata (1999b); Duez et al. (2003).



Chapter 5

Matter Sources

In nonvacuum spacetimes, the stress-energy tensor T ab contributes source terms in the 3 + 1 field
equations. The stress-energy tensor accounts for all sources of energy-momentum in spacetime,
excluding gravity. It thus arises from all forms of matter, electromagnetic fields, neutrinos, scalar
fields, etc, in the universe. For brevity, we shall sometimes refer to these sources collectively as
the “matter sources” and the terms that they contribute in the 3 + 1 equations as the “matter
source terms”. “Matter” source terms appear in the Hamiltonian constraint equation (2.133), the
momentum constraint equation (2.134), and the 3 + 1 evolution equation (2.136). The evolution
equations for the “matter” sources are given by ∇bT

ab = 0, which express the conservation of the
total 4-momentum in spacetime. Here T ab is the total stress-energy tensor of the system. These
conservation equations must be solved simultaneously with the 3 + 1 evolution equations for the
gravitational field to determine the entire foliation of spacetime. Some of the quantities appearing
in the stress-energy tensor require auxiliary equations. These auxiliary equations include, for
example, the continuity equation and an equation of state in the case of hydrodynamic matter,
and Maxwell’s equations in the case of an electromagnetic field, and so on.

As shown in Chapter 2, the “matter” source terms ρ, Si and Sij appearing in the 3+1 equations
for the gravitational field are projections of the stress-energy tensor into na and Σ and are given
by

ρ = nanbT
ab ,

Si = −γianbT ab ,
Sij = γiaγjbT

ab .
(5.1)

The quantity ρ is the total mass-energy density as measured by a normal observer, Si is the
momentum density and Sij is the stress. Finally, S is defined as the trace of Sij,

S = γijSij . (5.2)

In the following sections, we discuss some of the most important “matter” sources that arise
in astrophysical applications. These sources include hydrodynamic fluids, magnetohydrodynamic
plasmas threaded by magnetic fields, radiation gases (e.g., photon and neutrino), collisionless
matter, and scalar fields.

109
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5.1 Vacuum

At the risk of stating the obvious, vacuum spacetimes are characterized by the vacuum stress-
energy tensor

T ab = 0. (5.3)

Spacetimes containing black holes and (or) gravitational waves, and nothing else, are character-
ized by such a stress-energy tensor in Einstein’s field equations. Vacuum spacetimes are simpler to
deal with numerically since they require no additional energy-momentum conservation equations
or auxiliary field equations to solve. On the other hand, vacuum black hole spacetimes, which are
among the most important astrophysically, have all the numerical complications in the gravita-
tional field sector that arise from the spacetime singularities in the black hole interiors. Handling
these complications will be a major issue that we will address in subsequent chapters.

5.2 Hydrodynamics

Relativistic hydrodynamic matter is an important source of stress-energy in many astrophysical
applications. Loosely speaking, a hydrodynamic description of matter is appropriate whenever the
mean free path of a particle due to collisions with neighboring particles is much shorter than the
characteristic size or local scale length of the system. Many of the global properties of relativistic
stars, like neutron stars, are described by a hydrodynamic fluid. Also, the very early universe is
filled with hydrodynamic matter (e.g. baryons and electrons) coupled to thermal radiation.

In this Section we seek to cast the basic equations of relativistic hydrodynamics and magneto-
hydrodynamics into forms most suitable for building dynamical spacetimes numerically, i.e. into
forms best suited for numerical integration together with with the Einstein equations in 3+1 form
for the gravitational field. Although our discussion is reasonably self-contained, readers of this
section will find it helpful to have been exposed previously to a treatment of thermodynamics,
hydrodynamics and electrodynamics in curved spacetime at an elementary level.1

5.2.1 Perfect Gases

The stress-energy tensor of a perfect gas is given by

T ab = ρ0hu
aub + Pgab (5.4)

Here ua is the fluid 4-velocity, ρ0 is the rest-mass density, P is the pressure, and h is the specific
enthalpy

h = 1 + ε+ P/ρ0, (5.5)

where ε is the specific internal energy density. The total mass-energy density as measured by an
observer comoving with the fluid is then given by ρ∗ = ρ0(1 + ε).

The equations of motion for the fluid can be derived from the local conservation of energy-
momentum,

∇bT
ab = 0, (5.6)

and the conservation of rest mass,
∇a(ρ0u

a) = 0. (5.7)

1See, e.g., Misner et al. (1973), §22.1 – §22.4.
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Wilson Scheme

The resulting equations can be cast in various forms, depending on the fluid variables chosen
for numerical integration. One of the most straightforward schemes that readily lends itself to
numerical integration was introduced by Wilson.2 His scheme was designed to mimick the standard
Eulerian equations of hydrodynamics in Newtonian theory, for which the large body of expertise
that has been acquired to solve the equations numerically can be brought to tackle the relativistic
system. To accomplish this goal, one defines a rest-mass density variable

D ≡ ρ0W, (5.8)

an internal energy-density variable
E ≡ ρ0εW, (5.9)

and a momentum-density variable

Sa ≡ ρ0hWua = (D + E + PW )ua. (5.10)

Here we have defined W to be the Lorentz factor between normal and fluid observers,

W ≡ −naua = αut. (5.11)

Exercise 5.1 (a) Determine the relation between the density ρ∗ and the source term ρ defined in
equation (5.1). Interpret your answer physically.
(b) Argue that ρ∗ = ρ whenever a normal observer is a comoving observer.
(c) Argue that ρ∗ = ρ for a static metric, like the metric (1.73) for an Oppenheimer-Volkoff equilibrium
star.
(d) Argue that ρ∗ = ρ = ρ0 for the metric (1.88) describing Oppenheimer-Synder spherical dust
collapse.

Exercise 5.2 Show that the spatial vector Si defined by equation (5.10) is the fluid contribution to
the source term Si appearing in the 3 + 1 decomposition of Einstein’s field equations and defined by
equation (5.1).

In terms of these variables, the equation of continuity ∇a(ρ0u
a) = 0 becomes

∂t(γ
1/2D) + ∂j(γ

1/2Dvj) = 0. (5.12)

Here vj = uj/ut is the fluid 3-velocity with respect to a coordinate observer, and γ is the deter-
minant of the spatial metric γij. Contracting equation (5.6) with ua yields the energy equation,

∂t(γ
1/2E) + ∂j(γ

1/2Evj) = −P
(
∂t(γ

1/2W ) + ∂i(γ
1/2Wvi)

)
, (5.13)

while the spatial components of (5.6) yield the relativistic Euler equations,

∂t(γ
1/2Si) + ∂j(γ

1/2Siv
j) = −αγ1/2

(
∂iP +

SaSb
2αSt

∂ig
ab

)
. (5.14)

In deriving equations (5.12), (5.13) and (5.14), we have used the identity (−g)1/2 = αγ1/2 (see
exercise 2.25).

2Wilson (1972b, 1979); see also Hawley et al. (1984).



112 CHAPTER 5. MATTER SOURCES

Exercise 5.3 Derive equations (5.12), (5.13) and (5.14).

Exercise 5.4 (a) Show that by contracting equation (5.6) with ua the energy equation may be written
in the alternative form

dρ∗

dτ
=

(ρ∗ + P )
ρ0

dρ0

dτ
, (5.15)

where d/dτ = ub∇b is the rate of change of proper time following a fluid element.
(b) Show that by contracting equation (5.6) with the projection tensor P bc = gbc + ubuc the Euler
equation may be written in the form

(ρ∗ + P )ub∇bua = ∇aP − uau
b∇bP . (5.16)

(c) Use the first law of thermodynamics and equation (5.15) to show that perfect gas motion is adiabatic,
i.e. ds/dτ = 0, where s is the entropy per unit rest mass.
Though entirely equivalent to equations (5.13) and (5.14), equations (5.15) and (5.16) usually are not
the most useful form of the equations of relativistic hydrodynamics for numerical integration in an
initial-value (evolution) problem.

For many purposes it is useful to employ a simple “Γ-law” equation of state (EOS) of the form

P = (Γ− 1)ρ0ε. (5.17)

Realistic applications involving relativistic objects are rarely described by EOSs obeying this sim-
ple form. However, a Γ-law EOS provides a computationally practical, albeit crude, approximation
that can be adapted to mimick the gross behavior of different states of matter in many applica-
tions. For example, to model a stiff nuclear EOS in a neutron star, one can adopt a moderately
high value of Γ in a Γ-law EOS, e.g. Γ ≈ 2. By contrast, to model a moderately soft, thermal
radiation-dominated EOS governing a very massive or supermassive star, one can set Γ = 4/3.
For isentropic flow, a Γ-law EOS is equivalent to the equation of state of a polytrope,

P = KρΓ
0 , Γ = 1 + 1/n (5.18)

where n is the polytropic index and K is the gas constant. However, for nonisentropic flow, which
is always the case when encountering a shock, K is no longer constant throughout the fluid, and
equations (5.17) and equations (5.18) are no longer equivalent.

Exercise 5.5 Use the first law of thermodynamics for isentropic flow to show the equivalence of
equations (5.17) and equations (5.18).

When employing a Γ-law EOS the source term on the right-hand side of the energy equation
(5.13) can be eliminated to yield

∂t(γ
1/2E∗) + ∂j(γ

1/2E∗v
j) = 0, (5.19)

where we have introduced a new energy variable E∗ defined as

E∗ ≡ (ρ0ε)
1/ΓW (5.20)

This simplification has great computational advantages, since the time derivatives on the right-
hand side of (5.13) are difficult to handle in strongly relativistic fluid flow.
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Exercise 5.6 Use the first law of thermodynamics to show that the left-hand side of equation (5.19)
actually describes the evolution of s, the entropy per unit mass, following a fluid element:

∂t(γ1/2E∗) + ∂j(γ1/2E∗v
j) =

αγ1/2ρ0

Γ

(
E∗
W

)(1−Γ)

T
ds

dτ
, (5.21)

where d/dτ = ua∇a is the rate of change of proper time following the fluid. Hence equation (5.19)
guarantees that the flow is adiabatic, which is always true for a perfect gas in the absence of shocks.

For given values of ui, W can be found from the normalization relation uau
a = −1,

W = αut =
(
1 + γijuiuj

)1/2
, (5.22)

and vi from

vi = αγijuj/W − βi. (5.23)

Equations (5.12), (5.14) and (5.19), expressing the conservation of rest mass, momentum and
energy, form a convenient set that can integrated simultaneously to determine the evolution of a
perfect gas in the absence of shocks. However, this particular set of equations must be suitably
modified to handle the appearance of shock discontinuities. Shocks occur whenever fluid elements
collide supersonically, which can occur during stellar collapse, accretion flows, stellar collisions,
etc. Mathematically, shocks arise whenever fluid characteristic curves cross, leading to sharp
discontinuities in the fluid variables. For realistic fluids containing viscosity, the shock transition
region has a finite thickness amounting to several particle collision mean-free-paths and the fluid
variables vary continuously across this finite interval. Two strategies are commonly adopted to
treat shocks when the details of the transition region are of no physical consequence and the perfect
gas equations are used throughout, whereby the thickness of the transition region is allowed to
be arbitrarily thin. The more traditional approach is to add an artificial viscosity term to the
equations.3 This term mimicks the effect of physical viscosity, except that it is employed only in
the vicinity of a shock and serves to spread the shock transition region over a few spatial grid
spacings in finite difference codes.4 For this purpose, the artificial viscosity term Pvis is non-zero
only where the fluid is compressed and is added to the pressure on the right-hand sides of both
the energy equation (5.13) and the Euler equation (5.14). Such a term has the approximate form

Pvis =

{
Cvisρ0(δv)2 for δv < 0 ,
0 otherwise ,

(5.24)

where δv = ∂kv
k∆x, ∆x is the local spatial grid size and Cvis is a dimensionless constant of order

unity. Adding such a term allows the fluid to satisfy the Rankine-Hugoniot “jump”, or junction,
conditions across the shock, which we shall derive below. These conditions ensure the continuity
of rest mass, momentum and energy flux density across any surface in the fluid, including a
shock front. For a fluid element traversing a shock, the junction conditions serve to convert some
of the bulk kinetic energy into internal energy and to increase the entropy. Artificial viscosity
schemes have the virtue of being quite robust and very easy to implement. For shocks occurring
in Newtonian fluids with modest Mach numbers, artificial viscosity enables the fluid to satisfy
the Rankine-Hugoniot jump conditions to reasonable accuracy. Artificial viscosity has also been

3von Neumann and Richtmeyer (1950).
4Finite difference techniques for integrating partial differential equations are discussed in Chapter 6.2.
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used successfully in many relativistic applications,5 but it can lead to less satisfactory results for
ultra-relativistic flows or high Mach numbers.6

Exercise 5.7 Show that the addition of Pvis to the pressure in the stress-energy tensor modifies
equation (5.19) according to

∂t(γ1/2E∗) + ∂j(γ1/2E∗v
j) = −

(
E∗
W

)(1−Γ)
Pvis

Γ
∂a(Wγ1/2va) , (5.25)

where va = ua/ut. Comparing with equation (5.21), we see that the role of Pvis is to generate the
entropy jump required across a shock discontinuity.

High-Resolution Shock-Capturing (HRSC) Schemes

An alternative approach to handling shocks in finite-difference algorithms involves recasting the
equations in a “flux-conservative form” and adopting a so-called “high resolution shock-capturing
scheme” or HRSC scheme.7 In such a scheme, one divides up the spatial domain into a discrete
set of contiguous cells. At the center of each cell is a grid point where one keeps track of the fluid
variables as they evolve in time. One treats all fluid variables as constant in each grid cell. The
discontinuous fluid variables at the grid interfaces serve as initial conditions for a local Riemann
shock tube problem, which can be treated either exactly or approximately. The general Riemann
problem involves the evolution of a gas in which, initially, the fluid variables are everywhere con-
stant on either side of an interface, but discontinuous across the interface. The solution to this
idealized problem is known8 and provides the basis for constructing an HRSC scheme. Allowing
for discontinuities, including shocks, lies at the core of such schemes, and does not require any ad-
ditional artificial viscosity. Constructing Riemann solvers for HRSC schemes requires knowledge of
the local characteristic structure of the equations to be solved. This has motived the development
of several flux-conservative hydrodynamics schemes for which this characteristic structure can be
determined. 9 A key feature of the hydrodynamical equations in flux-conservative form is that
they do not contain any derivatives of the fluid variables in the source terms on the right-hand
sides, in contrast to equation (5.14), which contains a pressure gradient.

The flux-conservative equations of relativistic hydrodynamics take on the general form

∂tU + ∂iF i = S (5.26)

where U is the state vector of conserved variables built out of the so-called primitive fluid variables
P = (ρ0, v

i, P ), the F i are the flux vectors (one for each spatial dimension, i), and where the source
vector S does not contain any derivatives of the primitive fluid variables. A particularly useful
choice which can be written in this way is10

U =

 D̃

S̃j
τ̃

 =

 γ1/2Wρ0

γ1/2αT 0
j

α2γ1/2T 00 − D̃

 , (5.27)

5May and White (1966); Wilson (1972b); Shapiro and Teukolsky (1980); Hawley et al. (1984); Shibata (1999a);
Duez et al. (2003).

6Winkler and Norman (1986).
7See the text by Toro (1999), or the review by Mart́ı and Müller (1999), and references therein.
8See, e.g. Courant and Friedrichs (1948).
9See, e.g., review by Font (2000).

10Font et al. (2000, 2002).
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where D̃ and S̃j differ from D and Sj defined in equations (5.8) and (5.10) by a factor of γ1/2.
The flux vectors F i are then given by

F i =

 D̃vi

αγ1/2T ij
α2γ1/2T 0i − D̃vi

 , (5.28)

and the source vector S by

S =

 0
1
2
αγ1/2T abgab,j

αγ1/2(T a0∂aα−(4) Γ0
abT

abα)

 . (5.29)

The first row of this equation is just the continuity equation (5.12) expressing rest-mass conser-
vation. The second row arises from the equation of energy-momentum conservation ∇aT

a
b = 0,

or

∂t(
√
−g T 0

a) + ∂i(
√
−g T ia) =

1

2

√
−g T bc∂agbc (5.30)

The second row is simply the a = j, or j-momentum, component of equation (5.30). The third
row arises from projecting the equations of motion along the normal vector: na∇bT

ab = 0, and
subtracting off the continuity equation (5.12) to achieve the desired form. The subtraction removes
the conserved rest-mass contribution from the energy density so that the internal energy density,
which equals the (typically small) difference between the total and rest-mass energy densities, can
be integrated directly without being corrupted by numerical cancelation errors.

Exercise 5.8 On first glance it appears that the source term in the energy equation (i.e. the third
row in S), which we will call sτ̃ , contains explicit time derivatives of the lapse and shift, as well as the
spatial metric.
(a) Show that by expanding out the source term sτ̃ and using the definition of the Christoffel symbol,
the time derivatives of the lapse and shift miraculously cancel out.
(b) Now let us recast the source term to get a convenient expression free of time derivatives. First use
na∇bT

ab = 0 to show that

sτ̃ = −αγ1/2T ab∇bna = αγ1/2T ab(Kab + abna) , (5.31)

where Kab is the extrinsic curvature and ab = na∇anb = Db(lnα) (see exercise 2.13) is the 4-
acceleration of the normal observer moving with the spatial hypersurface.
(c) Next show from naDaα = 0 that D0α = βiDiα = βi∂iα.
(d) Finally, show that K00 = βiβjKij and K0i = βjKij . Conclude that the source term can be written
as

sτ̃ = αγ1/2[(T 00βiβj + 2T 0iβj + T ij)Kij − (T 00βi + T 0i)∂iα] , (5.32)

which contains no explicit time derivatives.

The basic strategy is to integrate the coupled set of equations (5.26) for the conservative
variables (D̃, S̃j, τ̃) from time t to t + ∆t, and then combine the conservative variables at the
new time to solve algebraically for the new set of primitive variables (ρ0, v

i, P ). The procedure
is repeated for each subsequent time step. For a self-consistent determination of the background
gravitational field, Einstein’s equations in 3 + 1 form must be integrated in time simultaneously
to determine the spacetime metric.

Implementing an HRSC scheme to solve equation (5.26) then begins by calculating the primitive
variables P on each cell interface (the “reconstruction step”). At most grid points, the computed
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value of the primitive variable takes into account the variation of the variable at the nearest points
to the interface to high order in the adopted grid spacing. When a discontinuity is identified at
the interface (as in the case of a shock) by a “slope-limiter” that looks for changes in the nearby
slopes of variables, the order is reduced. Next, the reconstructed data is used as initial data for
a local Riemann problem (the “Riemann solver step”). The net flux F i at each cell interface is
given by the solution to this Riemann problem. Exact Riemann solvers require knowledge of the
eigenvectors of the system, while approximate Riemann solvers do not. The later, which provide
simpler HRSC schemes and are based on solving dispersion relations for the wave speeds in the
fluid, are often adequate.11 Once the flux is employed to compute the conservative variables U at
the new time step, these values are used to recover the primitive variables P on the new time level
(the “recovery step”). This may not be trivial because, while the functional relations U(P ) are
analytic, the inverse relations P(U) are usually not and must be solved numerically. The whole
process is then repeated for the next time step.

We now catalog the source terms ρ, Si, Sij and S in terms of the primitive fluid variables for a
perfect gas. Substituting the fluid stress-energy tensor (5.4) into equations (5.1) - (5.2) yields the
fluid contributions to the source terms:

ρfluid = ρ0hW
2 − P , (5.33)

Sfluid
i = ρ0hWui, (5.34)

Sfluid
ij = Pγij +

Sfluid
i Sfluid

j

ρ0hW 2
, (5.35)

Sfluid = 3P + ρ0h(W 2 − 1). (5.36)

We insert the superscript “fluid” to remind us that the contribution from the perfect fluid must
be added to the contributions from all other nongravitational sources of energy-momentum.

Smoothed Particle Hydrodynamics (SPH) Schemes

Smooth particle hydrodynamics, or SPH, provides yet another way of treating a relativistic fluid.
The SPH method was originally introduced by Lucy (1977) and Gingold and Monaghan (1977) to
handle Newtonian fluids in 3 + 1 dimensions. Most of the early applications involved Newtonian
stellar hydrodynamics. SPH has been adapted more recently to treat fully relativistic fluids, par-
ticularly in the context of relativistic core collapse, binary neutron star merger and binary black
hole-neutron star mergers.12 It has also been useful in cosmology simulations of structure forma-
tion, where fluid baryonic matter and collisionless “dark” matter must be evolved simultaneously.

SPH is a Lagrangian method that follows the behavior of fluid elements, represented by a large
sample of particles. The ”forces” that govern the motion of the particles are constructed from
the equations of hydrodynamics. At any time, the positions of the particles are assumed to be
distributed in proportion to the fluid rest-mass density. Given a finite distribution of particles, the
density is determined statistically by introducing a “smoothing kernal” in a Monte Carlo integral
over the distribution. Pressure-gradient forces are also calculated by kernel estimation, using the

11One of the simplest shock-capturing schemes that does not require knowledge of the eigenvectors is the HLL
scheme (Harten et al. (1983)), which has been shown to perform with an accuracy comparable to more sophisticated
Riemann solvers in shock tube problems when coupled to a high-order reconstruction method like PPM (“piecewise
parabolic method”; Colella and Woodward (1984)).

12See Chapters 16 and 17 for details and references.



5.2. HYDRODYNAMICS 117

particle positions, rather than by direct evaluation (e.g. finite-differencing) of the hydrodynamic
equations.

The Lagrangian formulation employed in SPH introduces a Lagrangian time derivative d/dt in
the fundamental hydrodynamic equations (5.12)-(5.14). The Lagrangian time derivative follows
changes in the properties of a given fluid element along its worldline and is related to the Eulerian
time derivative ∂t that measures changes at a fixed point in space according to d/dt = ∂t + vj∂j,
where the fluid velocity vj is given by equation (5.23). Substituting this Lagrangian time derivative
in equation (5.12) gives the Lagrangian continuity equation,

dρ∗
dt

+ ρ∗∂jv
j = 0 , (5.37)

where ρ∗ ≡ γ1/2D ≡ αutγ1/2ρ0.
13 This conservative form of the continuity equation allows us to

define a fixed set of particles, each of which is labelled by subscript “a” and has a constant rest-
mass ma. Each particle has an instantaneous position xja that moves according to dxja/dt = vja.
For each particle we define a “smoothing length” ha, which represents the physical size of the
particle. Thus, a particle does not have a delta-function density profile, but instead represents a
spherically symmetric density distribution of finite radius (with typical radius = 2ha) centered at
the particle position. The density at each particle is then determined as a locally weighted average
by summing over all the particles residing within this radius:

(ρ∗)a =
∑
b

mbWab . (5.38)

Here Wab is a smoothing (or interpolation) kernal. It can be calculated for a pair of particles as
a function of rab = (x2

ab + y2
ab + z2

ab)
1/2, the coordinate distance from particle a to its neighbor b,

and ha. A second-order differentiable form often used for W was introduced by Monaghan and
Lattanzio (1985) and is given by

W (r, h) =
1

πh3


1− 3

2

(
r
h

)2
+ 3

4

(
r
h

)3
, 0 ≤ r

h
< 1 ,

1
4

[
2−

(
r
h

)]3
, 1 ≤ r

h
< 2 ,

0 , r
h
≥ 2 .

(5.39)

Note that W is normalized so that when integrated over all space,
∫
W (r, h)4πr2dr = 1. Tracking

a fixed number of particles in a simulation and evaluating their density according to equation (5.38)
is equivalent to solving the continuity equation.

Exercise 5.9 Many of the applications of SPH in general relativity assume conformally flat spacetimes,
for which the metric is restricted to be of the form

ds2 = −α2dt2 + ψ4ηij(dxi + βidt)(dxj + βjdt) . (5.40)

We have already encountered conformal flatness in Chapter 3.1.2, and will discuss this approximation
and its domain of validity in the context of dynamical simulations in greater detail in Chapters 16.2
and 17.2.1.

Here we will adopt this metric, together with a Γ-law EOS, and assemble the remaining relativistic
Lagrangian hydrodynamic equations used in many SPH applications.
(a) Show that the Euler equation can be written in Lagrangian form as

dũi

dt
= −αψ

6

ρ∗
∂iP − αhu0∂iα+ ũj∂iβ

j +
2hα(γ2

n − 1)
γnψ

∂iψ , (5.41)

13This density variable should not be confused with ρ∗ defined below equation (5.5).
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where the specific momentum is defined by

ũi ≡ hui . (5.42)

E (b) Show that the energy equation can be written in Lagrangian form as

de∗
dt

+ e∗∂iv
i = 0 , (5.43)

where e∗ ≡ γ1/2E ≡ αutψ6(ρ0ε)1/Γ . Note that in the absence of shocks, the adiabatic energy equation
can be replaced by the polytropic equation (5.18).

The pressure gradient appearing the Lagrangian Euler equation (see, e.g., exercise 5.9) is
calculated according to

1

(ρ∗)a
∂iPa = −

∑
b

mb

(
Pb

(ρ∗)2
b

+
Pa

(ρ∗)2
a

)
∂iWab . (5.44)

Other terms depend on the metric functions and their derivatives.14 Artificial viscosity can be
incorporated in a relativistic SPH scheme to handle shocks.15

SPH is perhaps the simplest hydrodynamics scheme to implement for simulating multidimen-
sional fluid systems. It is also well suited for tracing the Lagrangian flow of matter, which is
particularly convenient when different fluid species are present and mix. However, a large num-
ber of particles are required, and their positions must be carefully tracked, in order to minimize
numerical errors. Low-resolution SPH calculations tend to be noisy, and this noise can lead to
spurious diffusion of SPH particles and spurious viscosity, independent of any real physical mixing
and physical viscosity.16

Rankine-Hugoniot Conditions

Shock waves pose the most serious challenge for any numerical hydrodynamical scheme. The
ability to resolve the sharp discontinuities in the fluid parameters associated with a shock is
typically what distinguishes one code from the next. This fact motivates a brief discussion here
of a few of the key equations that relate the fluid variables across a shock front.17

The Rankine-Hugoniot junction conditions across a relativistic shock discontinuity can be
derived easily from the fundamental hydrodynamic equations (5.6) and (5.7). Integrating ∇bT

ab

and ∇a(ρ0u
a) over a “pill box” centered on the shock front, and using Gauss’ theorem, gives the

junction conditions,
[ρ0u

aẑa] = 0 , (5.45)

and
[T abẑb] = 0 , (5.46)

14Recipes for choosing the smoothing kernals and lengths and for evaluating the full set of relativistic SPH
equations in conformally flat spacetimes are given in, e.g., Oechslin et al. (2002) and Faber et al. (2004), and
references therein.

15Siegler and Riffert (2000); Oechslin et al. (2002).
16For a study of spurious transport effects in Newtonian SPH calculations, and other potential difficulties, see

Hernquist (1993) and Lombardi et al. (1999), and references therein.
17For a detailed treatment of relativistic shocks, see, e.g., Taub (1948); Lichnerowicz (1967); Landau and Lifshitz

(1959); Novikov and Thorne (1973). The discussion here is patterned after Evans (1984).
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where ẑa is the spacelike normal vector to the front. Here the bracket denotes the difference
between quantities on the two sides of the shock front; [V ] ≡ V+− V−, where “+” labels the front
side of the shock (the side upstream) and “-” labels the back side (the side downstream). The
first condition can be written as

F ≡ ρ+
0 u

a
+ẑa = ρ−0 u

a
−ẑa , (5.47)

where F is the conserved flux of rest-mass across the front. Using definition (5.4) in the second
condition allows us to write

F (h+u
a
+ − h−u

a
−) = ẑa(P− − P+). (5.48)

Contracting equation (5.48) alternately with u+
a and u−a , and taking the difference of the two

equations, yields the relativistic Rankine-Hugoniot relation,

h2
+ − h2

− =

(
h+

ρ+
0

+
h−
ρ−0

)
(P+ − P−) . (5.49)

Exercise 5.10 Take the nonrelativistic limit of equation (5.49) to get the standard Rankine-Hugoniot
relation

ε+ − ε− =
P+ + P−

2ρ+
0 ρ

−
0

(ρ+
0 − ρ−0 ) . (5.50)

To determine the “jump” in rest-mass density across a shock front it is useful to cast equa-
tion (5.49) in nondimensional form,

H2 − 1 = δ2(y − 1)

(
H

η
+ 1

)
(5.51)

where we have introduced the nondimensional variables H = h+/h−, y = P+/P−, η = ρ+
0 /ρ

−
0 and

δ2 = p−/(ρ
−
0 h−). The ratio H can be eliminated from the above equation by introducing an EOS.

Employing our Γ−law EOS (5.17) and defining q ≡ 1/h− gives a quadratic equation for the density
ratio η, parametrized by q, and to be solved as a function of the pressure ratio y:

[y(Γ− 1) + (Γq + 1)] η2 − q [y(Γ + 1) + (Γ− 1)] η − (1− q)y(y + Γ− 1) = 0 . (5.52)

The parameter q measures the degree to which the flow is relativistic: q → 1 for nonrelativistic
(NR) flow, while q → 0 for extremely relativistic (ER) flow. Taking the nonrelativistic limit of
equation (5.52) gives

η =
y(Γ + 1) + (Γ− 1)

y(Γ− 1) + (Γ + 1)
. (5.53)

The parameter y measures the strength of the shock: y → ∞ for strong shocks, while y → 1 for
weak shocks (acoustic waves). Taking the strong shock limit of equation (5.53) gives the familiar
Newtonian result for the maximum compression behind a strong shock,

η → Γ + 1

Γ− 1
(strong NR shock) . (5.54)

For an extremely relativistic shock, equation (5.52) gives

η =

[
y(y + Γ− 1)

y(Γ− 1) + 1

]1/2

. (5.55)
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By contrast with the Newtonian result, the maximum compression behind a strong relativistic
shock has no upper limit, but increases steadily with y according to

η →
[

y

Γ− 1

]1/2

(strong ER shock). (5.56)

Not surprisingly, the strongest and most relativistic shocks pose the most stringent test for a
numerical hydrodynamics code, as the discontinuities are steepest in this regime.

Tests

Testing a code designed to handle relativistic hydrodynamics is an essential and nontrivial phase of
code construction. Convergence tests often serve as the initial step in code validation, providing the
first line of defense against coding errors and bugs, including simple typos.18 To fully calibrate the
reliability and robustness of a code it is necessary to run a suite of testbed problems, the solutions to
which are known. One might start by fixing the spacetime to be Minkowski, which allows the fluid
sector of the code to be tested in special relativity. Performing a relativistic Riemann shock tube
problem is particularly instructive in this case. The problem provides a “pure” hydrodynamics
test, since no complications from the numerical treatment of the gravitational field equations can
arise. It also provides a rather strenous test, since a shock wave reflects the full nonlinear character
of the hydrodynamic equations.

We illustrate such a test in Figure 5.1 for a simple one-dimensional shock tube. We consider
an ideal fluid and adopt a Γ-law EOS with Γ = 2. At t = 0 we set vx = 0 everywhere while for
x < 0 we set ρ0 = 15, P = 225 and for x > 0 we set ρ0 = 1, P = 1. The solution is evolved
with a second-order, finite-difference scheme based on the Wilson method using artificial viscosity.
Here a grid of 400 points is employed over a domain x ∈ (−1, 1). The shock is modeled rather
well, apart from an “overshoot” in quantities at the rarefaction (i.e., low density expansion) front.
It has been shown19 that in finite-difference schemes using artificial viscosity, such an overshoot
arises in numerical solutions even when the grid spacing goes to zero. This limitation of artificial
viscosity methods is particularly serious when strong shocks are present; HRSC techniques help
overcome this difficulty.

Exercise 5.11 Show that the results plotted in Figure 5.1 are consistent with equation (5.55).

In curved spacetime, the set of known, analytic solutions to the equations of relativistic hydro-
dynamics is not large, particularly for dynamical spacetimes. Holding a stable, static, spherical star
constructed from the OV hydrostatic equilibrium equations in stable equilibrium (see Chapter 1.3)
provides one simple test. Holding a stable, stationary, rotating star constructed from the station-
ary equilibrium equations in stable equilibrium (see Chapter 14.1) constitutes a more challenging
test, particularly if it is differentially rotating and therefore subject to spurious redistribution of
angular momentum by numerical viscosity. The analytic Oppenheimer-Snyder solution20 for the
collapse of a spherical, homogeneous ball of dust from rest at finite radius provides an analytic
dynamical spacetime for testing the ability of a code to handle catastrophic collapse of a fluid to
a black hole. The interior solution is analytic in geodesic slicing and comoving radial coordinates
and must be transformed numerically in order to compare with numerical integrations performed

18See Section 6.4.
19Norman and Winkler (1983).
20See Chapter 1.4.
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Figure 5.1: A one-dimensional relativistic Riemann shock tube test for an ideal fluid with an
adiabatic index Γ = 2. The plot shows the numerically evolved rest density ρ0 (triangles), pressure
P (squares), and velocity v (crosses) at t = 0.5. The analytic values are indicated by solid curves.
This calculation used the Wilson scheme with artificial viscosity Pvis = CvisA(δv)2, A = γ1/2εD,
δv = 2∂kv

k∆x and Cvis = 1. [From Duez et al. (2003).]

in different time slicings and/or spatial coordinates.21 Alternatively, the analytic solution, which
is easily expressed in closed-Friedmann form in the matter interior and Schwarzschild in the vac-
uum exterior, can be employed to construct various scalar invariants (e.g. areal radii R(τ) of
Lagrangian fluid elements as functions of proper time τ in the interior, and Riemann curvature
invariants in the exterior) that can readily test a dynamical simulation performed in an arbitrary
gauge.

During any numerical simulation it is useful to monitor quantities whose values ought be con-
served. For example, the global conserved quantities discussed in Section 3.5 provide useful checks.
The total rest mass of the system M0 must be conserved, provided we account for any rest mass
that leave the computational domain. The ADM mass MADM, the total linear momentum P i

ADM

and angular momentum J iADM are also conserved, provided we account for net losses carried off
by any matter and gravitational radiation that leave the computational domain. Other hydro-
dynamic quantities are useful to monitor in special cases. For example, the relativistic Bernoulli
integral is conserved along flow lines for adiabatic, stationary flow with 4-velocity ua in a stationary

21See Petrich et al. (1985, 1986), who construct the Oppenheimer-Snyder solution for both maximal and polar
time slicing and isotropic radial coordinates.
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gravitational field:22

hut = constant (along flow lines) . (5.57)

For a uniformly rotating, stationary, perfect fluid star, we have

h

ut
= constant , (5.58)

where the constant holds everywhere inside the fluid. This result is satisfied whenever the spacetime
has two Killing vectors, ξa(t) = (∂/∂t)a and ξa(φ) = (∂/∂φ)a, to reflect stationarity and axisymme-

try.23

The Kelvin-Helmholtz theorem states that the relativistic circulation,

C(c) =

∮
c

huaλ
adσ, (5.59)

is conserved for isentropic flow along an arbitrary closed “fluid” contour c.24 Here σ is a Lagrangian
parameter which labels fluid elements on the contour c, and λa is the tangent vector to the contour
[i.e., λa = (∂/∂σ)a]. Conservation of C can be verified by computing

d

dτ
C(c) =

∮
c

dσub∇b(huaλ
a)

=

∮
c

dσ
[
λaub∇b(hua) + (hua)u

b∇bλ
a
]

=

∮
c

dσ[λaub∇b(hua) + (hua)λ
b∇bu

a]

= −
∮
c

dσλa∇ah

= 0 . (5.60)

Here, to derive the third line from the second line, we use the fact that ua = (∂/∂τ)a and λa are
coordinate basis vectors, and thus commute according to

ub∇bλ
a = λb∇bu

a . (5.61)

We also have used uau
a = −1 and the Euler equation for isentropic flow in the form

ub∇b(hua) = −∇ah, (5.62)

to obtain the fourth line. Note that it is the derivative of C(c) with respect to the proper time
τ that vanishes, so that the circulation has to be evaluated on hypersurfaces of constant proper
time as opposed to constant coordinate time.

Exercise 5.12 Show that for general (e.g nonisentropic) flows, the Euler equation is

ub∇b(hua) = − 1
ρ0
∇aP = −∇ah+ T∇as , (5.63)

22Lightman et al. (1975), Problem 14.7, p. 83
23ibid., Problem 16.17, p. 95. Actually, the result holds even when ξa

(t) and ξa
(φ) are not Killing vectors separately

but combine to form a helical Killing vector ξa
hel = ξa

(t) + Ωξa
(φ), where Ω is the angular velocity of the fluid; see

Chapter 15.2 and equation (15.46) for a proof.
24See Landau and Lifshitz (1959); Taub (1959); Evans (1984); Saijo et al. (2001).
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and the circulation changes according to

d

dτ
C(c) = −

∮
c

dσλa 1
ρ0
∇aP =

∮
c

dσλaT∇as . (5.64)

Comment on the implications of this result for a shock.

5.2.2 Imperfect Gases

There are many important astrophysical applications that involve imperfect gases characterized
by viscosity, conductivity and (or) radiation. For example, viscosity can drive nonaxisymmetric
instabilities in rotating stars, while radiation can lead to the cooling and contraction of stars.
However, most of the numerical work to date in relativistic hydrodynamics has focussed on perfect
fluid sources.25 This emphasis is physically reasonable for tracking evolution on dynamical (e.g.
free-fall) timescales, but is not adequate for following evolution on secular (e.g. viscous, conduction
or radiative) timescales, which are typically much longer. As the field of numerical relativity
matures, exploration of secular behavior over many dynamical timescales is likely to accelerate.
For this reason, we shall now briefly summarize additional contributions to the stress-energy tensor
arising from some of these non-ideal effects.

Viscosity

The contribution of viscosity to the stress-energy tensor is26

T abvisc = −2ησab − ζθP ab (5.65)

where η ≥ 0 is the coefficient of dynamic, or shear, viscosity, ζ ≥ 0 is the coefficient of bulk
viscosity and σab, θ, P ab are the shear, expansion and projection tensor of the fluid:

θ = ∇au
a, (5.66)

P ab = gab + uaub, (5.67)

σab = 1
2

(
P ac∇cu

b + P bc∇cu
a
)
− 1

3
θP ab. (5.68)

Exercise 5.13 Show that in the presence of viscosity, the energy (entropy) equation (5.19) becomes

∂t(γ1/2E∗) + ∂j(γ1/2E∗v
j) =

αγ1/2

Γ

(
E∗
W

)(1−Γ) (
2ησabσab + ζθ2

)
. (5.69)

Thus conclude by comparing with equation (5.21) that viscosity generates entropy at a rate

ρ0T
ds

dτ
=
(
2ησabσab + ζθ2

)
. (5.70)

Exercise 5.14 Show that in the presence of viscosity, the momentum equation (5.14) becomes

∂t(γ1/2Si) + ∂j(γ1/2Siv
j) =

− αγ1/2

(
∂iP +

SaSb

2αSt
∂ig

ab

)
+ αγ1/2ησab∂ig

ab + 2∂a

(
αγ1/2ησibg

ab
)

(5.71)

+
1
2
αγ1/2ζθPab∂ig

ab + ∂a

(
αγ1/2ζθPibg

ab
)
.

25But see, e.g., Duez et al. (2004) and Chapter 14.2.4 for relativistic hydrodynamical simulations with viscosity.
26See Misner et al. (1973), §22.3
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The presence of time derivatives of ua in σab and the time derivative of σab on the right-
hand side of the non-conservative, relativistic Navier-Stokes equations (5.69) and (5.71) require
subtle handling. Since viscosity is usually a small perturbation on the dynamical flow, it is often
sufficient to split off the viscous terms and integrate them separately (“operator splitting”) in a
lower-order, but convergent, scheme.27 When recast in conservative form as in equation (5.26), the
dynamical equations for the “conservative” variables (D̃, S̃j, τ̃) appear unchanged when non-ideal
gas contributions are added to the stress-energy tensor. However, the character of the equations
is altered, as there now are additional derivatives (including time derivatives) of the primitive
variables that appear in these variables and in their source terms. Once again, a lower-order
scheme to handle these perturbative terms is often adequate.

Heat and Radiation Diffusion

The contribution of heat flux (i.e. conduction) to the stress-energy tensor is

T abheat = uaqb + ubqa, (5.72)

where the heat-flux 4-vector qa is given by

qa = −λthP
ab (∇bT + Tab) . (5.73)

In equation (5.73), T is the temperature, aa = ub∇bu
a is the fluid 4-acceleration, and λth is the

coefficient of thermal conduction.
A useful application of the thermal conduction formalism is heat transport via thermal radia-

tion (e.g., photons or neutrinos) treated in the diffusion approximation, for which

λth =
4

3

bRT
3

χ̄
. (5.74)

Here bR is a constant that depends on the type of radiation: for thermal photons it is the usual
radiation constant b;28 for each flavor of nondegenerate thermal neutrino or antineutrino (chemical
potential = 0) the constant is (7/16)b. The quantity χ̄ is the Rosseland mean opacity of the
interacting gas particles.29 Radiation transport may be treated in the diffusion approximation
whenever the mean-free path of the energy carriers (e.g. photons) due to interactions with the gas
particles is short compared to the system scale size, in which case we say that the gas is “optically
thick” to radiation.

5.2.3 Radiation Hydrodynamics

In general, a gas is neither optically thick nor optically thin (i.e. transparent) everywhere, nor
is the radiation always in thermal equilibrium with the matter. In such cases we cannot treat
radiation transport in the diffusion approximation as discussed above. To handle the more general
case, the radiation field can be described by a radiation stress-energy tensor,

T abrad =

∫ ∫
dν dΩ Iν N

aN b, (5.75)

27See Duez et al. (2004) and Chapter 14.2.4 for such an approach.
28b = 8π5k4/(15c3h3) = 7.56464× 10−15erg/cm3/deg4.
29See Shapiro and Teukolsky (1983), equation (I.28), with χν ≡ κνρ0, for the definition of Rosseland mean

opacity.
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where Iν = I(xa;N i; ν) is the specific intensity of radiation at xa with frequency ν and 4-
momentum pa moving in the direction Na ≡ pa/hν, where h is Planck’s constant and the integral
is over all frequencies and solid angles. Here ν, Iν and dΩ are all measured in the local Lorentz
frame of a fiducial observer with 4−velocity ua, whereby hν = −paua. The specific intensity is
related to the radiation phase-space distribution function f defined by equation (5.191) below
according to

f =
c2

h4

(
Iν
ν3

)
. (5.76)

Like f , the ratio Iν/ν
3 is a Lorentz invariant.

To ascertain the physical meaning of the components of T abrad, consider a spherically symmetric
spacetime. In spherical symmetry, the direction of radiation at an arbitrary point in space (r, θ, φ)
is specified by polar angle Θ, measured with respect to the outward radial direction. In other
words, the intensity at any instant of time is independent of the azimuthal direction Φ at that
spatial point, so that Iν = Iν(t, r;µ), where µ = cos Θ. We use this information in the next
exercise to compute the components of T abrad.

Exercise 5.15 At each point (t, r, θ, φ) in a spherical spacetime set up an orthonormal set of basis
vectors {ea

(t̂)
, ea

(r̂), e
a
(θ̂)
, ea

(φ̂)
} where ea

(r̂) points along the outward radial direction from the center of the

spatial coordinate system. Show that in such a frame the components of T ab
rad are

T âb̂
rad =


E F 0 0
F P 0 0
0 0 1

2 (E − P ) 0
0 0 0 1

2 (E − P )

 (5.77)

The quantities appearing in equation (5.77) are the frequency-integrated radiation moments con-
structed at each point from the frequency-integrated intensity I = I(t, r;µ), measured in the orthonor-
mal frame. The intensity I is

I =
∫
dν Iν , (5.78)

the radiation energy density is

E(t, r) = 2π
∫ ∫

dν dµ Iν , (5.79)

the radiation energy flux is

F (t, r) = 2π
∫ ∫

dν dµ µ Iν , (5.80)

and the radiation pressure is30

P (t, r) = 2π
∫ ∫

dν dµ µ2Iν . (5.81)

In the above expressions, the frequency ν is integrated from 0 to ∞, while the cosine µ is integrated
from −1 to 1.

The dynamical equations for the radiation moments are given by

∇bT
ab
rad = −Ga (5.82)

30In this section we use the symbol P for radiation pressure alone, as defined by equation (5.81). Throughout
the rest of the book P is used to denote the total pressure.
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whereGa is the radiation 4-force density expressing the interaction of the matter with the radiation,

Ga =

∫ ∫
dν dΩ [χνIν − ην ]N

a. (5.83)

Here χν is the total opacity and ην is the emissivity of the gas. The hydrodynamical equations
for the fluid then become ∇bT

ab = −∇bT
ab
rad = Ga, which must be solved simultaneously with

equations (5.82) for the radiation moments and the equation of radiative transport (the “photon
Boltzmann equation” or the “radiation kinetic equation”) for Iν . The contribution of the radiation
must also be included in the gravitational field source terms, equations (5.1)–(5.2).

Exercise 5.16 Assume that the scattering opacity (superscript “s”) is elastic and forward-backward
symmetric and that the absorption opacity and thermal emissivity (superscript “a”) are related by
Kirchoff’s law, ηa

ν/χ
a
ν = Bν(T ), where Bν(T ) is the Planck function31 and T is the matter temperature.

(a) Show that in the rest frame of the fluid, the orthonormal components of Ga are given by

G0̂ =
∫ ∫

dνdΩχa
ν(Iν −Bν) =

∫
dνχa

ν(Eν − 4πBν) , (5.84)

Gî =
∫
dν(χa

ν + χs
ν)F î

ν (5.85)

where
Eν =

∫
dΩIν (5.86)

is the specific radiation energy density and F â
ν is the specific radiation flux 4-vector defined by

F 0̂
ν = 0, F î

ν =
∫
dΩIν N î . (5.87)

Thus the flux satisfies F aua = 0, where ua is the fluid four-velocity.
(b) Adopt “grey-body” scattering and absorption opacities, whereby χν = κρ0, with κ a constant
independent of frequency. Show that

G0̂ = κaρ0(E − 4πB) , (5.88)

Gî = (κa + κs)ρ0F
î , (5.89)

gives the radiation 4-force density, where 4πB = bT 4, that

E =
∫ ∫

dνdΩIν =
∫
dνEν , (5.90)

is the total integrated radiation energy density and that

F 0̂ = 0, F î =
∫ ∫

dνdΩIνN î =
∫
dνF î

ν , (5.91)

is the total integrated radiation flux four-vector.
(c) Argue that for this system a frame-independent expression for Ga is

Ga = κaρ0(E − 4πB)ua + (κa + κs)ρ0F
a . (5.92)

As derived in exercise 5.38, the equation of radiative transfer takes on the general form

pa
D(Iν/ν

3)

dxa
=

(
δ(Iν/ν

3)

δλ

)
coll

= (ην − χνIν) /ν
2 , (5.93)

31Actually, Bν is the Planck function for photons, but it is the thermal intensity corresponding to a Fermi-Dirac
distribution in the case of neutrinos; we will use the same symbol for both cases. In many problems involving
neutrino transport in stars, the neutrino energies are much larger than their masses, in which case the neutrinos
can be treated as massless.
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where the left-hand side is defined by equation (5.196) below and right-hand side accounts for the
gain or loss of photons due to interactions with the matter: ην is the emissivity and χν is the
absorption coefficent.32 Consider the special case of a spherically symmetric medium in comoving
coordinates, for which the metric may be cast in the form

ds2 = −e2Ψdt2 + e2Λdr2 +R2(dθ2 + sin2θdφ2) , (5.94)

where r is a Lagrangian radial coordinate and Ψ,Λ and R are functions of r and t only. The
comoving frame equation of radiation transfer is then33

Dt(Iν/ν
3) + µDr(Iν/ν

3)− ν
[
µDrΨ + µ2DtΛ + (1− µ2)(U/R)

]
(∂(Iν/ν

3)/∂ν)

+(1− µ2){(Γ/R)−DrΨ + µ [(U/R)−DtΛ]}(∂(Iν/ν
3)/∂µ) = (ην − Iνχν)/ν

3 , (5.95)

where we have introduced two operators

Dt = e−ψ(∂/∂t) , Dr = e−Λ(∂/∂r) , (5.96)

and two auxiliary variables
U = DtR , Γ = DrR . (5.97)

Note that for radiation problems it is always convenient to work in the rest frame of the fluid, since
that is the frame in which details of the radiation and matter interactions are most easily specified
and where the intensity in local thermodynamic equilibrium is close to a Planck function at the
local gas temperature. However, it is not always convenient or possible to work in the comoving
frame, which is also the Lagrangian fluid frame, when solving the coupled 3 + 1 equations for
the combined matter–radiation–fluid system, particularly when the flow deviates from spherical
symmetry.

Exercise 5.17 Consider the collapse of a homogeneous dust sphere from rest at a finite radius (i.e.,
Oppenheimer-Snyder collapse, as described in Chapter 1.4), for which the interior metric may be
written in the familiar closed-Friedmann form

ds2 = −dτ2 + a2(τ)[dχ2 + sin2χ(dθ2 + sin2θdφ2)]. (5.98)

Show that in this background spacetime the comoving equation of radiation transfer becomes

∂Iν
∂τ

+ 3
ȧ

a
Iν + µ

1
a

∂Iν
∂χ

− ȧ

a
ν
∂Iν
∂ν

+ (1− µ2)
cotχ
a

∂Iν
∂µ

= ην − χνIν , (5.99)

where ȧ = da/dτ .

The radiation hydrodynamics problem is very difficult to solve in general, since the intensity is
a function of six-dimensional phase space plus time, and the radiation transport equation (5.93)
with complicated radiation-fluid interaction terms (including scattering) has a nontrivial inte-
grodifferential character. Even in spherical symmetry, the intensity varies with frequency, radial
position and angular direction, plus time, so that even the frequency-integrated transport equa-
tion is 2+1 dimensional (cf. equation (5.95)). Approximation schemes are often used to simplify
the problem. They sometimes involve by-passing the full radiation transport equation and only
solving coupled, partial differential equations for the lowest moments of the transport equation,

32See exercises 5.37 and 5.38 and the related discussion and references.
33Lindquist (1966); Mihalas and Mihalas (1984), p. 443.
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integrated over frequency and subject to approximate, physically plausible, “closure” relations to
truncate the infinite set of moment equations.

Exercise 5.18 Define the “variable Eddington factor” fEdd according to P = fEddE, where E and P
are the radiation moments given by equations (5.79) and (5.81). In general, the variation of fEddE in
space and time can only be determined by solving the full transport equation. Show, however, that
it is quite simple to calculate fEdd in the extreme opposite limits of (a) isotropic radiation and (b)
outward radial beaming of the radiation, in a spherically symmetric spacetime. How is the flux F given
by equation (5.80) related to E in the two opposite limits?

Exercise 5.19 Consider a system which is sufficiently optically thick that in the fluid rest frame the
radiation field is nearly isotropic everywhere. However, allow for a net flux of radiation at each point.
This is the physical situation that applies to the interior of a star, either in equilibrium or during
collapse. Define the local radiation energy density E as in equation (5.90) and the local radiation flux
four-vector F a as in equation (5.91).
(1) Argue that for an isotropic radiation field, the orthonormal components of the stress-energy tensor
in the rest-frame of the fluid are given by

T îĵ
rad = Pδîĵ , P = E/3 . (5.100)

(2) Show that for such a system the radiation stress-energy tensor in a general frame may be written

T ab
rad = Euaub + F aub + F bua + P (gab + uaub) , (5.101)

where ua is the fluid four-velocity. Thus the equation of motion for the radiation field, equation (5.82),
together with equation (5.92) for Ga, provides four equations for the four radiation variables E and
F i, with P given by equation (5.100) and F 0 obtained by solving F aua = 0.

The truncated moment equations are essentially equivalent to the equations of motion for the
radiation field, equations (5.82). The matter profile enters the source terms in the moment equa-
tions through the radiation 4-force density Ga, and the moments appear in the equations of motion
of the fluid, so the combined radiation-hydrodynamical system must be evolved simultaneously.

Thorne34 has constructed a “projected, symmetric trace-free tensor” (PSTF) formalism for
handling radiative transfer in relativistic systems. It consists of an infinite hierarchy of partial
differential equations corresponding to an infinite number of moments of the radiative transfer
equation. The formalism is particularly straightforward to implement for systems with spherical
or planar symmetry, in which case the tensor moments reduce to scalar functions analogous to
E,F and P defined in exercise 5.15.35

The simple collapse scenario described in exercise 5.20 provides one test of a relativistic ra-
diative hydrodynamics code in curved spacetime. It is specifically designed to check how well a
numerical scheme that solves the coupled equations of relativistic hydrodynamics, gravitational
field evolution and radiative transport handles collapse to a black hole. As shown in the exercise,
an analytic solution can be found36 when the matter and metric follow the Oppenheimer-Synder
(OS) solution (see equation (5.98) and Chapter 1.4) and the radiation can be treated in the thermal
diffusion approximation. The resulting scenario may be called “thermal OS collapse”.37

34Thorne (1981).
35See Thorne et al. (1981); Rezzolla and Miller (1994, 1996); Zampieri et al. (1996); Balberg et al. (2000),

and references therein, for applications of the PSTF moment formalism to some astrophysical problems involving
relativistic radiative hydrodynamics in spherical symmetry.

36Shapiro (1989).
37Shapiro (1996) has numerically integrated the relativistic Boltzmann equation coupled to the radiation moment
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Exercise 5.20 Consider the thermal radiation flux emitted during collapse to a black hole of a spher-
ical, homogeneous stellar dust-ball initially subjected to a small isothermal temperature fluctuation.
Take the mass of the star to be M and the initial radius to be R0 and assume that the matter density
and velocity and the gravitational field are described by the OS solution. Assume further that the
internal energy and pressure generated by the temperature perturbation are much smaller than ρ∗,
the total mass-energy density, and are dominated by thermal radiation. Treat the radiation in the
diffusion approximation.
(a) Use equation (5.72) to write the total stress-energy tensor T ab as

T ab = ρ∗uaub + PP ab + qaub + qbua , (5.102)

where qa is given by equation (5.73) with λth given by equation (5.74) and χ̄ ≡ κρ0, where κ is a
constant. Evaluate ua∇bT

ab = 0 to obtain the law of local energy conservation with radiation,

dρ∗

dτ
=
ρ∗ + P

ρ0

dρ0

dτ
−∇aq

a − aaq
a . (5.103)

(b) Substitute 3P = E = bT 4, where E is the thermal radiation energy density in the fluid rest frame,
and evaluate equation (5.103) for OS collapse to show

∂τ̃Ec =
1

sin2(χ0z)
∂z

[
sin2(χ0z)∂zEc

]
, (5.104)

where Ec(τ̃ , z) ≡ EQ4 is the radiation energy density “corrected for adiabatic collapse”, Q(τ) is given
by equation (1.97), z ≡ χ/χ0, 0 ≤ z ≤ 1, is a nondimensional Lagrangian (comoving) radius, and τ̃ is
a nondimensional time given by

τ̃ =
∫ τ

0

dτ ′
Q(τ ′)

3κρ0(0)R2
0

[
sinχ0

χ0

]2
=

1
4κρ0(0)R0

[
R0

8M

]1/2(
η +

4
3
sin η +

1
6
sin 2η

)[
sinχ0

χ0

]2
. (5.105)

In equation (5.105) η is the OS conformal time parameter. The quantity τ̃ measures time in units of the
radiation diffusion time scale across R0; it is related to proper time τ through η (see equation (1.93)).
(c) Impose the “zero-temperature” boundary condition at the surface and regularity at the origin,

Ec(τ̃ , 1) = 0 = ∂zEc(τ̃ , 0) , τ̃ ≥ 0 . (5.106)

Then solve equation (5.104) subject to the isothermal initial condition

Ec(0, z) = E0 , 0 ≤ z < 1 . (5.107)

Hint: Make the substitution
Uc(τ̃ , z) =

χ0

sin(χ0z)
f(τ̃ , z) , (5.108)

in which case equation (5.104) becomes

∂τ̃f = ∂2
zf + χ2

0f . (5.109)

Then expand f in a Fourier sine series consistent with the boundary conditions,

f(τ̃ , z) =
∞∑

n=1

Bn(τ̃)sin(nπz) , (5.110)

substitute into equation (5.109) to get each time-dependent coefficients Bn up to a constant factor,
and use the initial data to determine the constant. Obtain finally

Ec(τ̃ , z) = 2E0

[
sinχ0

sin(χ0z)

]
eχ2

0τ̃
∞∑

n=1

[
(−1)n+1

nπ
e−n2π2τ̃ sin(nπz)

(
n2π2

n2π2 − χ2
0

)]
. (5.111)

equations to obtain the interior radiation field without approximation for this problem. Optically thin as well as
thick cases were considered. The analytic solution obtained in exercise 5.20 is in good agreement with numerical
result in the optically thick case.
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Show that the radiation flux F ≡ (qaqa)1/2 in the fluid rest frame is given by

F (τ̃ , z) = − 1
3κρ0(0)R0Q2

[
sinχ0

χ0

]
∂zUc(τ̃ , z) , (5.112)

and evaluate it at the surface to get the emergent flux,

F (τ̃ , 1) =
2
3

U0

κρ0(0)R0Q2

[
sinχ0

χ0

]
eχ2

0τ̃
∞∑

n=1

e−n2π2τ̃

(
n2π2

n2π2 − χ2
0

)
. (5.113)

Equations (5.82) have been cast in conservative form for the case of a nearly isotropic radiation
field obeying the conditions set forth in exercise 5.19.38 It is then possible to unite the matter and
radiation equations in a single HRSC scheme that evolves both the fluid and the radiation field
simultaneously. Test simulations with such a scheme involving radiation shocks and nonlinear
waves propagating in Minkowski spacetime yield good agreement with analytic results. When
used in conjuntion with a 3 + 1 scheme for the gravitational field, the method can reproduce the
“thermal OS collapse” solution derived in exercise 5.20 quite well.

Important applications of radiative hydrodynamics in relativistic spacetimes include neutrino
transport during stellar core collapse and supernovae explosions, photon emission from gas accre-
tion onto black holes and neutron stars, and photon propagation, decoupling and re-ionization
in the Big Bang universe. In many of these examples, the radiation field can play an important
dynamical role in influencing the flow of gas, as well as contributing a source of observable energy
flux.

5.2.4 Magnetohydrodynamics

Magnetic fields play a crucial role in determining the evolution of many relativistic objects. In any
highly conducting astrophysical plasma, a frozen-in magnetic field can be amplified appreciably
by gas compression or shear. Even when an initial seed field is weak, the field can grow in the
course of time to significantly influence the gas dynamical behavior of the system. In problems
where the self-gravitation of the magnetized gas can be ignored, calculations can be performed
in a fixed, stationary background spacetime. In this case the metric does not have to be evolved
numerically. Some important gas accretion problems fall into this category, including accretion
onto neutron stars and black holes. In many other problems, the effect of the magnetized gas on
the metric cannot be ignored, and the gas, the magnetic fields and the metric must be evolved self-
consistently. The final fate of many of these astrophysical systems, which often involve compact
objects, and their distinguishing observational signatures, may hinge on the role that magnetic
fields play during the evolution. Some of these systems are promising sources of gravitational
radiation for detection by laser interferometers now under design and construction. Others may
be responsible for gamma-ray bursts. Examples of astrophysical scenarios involving strong-field,
dynamical spacetimes in which magnetic fields may play a decisive role include core collapse in
supernovae, magnetorotational collapse of hypermassive neutron stars and supermassive stars, the
merger of neutron star–neutron star and black hole–neutron star binaries, and the suppression of
r-mode instabilities in rotating neutron stars.39

In many astrophysical applications involving magnetic fields, the gas is highly ionized and an
excellent conductor of current. The ideal magnetohydrodynamic (MHD) approximation applies

38Farris et al. (2008).
39See, e.g. Baumgarte and Shapiro (2003b) for a brief discussion and references. Many of these applications will

be discussed in Chapters 14, 16 and 17.
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in the limit of infinite conductivity and it is precisely that regime on which we shall focus below.

Electromagnetic Field Equations

We decompose the Faraday tensor F ab as

F ab = naEb − nbEa + ndε
dabcBc , (5.114)

where εabcd =
√
−g [abcd] is the Levi-Civita tensor, [abcd] is the completely antisymmetric symbol

and where Ea and Ba are the electric and magnetic fields observed by a normal observer na. Both
fields are purely spatial (Eana = Bana = 0), and one can easily show that

Ea = F abnb , Ba =
1

2
εabcdnbFdc . (5.115)

The electromagnetic stress-energy tensor

4πT abem = F acF b
c −

1

4
gabFcdF

cd (5.116)

may be written in terms of Ea and Ba according to

4πT abem = 1
2
(nanb + γab)(EiE

i +BiB
i)

+2n(aεb)cdEcBd − (EaEb +BaBb).
(5.117)

Here εabc = ndε
dabc is the familiar three-dimensional, spatial Levi-Civita tensor. Along with the

electromagnetic field, we shall assume the presence of a perfect fluid, so that the total stress-energy
tensor is given by

T ab = ρ0hu
aub + Pgab + T abem . (5.118)

Exercise 5.21 Insert the electromagnetic stress-energy tensor into equations (5.1)–(5.2) to obtain the
electromagnetic contributions to the source terms in the 3 + 1 gravitational field equations:

4πρem =
1
2
(EiE

i +BiB
i) =

1
2
(E2 + B2), (5.119)

4πSem
i = εijkE

jBk = (E×B)i, (5.120)

4πSem
ij = −EiEj −BiBj +

1
2
γij(E2 + B2), (5.121)

4πSem =
1
2
(E2 + B2). (5.122)

The above results are not surprising: expressed in terms of the electromagnetic field components
as measured by a normal observer, na, i.e. an observer who is at rest with respect to the slices Σ,
the 3+1 source terms have the same form as in flat space.40 Thus ρem is the familiar energy-density
for an electromagnetic field, Sem

i is the Poynting vector, etc.
In many astrophysical applications, we can assume perfect conductivity. In the limit of infinite

conductivity, Ohm’s law yields the ideal MHD condition:

F abub = 0 . (5.123)

40cf. exercise 5.1 in Misner et al. (1973).
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To see this, rewrite the Faraday tensor in terms of Ea
(u) and Ba

(u), the magnetic and electric fields
measured by an observer ua at rest with respect to the fluid, to obtain

F ab = uaEb
(u) − ubEa

(u) + udε
dabcB(u)

c , (5.124)

where Ba
(u)ua = 0 = Ea

(u)ua. Then the ideal MHD condition (5.123) simply states that the electric

field Ea
(u) = F abub vanishes in the fluid rest frame, as required for a perfect conductor.

Exercise 5.22 Show that the covariant generalization of Ohm’s law is

Ja − ρeu
a = σF abub, (5.125)

where Ja is the electromagnetic current 4-vector, ρe = −Jaua is the charge density as seen by an
observer comoving with the fluid 4-velocity ua, F ab is the Faraday tensor and σ is the electrical conduc-
tivity. Argue that the perfect conductivity condition (5.123) follows immediately from equation (5.125)
in the limit of infinite conductivity.

In the ideal MHD case, F ab is completely determined by Ba
(u),

F ab = εabcducB
(u)
d , (5.126)

Ba
(u) =

1

2
εabcdubFdc . (5.127)

Exercise 5.23 Show that the condition that the electric field vanish in the fluid rest frame may be
written uaE

a = 0, or
αEi = −εijk(vj + βj)Bk, (5.128)

where vi = ui/ut. Note that when evaluated in a Minkowski spacetime, the last equation reduces to
the familiar flat spacetime expression Ei = −εijkv

jBk or E = −v ×B.

It might appear that the fluid rest-frame components of the magnetic field are the most con-
venient choice for integrating the evolution equations for the electromagnetic field, due to the
vanishing of the electric field in that frame. However, as we shall see below, the magnetic equa-
tions are easiest to express in terms of the normal components of the magnetic field. Of course,
the two sets of components are easily related.

Exercise 5.24 Prove the relationship between the components of the electromagnetic fields as mea-
sured by a normal observer and by an observer at rest in the fluid:

Ea = −εabcubB
(u)
c , (5.129)

Ba = −nbu
bBa

(u) + nbB
b
(u)u

a . (5.130)

To derive the magnetic field evolution equations, introduce the dual of the Faraday tensor
according to

F ∗ab =
1

2
εabcdFcd. (5.131)

Exercise 5.25 Show that
Ba

(u) = −F ∗abub. (5.132)

Substituting equation (5.126) into equation (5.131) yields

F ∗ab = ubBa
(u) − uaBb

(u). (5.133)
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Inserting equation (5.133) into the “magnetic” Maxwell equations, ∇aF
∗ac = 0, yields

∂a
[
(−g)1/2

(
ucBa

(u) − uaBc
(u)

)]
= 0, (5.134)

or
∂a
[
γ1/2W (vcba − vabc)

]
= 0, (5.135)

where we have defined
ba ≡ Ba

(u)/(4π)1/2 (5.136)

and va = ua/ut. We can now split the above equation into two pieces by introducing the magnetic
field variable

Bi = (4π)1/2γ1/2W (bi − vibt). (5.137)

The variable Bi is essentially the spatial component of the magnetic field Bi as measured by a
normal observer, as shown in the next exercise.

Exercise 5.26 Show the relation
Bi = (γ)1/2Bi. (5.138)

Setting the index c = t in equation (5.135) yields the magnetic constraint equation,

∂iBi = 0 (5.139)

(i.e. DiB
i = 0), the condition for “no magnetic monopoles”. Setting c = i yields the magnetic

evolution (induction) equation,

∂tBi − ∂j
(
viBj − vjBi

)
= 0. (5.140)

Integrating this set of equations together with the fluid equations typically forces us to translate
between the two sets of magnetic variables, ba and Bi. The components of ba are best obtained
by solving equation (5.137) together with the orthogonality relation baua = 0.

Analytically, the magnetic induction equation preserves the constraint condition (5.139) if the
constraint is satisfied on the initial time slice, but considerable care must be taken to ensure that
this happens in a numerical evolution. Defining a vector potential Ai according to Bi = εijkDjA

k

and evolving Ai instead of Bi automatically guarantees that the constraint will be satisfied, but
the resulting evolution equation for Ai introduces a second-order spatial derivative term that tends
to make the numerical evolution too diffusive. High-order finite-difference schemes for evolving
the induction equation while maintaining the divergence constraint to roundoff precision are called
constrained transport schemes.41 One version, called flux-interpolated constrained transport42, con-
sists in replacing the induction equation flux computed at each spatial grid point with linear
combinations of the flux computed at that point and neighboring points. The combination as-
sures both that second-order accuracy is maintained and that the constraint DiB

i = 0 is strictly
enforced. Another means of maintaining this divergence constraint is called hyperbolic divergence
cleaning43 and involves adding a new scalar field to the induction equation as well as a new hy-
perbolic equation containing DiB

i to describe the evolution of this new field. The role of the new
system is to transport divergence errors to the computational domain boundaries with maximal
allowable speed, while simultaneously damping them.

41Evans and Hawley (1988).
42Tóth (2000).
43see, e.g., Dedner et al. (2002) and references therein



134 CHAPTER 5. MATTER SOURCES

The electromagnetic field equations derived in the ideal MHD limit above are considerably
simpler to treat than the full set of Maxwell’s equations without approximation. However, there
are regimes when it becomes necessary to work with Maxwell’s equations in full generality. For
example, when an electromagnetic field reaches the surface of a star and then propagates out into
the exterior vacuum, the fields are no longer frozen into in a highly conducting plasma and the
MHD approximation breaks down. The general form of Maxwell’s equations can be cast into 3+1
form, which facilitates their integration in conjunction with 3 + 1 equations for the gravitational
field. Begin by decomposing the electromagnetic current 4-vector Ja according to

Ja = naρe + ja, (5.141)

where ρe and ja are the charge density and spatial current as observed by a normal observer na

(jana = 0). With these definitions, Maxwell’s equations,

∇bF
ab = 4πJa, (5.142)

and
∇[aFbc] = 0, (5.143)

can be brought into 3 + 1 form as follows:44

DiE
i = 4πρe (5.144)

∂tE
i = εijkDj(αBk)− 4παji + αKEi + LβEi (5.145)

DiB
i = 0 (5.146)

∂tB
i = −εijkDj(αEk) + αKBi + LβBi. (5.147)

Exercise 5.27 Verify the 3 + 1 form of Maxwell’s equations given above.

The charge conservation equation,
∇aJ

a = 0, (5.148)

which is implied by equation (5.142), becomes

∂tρe = −Di(αj
i) + αKρe + Lβρe. (5.149)

Exercise 5.28 Show that the familiar form of Maxwell’s equations in special relativity can be recovered
easily by evaluating equations (5.144) – (5.147) for a Minkowski spacetime with γij = ηij , where ηij is
the flat spatial metric in an arbitrary coordinate system, α = 1, K = 0 and βi = 0.

Exercise 5.29 Derive the MHD induction equation (5.140) from equation (5.147).
Hint: Take the trace of the 3+1 evolution equation for ∂tγij and combine it with the Lie derivative

LβB
i to give

αKBi + LβB
i = Dj(βjBi − βiBj)−Bi∂t ln γ1/2, (5.150)

where we have used the magnetic constraint (5.146). Substitute (5.150) together with the ideal MHD
equation (5.128) into Faraday’s law (5.147) to get the result.

When treating an electromagnetic field at the boundary between a highly conducting plasma
and a vacuum, such as at the surface of a star, the required electromagnetic field evolution equa-
tions switch from being the MHD induction equation for the magnetic field in the matter interior

44See, e.g., Thorne and MacDonald (1982).
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to the full set of B-field and E-field evolution equations in the vacuum exterior. Boundary con-
ditions for Bi and Ei just outside the surface are necessary to extend the integrations into the
exterior. These boundary values may be obtained by matching fields across the surface using the
familiar “junction conditions” of electrodynamics in the rest-frame of the fluid at the surface.45

It is computationally simpler, and in some cases it may even be more appropriate, to treat
the region outside the surface of a star as an extended atmosphere of very low-density plasma, in
which case the MHD approximation may still hold. In the end, the choice depends on the physical
situation, as well as the specific questions, being addressed.

Equations of Baryon, Energy and Momentum Conservation

The evolution equations for an MHD plasma are straightforward generalizations of the hydrody-
namical equations derived earlier in this chapter for a nonmagnetic gas. In the MHD limit the
electromagnetic piece of the total energy-momentum tensor can be written in terms of ba according
to

T abem = b2uaub +
1

2
b2gab − babb, (5.151)

where b2 = baba.

Exercise 5.30 Show that in the MHD limit, the electromagnetic source terms appearing in the 3 + 1
gravitational field equations can be expressed in terms of ba as follows:

ρem = b2
(
W 2 − 1

2

)
− (αbt)2 , (5.152)

Sem
i = b2uiW − αbtbi , (5.153)

Sem
ij = b2

(
uiuj +

1
2
γij

)
− bibj , (5.154)

Sem = b2
(
γijuiuj +

3
2

)
− γijbibj . (5.155)

Equation (5.12) expressing baryon conservation and equation (5.13) expressing energy conser-
vation for a perfect gas (or equation (5.19) for a Γ-law EOS) remain unchanged. The reason that
the energy equation is unchanged is that there is no Joule heating by the electromagnetic field in
the MHD limit (see exercise 5.31 below).

Exercise 5.31 (a) Use equations (5.116), (5.142) and (5.143) to show that the equations of motion of
the electromagnetic field satisfy

∇aT
ab
em = −F bcJc . (5.156)

(b) Use this relation to show that, in the presence of an electromagnetic field, equation (5.13) becomes

∂t(γ1/2E) + ∂j(γ1/2Evj) =

− P
(
∂t(γ1/2W ) + ∂i(γ1/2Wvi)

)
−
(
αγ1/2

)
ubF

bcJc, (5.157)

while equation (5.19) becomes

∂t(γ1/2E∗) + ∂j(γ1/2E∗v
j) = −ubF

bcJc

(
E∗
W

)(1−Γ)(
αγ1/2

Γ

)
. (5.158)

45See, e.g., Misner et al. (1973), §21.13.
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(c) Argue that, in the case of a perfect conductor, the terms involving Ja in the above equations vanish.

The equation of momentum conservation may be written in terms of the 4-vector S∗a, a gen-
eralization of the momentum-density Sa defined in equation (5.10) in the absence of a magnetic
field:

S∗a = (ρ0h+ b2)Wua . (5.159)

Exercise 5.32 Show that Si, the momentum density appearing as a source term in the 3 + 1 gravita-
tional field equations and defined in equation (5.1), is given by

Si = (ρ0h+ b2)Wui − αbib
t , (5.160)

and is thus not equal to S∗i in general.

The equation of momentum conservation, obtained from ∇aT
a
b = 0, is then a generalization

of equation (5.14) and may be written in the form46

∂t
(
γ1/2

(
S∗i − αbib

t
))

+ ∂j
(
γ1/2

(
S∗i v

j − αbib
j
))

=

− αγ1/2

(
∂i

(
P +

b2

2

)
+

1

2

(
S∗aS

∗
c

αS∗t
− αbabc

)
∂ig

ac

)
. (5.161)

There are alternative ways to cast the basic MHD equations, all of which are equivalent analyt-
ically but are quite different when implemented numerically. For example, another way of writing
the momentum conservation equation is to use equation (5.156) in the form ∇bT

ab
fluid = −∇bT

ab
em =

F abJb to get47

∂t(γ
1/2Sfluid

i ) + ∂j(γ
1/2Sfluid

i vj) =

− αγ1/2

(
∂iP +

Sfluid
a Sfluid

b

2αStfluid

∂ig
ab

)
+ αγ1/2FiaJ

a , (5.162)

where Sfluid
a is given by equation (5.10). The above expression exhibits the relativistic generaliza-

tion of the familiar J×B Newtonian force term on the right-hand side.

Exercise 5.33 Show that the electromagnetic term appearing on the right-hand side of equation (5.162)
may be expanded in terms of the normal field components Ei and Bi to give

αγ1/2FiaJ
a = α

γ1/2

4π
Ei(DjE

j) (5.163)

−γ
1/2

4π
Bj
(
εjik(∂tE

k − βl∂lE
k + El∂lβ

k − αKEk) + ∂i(αBj)− ∂j(αBi)
)
.

Note that there is a nasty time derivative of the electric field appearing on the right-hand side
of equation (5.163). This is probably the most challenging term in equation (5.162) for numerical
implementation, although it is O(v2/c2) times smaller than the last two terms on the right-hand
side of equation (5.163) and is likely to be small in most applications. In such cases, it may be
useful to invoke “operator splitting” to estimate this term by extrapolating from the two previous
timesteps, integrate the resulting system of equations, use the result to improve the estimate of

46De Villiers and Hawley (2003).
47Wilson (1975); Sloan and Smarr (1985); Baumgarte and Shapiro (2003b).
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this term, and then iterate. Such an approach, or some other low-order approximation, may be
adequate to account for the contribution of this term. Alternatively, it simply might be preferable
to use equation (5.161) in lieu of equation (5.162) to avoid the extra time derivative term.

Exercise 5.34 Here you will take the Newtonian limit to recover a familiar expression for the New-
tonian MHD equation of momentum conservation. Take g00 → −(1 + 2Φ), where Φ is the Newtonian
potential, to find

1
2
Sfluid

a Sfluid
b

αSt
fluid

∂ig
ab → −1

2
ρ∂ig

00 = ρ∂iΦ . (5.164)

Then evaluate equation (5.162) in the Newtonian limit to obtain in Cartesian coordinates (γ1/2 = 1)

∂tS
fluid
i + ∂j(Sfluid

i vj) = −∂iP − ρ∂iΦ + ρeEi −
1
8π
∂i(BjBj) +

1
4π
Bj∂jBi , (5.165)

where Si
fluid → ρvi, or, equivalently,

ρ
dvi

dt
= −∂i(P + PM)− ρ∂iΦ +

1
4π
Bj∂jB

i + ρeE
i . (5.166)

Here we have introduced the Lagrangian time derivative d/dt = ∂t+vj∂j , defined the magnetic pressure

PM ≡ B2

8π
, B2 ≡ BjB

j , (5.167)

and used Maxwell’s constraint equation ∇iE
i = 4πρe for the electric field. Note that for a neutral

plasma ρe = 0, so that the electric field Ea disappears entirely from the above Newtonian equation.

Neither equation (5.161) nor equation (5.162) is in flux-conservative form. To obtain the
equation in conservative form we must evolve the total stress-energy tensor T ab directly and
solve algebraically for the primitive variables.48 The desired system has the identical form as
equations (5.26)-(5.29) derived earlier, only now the total stress-energy tensor T ab is given by
equations (5.118) and (5.151), and S̃j = γ1/2Si employs equation (5.160) for the total momentum
density. The goal of the numerical evolution is to integrate the combined system (5.26) and (5.140)
for the conservative fluid and magnetic field variables U = (D̃, S̃j, τ̃ , B̃

i), where B̃i ≡ γ1/2Bi = Bi,
and then combine these variables at each timestep to solve algebraically for the primitive variables
P = (ρ0, v

i, P, Bi). We collect the coupled set of MHD evolution equations in conservation form49

in Box 5.1.
As in the nonmagnetic case, highly accurate shock-capturing methods can be applied to solve

this set of equations. No artificial viscosity is needed, in contrast to the case for nonconservative
schemes . However, recovering P by inverting the system of algebraic equations U = U(P) can
be computationally expensive. Finally, Einstein’s equations in 3 + 1 form must be integrated
simultaneously to determine the spacetime metric.

Tests

Komissarov50 has proposed a suite of challenging one-dimensional tests for relativistic MHD codes
in Minkowski spacetime. The tests involve the propagation of nonlinear, relativistic MHD waves
in a gas obeying a Γ-law EOS. Most of the tests start with discontinuous initial data at x = 0,

48Koide et al. (1999); Komissarov (1999); Gammie et al. (2003); Duez et al. (2005b); Shibata and Sekiguchi
(2005); Del Zanna et al. (2007).

49Duez et al. (2005b).
50Komissarov (1999).
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Box 5.1: The Relativistic MHD Equations

The coupled set of relativistic MHD equations can be written in conservative form as
follows:

∂tρ∗ + ∂j(ρ∗v
j) = 0 , (5.168)

∂tS̃i + ∂j(α
√
γ T j i) =

1

2
α
√
γ T abgab,i , (5.169)

∂tτ̃ + ∂i(α
2√γ T 0i − ρ∗v

i) = sτ̃ , (5.170)

∂tB̃
i + ∂j(v

jB̃i − viB̃j) = 0 , (5.171)

where

ρ∗ = γ1/2αutρ0 = γ1/2D , T ab = (ρ0h+ b2)uaub + (P + b2/2)gab − babb , (5.172)

τ̃ is given by equation (5.27), sτ̃ is given by equation (5.32), S̃i = γ1/2Si is given by
equation (5.160) and where

ba ≡ Ba
(u)/(4π)1/2 , b2 ≡ baba . (5.173)

To obtain the comoving magnetic field Ba
(u), hence ba, from the evolved normal field Ba,

where B̃i ≡ γ1/2Bi = Bi, introduce the projection operator Pab = gab + uaub to write

Ba
(u) = −P

a
bB

b

ncuc
, (5.174)

from which one obtains

B0
(u) = uiB

i/α , Bi
(u) =

Bi/α +B0
(u)u

i

ut
. (5.175)

For a nonmagnetic gas, the above MHD equations reduce to the equations of relativistic
hydrodynamics in conservative form given by equations (5.26) - (5.29).

with homogeneous profiles in either half-space. Some of the tests involve shocks, others represent
rarefaction waves. Exact solutions exist for all the results51 and can be used for code calibration.

One useful test for a relativistic MHD code in flat spacetime is the propagation of a nonlinear
Alfvén wave, which is a transverse hydromagnetic wave. Such a wave travels along magnetic field
lines similar to the way in which a wave propagates along an elastic string under tension when it
is plucked. The initial data for this test consists of left (x < −W/2) and right (x > W/2) fluid
states separated by a width W = 0.5 at t = 0. The two states are joined by continuous functions
in the region x ∈ (−W/2,W/2) at t = 0.52 The resulting fluid-field pattern propagates with a
constant speed in the x−direction. Figure 5.2 shows the results of a simulation using a HRSC
scheme that evolves both the fluid and the radiation field relativistic MHD code.

51see, e.g. Komissarov (1999); Cabannes (1970).
52See Komissarov (1997) or Duez et al. (2005b) for details of the setup of initial data together with an analytic

solution.
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Figure 5.2: Nonlinear Alfvén wave test for an MHD fluid obeying a Γ-law EOS with Γ = 4/3.
Symbols show simulation results with resolution ∆x = 0.01 and solid lines give the exact solution.
The profiles are shown at time t = tfinal = 2.0. The computational domain is x ∈ (−2, 2). Only
the region 0.3 ≤ x ≤ 2.0 is shown in this graph. [From Duez et al. 2005b.]

There are no discontinuities in this problem, so errors should converge to second order in ∆x
for a code that is second-order accurate.53 To demonstrate this, consider a grid function g with
error δg = g − gexact. Calculate the L1 norm of δg (the “average” of δg) by summing over every
grid point i:

L1(δg) ≡ ∆x
N∑
i=1

|gi − gexact(xi)| , (5.176)

where N ∝ 1/∆x is the number of grid points. Figure 5.3 shows the L1 norms of the errors in ux,
uy, By and Bz at t = tfinal = 2.0. From the figure we conclude that the errors in ux, uy and By

converge at second order in ∆x. The error in Bz converges at slightly better than second order in
∆x.

Next, for many applications in numerical relativity it is important to test that a relativistic
MHD code can evolve the equations accurately in the strong gravitational field of a black hole.
One such test checks that the code can maintain stationary, adiabatic, spherical accretion onto a
Schwarzschild black hole, in accord with the relativistic Bondi accretion solution.54 In particular,
the relativistic Bondi solution is unchanged in the presence of a divergence-free radial magnetic
field. This solution provides a useful diagnostic both for a numerical scheme that evolves the
MHD equations in a fixed background metric as well as for one that evolves the spacetime metric

53See Chapter 6.4 for a discussion of code validation and convergence.
54Shapiro and Teukolsky (1983), Appendix G.
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Figure 5.3: L1 norms of the errors in ux, uy, By and Bz for the nonlinear Alfvén wave test at
t = tfinal = 2.0. This log-log plot shows that the L1 norms of the errors in ux, uy and By are
proportional to (∆x)2, and are thus second-order convergent. The error in Bz goes as a slightly
higher power of ∆x. [From Duez et al. 2005b.]

self-consistently.55

To test the capability of a code to handle truly dynamical gravitational and MHD fields simul-
taneously, one can consider a gravitational wave oscillating in an initially homogeneous, uniformly
magnetized fluid. The gravitational wave will, in general, induce Alfvén and magnetosonic waves.56

Duez et al. (2005a). have performed a detailed analysis of this problem and provide an analytic
solution for the perturbations in a form which is suitable for comparison with numerical results.

This test problem is one-dimensional. Consider a linear, standing gravitational wave whose
amplitude varies in the z-direction:

h+(t, z) = h+0 sinkz coskt , (5.177)

h×(t, z) = h×0 sinkz coskt , (5.178)

where k is the wave number, and h+0 and h×0 are constants. Assume that at t = 0, the magnetized
fluid is unperturbed:

P (0, z) = P0 , ρ0(0, z) = ρ0 , (5.179)

vi(0, z) = 0 , Bi(0, z) = Bi
0 . (5.180)

Subsequently, the gravitational wave excites the MHD modes of the fluid. The gravitational wave
is unaffected by the fluid to linear order, and the metric perturbation, hµν(t, z), in the transverse-
traceless (TT) gauge can be calculated from equations (5.177) and (5.178). The perturbations

55See De Villiers and Hawley (2003) and Gammie et al. (2003) for implementations of the Bondi test employing
a fixed background metric, and Duez et al. (2005b) for an implementation in which the metric is evolved.

56Moortgat and Kuijpers (2003, 2004); Källberg et al. (2004).
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Figure 5.4: Analytic and numerical solutions for the perturbations of a magnetized fluid due
to the presence of a linear, standing gravitational wave. The thick solid and thin dotted lines
represent, respectively, the analytic and numerical solutions, though the two lines are not readily
distinguishable in plots (a) and (b). All quantities are evaluated at z = 1/8 and are normalized
as indicated. Time is normalized by the gravitational wave period. [From Duez et al. (2005b).]

in pressure δP (t, z), velocity δvi(t, z), and magnetic field δBi(t, z) can be computed analytically.
The solution57 remains valid as long as we are in the linear regime. It is a superposition of the
three eigenmodes of the homogeneous system (Alfvén, slow magnetosonic and fast magnetosonic
waves), plus a particular solution that oscillates at the frequency of the gravitational wave.

The numerical simulation58 adopts geodesic slicing and zero shift (α = 1, βi = 0) gauge con-
ditions. The fluid evolves with a Γ−law EOS with Γ = 4/3. The computational domain is
z ∈ (−1, 1) and spans two wavelengths of the gravitational wave (k = 2π) and is covered by 200
grid points in the z−direction. At time t = 0, the metric is given by gab(0, z) = ηab + hab(0, z),
where ηab = diag(−1, 1, 1, 1) is the Minkowski metric, and the nonzero components of hab(0, z) are

hxx(0, z) = −hyy(0, z) = h+(0, z) , (5.181)

hxy(0, z) = hyx(0, z) = h×(0, z) . (5.182)

Periodic boundary conditions are enforced on both the matter and gravitational field quantities
at the upper and lower boundaries in z.

Figure 5.4 shows a comparison between the analytic solution and numerical simulation for three
selected perturbed variables. The simulation employs the same HRSC relativistic MHD code used
to generate Figures 5.3 and 5.4 and couples it to a general relativistic 3 + 1 BSSN scheme to

57Duez et al. (2005a).
58Duez et al. (2005b).
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evolve the metric.59 Good agreement is shown for the MHD variables over many periods of the
gravitational wave. Good agreement is also found for the metric perturbations. The pressure
perturbation, however, is seen to differ from the analytic solution by a slight secular drift. (In
fact, all variables eventually exhibit a drift away from the analytic solution, but the drift is first
noticeable in the case of the pressure.)

This secular drift is not due to numerical error, but rather is an effect of the nonlinear terms
which are neglected in the analytic solution. To demonstrate that it is not a numerical error,
simulations at resolutions of 50, 100, and 200 grid points were performed, and convergence was
obtained to second order to a solution with nonzero drift. Since the discrepancy is due to nonlinear
terms, choosing smaller initial mass-energy density and smaller gravitational wave strength leads
to a smaller discrepancy with the analytic solution, as was also demonstrated. Finally, the various
MHD modes were extracted from the output via velocity projections and the code was shown to
correctly represent all three MHD waves, plus the contribution from the particular solution.

It is not trivial to devise a simple test problem to calibrate the ability of a general relativistic
code to evolve an electromagnetic field in a strongly-gravitating, dynamical spacetime in which
a black hole forms. It is harder still to devise for such a spacetime a problem that calibrates a
code’s performance both in the highly conducting MHD regime and the nonconducting vacuum
regime. But consider the following scenario for the collapse of a magnetized spherical star to a
black hole: Adopt the approximation that the electromagnetic fields are sufficiently weak that
the matter and gravitational fields can be described by the unperturbed Oppenheimer-Snyder
solution for the collapse of a spherical, homogeneous dust ball to a Schwarzschild black hole (see
Section 1.4.) Assume the matter to be perfectly conducting and threaded by a nearly uniform
interior and a dipole exterior magnetic field at the onset of collapse. Determine the subsequent
evolution of the interior and exterior magnetic and electric fields without approximation: calculate
the fields analytically in the matter interior, assuming the MHD approximation, and numerically
in the vacuum exterior. Apply the familiar electromagnetic junction conditions to match the
fields across the stellar surface at each instant of time in order to determine the inner boundary
conditions for the integration of exterior electromagnetic fields.

Exercise 5.35 Here we seek the relativistic generalization of Newtonian initial data describing a uni-
formly magnetized dust ball of radiusR, matched onto an exterior dipole magnetic field. In orthonormal
spherical polar coordinates, the Newtonian interior is characterized by the constant magnetic field

B î = B(cos θ,− sin θ, 0) , (Newtonian interior) (5.183)

assuming the field is aligned with the z-axis, while the exterior is a pure dipole field given by

B î =
BR3

r3
(cos θ,

1
2

sin θ, 0) (Newtonian exterior). (5.184)

The junction conditions on the surface of the star require that the normal (i.e. radial) component of the
field be continuous across the stellar surface. The tangential discontinuity in Bi implies the presence
of a surface current.
(a) Use the OS interior metric (1.88) to show that a relativistic generalization of the uniform interior
field may be specified by

Bχ̂ = B cos θ
(

χ

sinχ

)2(
χs

sinχs

)−2

, (5.185)

Bθ̂ = −B sin θ
(

χ

sinχ

)(
χs

sinχs

)−2

, . (5.186)

59See Chapter 11.5 for a description of the BSSN scheme for the evolution of the gravitational field.
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In particular, show that the above field satisfies the constraint DiB
i = 0 and reduces to the uniform

interior Newtonian field in stars of low compaction.
(b) Use the Schwarzschild metric (1.51) together with Maxwell equations (5.142) and (5.143) in vacuum
to show that the relativistic generalization of the dipole exterior field is given by60

Br̂ = −6µd cos θ
r3s

x2
s

(
xs ln(1− x−1

s ) + (1 + x−1
s /2)

)
, (5.187)

Bθ̂ =
6µd cos θ

r3s
x2

s

(
xs(1− x−1

s )1/2 ln(1− x−1
s ) +

1− x−1
s /2

(1− x−1
s )1/2

)
. (5.188)

Here rs is the Schwarzschild (areal) radius, xs ≡ rs/(2M), and µd is the magnetic dipole moment.
Hint: Introduce a vector potential Aa via Fab = ∇bAa−∇aAb and solve for Aa for an exterior vacuum
dipole field in axisymmetry.
(c) Use the junction conditions to show that µd is given by

µd = −B R3
s

6X2
s

(
Xs ln(1−X−1

s ) + (1−X−1
s /2)

)−1
, (5.189)

where Rs and Xs are the values of rs and xs on the stellar surface, and where B is the factor appearing
in equations (5.185) and (5.186).

Exercise 5.36 Show that the evolution of the interior magnetic field in exercise 5.35 is given analyt-
ically by equations (5.185) and (5.186) all during OS collapse, provided the parameter B varies with
proper time τ according to

B(τ) = B0

(
ρ0(τ)
ρ0(0)

)2/3

, (5.190)

where ρ0(τ) is given by equation (1.96).

The solution to the “magnetized OS collapse” problem formulated above has been determined61

and this simple scenario has been used to experiment with several alternative time slicing condi-
tions for handling black hole formation and the associated appearance of singularities. The choice
of time slicing is important for enabling the evolution of the exterior electromagnetic field to late
times. The choices considered ranged from “singularity avoiding” time coordinates, like maximal
time slicing, to “horizon penetrating” time coordinates, like Kerr-Schild slicing, accompanied by
“black hole excision”.62 The later choice allows for the integraton of the exterior electromagnetic
fields arbitrarily far into the future. At late times the longitudinal magnetic field in the exte-
rior transforms into a transverse electromagnetic wave; part of the electromagnetic radiation is
captured by the hole and the rest propagates outward and escapes. The field pattern at various
times is shown in Figures 5.5 and 5.6. The electromagnetic field strength at a fixed exterior radius
dies out as t−4, which agrees with the t−(2l+2) decay rate expected from perturbation theory63 and
applicable here to an l = 1 dipole field threading a spherical star undergoing gravitational collapse
(see Figure 5.7).

5.3 Collisionless Matter

Several important astrophysical systems are made up of particles of collisionless matter. In such
systems, the mean-free-path for particle-particle interactions is much longer than the scale of the

60Wasserman and Shapiro (1983).
61Baumgarte and Shapiro (2003a).
62For a discussion of black hole excision during stellar collapse, see Chapter 14.2.3.
63Price (1972b).



144 CHAPTER 5. MATTER SOURCES

����� � ���	�
�

����� � �
���	

����� � �����	�

����� � ����

����� � ������

����� � �������	�

Figure 5.5: Snapshots of the exterior magnetic field lines on select Kerr-Schild time slices for a
homogeneous, conducting dust ball of mass M that collapses from rest from an initial areal radius
Rs(0) = 4M . Points are plotted in a meridional plane in areal radius. The white shaded sphere
covers the matter interior; the black shaded area covers the region inside the event horizon; the
grey shaded area covers the region inside rs = M that is excised from the numerical grid once the
surface passes inside. The initial growth of the (longitudinal) field is due to flux freezing in the
interior and is followed by a burst of (transverse) electromagnetic radiation in the vacuum exterior
once the surface approaches the horizon at rs = 2M . In this time coordinate, using excision, the
exterior electromagnetic field can be evolved reliably to arbitrary late times. By the end of the
integration, all exterior electromagnetic fields in the vicinity of the black hole have been captured
or radiated away. [From Baumgarte and Shapiro (2003a).]
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Figure 5.6: Far-zone view of the same collapse depicted in Figure 5.5. Note the transformation of
the dipole field from a quasi-static longitudinal field to a transverse electromagnetic wave. [From
Baumgarte and Shapiro (2003a).]

system. Equivalently, the mean time for particle collisions is much longer than the dynamical
or “crossing” timescale of the system, i.e. the time it takes for a particle to cross from one side
of the system to the other. Systems of particles obeying this condition are in the opposite limit
from the hydrodynamical gases we treated above. One example of a collisionless system is a
star cluster, a large, self-gravitating, N -body system in which the individual particles – the stars
– interact exclusively via gravitation. In the strictly collisionless limit, a cluster of finite total
mass is treated as an infinite swarm of point particles, each of infinitesimal mass. The stars
then move in the smooth, background gravitational field established by their cumulative, smooth
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Figure 5.7: The absolute value of the orthonormal component of the radial magnetic field |B r̂|
at rs = 20M as a function of time. The dashed line is a power law varying like t−4, the expected
decay rate for an initial static dipole electromagnetic field in a spherical star undergoing collapse
to a black hole. [From Baumgarte and Shapiro (2003a).]

mass-energy distribution. In reality, the distribution of stars in a cluster is not continuous, but
discrete, so that the gravitational field governing their motion is granular. Consequently, the stars
undergo stochastic, small-angle deflections from their smooth orbits due the cumulative role of
many distant “gravitational encounters” (i.e., small-angle, Coulomb scattering). Very occasionally,
stars may even wander close to their neighbors and experience large-angle, gravitational deflections.
Moreover, since stars are not point particles and have finite sizes, they can even undergo contact
collisions with other. Typically, gravitational scattering due to the granularity of the gravitational
field is not important in the evolution of a large star cluster over a dynamical (orbital) timescale,
but only on a much longer, “relaxation” timescale. Physical collisions resulting from direct impact
are also unimportant on dynamical timescales in astrophysical star clusters. For realistic systems,
the star cluster may be treated as a perfectly collisionless gas over dynamical timescales, while the
effects of gravitational scattering or collisions can be handled as perturbations if the evolution is
tracked over longer, secular timescales.64

Globular clusters consisting of N ∼ 105 stars, galaxies with N ∼ 1012 stars and clusters of
galaxies consisting of N ∼ 103 galaxies are all familiar examples of nearly collisionless clusters as
defined above. Another important example of a collisionless gas includes cosmological ‘dark mat-
ter’, which comprises over 90% of the mass in the Big Bang universe. Dark matter halos, which
might be clusters of neutrinos, neutralinos, axions, or some other weakly interacting massive par-
ticle, are collisionless clusters. Here we shall be particularly interested in relativistic systems.
Astrophysical realizations of collisionless relativistic systems include relativistic star clusters (in-
cluding large-N clusters of compact stars and (or) black holes) and collisionless dark matter halos

64See, e.g., Lightman and Shapiro (1978), Spitzer (1987), and Binney and Tremaine (1987), and references
therein, for detailed discussions of star cluster dynamics and evolution, and the role of gravitational encounters and
collisions, in Newtonian theory.
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consisting of relativistic particles.
Readers may find it useful to be familiar with the elementary principles of relativistic kinetic

theory before reading onward,65 although the discussion below is reasonably self-contained.
In kinetic theory, a large N -body system is described by a dimensionless phase-space distri-

bution function f(xa, pa). Assume for the moment that all particles in the system have the same
rest mass. Then the function f is is related to the number density of particles in six-dimensional
phase space according to

f =
dN

d3x̂d3p̂
, (5.191)

where we have expressed the volume elements in physical space, d3x̂, and in momentum space,
d3p̂, in an orthonormal basis. The product d3x̂d3p̂, as well as the distribution function f , is a
Lorentz invariant. The distribution function f satisfies the relativistic Boltzmann equation,

Df
dλ

=

(
dxa

dλ

)
∂f

∂xa
+

(
dpa

dλ

)
∂f

∂pa
=

(
δf

δλ

)
coll

. (5.192)

Here the derivative is along the particle trajectory in phase space and λ is an affine parameter
along that trajectory defined so that the momentum is given by

pa ≡ dxa

dλ
. (5.193)

For particles of finite rest-mass m, we have λ = τ/m, where τ is the particle proper time. The
Boltzmann equation (5.192) is a continuity equation in phase space, which says that particles are
created and destroyed along their trajectories in phase space by virtue of collisions, the rate of
which is given by the term on the right-hand side. Excluding all long-range forces other than
gravitation, so that the particle paths are geodesics except at occasional points where scattering
or collisions occur, we then have

dpa

dλ
= −Γabcp

bpc . (5.194)

Exercise 5.37 Show that the Boltzmann equation may be written in the form

Df
dλ

= pa Df
dxa

=
(
δf

δλ

)
coll

, (5.195)

where
D
dxa

≡ ∂

∂xa
− Γb

acp
c ∂

∂pb
. (5.196)

Exercise 5.38 Derive the relativistic equation of radiation transport (5.93) from the Boltzmann equa-
tion (5.195), accounting for photon emission and absorption.66 To start, use f ∝ Iν/ν

3 to show that
in an arbitrary frame the transfer equation can be cast in the form

paD(Iν/ν3)
dxa

=
(
δ(Iν/ν3)

δλ

)
coll

= e− a(Iν/ν3), (5.197)

where e is an invariant source term due to photon emission and a is an invariant sink term due to
photon absorption. Setting h = 1 = c, evaluate equation (5.197) in an inertial frame to recover the
familiar form of the equation of radiation transfer,

∂Iν
∂t

+ ni ∂Iν
∂xi

= ην − χνIν , (5.198)

65See, e.g., Misner et al. (1973), §22.6.
66See Lindquist (1966), Castor (1972) and Mihalas and Mihalas (1984) for a detailed discussion; see Shapiro and

Teukolsky (1983), Appendix I, for a brief introduction.
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where we identify e as the invariant emissivity and a as the invariant absorption coefficient (opacity)
according to

e = ην/ν
2, a = νχν . (5.199)

Focus now on physical scenarios in which collisions or scatterings are either absent entirely or
unimportant on timescales of interest. In that case the right-hand side of equation (5.192) may
be set equal to zero; the resulting equation is usually referred to as the collisionless Boltzmann
equation, or the Vlasov equation:

Df
dλ

= 0. (5.200)

This equation shows that the distribution function in a collisionless gas is conserved along the
orbit of each particle in phase space, which is known as Liouville’s theorem. Equation (5.200) is
sometimes called the Liouville equation.67

Let us cast the Liouville equation in a form most suitable for treating a swarm of collisionless
particles with a wide distribution of masses.68 Consider a small group of particles near a particular
event xa in spacetime, with 4-momentum near a particular value pa. As seen in its own rest frame,
this group occupies a three-dimensional volume d3Vx in physical space and a four-dimensional
volume d4Vp in momentum space. In a general coordinate basis, d3Vx and d4Vp are given by

d3Vx =
pt

m

√
−gdx1dx2dx3 (5.201)

d4Vp =
−dptdp1dp2dp3√

−g
=
m

pt
dmdp1dp2dp3√

−g
. (5.202)

where m = −(pap
a)1/2 is the rest mass of a particle with 4-momentum pa. In deriving the second

equality for d4Vp, we differentiated this “mass hyperboloid” relation to write mdm = −ptdpt,
which we then substituted into the first equality to change variables from pt to m. If there are
dN particles in the group, then the number density in phase space, or distribution function, F is
defined by

F (xa, pb) =
dN

d3Vxd4Vp
. (5.203)

It is often convenient to specify a point in phase space by the the set of coordinates (xa, pa). This
set is particularly useful whenever the spacetime possesses a Killing vector ξa, in which case the
scalar paξ

a is conserved along geodesics. When the Killing vector is a coordinate basis vector, say
∂K , then the component of pa along that basis vector, pK , is a constant of the motion. Sometimes
it is useful to employ other coordinate sets, such as (xa, pi,m).

For collisionless matter, the particles move along geodesics and the distribution function sat-
isfies the Liouville equation in the form

D
dτ
F = 0, (5.204)

where the Liouville operator D/dτ represents differentiation with respect to proper time along the
trajectory of a particle in phase space:

D
dτ

=

(
dxa

dτ

)
∂

∂xa
+

(
dpa
dτ

)
∂

∂pa
=
gabpb
m

∂

∂xa
− 1

2m

∂gbc

∂xa
pbpc

∂

∂pa
. (5.205)

67This result can also hold in a collisional gas, provided the collisions satisfy detailed balancing. Detailed balancing
always applies, for example, to systems in thermodynamic equilibrium.

68Our discussion is patterned after Ipser and Thorne (1968).
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The smoothed-out stress-energy tensor of a cluster of particles is determined by the distribution
function according to

T ab =

∫
papb

(
F

m

)
d4Vp . (5.206)

The smoothed-out gravitational field of the cluster of particles is given by the metric gab, which,
as always, is a solution of Einstein’s equations Gab = 8πTab. To solve the field equations in 3 + 1
form we need the matter source terms given by equations (5.1) – (5.2), which are computed as
quadratures over the distribution function F , using equation (5.206).

Exercise 5.39 Show that the source terms are given by

ρ =
∫
m(W 2F )d4Vp , (5.207)

Si =
∫
m(WuiF )d4Vp , (5.208)

Sij =
∫
m(uiujF )d4Vp , (5.209)

S = ρ−
∫
mFd4Vp , (5.210)

where W is defined in equation (5.11).

For many calculations, it is adequate to consider systems in which all the particles have the
same rest mass, m0. The reason is that, according to the equivalence principle, all particles follow
the same geodesic paths, regardless of their mass, so this is not a physically significant restriction
for a collisionless gas. There are several equivalent ways of restricting our general description to
particles of the same rest mass. One way is to write

F (xa, pb) = f(xa, pi)δ(m−m0) . (5.211)

The resulting four-dimensional quadratures over F that determine the matter source terms now
reduce to three-dimensional quadratures over f . For example, inserting the the right-hand side in
equation (5.202) for d4Vp gives

ρ = m0

∫
(W 2f)

(
dp1dp2dp3

Wγ1/2

)
, (5.212)

and similarly for the other source terms. This is equivalent to demanding that the invariant four-
dimensional volume, d4Vp, in momentum space obey the constraint −papa = m2

0, which allows us
to generate an invariant, three-dimensional volume in momentum space,

d3Vp =

∫
d4Vpδ[(−papa)1/2 −m0] =

(
m0

pt

)
dp1dp2dp3

(−g)1/2
=
dp1dp2dp3

Wγ1/2
, (5.213)

where the integral is over dpt. When we now employ d3Vp to integrate over the phase-space
distribution function f , defined by

f(xa, pi) =
dN

d3Vxd3Vp
, (5.214)
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(recall equation 5.191), the stress-energy tensor defined in equation (5.206) becomes

T ab =

∫
papb

(
f

m0

)
d3Vp , (5.215)

and the quadratures for the matter sources reduce to the form given in equation (5.212).

Exercise 5.40 Show that when the collisionless gas consists of a single mass species, the Liouville
equation (5.204) reduces to

∂f

∂t
+
(
dxi

dt

)
∂f

∂xi
+
(
dpi

dt

)
∂f

∂pi
= 0 (5.216)

or, explicitly,
∂f

∂t
+
giapa

pt

∂f

∂xi
− 1

2pt

∂gab

∂xi
papb

∂f

∂pi
= 0 . (5.217)

For stationary spacetimes, the distribution function of a collisionless gas is independent of time
and must be a function of the dynamical constants (or “integrals”) of orbital motion. Likewise, any
function of the constants of the motion yields a stationary solution of the collisionless Boltzmann
equation. This result is often quoted as Jean’s theorem. This proposition is not surprising, looking
at equation (5.216), since any f that is a function only of the momenta pa conjugate to the Killing
vectors ξa in the spacetime clearly provides a stationary solution (recall that dpa/dt = 0). Jean’s
theorem is particularly useful in constructing equilibrium solutions. Equilibrium solutions provide
initial data for full scale dynamical evolution simulations, which are necessary to determine the
dynamical stability of collisionless equilibria and the final fate of unstable systems.

For spherical, static equilibrium systems, the general solution to the Liouville equation depends
on just two constants of the motion, the “energy at infinity” E and the total angular angular
moment, J . Thus the distribution function has the form F = F (E, J,m). Adopt a familiar
Schwarzschild coordinate system (t, r, θ, φ) to describe the static spherical spacetime, whereby the
metric may be written as

ds2 = −e2Φdt2 + e2Λdr2 + r2(dθ2 + sin2 θdφ2) , (5.218)

where Φ and Λ are functions of r and the energy and angular momentum are given by

E = −pt , (5.219)

J =

(
p2
θ +

p2
φ

sin2 θ

)1/2

. (5.220)

Exercise 5.41 Show that E and J defined in equations (5.219) and (5.220) are constants of the motion
in a static spherical spacetime.

These are the first steps in the construction of a spherically symmetric equilibrium configu-
ration. The dynamical equation for the matter, the Liouville equation, is automatically solved
given F = F (E, J,m). However the stress-energy tensor (5.206), as well as the matter source
terms given in equations (5.226) – (5.229) below, cannot be determined from F until the metric
is known. The metric, in turn, is determined by solving Einstein’s field equations, which requires
the stress-energy tensor. The task of constructing an equilibrium configuration therefore amounts
to solving a set of coupled integrodifferential equations self-consistently. The equations are quite
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straightforward to solve in the case of spherical symmetry, especially when the distribution of
stellar velocities at each point in the cluster is isotropic. In this case the equations can be made
to look like the familiar OV equations for fluid stars in spherical equilibrium.69

Exercise 5.42 Show that the velocity profile of particles in a spherical cluster in static equilibrium is
isotropic as measured by a local observer whenever the distribution function is independent of angular
momentum, i.e. F = F (E,m).

The problem is conceptually similar, but quite a bit more complicated, in the case of stationary
axisymmetric equilibria. Nonspherical clusters with and without rotation are included in this
category. The simplest distribution functions that can give rise to nonspherical, axisymmetric
equilibria are of the form F = F (E, Jz,m), where E is the particle energy and Jz is the particle
angular momentum along the symmetry axis. By suitable choice of the distribution in Jz, one can
construct models that are either prolate or oblate. A depletion in the Jz-distribution produces
a prolate configuration, while an enhancement produces an oblate one.70 We shall return to the
construction of collisionless equilibria and their utility as initial data in Chapter 8.2.

Now we wish to discuss how the spacetime for a relativistic cluster of collisionless matter can be
determined when the cluster is undergoing dynamical evolution, including catastrophic collapse to
a black hole. The basic goal is to solve the Liouville equation for the matter simultaneously with
the 3 + 1 equations for the gravitational field. There are at least two different numerical strategies
that have been employed successfully to track the dynamical evolution of relativistic clusters. We
describe both of them in the sections immediately below. Applications of these techniques to
problems involving collisionless matter in strong gravitational fields are treated in Chapters 8 and
10.

Particle Methods

Particle methods, sometimes referred to as “particle-mesh” or “particle-in-cell” methods, are
widely used in plasma physics and in Newtonian gravitation for the study collisionless systems.71

The method has been extended to general relativity, yielding a robust mean-field, N -body evolution
scheme in the context of the 3 + 1 equations that has been applied to spherical and axisymmet-
ric clusters.72 In this approach, a statistical representation of the initial distribution function is
constructed by specifying initial positions and velocities for a large but finite number N of dis-
crete particles. The motion of these particles is then calculated by integrating simultaneously N
geodesic equations in the mean gravitational field of the system. The source terms of the 3 + 1
equations are determined by smearing out each particle over a small spatial volume, and adding
up the contributions of all particles.

Working with collisionless matter via particle simulations has several advantages over fluid
systems. The collisionless matter equations are ordinary differential equations (the geodesic equa-
tions), while the hydrodynamic equations are more challenging partial differential equations. Fur-
thermore, collisionless matter is not subject to shocks or other hydrodynamical discontinuities.
These complications require special care or sophisticated handling of the fluid equations for ade-
quate resolution, as we discussed in Section (5.2) of this chapter.

69See Misner et al. (1973), §25.7.
70See Shapiro and Teukolsky (1993b,a).
71See, e.g. Hockney and Eastwood (1981) and Sellwood (1987) for discussion and review of applications to

Newtonian gravitation and plasma physics.
72Shapiro and Teukolsky (1985b,a,c, 1986, 1992b) and references therein.
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Consider a collisionless gas sampled by a discrete number of particles. Group together into
distinct categories those particles at a point in spacetime that have the same mass and 4-velocity.
Then the stress-energy tensor is

T ab =
∑
A

mAnAu
a
Au

b
A . (5.221)

Here mA is the rest mass of category A particles, uaA is their 4-velocity, and nA is their co-moving
number density.73 The quantity nA is proportional to a δ-function in the limit of point particles,
but it can be treated as a continuous, averaged quantity when the number of particles is infinite,
the mass of each particle becomes infinitesimal, and the particle distribution is smooth.

The equation of motion of the particles is simply the geodesic equation

ua∇au
b = 0 , (5.222)

where we drop the label A when referring to any one of the particles.

Exercise 5.43 Show that equation (5.222) follows from the conservation of stress-energy, ∇bT
ab = 0,

and the conservation of particles, ∇a (nua) = 0.

Exercise 5.44 Show that the equations describing the motion of a particle in phase space can be
written in terms of the 3 + 1 metric as

dui

dt
= −αu0∂iα+ uk∂iβ

k − 1
2u0

ujum∂iγ
jm , (5.223)

dxj

dt
= γjk uk

u0
− βj , (5.224)

αu0 =
(
1 + γijuiuj

)1/2
. (5.225)

Exercise 5.45 Derive the Newtonian limit of the equations of motion in exercise (5.44).
Hint: In the Newtonian limit, γij → ηij , α → 1 + Φ, where Φ is the gravitational potential, and
βk → 0.

Thus, given the metric at any time t, equations (5.223) - (5.225) may be integrated for the new
positions and 4-velocities of the particles at t+ ∆t. Once the new particle positions and velocities
are determined, the new source terms needed in the field equations can be computed as a discrete
sum over the particles using equations (5.207)-(5.210):

ρ =
∑
A

mAnAW
2 , (5.226)

Si =
∑
A

mAnAWuAi (5.227)

Sij =
∑
A

mAnAu
A
i u

A
j (5.228)

S = ρ−
∑
A

mAnA . (5.229)

We regard each particle as being its own category A, so that the sum over A is a sum over particles.
Then

nA =
1

∆3Vx
=

1

Wγ1/2∆x1∆x2∆x3
. (5.230)

73See, e.g., Misner et al. (1973) §5.4.
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Here ∆3Vx is the invariant 3-volume as measured in a frame comoving with particle A (see equa-
tion 5.201). In writing the last equality in equation (5.230) we divided up coordinate space into
bins of coordinate volume ∆x1∆x2∆x3 and we treated the particle as smeared out over the entire
bin in which it resides. Note that more sophisticated binning and averaging algorithms can be
constructed which assign fractions of particles to neighboring bins in order to calculate smoother
and statistically more reliable source terms from the discrete particle sample.

Once the source terms have been assembled, the 3 + 1 equations can be integrated to give the
mean gravitational field quantities at the new time. The whole cycle can be repeated to evolve
the particles to the next time step in the mean field, and so on.

Phase Space Methods

Sampling the phase space distribution function f by a discrete set of particles does not determine
f , but only moments of f , like the source terms of the field equations.74 Sometimes it is important
to acquire the full knowledge of f to understand the underlying dynamical state of a collisionless
system. Many complicated phenomena of great astrophysical interest, such as ‘violent relaxation’,
can only be understood by a study of the detailed evolution of f . Violent relaxation, which can
lead to the virialization of a cluster that is initially far from dynamical equilibrium, is the result
of collisionless damping of perturbations by ‘phase mixing’.75 Studying violent relaxation requires
that the phase space density be tracked in detail, including all distortions due to phase mixing.

A phase space method does not rely on any statistical representation of the system by particles.
Instead, a phase space method explicitly constructs the smooth distribution function of matter in
phase space. The source terms of the field equations are obtained by direct numerical quadratures
of f over the momentum (or velocity) space, as in equation (5.212). This has the great advantage
of eliminating random statistical fluctuations in the data while at the same time providing the
full distribution function of the system. However, very few phase space methods have so far
been developed successfully, even in the much simpler framework of Newtonian gravity. Part of
the problem is the extreme complexity of working in phase space instead of physical space. The
large number of dimensions in phase space (already three in spherical symmetry where physical
space has only one) would already discourage many attempts. In addition, distribution functions
often have irregular structures that can be hard to represent accurately on a numerical grid in
phase space. Such irregular structures can arise from discontinuities in the initial data, but even
in the case of very smooth initial data, phase mixing will usually produce increasingly intricate
“fine-grained” structures.

One phase space method developed for general relativistic systems seems to work well, as
least for the spherical systems to which it has been applied.76 The method exploits Liouville’s
theorem to determine the evolution of the phase space distribution function directly. The method
consists of three basic steps to propagate the distribution function f from time t1 to t2 > t1:
(1) compute the source terms for the field equations (e.g., equation (5.212)) by integrating f at
t1 over momentum space; (2) evolve the 3 + 1 field equations to determine the metric at t2; (3)
compute f at time t2, assuming that it satisfies the Liouville equation (5.216). The key idea is to
use Liouville’s theorem for step (3), which can be written as

f(t2, x2, p2) = f(t1, x1, p1) , (5.231)

74The discussion in this section is patterned after Rasio et al. (1989b).
75Lynden-Bell (1967).
76Rasio et al. (1989b).
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where (x1, p1) represents the position in phase space at time t1 of a test particle that will actually
reach the position (x2, p2) at time t2. By interpolating the metric in the interval (t1, t2) one can
integrate the equations of motion, equations (5.223) – (5.225), to construct the actual trajectory
of such a test particle. Since f is known at all times t ≤ t2 one can actually determine f(t2, x2, p2)
for all (x2, p2).

The original scheme along these lines was developed in Newtonian theory.77 However, it was
soon discovered that in many cases the scheme developed numerical instabilities, rendering the
results inaccurate.78 The reason was that in the original scheme f was constructed on a grid of
points in phase space. In employing equation (5.231) to determine f at t2 by placing a particle at
(x2, p2) and integrating backward in time from t2 to t1, the old position of the particle (x1, p1) is
not a grid point at t1 in general. As a result, one must perform a (multidimensional) interpolation
on the grid to get f(t1, x1, p1) and thereby the new grid point value f(t2, x2, p2). The error in the
interpolation on the grid at t1 propagates to the new grid at t2, where it becomes an error on the
values of f at the grid points. This leads to an amplification of the error, which is reflected in the
failure to conserve rest mass and other conserved quantities, and may even lead to the violation
of the positivity of the distribution function. The problem is most severe when the distribution
function exhibits discontinuities, or even a mild degree of phase mixing.

One cure adopted in the relativistic scheme that eliminates interpolation error is to extend the
value of t1 in equation (5.231) to t = 0, where the distribution function is given by the initial data
and is therefore known everywhere to arbitrary accuracy. When f is required at some point in
phase space (e.g., in performing the quadratures for the source terms), this point is simply tracked
along a dynamical path all the way back to t = 0, where f can be accurately evaluated from the
initial data. For problems involving discontinuous distribution functions or large degrees of phase
mixing, more points can be added in phase space to do the quadratures to the required accuracy.
There is never any need to introduce any grid at all in phase space, since intermediate values of
f are never needed and therefore need not be stored. The only disadvantage, of course, is that
the computational time per timestep increases dramatically with time, since longer and longer
trajectories have to be constructed to evaluate f at a given point.

5.4 Scalar Fields

A classical real scalar field provides one of the simplest sources of stress-energy in Einstein’s equa-
tions; a classical complex scalar field furnishes another example, only slightly more complicated.
Upon quantization, the momentum eigenstates of a scalar field are observable as particles. Scalar
fields give rise to particles of spin 0, while vector fields (like the electromagnetic field) give rise
to particles of spin 1 (like the photon, in the case of electromagnetism), and tensor fields of rank
two or higher give rise to higher-spin particles. A complex scalar field has two degrees of freedom
instead of just one, and it can be interpreted as a particle and an antiparticle. Real fields are their
own antiparticles. A neutral π meson is an example of a real scalar field, while the charged π+-
and π−-mesons are described by complex scalar fields.

Interest in scalar fields has been stimulated in recent years by theoretical developments in
particle physics and cosmology. Both the standard model of elementary particles as well as their
superstring extensions involve scalar fields, although the existence of a fundamental elementary
scalar particle has yet to be confirmed by an accelerator experiment. For example, the Higgs boson,

77Fujiwara (1981, 1983).
78Inagaki et al. (1984); Nishida (1986).
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which serves to generate masses for the W± and Z0 gauge vector bosons in the electroweak theory
of Weinberg, Salam and Glashow, is a particle of finite mass described by a neutral spin 0 scalar
field. Its discovery is a top priority of experimental particle physics. There are many attempts at
unifying the standard model with gravitation at the quantum level, like string theory. Typically,
these theories give rise to four-dimensional “effective” models in which the usual spacetime metric
gab of gravity is accompanied by one or more scalar fields. The massive scalar dilaton and the
(pseudo-) scalar axion are two examples.

In cosmology, the inflationary phase in the early universe can be driven by the vacuum energy
density provided by the potential of a time-dependent, but slowly varying scalar field φ(t) called an
“inflaton”. It is also possbile that the existence of “dark energy” in the universe, which manifests
itself as a nonzero cosmological constant in the standard Big Bang model, may be represented
by the vacuum energy density associated with the potential of yet another scalar field at a much
lower characteristic energy (“quintessence”).

Candidates for “dark matter” in the universe include bosonic, as well as fermionic particles. It
is an issue of wide speculation whether or not “boson stars” could actually arise during the gravita-
tional condensation of bosonic dark matter in the early Universe. Boson stars are self-gravitating,
stationary equilibrium configurations constructed from complex scalar fields in asymptotically flat
spacetimes.79 They are macroscopic quantum states that are supported against gravitational col-
lapse by the Heisenberg uncertainty principle; they can be modeled by classical scalar fields. Like
neutron stars, boson stars can have highly relativistic gravitational fields and yet are nonsingular
and have no event horizons. However, if the scalar fields have self-interactions, then, unlike neu-
tron stars, boson stars can be very massive. It is therefore not surprisingly that boson stars are
sometimes invoked as alternatives to black holes to model massive, compact stars. By contrast
with boson stars, “soliton stars”, which are constructed from real scalar fields, are not stationary
but periodic, both in the spacetime geometry and the matter field. Nonsingular, self-gravitating
stationary solutions do not exist for real, massive scalar fields.

Apart from their possible physical significance, scalar fields serve as very useful tools for probing
strong gravitational field phenomena and for learning how to do numerical relativity. The dynam-
ical equation governing a scalar field is the simple, classical Klein-Gordon equation (see discussion
below). In contrast to the partial differential equations describing hydrodynamic or magnetohy-
drodynamic matter, which can exhibit shock waves and other discontinuities that require special
handling (see Section 5.2), the Klein-Gordan equation does not tend to develop discontinuities
from smooth initial data and is thus straightforward to integrate. As a result, integrating the
scalar wave equation is often chosen as the first test of a new numerical evolution scheme, a choice
that can prove instructive even when the equation is integrated in flat spacetime. Another conse-
quence of the simple, well-behaved nature of the scalar wave equation is that it is fairly easy to
implement advanced numerical techniques such as “adaptive mesh refinement ” (AMR) 80 for high
resolution integrations of the equation, particularly in 1+1 dimensional simulation (e.g. spherical
symmetry). The detailed study of gravitational collapse and black hole formation using AMR
with a scalar wave source has lead to the discovery of black hole “critical pheonomena”.81 Here
the behavior observed in dynamical simulations of configurations at the onset of black formation
along a one-parameter family of initial data assumes many of the features of a phase transition in
a statistical mechanical system.

79See, e.g., Kaup (1968); Ruffini and Bonazzola (1969); Colpi et al. (1986); Lee and Pang (1992); Seidel and Suen
(1990, 1991); Yuan et al. (2004); Schunck and Mielke (2003).

80Berger and Oliger (1984); see Chapter 6.2.5.
81Choptuik (1993). See Chapter 8 for a discussion.
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Finally, scalar fields generate radiation fields – waves which travel at the speed of light locally,
have amplitudes that fall-off with radius like r−1 at large distances from a central source, and
carry away mass-energy – even in spherical symmetry! By contrast, gravitational waves, which
are an important yield of numerical simulations in general relativity, cannot arise in spherical sym-
metry, as we know from Birkhoff’s theorem. So working with scalar fields in spherical symmetry
allows one to gain experience tackling some of the computational challenges of wave generation
and propagation in dynamical spacetimes without having to integrate in more than one spatial
dimension.

The stress-energy tensor of a real scalar field, ϕ(xa), is given by

Tab = ∇aϕ∇bϕ−
1

2
gabg

cd∇c∇dϕ− gabV (ϕ) , (5.232)

where V (ϕ) is the potential. The potential may be decomposed according to

V (ϕ) =
1

2
m2ϕ2 + Vint , (5.233)

where m is the mass of the field (i.e. the mass of the momentum eigenstates, or “particles”,
when the field is quantized), and Vint is an interaction potential.82 When m = 0 the field is
massless; when Vint = 0 the field is noninteracting, apart from gravitation (“minimal coupling”).
The equations of motion (i.e. the scalar field equations) follow from ∇bT

ab = 0, which gives the
Klein-Gordon equation with a potential term,

∇a∇aϕ−m2ϕ− dVint

dϕ
= 0 . (5.234)

Exercise 5.46 Calculate the total energy density for a real scalar field measured in the rest frame of
an observer in Minkowski spacetime and give a physical interpretation for each of the contributions in
your expression.

Consider the case of a massless field in the absence of a potential (i.e. V = 0), for which
equation (5.234) reduces to the massless Klein-Gordon equation in curved spacetime,

∇a∇aϕ = 0 . (5.235)

In the special case of a stationary black hole background, the only nonsingular, time-independent
solution to equation (5.235) is ϕ = 0. If the initial value of ϕ varies in space or time, it will
evolve to this solution eventually. This result was demonstrated by Price83 and is consistent with
black-hole uniqueness (“no-hair”) theorems.84

Exercise 5.47 Consider the propagation of a massless, noninteracting scalar field in a static spherical
spacetime,

ds2 = −e2Φ(r)dt2 + e2Λ(r)dr2 + r2(dθ2 + sin2θdφ2) . (5.236)

Decompose the field into spherical harmonics

ϕ(t, r, θ, φ) =
ψ

r
Ylm(θ, φ) . (5.237)

82Here we set ~ = 1 in addition to c = 1 = G, so that terms like (mc/~)2 become m2.
83Price (1972a,b).
84see, e.g., Wald (1984).
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Show that the scalar field equation reduces to

− ∂t∂tψ + ∂r∗∂r∗ψ = Vl(r)ψ , (5.238)

where r∗ is a “generalized tortoise coordinate” satisfying

dr∗
dr

= eΛ−Φ , (5.239)

and where Vl(r) is an effective potential given by

Vl(r) = e2Φ
(
l(l + 1)
r2

+
e−2Λ

r
∂r (Φ− Λ)

)
. (5.240)

Note: In the case of flat spacetime, the solutions to the above radial wave equation are known
analytically for all l.85 For a static vacuum Schwarzschild spacetime, the numerical solutions exhibit
three separate phases: an initial burst, a quasinormal ringing phase, and a power-law tail phase. During
the late-time tail phase, all multipoles of the scalar wave decay at finite r∗ according to ψ ∼ t−(2l+3)

as t→∞ (“Price’s theorem” for scalar waves). The same radiative behavior is also observed for scalar
wave propagation in the static spacetime of a spherical equilibrium (OV) star.86

In exercise (5.48) we construct a conserved energy integral that provides a useful check on
numerical integrations of the scalar wave equation in static spacetimes, as derived in exercise (5.47).

Exercise 5.48 In a static spacetime ξa = ∂/∂t is a Killing vector and Ja = T abξb is a conserved
current, i.e, ∇aJ

a = 0.
(a) Prove the conservation law ∮

δΩ

Jad3Σa = 0 , (5.241)

where δΩ is the closed 3-surface enclosing a 4-volume Ω. The surface element d3Σa is given by
d3Σa = (1/3!)εabcddx

bdxcdxd, where εabcd is the Levi-Civita tensor. (Note: here δΩ is a 3-surface that
lies inside the worldtube of the matter depicted in Figure 3.5.)
(b) Adopt spherical polar coordinates and choose Ω to be the volume confined by the spherical radii
r1 and r2 and the times t1 and t2. Show that the conservation law (5.241) can be written as

E(t2)− E(t1) = J (r2)− J (r1) , (5.242)

where

E(t) ≡
∫ r2

r=r1

∫ π

θ=0

∫ 2π

φ=0

J0√−gdrdθdφ (5.243)

is the energy of the matter field contained between r1 and r2 at time t, and

J (r) ≡
∫ t2

t=t1

∫ π

θ=0

∫ 2π

φ=0

Jr√−gdtdθdφ (5.244)

is the radial flux across r, integrated over time between t1 and t2. Discuss the meaning of equa-
tion (5.242).

An interesting mathematical connection exists between the massless Klein-Gordon equation (5.235)
and the evolution equation for a perfect, irrotational fluid. As shown in exercise (5.49), the hydro-
dynamic evolution of a relativistic fluid obeying the special EOS P = ρ can actually be determined
by integrating the wave equation for a real, massless, noninteracing scalar field!

85Burke (1971).
86see, e.g. Kokkotas and Schmidt (1999); Pavlidou et al. (2000), and references therein.
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Exercise 5.49 The relativistic vorticity tensor is defined as

ωab = P c
aP

d
b [∇d(huc)−∇c(hud)] , (5.245)

where ua is the 4-velocity, h = (ρ+P )/n is the specific enthalpy, ρ = ρ0(1+ ε) is the total mass-energy
density, n is the baryon number, and P ab = gab + uaub is the projection tensor.
(a) Show that for a perfect fluid, equation (5.62) may be used to recast equation (5.245) as

ωab = [∇b(hua)−∇a(hub)] . (5.246)

(b) Argue that if the vorticity is zero, the quantity hua can be expressed as the gradient of a potential,

hua = ∇aϕ . (5.247)

What kind of flow does this correspond to physically?
(c) Show that the continuity equation now becomes

∇a [(n/h)∇aϕ] = 0 . (5.248)

(d) The equation of state relates n to h, and h is found from the normalization condition h =
(−∇aϕ∇aϕ)1/2. Relate n to h for a polytropic gas where P is given by equation (5.18).
(e) Consider the extreme equation of state P = ρ. Find Γ and show that for this equation of state,
equation (5.248) simplies to yield

∇a (∇aϕ) = 0 . (5.249)

What is the sound speed in this gas?

To integrate the Klein-Gordon equation (5.235) numerically it is useful to cast it into first-order
form. For this purpose, introduce the following new variables:

Π ≡ −1

α

(
∂tϕ− βi∂iϕ

)
, (5.250)

ψi ≡ ∂iϕ. (5.251)

For a general 3 + 1 metric, the Klein-Gordon equation (5.235) becomes

∂tϕ = βi∂iϕ− αΠ , (5.252)

∂tΠ = βi∂iΠ− αgij∂jψi + αgijΓkijψk − gijψj∂iα + αKΠ , (5.253)

∂tψi = βj∂jψi + ψj∂iβ
j − α∂iΠ− Π∂iα . (5.254)

It is noteworthy that the definition of ψi, equation (5.251), turns into a set of four constraints,87

Ci = ∂iϕ− ψi , (5.255)

that must be satisfied at all times. When solved exactly, the system of equations (5.253) - (5.254)
automatically preserves the constraints Ci = 0, provided they are satisfied initially. However,
in a numerical simulation, truncation errors and boundary errors can cause Ci to wander away
from zero. Hence it is useful to monitor the evolution of Ci to help calibrate the accuracy of the
simulation. In the same way, monitoring how well the 3 + 1 constraints are maintained serves to
calibrate the accuracy of the gravitational field integrations. The Klein-Gordon system of first-
order, symmetric hyperbolic equations thus provides a simple arena for exploring the growth of
constraint violations in numerical simulations of hyperbolic systems and devising methods for
controlling them.

87Scheel et al. (2004).
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Evaluating the scalar field equation (5.234) for a Robertson-Walker (RW) metric (see exer-
cise 4.1), assuming the field is everywhere homogeneous (∇iϕ = 0) gives a simple second-order
ordinary differential equation for the evolution of ϕ(t),

ϕ̈+ 3Hϕ̇+m2ϕ+
dVint

dϕ
= 0 . (5.256)

In equation (5.256) the dot denotes time-differentiation, H(t) = ȧ/a is Hubble’s constant, and
a(t) is the expansion parameter appearing in the RW metric. This equation is the usual starting
point of most discussions of inflation in the early universe, in which case ϕ is called an “inflaton”
scalar field. The same equation is also invoked as the evolution equation for a simple candidate
for a dynamical source of dark energy.88

A popular interaction potential used in many studies is a quartic self-interaction, which has
the form

Vint(ϕ) =
1

4
λϕ4 , (5.257)

where λ is a dimensionless coupling constant. While this interaction is often employed for il-
lustrative purposes, plausible models arising in particle physics, like the Higgs field in standard
electroweak theory, do contain ϕ4 interactions. The only other possibility for models involving only
scalar fields is an interaction of the form ϕ3, since theories containing ϕn are not renormalizable
for n > 4.89

Much of the astrophysically relevant work on scalar fields in asymptotically flat spacetimes
involves complex scalar fields. Part of the reason is that massive complex fields can form stationary
equilibrium configurations (boson stars). The stress-energy tensor for a massive, self-interacting
complex field is

Tab =
1

2
[(∇aΦ∇bΦ

∗ +∇bΦ∇aΦ
∗)− gab (∇aΦ∇aΦ

∗)]− gabV (Φ,Φ∗) . (5.258)

The corresponding equations of motion are

∇a∇aΦ−m2Φ− λ|Φ|2Φ = 0 . (5.259)

and its complex conjugate. Here we have assumed V (Φ,Φ∗) = 1
2
m2|ΦΦ∗|+ 1

4
λ|ΦΦ∗|2. The complex

scalar field can be split into two real scalar fields according to Φ = ϕ1 + iϕ2, where ϕ1 and ϕ2

are real scalar functions. The two real, coupled, second-order equations that result may then be
cast into first-order form by introducing new variables as in equation (5.250) and proceeding in a
similar fashion.

As a final twist, we can endow the complex scalar fields with charge e, as well as mass m,
and allow them to interact with an electromagnetic field. Express the Faraday tensor for the
electromagnetic field, Fab, in terms of the electromagnetic vector potential,Aa,

Fab = ∇aAb −∇bAa . (5.260)

Define the operator Da ≡ ∇a + ieAa. The total stress-energy tensor for this system then becomes

Tab = 1
2
(D∗aΦ∗)(DbΦ) + 1

2
(DaΦ)(D∗bΦ∗)− 1

2
gab(DcΦ)(Dc∗Φ∗)− gabV (Φ,Φ∗)

+ 1
4π
FacFb

c − 1
16π
gabFcdF

cd ,
(5.261)

88See Carroll (2004), Chapter 8.7 and 8.8, for a discussion.
89see, e.g., Peskin and Schroeder (1995) for discussion.
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where V (Φ,Φ∗) = 1
2
m2|ΦΦ∗|+Vint(Φ,Φ

∗). The corresponding equations of motion90 for the scalar
fields are

∇a∇aΦ + ieAa(2∇aΦ + ieAaΦ) + ieΦ∇aA
a − 2

∂V (Φ,Φ∗)
∂Φ∗

= 0 , (5.262)

and its complex conjugate, while Maxwell’s equations for the electromagnetic field are

∇bFab = 4πJa , (5.263)

where the conserved 4-current Ja is given by

Ja = ie [ΦD∗aΦ− Φ∗DaΦ] . (5.264)

Recall that the remaining Maxwell equations, ∇[cFab] = 0, are automatically satisfied by equa-
tion (5.260).

The above scalar and electromagnetic field equations must then be solved in conjunction with
the 3+1 equations for the gravitational field to determine the complete foliation of spacetime. For
this purpose the source terms (5.1) - (5.2) must be computed from T ab. Once again, it is convenient
to cast the second-order evolution equations into first-order form to solve them numerically. While
the system of equations for a charged, complex scalar field is not trivial to solve numerically, it
is simpler than the relativistic MHD system of equations for an ionized gas discussed in Section
(5.3). For example, there are no shocks with scalar fields. As a result, a charged scalar field affords
the opportunity to explore the behavior of charged “matter” in the presence of an electromagnetic
field in curved spacetime, including near black holes, with a somewhat more modest computational
effort.

90I.e. the Euler-Lagrange equations, most easily obtained by varying the total Lagrangian with respect to Φ,Φ∗

and Aa independently; see, e.g., Hawking and Ellis (1973), p. 68.



Chapter 6

Numerical Methods

As we have seen, Einstein’s field equations in 3 + 1 form consist of a set of nonlinear, multidi-
mensional, coupled partial differential equations in space and time. The equations of motion of
the matter fields that may be present are typically of a similar nature. Except for very idealized
problems with special symmetries, such equations must be solved by numerical means, often on
supercomputers. Just as there is no unique analytic formulation of the 3+1 field equations,1 there
is no unique prescription by which a partial differential equation may be cast into a form suit-
able for numerical integration. Standard numerical algorithms for treating such equations may be
found in many textbooks on numerical methods, as well as in textbooks, monograms and review
articles on compuational physics. This branch of applied mathematics is a rich area of ongoing
investigation; it progresses with each advance in computer technology. It would take us too far
afield to review the subject in any depth here. Instead, we shall present a brief introduction to
some of the basic numerical concepts and associated techniques, focussing on those most often
employed to solve the partial differential equations that arise in numerical relativity. Although
our treatment is rudimentary, we hope that it is sufficient to convey the flavor of the subject,
especially to readers unfamiliar with the basic ideas. Throughout our discussion we shall refer the
reader to some of the literature where further details and other references can be found.2

6.1 Classification of Partial Differential Equations

So far in this book our focus has been on casting Einstein’s equations and the equations of motion
for any matter sources into a form that can be solved numerically with standard techniques. Most
of the resulting equations are second-order partial differential equations and can be classified into
three categories: elliptic, parabolic or hyperbolic.

The prototypical example of an elliptic equation is Poisson’s equation,3

∂2
xφ+ ∂2

yφ = ρ, (6.1)

where ρ is a source term that may depend on position, or even on φ up to first-order derivatives.
For vanishing sources this equation is Laplace’s equation. We have encountered elliptic equations,
for example, in the Hamiltonian constraint (3.37) and in the maximal slicing condition (4.12).

1We will explore alternative formulations in Chapter 11.
2See, e.g., the many references cited in Press et al. (2007), who provide much more discussion of portions of the

material surveyed in this Section.
3For illustrative purposes in this Section it is convenient to focus on problems that have at most two independent

variables.
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An example of a parabolic equation is the diffusion equation,

∂tφ− ∂x(κ ∂xφ) = ρ, (6.2)

where κ is the diffusion coefficient. We have seen a parabolic equation when we converted the
maximal slicing condition into the “driver” condition (4.38).

The prototypical example of a hyperbolic equation is the wave equation,

∂2
t φ− c2 ∂2

xφ = ρ, (6.3)

where c is the constant wave speed.

Exercise 6.1 Verify that any function

φ = g(x+ ct) + h(x− ct) (6.4)

satisfies the wave equation (6.3) for ρ = 0.

We have encountered hyperbolic equations several times, but they have been well disguised
and have not appeared exactly in this form. To make contact with those examples we introduce
the first time derivative of φ as a new independent variable, say −k, in which case we can rewrite
the wave equation (6.3) as the pair of equations

∂tφ = −k
∂tk = −c2 ∂2

xφ− ρ.
(6.5)

Interestingly, this form is very similar to the pair of 3 + 1 evolution equations (2.135) and (2.136),
except not quite. We can identify φ with γij and k with Kij. The three-dimensional generalization
of the second space derivative ∂2

xφ would the Laplacian of φ. A similar term, acting like the
Laplacian of γij, is hidden in the spatial Ricci tensor on the right hand side of (2.136) (see the fourth
term in (2.143)), but the Ricci tensor also contains other, mixed second derivatives. These other
terms spoil the hyperbolicity of the evolution equations in the standard 3+1 form (equations 2.135)
and (2.136) and motivate the development of alternative formulations of Einstein’s equations. We
will revisit this issue in much greater detail in Chapter 11.

The form (6.5) is not a particularly elegant representation of a wave equation, since it contains
first order time derivatives but second order space derivatives. We can fix that quite easily by also
introducing the space derivative of φ as a new independent variable. With l ≡ ∂xφ we now find
the system

∂tφ = −k
∂tk + c2∂xl = −ρ
∂tl + ∂xk = 0,

(6.6)

where the last equation holds because the partial derivatives must commute. In a more compact
notation we can write this as

∂tu + A · ∂xu = S, (6.7)

where u = (φ, k, l) is the solution vector, S = (−k,−ρ, 0) is the source vector, and where

A =

 0 0 0
0 0 c2

0 1 0

 (6.8)
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is the velocity matrix. This is a form of the wave equation that is similar to what we have encoun-
tered, for example, in the context of harmonic coordinates (4.44) and (4.45) and hydrodynamics
(5.26).

From the solution (6.4) it is evident that part of the solution φ, namely g, travels along
lines x + ct = const, while the other part h travels along x − ct = const. These lines are
called the characteristic curves; they are those curves along which partial information about the
solution propagates. Even if we cannot derive the general solution analytically, we can find the
corresponding characteristic speeds dx/dt from the eigenvalues of the velocity matrix A. In our
example, these eigenvalues are ±c and zero, as we would expect.4

Exercise 6.2 Instead of introducing k and l it may be more elegant to define a pair of characteristic
variables

u = (∂t − c ∂x)φ v = (∂t + c ∂x)φ. (6.9)

Relate u and v to the functions g and h in the general solution (6.4). Then define u = (φ, u, v) and
bring the wave equation into the form (6.7). Show that the velocity matrix A is now diagonal, and
verify that it has the same eigenvalues as before.

To return to our classification of second-order partial differential equation, consider the general
equation

A∂2
ξφ+ 2B ∂ξ∂ηφ+ C ∂2

ηφ = ρ̃ (6.10)

where the coefficients A, B and C are real, differentiable, and do not vanish simultaneously. Also,
the source term ρ̃ may depend on φ, but only up to first order derivatives. Whether this equation
is elliptic, parabolic, or hyperbolic then depends on the coefficients A, B and C:5

• If AC−B2 > 0, then we can find a coordinate transformation from (ξ, η) to some (x, y) that
brings equation (6.10) into the form (6.1); such equations are elliptic.

• If AC − B2 = 0, then we can find a coordinate transformation that brings equation (6.10)
into the form (6.2); such equations are parabolic.

• Finally, if AC − B2 < 0, then we can find a coordinate transformation that brings equa-
tion (6.10) into the form (6.3); such equations are hyperbolic.

Only hyperbolic equations have real (as opposed to imaginary) characteristics. We also point
out that hyperbolicity comes in various different flavors, which have slightly different consequences
for the properties of the solutions. We briefly discuss these different notions of hyperbolicity in
Chapter 11.1, and refer to the literature6 for a more detailed and rigorous treatment.

Exercise 6.3 Consider the radial wave equation

∇a∇aφ =
1√
−g

∂a(
√
−ggab∂bφ) = 0, (6.11)

for the evolution of a scalar field φ = φ(t, r) in a Schwarzschild spacetime, expressed in Kerr-Schild
coordinates (see exercise 2.33). Assume that φ falls of with 1/r at large radii, and introduce a new
variable Φ ≡ rφ. Show that Φ satisfies the equation

− (1 + 2H)∂2
t Φ + 4H∂r∂tΦ + (1− 2H)∂2

rΦ− 2H
r
∂tΦ +

2H
r
∂rΦ−

2H
r2

Φ = 0 (6.12)

4The vanishing eigenvalue in (6.7) is associated with the equation ∂tφ = −k which “propagates” information
along x = const.

5A similar classification can be defined in higher dimensions.
6See, e.g., Reula (1998).
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Figure 6.1: Backwards characteristics through several events in the Kerr-Schild metric of a
Schwarzschild black hole. The interval γQ is the domain of dependence of the event Q; the cone
defined by γQ and Q is the domain of determinacy of the interval γQ. The dashed line tracks the
event horizon, and the dashed-dotted lines mark some hypothetical computational boundaries.

where H = M/r. Verify that this equation is hyperbolic both inside and outside the event horizon at
r = 2M . Then bring this equation into the first order form (6.7) and show that the two non-trivial
characteristic speeds are

c1 = −1 c2 =
1− 2H
1 + 2H

. (6.13)

Show that these characteristic speeds correspond to the two radial null geodesics of the Kerr-Schild
metric. Integrate the two characteristic speeds to find that the ingoing and outgoing characteristics
satisfy

t+ r = const t− r = 4M ln |r − 2M |+ const, (6.14)

and explain why the name “outgoing” is misleading (see Fig. 6.1).

The different types of partial differential equations require different kinds of boundary and/or
initial conditions.7 Both parabolic and hyperbolic equations constitute intial value problems,
meaning that we have to define initial values of the fields (and possibly their time derivatives) on
a t = constant spatial hypersurface. The differential equations then tell us how these initial fields
evolve with time. We may also have to impose spatial boundary conditions on the outer boundaries
of our computational domain. Elliptic equations, on the other hand, determine a solution on a
given spatial hypersurface. No initial data are required, but we must supply boundary values at
the outer edge(s) of our computational domain.

7See, e.g., Mathews and Walker (1970), Chapter 8, for more detailed discussion.
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Boundary conditions can take various forms. For example, Dirichlet conditions specify the
values of the solution functions on the boundary, while Neumann conditions specify their gradients
on the boundary. We will encounter various other boundary conditions in the course of this book.

At this point it is useful to discuss hyperbolic equations in some more detail. The concept of
characteristics leads to the notion of the domain of dependence. For hyperbolic systems information
travels along characteristics. Since no information can travel faster than the fastest characteristics,
the solution at a certain event can only be affected by those events that lie inside the causal past,
or past cone defined by the fastest ingoing and outgoing characteristics. In the context of relativity
we are quite used to this concept, since causality demands that an event can only be affected by
events in its past light cone.

For example, consider the wave equation (6.12) for a scalar wave φ that propagates in a
Schwarzschild spacetime expressed in Kerr-Schild coordinates. In Fig. 6.1 we plot several events
in this spacetime together with their backward characteristics. Consider the event Q, whose past
characteristics are marked by solid lines. To completely determine φ(t, r) at Q, we would have
to provide initial data φ(0, r) and ∂tφ(0, r) inside the past cone defined by the two backward
characteristics, namely on the interval γQ. This is the domain of dependence of the point Q.

In reverse, for any interval γ on the r-axis, there is a region of the spacetime in which all events
depend only on initial data provided on γ. This region is called the domain of determinacy. For
γQ in Fig. 6.1 the domain of determinacy is the cone defined by γQ and the event Q, bordered by
solid lines.

Suppose we want to obtain a solution to the wave equation (6.12). We will have to provide
initial data on an interval γ that extends from a certain radius rmin to a radius rmax at, say, t = 0.
If we want to construct the solution only in the domain of determinacy of γ, then the solution
is completely determined by the initial data on γ, and no boundary conditions are needed. This
situation, however, is rarely the case. It is more typical that we would like to construct the solution
in the entire domain between rmin and rmax for all t > 0.

For concreteness, imagine we want to find φ in the domain between rmin/M = 1 and rmax/M =
9, marked by the dashed-dotted lines in Fig. 6.1. The event Q would still be completely determined
by the initial data, but the event S, for example, would not. One of its backward characteristics
intersects the outer boundary at rmax/M = 9. The event S is therefore outside the domain of
determinacy of γ, and the solution at S depends on more information than is provided by the
initial data. This missing information now has to be provided by the boundary conditions. The
boundary condition at the outer boundary rmax has to specify the information that propagates
along the ingoing characteristic that originates on the outer boundary. For example, this could be
an outgoing-wave boundary condition which, as the name suggests, insures that no wave (i.e., no
information) enters the domain through the outer boundary.

The situation is different at the inner boundary rmin. Consider, for example, the event P ,
which lies on the boundary rmin. Since we have chosen rmin to be inside the event horizon, both
characteristics originate from a larger r, and neither one intersects the boundary rmin. The event
P is therefore completely determined by the initial data (and, had we chosen P at a later time, by
the outer boundary condition at rmax). There is no need to impose a boundary condition at rmin,
and in fact it would be inconsistent with the equations. This property will be important when we
discuss black hole excision in Section 13.1.

Following this general discussion of partial differential equations, we now turn to computational
methods that can be used to solve these equations.
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6.2 Finite Difference Methods

Finite difference methods for general applications in computational physics have been treated in
great detail in many references.8 Specific applications to numerical relativity have been discussed
in a few review articles9 and many journal articles. Here we provide a brief introduction that
touches on some of the important aspects of the subject.

6.2.1 Representation of Functions and Derivatives

In a finite difference approximation a function f(t, x) is represented by values at a discrete set of
points. At the core of finite difference approximation is therefore a discretization of the spacetime,
or a numerical grid. Instead of evaluating f at all values of x, for example, we only consider
discrete values xi. As we discuss in more detail in Section 6.2.2, these gridpoints may reside either
at the centers or the vertices of gridcells, but this distinction is irrelevant for our purposes in this
Section. The distance between the gridpoints xi is called the gridspacing ∆x, which in principle
may depend on x (or rather xi). For uniform grids, for which ∆x is constant, we have

xi = x0 + i∆x. (6.15)

If the solution depends on time we also discretize the time coordinate, for example as

tn = t0 + n∆t, (6.16)

where the superscript n denotes the n-th time level and should not be confused with an exponent.
In more than one space dimension the other dimensions are discretized in the same manner. The
result of this is a spacetime lattice, on which all functions can be evaluated. The finite difference
representation of the function f(t, x), for example, is

fni = f(tn, xi) + truncation error. (6.17)

Here (and only here) we have explicitly added the “truncation error” as a reminder that fni only
approaches the correct value of f at tn and xi as the finite difference solution converges to the
correct solution. We will discuss the finite difference error in much more detail below.

Differential equations involve derivatives, so we must next discuss how to represent derivatives
in a finite difference representation. Consider a partial derivative of f(x) with respect to x.
Assuming that f(x) can be differentiated to sufficiently high order and that it can be represented
as a Taylor series, we have

fi+1 = f(xi + ∆x) = f(xi) + ∆x(∂xf)xi
+

(∆x)2

2
(∂2
xf)xi

+O(∆x3). (6.18)

Solving for (∂xf)xi
= (∂xf)i we find

(∂xf)i =
fi+1 − fi

∆x
+O(∆x). (6.19)

8e.g. Richtmyer and Morton (1967); Roache (1976); Press et al. (2007).
9e.g., Smarr (1979a); Evans et al. (1989).
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In the limit ∆x → 0 equation (6.19) is just the definition of the partial derivative, so this result
should not come as a great surprise. The truncation error of this expression is linear in ∆x, and
it turns out that we can do better. Consider the Taylor expansion to the point xi−1,

fi−1 = f(xi −∆x) = f(xi)−∆x(∂xf)xi
+

(∆x)2

2
(∂2
xf)xi

+O(∆x3). (6.20)

Subtracting (6.20) from (6.18) we now find

(∂xf)i =
fi+1 − fi−1

2∆x
+O(∆x2), (6.21)

which is second order in ∆x, meaning that the truncation error drops by a factor of four when we
reduce the gridspacing by a factor of two.10 The key point is that we are able to combine the two
Taylor expansions in such a way that the leading order error term cancels out, leaving us with a
higher order representation of the derivative. This cancellation only works out for uniform grids,
when ∆x is independent of x. This is one of the reasons why many current numerical relativity
applications of finite difference schemes work with uniform grids.

Exercise 6.4 The finite difference representation (6.21) being second order implies that it should be
exact for any arbitrary polynomial up to second order. Verify that it indeed gives the correct derivative
of a polynomial f(x) = a+ bx+ cx2, independently of x and ∆x.

We call equation (6.19) a one-sided derivative, since it uses only neighbors on one side of xi,
and (6.21) a centered derivative. In general, centered derivatives lead to higher order schemes
than one-sided derivatives for the same number of gridpoints. Exercise 6.4 shows that we can
also construct one-sided, higher order difference schemes, but they will involve more than two
gridpoints.

Exercise 6.5 Construct a second order, one-sided finite difference approximation of ∂xf , i.e., generalize
equation (6.19), using only neighbors on one side of xi, so that the truncation error becomes O(∆x2).
Verify your result by showing that it gives the exact result for an arbitrary polynomial f(x) = a+ bx+
cx2, as in exercise 6.4.

Higher order derivatives can be constructed in a similar fashion. Adding the two Taylor
expansions (6.18) and (6.20) all terms odd in ∆x drop out and we find for the second derivative

(∂2
xf)i =

fi+1 − 2fi + fi−1

(∆x)2
+O(∆x2). (6.22)

This expression is second order because the third order terms in equations (6.18) and (6.20) cancel
out in the addition. An alternative derivation of the second derivative (6.22) proceeds as follows.
First write the first derivative at an indermediate gridpoint xi+1/2 as (fi+1−fi)/∆x and similar at
xi−1/2. The second derivative at xi is then the derivative of the derivative, which we can compute
from the difference between (∂xf)i+1/2 and (∂xf)i−1/2. The result is equation (6.22), and it is
second order accurate because all differences involved in the derivation were properly centered.

Numerical relativity codes often use finite-difference representations that are higher than second
order. These can be derived in complete analogy to our above derivation of the second-order

10This is correct only in the limit of small ∆x since for finite ∆x the higher order error terms also contribute to
the truncation error.
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stencils. The key idea is that we want to express the derivative of a function at a certain gridpoint,
say (∂xf)i, as a linear combination of function values at this and neighboring gridpoints. To do so
we can write the function values at these neighboring gridpoints in terms of a Taylor expansion
about the gridpoint i, and then combine these expressions in such a way that all terms up to
a desired order cancel out. For centered, second-order derivatives, we only need the immediate
neighbors, i.e. the gridpoints i + 1 and i − 1, but for higher-order expressions a larger number
of gridpoints is required. As an example, we ask the reader to work out the first and second
derivative of a function to fourth order in the exercise below.

Exercise 6.6 Show that centered, fourth-order finite-difference representations of the first and second
derivatives of a function f are given by

(∂xf)i =
1

12∆x
(fi−2 − 8fi−1 + 8fi+1 − fi+2) (6.23)

and
(∂2

xf)i =
1

12(∆x)2
(−fi−2 + 16fi−1 − 30fi + 16fi+1 − fi+2), (6.24)

where we have omitted the truncation error, O(∆x4).

6.2.2 Elliptic Equations

As an example of a simple, one-dimensional elliptic equation consider

∂2
xf = s. (6.25)

For concreteness, let us assume that the solution f is a symmetric function about x = 0, in which
case we can restrict the analysis to positive x and impose a Neuman condition at the origin,

∂xf = 0 at x = 0. (6.26)

(Note that antisymmetry would result in the Dirichlet condition f = 0 at x = 0.) Let us also
assume that f falls off with 1/x for large x, which results in the Robin boundary condition

∂x(xf) = 0 as x→∞. (6.27)

We will further assume that the source term s is some known function of x.
We now want to solve the differential equation (6.25) subject to the boundary conditions (6.26)

and (6.27) numerically. To do so, we first have to construct a numerical grid that covers an interval
between xmin = 0 and xmax. Unless we compactify11 the physical interval [0,∞] with the help of
a new coordinate, for example ξ = x/(1 + x), finite computer resources will allow a uniform grid
to extend to only a finite value xmax. We then divide the interval [xmin, xmax] into N gridcells,
leading to a gridspacing of

∆x =
xmax − xmin

N
. (6.28)

We can choose our grid points to be located either at the center of these cells, which would be
referred to as a cell-centered grid, or on the vertices, which would be refered to as a vertex-centered
grid. For a cell-centered grid we have N grid points located at

xi = xmin + (i− 1/2)∆x, i = 1, . . . , N, (6.29)

11To compactify is to bring the outer boundary at x = ∞ into a finite value ξ < ∞ by means of a coordinate
transformation from x to ξ.
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x

x = 0 x = x
max

gridpoints gridcells

i =  0        1        2        3        4        5        6        7        8        9

Figure 6.2: A cell-centered grid with 8 grid points. The virtual grid points 0 and 9 lie outside of
the domain between x = 0 and x = xmax and do not need to be allocated in the computational
grid.

whereas for a vertex centered grid we have N + 1 gridpoints located a

xi = xmin + (i− 1)∆x, i = 1, . . . , N + 1. (6.30)

For now, the difference between between cell-centered and vertex-centered grids only affects the
implementation of boundary conditions, but not the finite difference representation of the differ-
ential equation itself. For concreteness, we will use a cell-centered grid as illustrated in Fig. 6.2.

We are now ready to finite difference the differential equation (6.25) together with the boundary
conditions (6.26) and (6.27). We define two arrays, fi and si, which represent the functions f and
s at the gridpoints xi for i = 1, . . . , N .12 In the interior of our domain we can represent the
differential equation (6.25) as

fi+1 − 2fi + fi−1 = (∆x)2 si i = 2, . . . , N − 1, (6.31)

where we have used the second order expression (6.22) for the second derivative of f . At the lower
boundary point i = 1 the neighbor i− 1 does not exist in our domain, and, similarly, at the upper
boundary point i = N the point i + 1 does not exist. At these points we have to implement the
boundary conditions (6.26) and (6.27), which can be done in many different ways.

One approach is the following. Consider, at the lower boundary, the virtual grid point x0,
positioned at x = −∆x/2. The two grid points x0 and x1 then bracket the boundary point
xmin = 0 symmetrically. Using the centered differencing (6.21) we can then write the boundary
condition (6.26) as

(∂xf)1/2 =
f1 − f0

∆x
= 0 , (6.32)

or
f1 = f0 , (6.33)

to second order in ∆x. For i = 1 we can now insert equation (6.33) into equation (6.31), which
yields

fi+1 − fi = (∆x)2 si i = 1. (6.34)

We have used the virtual grid point x0 to formulate the lower boundary condition, but it does not
appear in the final finite difference equation, and therefore does not need to be included in the
computational arrays.

12In many computing languages, including C++, the first element of an array is refered to as i = 0.
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We can use a similar strategy at the upper boundary. With the help of a virtual grid point
xN+1 we can write the boundary condition (6.27) to second order in ∆x as

fN+1 =
xN
xN+1

fN =
xN

xN + ∆x
fN . (6.35)

We can again insert this into (6.31) for i = N and find(
xi

xi + ∆x
− 2

)
fi + fi−1 = (∆x)2 si i = N. (6.36)

Equations (6.31), (6.34) and (6.36) now form a coupled set of N linear equations for the N
elements fi that we can write as

−1 1 0 0 0 0 0
1 −2 1 0 0 0 0

0
. . . . . . . . . 0 0 0

0 0 1 −2 1 0 0

0 0 0
. . . . . . . . . 0

0 0 0 0 1 −2 1
0 0 0 0 0 1 xN/(xN + ∆x)− 2


·



f1

f2
...
fi
...

fN−1

fN


= (∆x)2



s1

s2
...
si
...

sN−1

sN


(6.37)

or, in a more compact form,

A · f = (∆x)2 S. (6.38)

The solution is given by

f = (∆x)2 A−1 · S, (6.39)

where A−1 is the inverse of the matrix A, so that we have reduced the problem to inverting an
N ×N matrix. All equations entering (6.37) are accurate to second order, so that the solution f
approaches the correct solution with (∆x)2 as the leading order error term.

The matrix A is tridiagonal, meaning that the only non-zero entries appear on the diagonal
and its immediate neighbors. This helps tremendeously, since tridiagonal matrices can be inverted
quite easily at small computational cost,13 even for moderately large N . In particular, matrix
inversion of tridiagonal matrices can be implemented in a way that does not require storing all N2

elements (the vast majority of which vanish anyway), but instead only the diagonal band with its
two neighbors.

The situation becomes more complicated in higher dimensions. Consider, for example, Pois-
son’s equation in Cartesian coordinates in flat space,

∇2f = ∂2
xf + ∂2

yf = s. (6.40)

We now construct a two-dimensional grid in complete analogy to the one-dimensional grid dis-
cussed above. We will denote the Nx grid points along the x-axis by xi, and the Ny grid points
along the y-axis by yj. The functions f(x, y) and s(x, y) are then represented on a two-dimenional
grid and we write, for example,

fi,j = f(xi, yj). (6.41)

13See, e.g., Press et al. (2007).



6.2. FINITE DIFFERENCE METHODS 171

i

j

I

Figure 6.3: An illustration for a super-index I that sweeps through a two-dimensional grid (i, j).

If we choose equal gridspacing in the x and y directions, ∆ = ∆x = ∆y, we can finite difference
equation (6.40) as

fi+1,j + fi−1,j + fi,j+i + fi,j−1 − 4fi,j = ∆2 si,j. (6.42)

As before we can write these coupled, linear equations (together with finite-difference represen-
tations of the boundary conditions) as one big matrix equation provided we absorb the two-
dimensional arrays fi,j and si,j into one-dimensional vector arrays. We can do this, for example,
by constructing vector arrays FI and SI of length Nx ×Ny, where the super-index I, given by

I = i+Nx(j − 1), (6.43)

runs over the entire two-dimensional grid (i, j) (see Fig. 6.3). Given a super-index I we can
reconstruct i and j from

j = I mod Nx + 1 (6.44)

i = I −Nx(j − 1). (6.45)

Exercise 6.7 Consider a three-dimensional grid of size Nx ×Ny ×Nz. Construct a one-dimensional
index I that runs over the entire grid (i, j, k), and provide expressions that recover i, j and k from I.

We can now write (6.42) as

FI+1 + FI−1 + FI+Nx + FI−Nx − 4FI = ∆2 SI (6.46)

and cast the problem as a matrix equation for the vector FI . For gridpoints (i, j) in the interior
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(i.e. away from the boundaries) the equation takes the form



. . . . . . . . . . . . . . .

· · · 1 · · · 1 −4 1 · · · 1 · · ·
. . . . . . . . . . . . . . .


·



...
FI−Nx

...
FI−1

FI
FI+1

...
FI+Nx

...


= ∆2



...
SI−Nx

...
SI−1

SI
SI+1

...
SI+Nx

...


(6.47)

Evidently the matrix A is no longer tridiagonal. If the boundary conditions cooporate (and they
often do), it still is band diagonal, however, which means that the only nonvanishing elements
reside on bands parallel to the diagonal (this is also called “tridiagonal with fringes”). The size
of A is now NxNy ×NxNy, but special software exists that takes advantage of the banddiagonal
structure, and requires storing only those nonvanishing bands. In this case we need five bands.
Exercise 6.7 shows that even for a two-dimensional covariant Laplace operator, as opposed to the
flat Laplace operator in equation (6.40), we are already up to nine nonvanishing bands.

Exercise 6.8 Instead of Poisson’s equation in flat space as given by equation (6.40), consider the
two-dimensional covariant version,

∇2f = ∇a∇af = gab∇a∇bf = gab∂a∂bf − Γa∂af = s. (6.48)

Here the indices a and b only run over x and y, f is a scalar function, and Γa = gbcΓa
bc. Do not assume

the metric gab to be diagonal. Retrace the steps that led from the differential equation (6.40) to the
finite difference matrix equation (6.47) and find the matrix A (away from the boundaries).

Not surprisingly, the problem becomes even more involved in three dimensions. Exercise 6.9
shows that a covariant Laplace operator in three dimensions leads to 19 nonvanishing bands in
matrix A.

Exercise 6.9 Consider Poisson’s equation in three spatial dimensions in flat space,

∂2
xf + ∂2

yf + ∂2
zf = s . (6.49)

(a) Retracing the steps from equation (6.40) to equation (6.47), determine the structure of the matrix
A.
(b) Consider the covariant Laplace equation (6.48) in three dimensions and Cartesian coordinates and
find A for this problem.

The problem becomes so large, especially in three dimensions, that solving the equations
by direct matrix inversion is either impossible or impractical; it simply becomes too expensive
computationally. We therefore have to look for alternative methods of solution.

Sticking with our example in two dimensions, another approach becomes apparent if we re-write
equation (6.42) in the form

fi,j =
1

4
(fi+1,j + fi−1,j + fi,j+i + fi,j−1)−

∆2

4
si,j. (6.50)
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Prolongation Restriction

Figure 6.4: An illustration of a multigrid method.

Evidently, finite differencing the flat-space Laplace operator results in each grid function at every
grid point being directly related to the average value of its nearest neighbors. We could then
start with an initial guess for a solution and then sweep through the grid and update fi,j at each
gridpoint according to equation (6.50). This approach is an example of a relaxation scheme. Many
variations are possible. If we only use values from the previous sweep on the right hand side of
equation (6.50), this scheme is known as Jacobi’s method; if instead we use values that have
already been updated in the current sweep, it is called the Gauss-Seidel method, which converges
faster. Unfortunately, neither method converges rapidly enough to be of much practical use, even
on modest grids.

An improvement over these methods is most easily explained in terms of the residual Ri,j at
each grid point, defined as

Ri,j = fi+1,j + fi−1,j + fi,j+i + fi,j−1 − 4fi,j −∆2 si,j, (6.51)

which measures the deviation between the right hand and left hand sides of equation (6.42). In
terms of the residual we can write Jacobi’s method as

fN+1
i,j = fNi,j +

1

4
RN
i,j, (6.52)

where the superscript N labels the N -th sweep through the grid. This recipe implies that in each
sweep we correct each gridpoint by adding a number that is proportional to the local residual.
The idea behind successive overrelaxation (SOR) is to over-correct each gridpoint, and to modify
equation (6.52) according to

fN+1
i,j = fNi,j +

ω

4
RN
i,j, (6.53)

where ω is some positive number. We refer to ω < 1 as underrelaxation, and to 1 < ω < 2 as
overrelaxation; for values of ω larger than two the scheme does not converge. For a good choice
of ω, with 1 < ω < 2, overrelaxation can improve convergence significantly.

For most applications in three dimensions even SOR is not sufficiently fast, so that alternative
techniques are needed. One alternative is a multigrid method, which combines the advantages of
direct solvers and relaxation.14

In multigrid methods, which we illustrate in Fig. 6.4, the numerical solution is computed on
a hierarchy of computational grids with increasing grid resolution. The finer grids may or may

14An introduction to multigrid and “full approximation storage” methods, together with references, can be found
in Press et al. (2007).
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not cover all the physical space that is covered by the coarser grids. The numerical solution is
then computed by completing sweeps through the grid hierarchy. The coarse grid is sufficiently
small so that we can compute a solution with a direct solver (i.e. direct matrix inversion). This
provides the “global” features of the solution, albeit on a coarse grid and hence with a large
local truncation error. We then interpolate this approximate solution to the next finer grid. This
interpolation from a coarser grid to a finer grid is called a “prolongation”, and we point out
that the details of this interpolation depend on whether the grid is cell-centered (as illustrated in
Fig. 6.4) or vertex-centered. On the finer grid we can then apply a relaxation method, for example
a Gauss-Seidel sweep. While this method is too slow to solve the problem globally, as we have
discussed above, it is very well suited to improve the solution locally. This step is often called a
“smoothing sweep”. After this smoothing sweep the solution can be prolonged to the next finer
grid, where the procedure is repeated. Once we have smoothed the solution on the finest grid,
we start ascending back to coarser grids. The interpolation from a finer grid to a coarser grid is
called a “restriction”. The coarser grids now “learn” from the finer grids by comparing their last
solution with the one that comes back from a finer grid. This comparison provides an estimate
for the local truncation error, which can be accounted for with the help of an artificial source
term. On each grid we again perform smoothing sweeps, again improving the solution because we
inherit the smaller truncation error from the finer grids. On the coarsest grid we again perform
a direct solve, as on the finer grids with an artificial source term that corrects for the truncation
error, to improve the global features of the solution. These sweeps through the grid hierarchy can
be repeated until the solution has converged to a pre-determined accuracy.

Another popular method is the conjugate gradient method, which is also designed for large,
sparse matricies. There are discussions in the literature where the method is implemented for
applications in numerical relativity.15

The good news is that several software packages that provide many of the most efficient and
robust elliptic solvers are publically available. These routines are all coded up, including for parallel
environments.16 With the help of these packages the user “only” needs to specify the elements of
the matrix A (preferably in some band-diagonal structure so that only the nonvanishing bands
need to be stored) together with the source term s on the right hand side. The user can then
choose between a number of different methods to solve the elliptic equations.

Before closing this Section we briefly discuss nonlinear elliptic equations. Consider an equation
of the form

∇2f = fng, (6.54)

where g is a given function and n is some number. Equation (6.54) reduces to the linear equa-
tion (6.40) when n = 0. The equation is still linear for n = 1 and, upon finite differencng, again
gives rise to coupled, linear equations that are straighforward to solve by the same matrix tech-
niques discussed above. We note that equation (4.9) for the lapse function α in maximal slicing
contains a linear source term of this form, with n = 1. But what about the situation for other val-
ues of n, resulting in a nonlinear equation for f? For example, the Hamiltonian constraint (3.37)
for the conformal factor ψ contains several source terms with n = 1, n = 5 and n = −7.17 As

15See, e.g., Oohara et al. (1997).
16Examples include PETSc, available at acts.nersc.gov/petsc/, and LAPACK, available at

www.netlib.org/lapack/. Some of the algorithms discussed above are also implemented as modules (or
“thorns”) within Cactus (available at www.cactuscode.org), a parallel interface for performing large-scale
computations on multiple platforms.

17We remind the reader that, depending on the sign of the exponent n, the solution to equation (6.54) may not
be unique; see Exercise 3.8 for an example.
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we shall now sketch, we can solve such a nonlinear equation with very similar matrix techniques,
provided we linearize the equation first and then iterate to get the nonlinear solution.

Let us denote the solution after N iteration steps as fN . We could take a very crude approach
and insert fN on the right-hand side of equation (6.54) and solve for the next iteration fN+1 on
the left-hand side. Defining the correction δf from

fN+1 = fN + δf (6.55)

we can write this scheme as

∇2δf = −∇2fN + (fN)ng. (6.56)

The right-hand side is the negative residual of the equation after N steps,

RN = ∇2fN − (fN)ng, (6.57)

so equation (6.56) becomes

∇2δf = −RN (not recommended). (6.58)

Evidently this is now a linear equation for the corrections δf , which we can solve with the methods
discussed above. The corrections δf also become smaller as the residual decreases, as one would
hope. We can do much better, however, and construct an iteration that converges much faster,
by inserting equation (6.55) on the right-hand side of equation (6.54) as well and using a Taylor
expansion

(fN+1)n = (fN)n + n(fN)n−1δf +O(δf 2). (6.59)

We truncate after the linear term (so that the resulting equation is still linear), insert into (6.54),
and find

∇2δf − ng(fN)n−1δf = −RN (recommended). (6.60)

We can think of the difference between equation (6.58) and equation (6.60) as having truncated
the Taylor expansion after the first term on the right-hand side of equation (6.59), and thereby
retaining only the first term on the left-hand side in equation (6.60). Clearly we expect faster
convergence for the latter, which usually is the case.

The price that we pay for the faster convergence is the new term involving δf that appears
on the left hand side of (6.60). The good news is that this term can be dealt with quite easily.
Equation (6.60) is of the form

∇2f + uf = s, (6.61)

where, comparing with the model equation (6.25) that we considered above, the term uf is new.
The exact finite difference form of this equations depends on what kind of Laplace operator we are
dealing with. For a flat Laplace operator in two dimensions, for example, we could finite difference
(6.61) as

fi+1,j + fi−1,j + fi,j+i + fi,j−1 + (ui,j − 4)fi,j = ∆2 si,j. (6.62)

Comparing with (6.42) we see that the new term uf only affects the coefficient of the element fi,j.
In the resulting matrix equation (6.47) we can therefore account for this new term by adding ui,j
to the diagonal of the matrix A. To solve equation (6.60), we simply subtract ng(fN)n−1 from
the diagonal. This can be done very easily, and leads to a significantly faster iteration than using
equation (6.58).
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n

n+1

j−1 j j+1

Figure 6.5: The finite-differencing stencil for the “forward-time centered-space” (FTCS) differenc-
ing scheme.

6.2.3 Hyperbolic Equations

We now turn to hyperbolic equations. As a model of hyperbolic equations, consider a “scalar”
version of equation (6.7)

∂tu+ v∂xu = 0. (6.63)

Equation (6.63) is sometimes referred to as the model advective equation, for obvious reasons.
For simplicity it does not contain any source terms, and the the wave speed v is constant. The
equation is satisfied exactly by any function of the form u(t, x) = u(x − vt). In contrast to the
elliptic equations of Section 6.2.2 the equation has a time derivative in addition to the space
derivative, and thus requires initial data. A finite difference representation of this time derivative
must involve at least two neighboring time levels. We will first consider two-level schemes.

As we have seen in Section 6.2.1, we can achieve a second-order differencing scheme for the
space derivative in equation (6.63) by using the centered finite difference expression

(∂xu)nj =
unj+1 − unj−1

2∆x
+O(∆x2). (6.64)

Since we have decided to use a two-level scheme, a one-sided and first-order expression

(∂tu)nj =
un+1
j − unj

∆t
+O(∆t) (6.65)

for the time derivative will have to suffice for now. Inserting both finite-difference representations
into equation (6.63) we can solve for un+1

j and find

un+1
j = unj −

v

2

∆t

∆x
(unj+1 − unj−1). (6.66)

For reasons that are quite obivous this differencing scheme is called forward-time centered-space,
or FTCS (see Fig. 6.5). It is an example of an explicit scheme, meaning that we can solve for the
grid function un+1

j at the new time level n+ 1 directly in terms of function values on the old time
level n. This is a very convenient feature, because, given all the values at the time level n, we
can simply loop through the entire grid at the new time level n + 1 and update each grid point
independently of all the other grid points; i.e., the un+1

j are uncoupled.
Unfortunately, however, FTCS is fairly useless. To see this, we perform a von Neumann stability

analysis, which is basically a linear eigenmode analysis to test a time-dependent numerical scheme
for stability. For constant coefficients, as in the case of our model equation (6.63), we can write the
solution u(t, x) to our continuum hyperbolic differential equation as a superposition of eigenmodes
ei(ωt+kx). Here k is a spatial wave number, ω = ω(k) the wave frequency, and, at the risk of stating
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the obvious, i =
√
−1 (and not a grid index). We can determine the dispersion relation between

ω and k by inserting the modal decomposition back into the differential equation. A real ω, for
which eiωt has a magnitude of unity, yields sinusoidally oscillating modes, while the existence of a
complex piece in ω leads to exponentially growing or damping modes. In the case of exponential
growth, the magnitude of eiωt will exceed unity.

We can perform a similar spectral analysis of the finite difference equation. Write the eigenmode
for unj as

unj = ξneik(j∆x) . (6.67)

Here the quantity ξ plays the role of eiω∆t and is called the amplification factor: unj = ξun−1
j =

ξ2un−2
j . . . = ξnu0

j . We can find the dependence of ξ on wave number k by inserting equation (6.67)
into the finite difference form of the differential equation. For the scheme to be stable, the mag-
nitude ξ must be smaller or equal to unity for all k,

|ξ(k)| ≤ 1 von Neumann stability criterion. (6.68)

To perform a von Neumann stability anaylsis of the FTCS scheme we substitute the decom-
position (6.67) into (6.66) and find

ξ(k) = 1− i
v∆t

∆x
sin k∆x. (6.69)

Equation (6.69) shows that the magnitude of ξ is greater than unity for all k, indicating that this
scheme is unstable. In fact, we have |ξ| > 1 independently of our choice for ∆x and ∆t, which
makes this scheme unconditionally unstable. That is bad.

Exercise 6.10 Derive equation (6.69).

The good news is that there are several ways of fixing this problem. For example, we could
replace the term unj on the right-hand side of equation (6.66) by the spatial average (unj+1+unj−1)/2,
in which case equation (6.66) becomes

un+1
j =

1

2
(unj+1 + unj−1)−

v

2

∆t

∆x
(unj+1 − unj−1). (6.70)

This differencing scheme is called the Lax method.

Exercise 6.11 Show that a von Neumann analysis for the Lax method results in the amplification
factor

ξ = cos k∆x− i
v∆t
∆x

sin k∆x. (6.71)

The von Neumann stability criterion (6.68) then implies that we must have

|v|∆t
∆x

≤ 1 (6.72)

for stability. This is known as the Courant-Friedrichs-Lewy condition, or Courant condition for
short, and it holds for many explicit finite difference schemes for hyperbolic equations. We call
the ratio between |v|∆t and ∆x the Courant factor.
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Domain of determinacy
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n

n+1

n

n+1

Figure 6.6: The Courant condition for many explicit finite difference implementations of hyperbolic
equations requires the new grid point un+1

j to lie inside the domain of derterminacy of the finite
difference stencil on the previous time level n.

Recalling that v represents the speed of a characteristic, we may interpret the Courant condition
in terms of the domain of determinacy that we introduced in Section 6.1. Consider the situation
sketched in Fig. 6.6. The Courant condition (6.72) states that the the grid point un+1

j at the new
time level n+1 has to reside inside the domain of determinacy of the interval spanned by the finite
difference stencil at the time level n. This makes intuitive sense: if un+1

j were outside this domain,
its physical specification would require more information about the past than we are providing
numerically, which may trigger an instability.

As we have seen, the Lax scheme is stable as long as we have chosen ∆t sufficiently small so
that it satisfies the Courant conditon (6.72). This makes the Lax scheme conditionally stable.

It seems somewhat like a miracle that simply replacing a grid function by a local average
manages to change the numerical scheme from unconditionally unstable to conditionally stable.
This change can be interpreted in very physical terms, however. Adding and subtracting unj on
the right hand side of equation (6.70) allows us to rewrite the equation as

un+1
j = unj +

1

2
(unj+1 − 2unj + unj−1)−

v

2

∆t

∆x
(unj+1 − unj−1) , (6.73)

or
un+1
j − unj

∆t
= −v

unj+1 − unj−1

2∆x
+

(∆x)2

2∆t

unj+1 − 2unj + unj−1

(∆x)2
. (6.74)

But equation (6.74) is a finite-difference representation of the differential equation

∂tu+ v∂xu = D∂2
xu, (6.75)

where the term on the right-hand side is essentially a diffusion term, with parameter D =
(∆x)2/(2∆t) serving as a constant coefficient of diffusion. Such a term is identical to the one
appearing in the right-hand side of the equations of particle and radiative diffusion and thermal
conduction. It is also similar to the dissipation term arising from shear viscosity in the Navier-
Stokes equation (see, e.g., the terms proportional to η on the right hand side of (5.71)). Clearly
in the context of the model advective equation this term is purely numerical in nature and disap-
pears, for a constant Courant factor |v|∆t/∆x, in the limit ∆x→ 0. We call this effect numerical
viscosity; it tends to stabilize numerical schemes, but also introduces numerical errors in the form



6.2. FINITE DIFFERENCE METHODS 179

of anomalous diffusion and dispersion.18 In particular, a Courant stability analysis for the Lax
scheme shows that for stable evolution the magnitude of the amplification factor is always less
than unity unless |v|∆t ≡ ∆x (in which case |ξ| = 1); this feature implies the amplitude of any
wave will decrease spuriously with time as it propagates. A related effect is anomalous dispersion,
an additional price we pay for stablity in the Lax scheme and many other finite-difference schemes
for hyperbolic systems. When the Courant factor is not precisely unity, there are phase errors that
arise for modes of different wave numbers k. Anomalous dispersion is most serious for high wave
modes k∆x >∼ 1, corresponding to small length scales λ <∼ ∆x. But we should not really expect to
be able to probe features on any scale unless we are prepared to resolve that scale with many grid
points, in which case anomalous dispersion is usually not a problem.

The explicit addition of a diffusive term to the finite-difference representation of a hyperbolic
equation can sometimes be exploited to great advantage. If the term is of sufficiently high order
(e.g., ∂nx where n ≥ 4) then such a term serves to damp the very high frequency modes that can
destabilize the numerical integration of an evolved variable. Moreover, if such a dissipative term
is explicilty multiplied by an overall factor (i.e. “diffusion coefficient”) that is sufficiently small
in magnitude, then the new term will not otherwise distort the numerical solution appreciably.
This is basic idea behind the implementation of Kreiss-Oliger dissipation19 for stabilizing finite-
difference integrations of hyperbolic systems. The technique has proven very useful for stabilizing
many different numerical integration schemes employed in numerical relativity.

There are a number of other ways of constructing stable finite difference schemes for the model
equation (6.63). A popular alternative to the Lax scheme is upwind differencing

un+1
j − unj

∆t
= −v


unj − unj−1

∆x
, v > 0

unj+1 − unj
∆x

, v > 0.
(6.76)

This scheme borrows its name from the fact that for a wave with v > 0, that travels “to the right”,
say, the new grid-point un+1

j is affected only by the “upwind” grid-points to its left, i.e. that lie
in the region through which the wave travels before reaching xj.

Exercise 6.12 Consider the “left-sided” upwind scheme for v > 0. Perform a von Neumann stability
analysis and show that this scheme is stable as long as the Courant condition (6.72) is satisfied. Also
show that the “left-sided” scheme is unstable for v < 0.

As written in equation (6.76) the upwind scheme treats even the spatial derivatives only to first
order in ∆x. This can be improved by replacing the right-hand sides with one-sided, higher-order
finite difference approximations (for example with the stencil found in exercise 6.5).

It would be desirable, however, to have a scheme that is second order in both in space and
time. One way to construct such a code is to abandon two-level schemes, and instead consider a
three-level scheme. We can then construct centered derivatives both for the time-derivative,

(∂tu)nj =
un+1
j − un−1

j

2∆t
+O(∆t2) , (6.77)

and the space derivative (6.64). Putting these two together we have the leap-frog scheme,

un+1
j = un−1

j − v
∆t

∆x
(un+1

j − un−1
j ) (6.78)

18The numerical viscosity introduced here should not be confused with the artificial viscosity introduced in
Chapter 5.2.1.

19Kreiss and Oliger (1973).
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Figure 6.7: Finite difference stencil for the leap-frog scheme.

n+1

n

j−1 j i+1

Figure 6.8: Finite difference stencil for an implicit scheme.

(see Fig. 6.7).

Exercise 6.13 Perform a von Neumann stability analysis to show that the leap-frog scheme is stable, as
long as the Courant condition (6.72) is satisfied, in which case |ξ| = 1 holds exactly. Thus demonstrate
that there is no amplitude damping in this scheme.

Some researchers prefer two-level schemes over three-level schemes because three level schemes
require initial data on two different time levels, which can be somewhat awkward. The leap-frog
scheme has the additional disadvantage that, if picturing the computational grid as a chess board,
it only connects fields of the same color (see Fig. 6.7). “Black” gridpoints can therefore evolve
completely independently of “white” gridpoints, and the two sets of grid points may drift apart as
numerical error accumulates differently for the two sets of points. If necessary, this problem can
be solved by artificially adding a very small viscous term that links the two sets together. Once
these potential issues are resolved, leap-frog is a very simple, accurate and powerful method.

Yet another way of constructing a stable two-level scheme is to use backward time differencing
instead of forward differencing in evaluating the right-hand side of equation (6.66). We simply
evaluate the right-hand side of this equation at the time level n+ 1 instead of n (which results in
a truncation error of the same linear order in ∆t). This approach then yields the “backward-time,
centered-space” scheme,

un+1
j = unj −

v

2

∆t

∆x
(un+1

j+1 − un+1
j−1 ) (6.79)
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(see Fig. 6.8). Performing a von Neumann stability analysis we find the amplification factor

ξ =
1

1 + iC sin k∆x
, (6.80)

where C = v∆t/∆x is the Courant factor, and hence we obtain

|ξ(k)| ≤ 1 (6.81)

for all values of ∆t. This finding means that this scheme is unconditionally stable. The size of the
stepsize ∆t is no longer restricted by stability, and instead is limited only by accuracy requirements.
As we will discuss in Section 6.2.4, this property is even more important for parabolic equations,
but we shall discuss some consequences already in the present context.

The disadvantage of the backward differencing scheme (6.79) is that we can no longer solve
for the new grid function un+1

j at the new time tn+1 explicitly in terms of old grid functions

at tn alone. Instead, equation (6.79) now couples un+1
j with the its closest neighbors un+1

j+1 and

un+1
j−1 . This coupling provides an implicit linear relation between the new grid functions, and is

therefore an example of an implicit finite-differencing scheme (see Fig. 6.8). We can no longer
sweep through the grid and update one point at a time; instead we now have to solve for all
grid points simultaneously. Writing equation (6.79) at all interior grid points, and then taking
into account the boundary conditions, leads to a system of equations quite similar to those we
discussed in the context of elliptic equations in Section 6.2.2. Inverting the resulting linear matrix
equation directly may be feasable in one spatial dimension (e.g., the matrix is tridiagonal in this
example), but it is much harder in higher dimensions. One way to approach this problem is to
cast the grid functions into a single vector array and call upon a routine designed to invert sparse
matricies. Another way is to to deal with only one spatial dimension at a time, updating each
dimension in succession, and iterating until convergence. This later method is an example of the
alternating-direction implicit or ADI method.

The scheme (6.79) is still only first order in time because we are using a one-sided expression
for the time derivative. A second-order scheme would be time-centered, meaning that we should
estimate the the time derivative at the mid-point between the two time levels n and n+ 1,

(∂tu)
n+1/2
j =

un+1
j − unj

∆t
+O(∆t2). (6.82)

Implementing time-centering means that we also have to evaluate the space derivative at this same
midpoint n+1/2, which we can do by averaging between the values at n and n+1. This approach
yields the Crank-Nicholson scheme

un+1
j = unj −

v

4

∆t

∆x

(
(un+1

j+1 − un+1
j−1 ) + (unj+1 − unj−1)

)
, (6.83)

illustrated in Fig. 6.9. Evidently, we can interpret the Crank-Nicholson scheme as the average
between the FTCS scheme (6.66) and the backwards differencing scheme (6.79). Crank-Nicholson
is second order in both space and time, and exercise 6.14 shows that it is unconditionally stable.

Exercise 6.14 Perform a von Neumann stability analysis for the Crank-Nicholson scheme (6.83) and
show that

ξ =
1 + iβ

1− iβ
, (6.84)
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Figure 6.9: Finite difference stencil for the Crank-Nicholson scheme.

where β = (v/2)(∆t/∆x) sin k∆x, so that |ξ(k)| = 1 exactly.

As we found for the fully implicit method (6.79) it is not possible to solve for the new grid
functions un+1

j in the Crank-Nicholson scheme (6.83) explicitly. As an alternative to inverting a
tridiagonal matrix as in the implicit scheme described above, (or the ADI approach in multidi-
mensions), is the iterative Crank-Nicholson scheme that uses a predictor-corrector approach. In
the predictor step we predict the new values un+1

j by using the fully explicit FTCS scheme (6.66)

(1)un+1
j = unj −

v∆t

2∆x
(unj+1 − unj−1), (6.85)

which, as we have seen above, would be unconditionally unstable by itself. In a subsequent
corrector step we use these predicted values (1)un+1

j together with the unj to obtain a time-centered
approximation for the spatial derivative on the right-hand side of equation (6.83). This step yields
the corrected values of the grid function,

(2)un+1
j = unj −

v∆t

4∆x

(
((1)un+1

j+1 − (1)un+1
j−1 ) + (unj+1 − unj−1)

)
. (6.86)

The corrector step can be repeated an arbitrary number times N , always using the previous values
(N−1)un+1

j on the right-hand side to find new corrected values (N)un+1
j . In principle this iteration

should converge to the Crank-Nicholson scheme (6.83), but the stability analysis in exercise 6.15
shows that one must carry out two corrector steps and not more.20

Exercise 6.15 (a) Perform a von Neumann stability analysis for the iterative Crank-Nicholson scheme
and find the amplification factor after N = 0, 1 and 2 iteration steps.
(b) Now expand the amplification factor (6.84) of Exercise 6.14 for the (non-iterative) Crank-Nicholson
scheme in powers of β, and show that the first few terms agree with those you found in part (a).
(c) The result of part (b) suggests that the amplification factor ξ of the iterative Crank-Nicholson
scheme converges for large N to its non-iterative counterpart found in exercise 6.14 with |ξ| = 1, as
we would expect. However, it turns out that it does so in an alternating pattern. To see this, find
the magnitude of ξ for the first few N and show that |ξ| > 1 for N = 0 and 1, but |ξ| < 1 for N = 2
and 3, provided the Courant condition β2 ≤ 1 holds. For N = 4 and 5 we have |ξ| > 1 again, and so
forth. This finding shows that the smallest value of N for which the iterative Crank-Nicholson scheme
is stable with |ξ| < 1 is N = 2. Since this step is already second order accurate, there is no reason to
carry out more corrections.

The iterative Crank-Nicholson scheme is an explicit two-level scheme that is second order
in both space and time. As we will see in Section 6.2.4 it can also handle second-order space
derivatives as they appear in wave equations when they are written in the form (6.5). Since this

20See Teukolsky (2000).
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form is very similar to the 3 + 1 equations and related formulations (see Chapter 11), the iterative
Crank-Nicholson scheme has often been used in numerical relativity simulations.

One restriction of the Crank-Nicholson scheme, as well as its iterative cousin, is that it is only
second-order accurate. It is quite straight-forward to generalize the space differencing to higher
order – as, for example, in exercise 6.6 – but we cannot implement a higher-order time differencing
in a two-level scheme. A popular alternative to these complete finite difference schemes is therefore
the method of lines (or MOL for short).

The basic idea of the method of lines is to finite difference the space derivatives only. In the
above approaches we represented the function u(t, x) on a spacetime lattice, on which the function
u takes the values unj = u(tn, xj). Now we introduce a spatial grid only, at least for now, so that
the function values at these gridpoint, uj(t) = u(t, xj), remain functions of time. As a result, our
partial differential equation for u(t, x) becomes a set of ordinary differential equations for the grid
values uj(t).

As a concrete example we will return to our model advection equation (6.63). We will assume
v > 0, and could choose to use a one-sided, first-order spatial derivative stencil as in the up-wind
scheme (6.76). This would lead us to the set of ordinary differential equations

duj
dt

= −v(uj − uj−1). (6.87)

Equations (6.87) have to be integrated at all gridpoints i, except possibly on the boundaries.
The boundary conditions may either result in ordinary differential equations also, or algebraic
equations, in which case the resulting system is called a “system of differential algebraic equations”
(or DAE).

The next question is how to integrate the ordinary differential equations. To start with some-
thing very simple we could assume a fixed time-step ∆t and use forward Euler differencing as in
equation (6.65), (

duj
dt

)n
=
un+1
j − unj

∆t
+O(∆t). (6.88)

This approach introduces a “time” grid again, labeled by n, and it should not come as a great
surprise that the resulting equation is the upwind scheme (6.76). Likewise, it should not be
surprising that all our stability considerations and the Courant condition (6.72) on ∆t apply
exactly as above.

The appealing feature of the method of lines, however, is that we can use any method for the
integration of the ordinary differential equations that we like. In fact, many such methods, includ-
ing very efficient, high-order methods, are precoded and readily available. One such algorithm is
the ever-popular Runge-Kutta method. To implement, say, a fourth-order scheme for our model
equation (6.63), we could adopt the fourth-order differencing stencil of exercise 6.6 to replace the
spatial derivative, yielding

duj
dt

= − v

12∆x
(ui−2 − 8uj−1 + 8uj+1 − ui+2), (6.89)

and then integrate this set of ordinary differential equations with a fourth-order Runge-Kutta
method. Clearly, this approach is much easier than implementing a fourth-order time differencing
scheme from scratch. Moreover, it is quite straight-forward to generalize this approach to even
higher order. Many readily available ordinary differential equation integrators are also equipped
with an automated step-size control, so that the equations can be integrated in time to a given
predetermined accuracy. All of these considerations make the method of lines a very attractive
algorithm.
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6.2.4 Parabolic Equations

Consider now the prototype parabolic equation (6.2), which, if we assume κ to be constant and
the source tem ρ to vanish, reduces to

∂tφ− κ∂2
xφ = 0. (6.90)

An equation of this form arises in particle and radiative diffusion, as well as in heat conduction.
To finite difference this equation we can start with the simple explicit FTCS scheme as in Section
6.2.3, now using equation (6.22) to represent the spatial derivative, and find

φn+1
j = φnj +

κ∆t

(∆x)2
(φnj+1 − 2φnj + φnj−1). (6.91)

Exercise 6.16 Perform a von Neumann stability analysis for the finite difference equation (6.91) and
show that it is stable as long as

2κ∆t
(∆x)2

≤ 1. (6.92)

The stability criterion (6.92) is the analogue of the Courant condition (6.72) for parabolic
equations. It can be interpreted quite easily in physical terms: condition (6.92) states that the
timestep ∆t must not exceed the time scale required to random walk (diffuse) a distance across
one spatial cell, ∆tran.walk = (∆x)2/2κ.

Exercise 6.17 Consider the two-dimensional diffusion equation

∂tφ− κ(∂2
xφ+ ∂2

yφ) = 0. (6.93)

(a) Finite difference this equation in analogy to the FTCS scheme (6.91), with the same uniform grid
spacing ∆ = ∆x = ∆y in the x and y direction, and show that this scheme is stable as long as the
condition

4κ∆t
∆2

≤ 1 (6.94)

is satisfied.
(b) Recall our earlier discussion suggesting that an elliptic equation of the form

∂2
xφ+ ∂2

yφ = 0 (6.95)

can be solved be integrating the parabolic equation (6.93) until an equilibrium solution with ∂tφ = 0
has been achieved (see, e.g., our discussion of maximal slicing in Chapter 4.2). Show that using the
maximum allowed time step in your FTCS finite difference representation of equation (6.93) yields
Jacobi’s method (6.52), which, as we have discussed in Section 6.2.2, may prove too slow for most
applications in three dimensions.

Unfortunately, the stability criterion (6.92) imposes quite a severe limitation on the size of the
time step. Unlike in the Courant condition (6.72), where ∆t scales linearly with the grid size ∆x,
it now has to decrease with the square of ∆x as we refine the resolution. For many applications
this restriction makes this scheme impractical, since it takes too many timesteps to simulate a
physical process for a sufficiently long total time.

As we have seen in Section 6.2.3 we can overcome this problem by constructing an implicit
differencing scheme. We now evaluate the right-hand side of equation (6.91) at the time level n+1
instead of n, which yields

φn+1
j = φnj +

κ∆t

(∆x)2
(φn+1

j+1 − 2φn+1
j + φn+1

j−1 ). (6.96)
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(see Fig. 6.8). Exercise 6.14 shows that this implicit scheme is unconditionally stable, meaning it
is stable without any condition on the time step ∆t. Clearly this is a huge advantage, since the
stepsize is now limited only by accuracy requirements, and no longer by stability constraints.

Exercise 6.18 Perform a von Neumann stability analysis and show that the scheme (6.96) is uncon-
ditionally stable.

Of course, the implicit nature of the scheme also has disadvantages, as we have discussed in
Section 6.2.3. Instead of being able to sweep through the grid and update one grid point at a
time, we now have to solve for the grid functions at all grid points simultaneously.

Given that with an implicit method the size of the timestep ∆t is limited by accuracy re-
quirements only, it is well-worth improving the accuracy of the scheme. The best candidate for
improvement is the time-derivative, which in equation (6.96) is still implemented only to first
order in the truncation error. A second-order scheme would be centered, meaning that we must
evaluate the time derivative at the mid-point between the two time-levels n and n+1. Centering is
accomplished by averaging the spatial derivatives at the two time levels, and, as in our discussion
in Section 6.2.3, such averaging leads to the Crank-Nicholson scheme

φn+1
j = φnj +

κ∆t

2(∆x)2

(
(φn+1

j+1 − 2φn+1
j + φn+1

j−1 ) + (φnj+1 − 2φnj + φnj−1)
)
. (6.97)

This scheme is second order in both space and time, and exercise 6.19 shows that it is uncondi-
tionally stable.

Exercise 6.19 Perform a von Neumann stability analysis for the Crank-Nicholson scheme (6.97), find
the amplification factor and show that the scheme is unconditionally stable.

We close this Section by recalling that wave equations can be written as the coupled system
(6.5), where, similar to the parabolic equation (6.90), the second equation contains a first time
derivative and a second space derivative (but of opposite sign). Not surprisingly, the computational
methods discussed in this Section are useful for integrating (hyperbolic) wave equations as well.
Since the 3+1 equations and other decompositions related to it are quite similar to equation (6.5)
in structure, these methods are important for many applications in numerical relativity.

6.2.5 Mesh Refinement

As we have discussed in Section 6.2.1, many current numerical relativity codes use a uniform grid
spacing to cover the entire spatial domain. Given that computational resources are limited, so
that we can afford only a finite number of gridpoints, such a “unigrid” implementation may pose a
problem, especially for a dynamical simulation in three spatial dimensions. Imagine, for concrete-
ness, a simulation of a strong-field gravitational wave source, like a compact binary containing
neutron stars or black holes. On the one hand we have to resolve these sources well, so as to
minimize truncation error in the strong-field region. On the other hand, the grid must extend
into the weak-field region at large distances from the sources, so as to minimize error from the
outer boundaries and to enable us to extract the emitted gravitational radiation accurately (see
Chapter 9). One possible solution to this classic “dynamic range” problem is to introduce a new
coordinate system that serves to cover a larger spatial region for the same number of grid points.
For example, replacing a uniform radial grid by one proportional to the logarithm of the radius
can extend the computational domain out to larger distances for the same number of grid points.
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Figure 6.10: A simulation of neutron star coalescence using adaptive mesh refinement Shown are
the lapse function at an early time before merger (left panel) and a late time after merger (right
panel) in the inner part of the computational grid, together with a mesh (representing every other
gridpoint used in the simulation) that shows how the refinement levels track the motion of the
neutron stars. [After Evans et al. (2005)].

It is also possible to introduce a coordinate system that maps spatial infinity to a finite coordi-
nate value (“compactification”).21 These approaches, however, may also introduce new problems.
Consider, for example, the propagation of outgoing gravitational radiation. Its physical wave-
length is fixed but in these new coordinate systems that have their highest spatial resolution in
the strong-field near zone, the radiation is resolved by fewer and fewer grid points as it propagates
out to larger distances. This effect may thus spoil the quality of wave extraction if the coordinate
transformations are too naive.

Exercise 6.20 Show how radial resolution diminishes with increasing radius r for a grid that is uniform
in the logarithmic coordinate y = ln r.

A very promising alternative is mesh refinement, which has been widely developed and used
in the computational fluid dynamics community and is becoming increasingly popular in numer-
ical relativity. In fact, adaptive mesh refinement was instrumental in the discovery of critical
phenomena in general relativity22 and has played a key role in the simulations of binary black
holes.23

The basic idea underlying mesh refinement techniques is to perform the simulation not on
one numerical grid, but on several, as in the multigrid methods for elliptic equations that we
discussed in Section 6.2.2 (see Figure 6.4). A coarse grid covers the entire space, and extends to
large physical separations. Wherever finer resolution is needed to resolve small-scale structures,
as is the case, for example, of a compact binary emitting gravitational radiation, a finer grid is
introduced. Typically, the gridspacing on the finer grid is half that on the next coarser grid, but
clearly other refinement factors can be chosen. The hierarchy can be extended, and typical mesh
refinement applications employ multiple refinement levels.

While the concept is quite simple, many of the details and the implementation of mesh refine-
ment are fairly subtle. In particular, the boundary conditions imposed on the refined grids have to
be posed and implemented with some care, since otherwise waves will reflect off these interfaces,

21Recall the discussion following equation (6.27), which suggests why compactification can be particularly useful
for imposing asymptotic boundary conditions.

22See Chapter 8.4.
23See Chapter 13.
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leading to spurious numerical artifacts.24

Two versions of mesh refinement can be implemented. In the simpler version, called fixed
mesh refinement or FMR, it is assumed that the refined grids will be needed only at known
locations in space that remain fixed throughout the simulation. The center of a pulsating star,
for example, may remain fixed at the origin, so that nested refinements boxes of fixed size and
centered at the origin are adequate to refine the computational domain. The situation is more
complicated for objects that are moving, as is the case for a coalescing binary star system. In this
case we do not know a priori the trajectories of the companion stars, hence do not know which
regions need refining. Moreover, these regions will be changing as the system evolves and the
stars move. Clearly, we would like to move the refined grids with the stars. Such an approach,
whereby the grid is relocated during the simulation to give optimal resolution at each time step, is
called adaptive mesh refinement or AMR.25 An example of an AMR implementation in numerical
relativity, simulating the head-on collision of two neutron stars, is shown in Figure 6.10. Other
examples utilizing FMR and AMR will be cited when we discuss applications in later Chapters.

6.3 Spectral Methods

A general introduction to spectral methods can be found in several books and monographs on the
subject.26 Applications to numerical relativity have been described in many papers and review
articles.27 Here we shall restrict our own discussion to a brief summary of some of the key features
of spectral methods.

6.3.1 Representation of Functions and Derivatives

Spectral methods approximate the solution to a differential equation, say u(x), as a truncated
series in some complete set of basis functions φk(x),

u(x) ' u(N)(x) =
N∑
k=0

ũkφk(x). (6.98)

Here the coefficients ũk, which do not depend on x, are called the spectral coefficients. Evidently we
can express derivatives of u(N)(x) analytically in terms of derivatives of the known basis functions
φk(x), for example

∂xu
(N)(x) =

N∑
k=0

ũk∂xφk(x). (6.99)

Given that we can represent derivative operators exactly, and given that for many applications
contributions from the higher order basis functions φk decrease very quickly with k, the numerical
error in spectral methods often drops off exponentially with N . To achieve the same accuracy as
finite difference methods (for which the error typically falls of with some small power of the number
of gridpoints N), spectral methods often require significantly fewer computational resources, which

24A discussion of these issues in the context of numerical relativity can be found, for example, in Schnetter et al.
(2004) and the references therein.

25See Berger and Oliger (1984).
26See, e.g., Gottlieb and Orszag (1977) and Boyd (2001).
27See, e.g., Bonazzola et al. (1999b), Gourgoulhon (2002) and Pfeiffer et al. (2003). Our treatment draws

significantly from the discussions in these references.



188 CHAPTER 6. NUMERICAL METHODS

makes them a very powerful and attractive alternative. On the downside, spectral methods are
often more complicated to implement then finite difference methods, and they are less suitable for
the modeling of situations in which discontinuities (in either functions or their derivatives) may
occur.

The general idea underlying spetral methods is to write all expressions in the differential
equation and its boundary conditions in terms of the N + 1 basis functions φk(x). We then derive
and solve a set of N + 1 equations for the N + 1 spectral coefficients. The approximate solution
u(N)(x) is then given in terms of the spectral coefficients by equation (6.98). Several choices have
to be made along the way – in particular we have to pick a set of basis functions, and we have
to decide how exactly to construct the conditions on the spectral coefficients imposed by the
differential equation – but before discussing these in more general terms it may be useful to work
through a simple example problem.

6.3.2 A simple example

Consider the one-dimensional, linear differential equation28

∂2
xu− (x6 + 3x2)u = 0 , (6.100)

subject to the boundary conditions

u(−1) = u(1) = 1 . (6.101)

The exact solution to this equation is given by

u(x) = exp

(
x4 − 1

4

)
. (6.102)

For basis functions φk(x) we could simply use polynomials xk, but to satisfy the boundary
conditions (6.101) automatically we will instead employ a polynomial expansion in the form29

u(N) = 1 + (1− x2)(ũ0 + ũ1x+ ũ2x
2 + . . .+ ũNx

N). (6.103)

Our goal now is to determine the coefficients ũk in such a way so as to make the residual, defined
as

R(N) = ∂2
xu

(N) − (x6 + 3x2)u(N) , (6.104)

small. It is not clear, a priori, how to measure the size of this residual. One possible approach is
to evaluate the residual at several points xj.

For concreteness, assume N = 2, in which case the residual (6.104) becomes

R(2) = (2ũ2 + 2ũ0)− 6ũ1x− (3 + 3ũ0 + 12ũ2)x
2 − 3ũ1x

3

+3(ũ0 − ũ2)x
4 + 3ũ1x

5 + (−1− ũ0 + 3ũ2)x
6 (6.105)

−ũ1x
7 + (ũ0 − ũ2)x

8 + ũ1x
9 + 10ũ2x

10.

28This Section follows Section 1.2 of Boyd (2001), who provides this example.
29This expansion is not exactly in the form of equation (6.98), but nevertheless illustrates very nicely some of

the important properties of spectral solutions.
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Figure 6.11: The top panel shows the exact solution u(x) (solid line) and the spectral solution
u(2)(x) (dashed line) to the differential equation (6.100), subject to boundary conditions (6.101).
The bottom panel shows the absolute error u(2)(x)− u(x).

We now need three equations for the three unknown coefficients ũ0, ũ1 and ũ2, so we evaluate
this residual at three points, say x0 = −1/2, x1 = 0, and x2 = 1/2. The resulting set of linear
equations can be represented as the matrix equation

659

256
−1683

512

1171

1024
−2 0 2

659

256
−1683

512

1171

1024




ũ0

ũ1

ũ2

 =


−49

64
0

−49

64

 (6.106)

The solution is given by

ũ0 = ũ2 = − 784

3807
ũ1 = 0. (6.107)

Given the structure of the differential equation (6.100) and the boundary condition (6.101) we
could have guessed that the solution must be symmetric, which implies that all odd coefficients
ũj, including ũ1, must be zero. That means that we only had to search for two coefficients
rather than three, illustrating the fact that it is often useful to think about the solution before
constructing it numerically. This also means that ũ3 must be zero as well, so that our solution’s
leading order error term is the fourth order term.

We plot our spectral solution, together with the exact solution and the error, in Figure 6.10.
The relative error is on the order of 2%, which is remarkable small given that effectively we
constructed the spectral solution with only two free parameters. Clearly, it would not be possible
to achieve this accuracy with only two grid points in a finite difference approach. The accuracy
of the spectral solution does depend, however, on the choices that we have made along the way,
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namely the basis functions φk and the evaluation of the residual. In this simple example problem
we have made more or less ad-hoc choices, partly motivated by the boundary conditions. In the
next Section we will discuss “smarter” choices that are known to work well under quite general
circumstances.

Exercise 6.21 The Chebychev polynomials Tn(x) satisfy the differential equation

(1− x2)1/2 d

dx

(
(1− x2)1/2 dTn(x)

dx

)
= −n2Tn(x) (6.108)

on the interval [−1, 1]. Solutions Tn(x) exist only for certain values of the eigenvalue n, which have to
be determined together with the solution. Show that regular solutions satisfy the boundary conditions

T ′n = n2Tn , x = 1 ,
T ′n = −n2Tn , x = −1. (6.109)

Even if we didn’t know already that the solutions are in fact polynomials we might try expanding them
in terms of polynomials,

Tn(x) '
N∑

k=0

akx
k. (6.110)

For simplicity truncate at N = 2 so that Tn(x) ' a0 + a1x + a2x
2, and express the differential

equation (6.108) and boundary conditions (6.109) in terms of the coefficients a0, a1 and a2. You need
three equations for the three coefficients; two follow from the boundary conditions, and so only one
more condition needs to be supplied by the differential equation. To get this last condition you could
evaluate the differential equation at one point, e.g. x = 0. Instead, leave x undetermined and impose
the differential equation for an arbitrary value x0. Form a set of linear equations for the coefficients a0,
a1 and a2 and show that you can find non-trivial solutions only for the eigenvalues n = 0, 1 and 2. Also
find the corresponding eigenvectors, from which you can construct the Chebychev polynomials. Your
solutions should be independent of x0, indicating that they satisfy the differential equation (6.108) at
all points, which in turn means that your solutions are not just approximate solutions, but in fact give
the correct lowest-order Chebychev polynomials (see equation 6.115 below).

6.3.3 Pseudo-spectral methods with Chebychev polynomials

Consider a differential equation

Lu(x) = s(x), (6.111)

subject to a suitable set of boundary conditions, where L is some differential operator, and s(x) a
source function. Our goal is then to find a set of spectral coefficients ũk associated with the N -th
order polynomial expansion uN(x) of u(x) so that the residual

R = Lu(N) − s (6.112)

becomes small. Different spectral methods differ in how this residual is evaluated.

For example, we could project the residual back into the basis functions φk(x) by perfroming
an overlap integral of equation (6.112) with each of the functions φk(x). If the basis functions
φk(x) all satisfy the boundary conditions, this approach is called a Galerkin method. If on the
other hand the φk(x) do not satisfy the boundary conditions individually and therefore have to be
combined in such a way that the combination satisfies the boundary conditions – which results in
extra equations for the spectral coefficients – this method is called a tau method.
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Alternatively we can evaluate the residual (6.112) at a certain set of N + 1 points xi, called
the collocation points, to derive N + 1 equations for the N + 1 spectral coefficients ũk.

30 This
approach, which we used in the simple example presented in Section 6.3.2, is called a pseudo-
spectral or collocation method. It is also the most popular method in numerical relativity, and we
will therefore focus on this approach.

We still have to choose a set of basis functions. For periodic problems, a Fourier expansion
in sines and cosines is recommended, but for most applications in numerical relativity the most
suitable set of basis functions are Chebychev polynomials.31 The properties of the Chebychev
polynomials also suggest a particular choice for the collocation points.

Chebychev polynomials are defined on the interval [−1, 1] as

Tn(cos θ) = cos(nθ) (6.113)

and satisfy the singular Sturm-Liouville problem

(1− x2)1/2 d

dx

(
(1− x2)1/2dTn(x)

dx

)
= −n2Tn(x). (6.114)

The first few polynomials are

T0(x) = 1 ,

T1(x) = x ,

T2(x) = 2x2 − 1 , (6.115)

T3(x) = 4x3 − 3x ,

T4(x) = 8x4 − 8x2 + 1 ,

(cf. exercise 6.21). Higher-order polynomials can be constructed from the recurrence relation

Tn+1 = 2xTn(x)− Tn−1(x), (6.116)

which holds for n ≥ 1. Chebychev polynomials form a complete set and are orthogonal in the
interval [−1, 1] with a weight w(x) = (1− x2)−1/2,

(Ti, Tj) ≡
2− δi0
π

∫ 1

−1

Ti(x)Tj(x)w(x)dx = δij, (6.117)

where we have defined (Ti, Tj) as the scalar product between Ti and Tj.
The polynomial TN(x) has N zeros in [−1, 1] located at

xi = cos

(
π(k + 1/2)

N

)
, k = 0, 1, . . . , N − 1. (6.118)

30We may later have to replace some of these equations to account for the boundary conditions.
31Boyd (2001) offers the following “Moral Principle 1”:

1. When in doubt, use Chebychev polynomials unless the solution is spatially periodic, in which case ordinary
Fourier series is better.

2. Unless you’re sure another set of basis functions is better, use Chebychev polynomials.

3. Unless you’re really, really sure that another set of basis functions is better, use Chebychev polynomials.

.
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Between these zeros, the Chebychev polynomials take maxima of value 1 or minima of -1 at
locations

xi = cos

(
πk

N

)
, k = 0, 1, . . . , N. (6.119)

At the endpoints at x = ±1 they take values

Tn(−1) = (−1)n , Tn(1) = 1. (6.120)

The facts that the Chebychev polynomials oscillate between +1 and −1, and that two successive
Chebychev polynomials assume their extrema at locations that are staggered, means that the
truncation error due to the neglect of terms of order higher than N is spread more or less “evenly”
over the interval [−1, 1]. This feature is one of the properties that makes these polynomials so
attractive for spectral methods.

Using the orthogonality of the Chebychev polynomials, we can invert equation (6.98) for Cheby-
chev polynomials and compute the coefficients ũk from

ũi = (u, Ti) =
2− δi0
π

∫ 1

−1

Ti(x)u(x)w(x)dx. (6.121)

In reality, however, we cannot evaluate this integral exactly on a computer. A very accurate
method for computing this integral is either Gauss integration, in which case the collocation
points are the N + 1 zeros of TN+1(x) (given by equation (6.118)), or Gauss-Lobatto integration,
for which the collocation points are the N + 1 extrema of TN(x) (given by equation (6.119)). The
latter set includes the boundary at x = ±1, while the former does not.

In the case of Gauss-Lobatto integration, the integral (6.121) for the scalar product between
u(x) and Tj(x) reduces to the discrete expression

ũi =
2

Nci

N∑
k=0

1

ck
ukTi(Xk) , (6.122)

where we have defined

ci =

{
2 , k = 0 or k = N ,
1 , k = 1, . . . , N − 1 ,

(6.123)

and where the collocation points Xi are given by the extrema (6.119). The uk are the values of
the function u(x) at the collocation points,

ui = u(N)(Xi) =
N∑
k=0

ũkTk(Xi). (6.124)

Evidently, with the help of (6.122) and (6.124) we can transform back and forth between the ui’s
or the ũk’s, meaning that we can represent the function u(N) by either of the two sets. Realizing
that the Chebychev polynomials are just cosines in disguise (see their definition equation (6.113)),
we can perform these transformations very efficiently with the help of fast fourier transform (FFT)
techniques, which is another reason for the popularity of Chebychev polynomials.

Evaluated at the collocation points, the orthogonality relation (6.117) becomes the discrete
expression

2

Nck

N∑
k=0

1

ck
Ti(Xk)Tj(Xk) = δij. (6.125)

Exercise 6.22 Verify equation (6.125) by using equations (6.122) and (6.124).
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6.3.4 Elliptic equations

For simplicity, imagine we want to solve the same one-dimensional elliptic equation

∂2
xf(x) = s(x) (6.126)

considered at the beginning of Section 6.2.2. We now write all expressions in this equation in
terms of Chebychev polynomials. Before we can do this, we may first have to perform a coordinate
transformation, since the Chebychev polynomials exist only on the interval [−1, 1], whereas in the
physical problem of interest the coordinate x may span a completely different interval. In the
following we assume that a suitable coordinate transformation has been performed, so that the
new coordinate x indeed covers the interval [−1, 1]. We then expand the function f(x) as

f(x) =
N∑
k=0

f̃kTk(x). (6.127)

As we have said in Section 6.3.1, the beauty of spectral methods lies in the fact that we can express
derivatives of functions analytically in terms of derivatives of the basis functions, so in this case

∂xf(x) =
N∑
k=0

f̃kT
′
k(x), (6.128)

where the prime denotes a derivative with respect to x. The goal is now to express derivatives
of the Chebychev polynomials in terms of Chebychev polynomials themselves. To do that the
identities proven in exercise 6.23 will be useful.

Exercise 6.23 Show that derivatives of Chebychev polynomials satisfy the relation

T ′n(x) = 2nTn−1(x) +
n

n− 2
T ′n−2(x) , n > 2, (6.129)

as well as T ′2(x) = 4T1(x), T ′1(x) = T0 and, evidently, T ′0(x) = 0. Also show that

T ′n(x) = 2n(Tn−1(x) + Tn−3(x) + Tn−5(x) + . . .+ T1(x)) , n even ,
T ′n(x) = 2n(Tn−1(x) + Tn−3(x) + Tn−5(x) + . . .+ T2(x)) + nT0(x) , n odd. (6.130)

Given that the derivatives T ′n(x) are functions like any other, we can expand them as

T ′k(x) =
N∑
l=0

DlkTl(x) (6.131)

where, according to equation (6.121), the coefficients Dlk are the projections of T ′k(x) into Tl(x)
given by

Dlk = (Tl, T
′
k). (6.132)

Inserting equation (6.130) for l ≥ 0 and k ≥ 0 we find

Dlk =



0 1 0 3 0 5 · · ·
0 0 4 0 8 0 · · ·
0 0 0 6 0 10 · · ·
0 0 0 0 8 0 · · ·
0 0 0 0 0 10 · · ·
0 0 0 0 0 0 · · ·
...

...
...

...
...

...
. . .


. (6.133)
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Exercise 6.24 Given a function f(x) expanded as in equation (6.127), we can also write its derivative
f ′(x) as

∂xf(x) =
N∑

l=0

f̃ ′lTl(x). (6.134)

Combining equations (6.128) and (6.131) shows that the expansion coefficients f̃ ′k are related to the
coefficients f̃k by

f̃ ′l =
N∑

k=0

Dlkf̃k. (6.135)

Show that the f̃ ′k’s satisfy

f̃ ′l = 2(l + 1)f̃l+1 + f̃ ′l+2 l < N − 1; l > 0. (6.136)

This recurrence relation can be used to find the derivative of a function f(x) directly from its spectral
coefficients f̃l.

Inserting equation (6.135) into (6.134) we now have

∂xf(x) =
N∑
k=0

N∑
l=0

f̃kDlkTl(x), (6.137)

demonstrating that we can express the first derivative of f(x) in terms of Chebychev polynomi-
als simply by applying the matrix Dlk to the spectral coefficients f̃k. Luckily, we already have
developed all the tools to similarly construct the second derivative of f(x) as it appears in the
differential equation (6.126),

∂2
xf(x) = ∂x

(
N∑
k=0

N∑
l=0

f̃kDlkTl(x)

)
=

N∑
k=0

N∑
l=0

f̃kDlk∂xTl(x) =
N∑
k=0

N∑
l=0

N∑
m=0

f̃kDlkDmlTm(x) .

(6.138)
Defining D2

mk as the square of the matrix Dlk,

D2
mk =

N∑
l=0

DmlDlk, (6.139)

equation (6.138) reduces to

∂2
xf(x) =

N∑
k=0

N∑
m=0

f̃kD
2
mkTm(x), (6.140)

showing that we can construct the second derivative of f(x) by applying Dlk to the spectral
coefficients f̃k twice.

Inserting equation (6.140) into the differential equation (6.126) then yields

N∑
k=0

N∑
m=0

f̃kD
2
mkTm(x) = s(x) . (6.141)

In a pseudo-spectral method we now evaluate this equation at the N + 1 collocation points xi.
Defining

Aki ≡
N∑
m=0

D2
mkTm(xi) , (6.142)
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we can write the resulting N + 1 equations as the simple matrix equation

N∑
k=0

Akif̃k = si, (6.143)

where si = s(xi), hence

f̃k =
N∑
i=0

A−1
ki si . (6.144)

We thus have reduced the problem to matrix inversion.
The attentive reader will recall that for the finite difference methods in Section 6.2.2 we also

reduced the elliptic differential equation into a set of linear equations (e.g., equation (6.37)).
However, to achieve the same accuracy in spectral and finite difference methods we often need
a much smaller number N of basis functions than the number N of grid points. For many
applications spectral methods converge exponentially with increasing N .32 The matrix Aki is
therefore much smaller than the typical matrices encountered for finite difference methods, and
can be inverted much more easily and faster.

So far we have ignored boundary conditions. They can be accounted for by replacing some
of the equations in (6.143) with conditions that inforce the boundary conditions. Imagine, for
example, a boundary condition

f(1) = 0. (6.145)

Since all Chebychev polynomials satisfy Tn(1) = 1, we would then have to require

N∑
k=0

f̃k = 0. (6.146)

This constraint can be inforced by replacing the row in Aki that corresponds to the collocation
point xi = 1 with 1’s.

For elliptic equations containing nonlinear terms we can construct the solution iteratively as
we described towards the end of Section 6.2.2 for finite differencing. For an equation of the form
(6.54), for example, we can linearize the equation around the approximate solution fN after N
iteration steps, find the linear equation (6.60) for the next correction δf , and then solve this linear
equations for δf with the techniques described above.

6.3.5 Initial value problems

Spectral methods applied to initial value problems typically treat the space and time coordinates
differently and expand only the space-dependence into basis functions. This choice is quite similar,
in fact, to the idea behind the method of lines which we discussed at the end of Section 6.2.3 in
the context of finite-difference methods. This approach again converts partial differential equa-
tions into a set of ordinary differential equations in time, in this case for the spectral expansion
coefficients.

As in Section 6.2.3, consider the model advective equation

∂tu+ v∂xu = 0, (6.147)

32See, e.g., Press et al. (2007).
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where the function u = u(t, x) depends on both time and space. Using Chebychev polynomials
we expand this function as

u(t, x) ' u(N) =
N∑
k=0

ũk(t)Tk(x), (6.148)

which, when inserted into equation (6.147), yields

∂t

N∑
k=0

ũk(t)Tk(x) + v
N∑
k=0

ũk(t)∂xTk(x) = 0. (6.149)

We again have to evaluate this equation N + 1 times to derive N + 1 equations for the N + 1
spectral coefficients. In a Galerkin method we would take the scalar product of the equation with
the basis functions Tl(x) themselves, which would yield linear equations for the spectral coefficients
ũk(t). In numerical relativity, pseudo-spectral methods are more commonly used, for which we
evaluate equation (6.149) at the N + 1 collocation points Xi given by equation (6.119). We then
find equations for the functions ui according to

∂tui(t) = −v
N∑
k=0

ũk(t)T
′
k(Xi) = −v

N∑
l=0

ũ′l(t)Tl(Xi) , (6.150)

where we have expressed the derivatives T ′k(Xi) in terms of the Chebychev polynomials themselves
using equations (6.131) and (6.135).

We can evaluate the right-hand side of equation (6.150) as follows. For a set of functions ui
(at a certain time t) use equation (6.122) to find the spectral coefficients ũk, then find the ũ′k (for
example from the recurrence relation (6.135)), and finally perform the sum in equation (6.150).
Using Chebychev polynomials both the first and last step can be carried out with fast Fourier
transforms.

Since we have expressed the spatial derivative of u in terms of derivatives of the basis functions
Tk(x), the equations (6.150) can now be treated like ordinary differential equations for the ui, and
a variety of methods can be used for their integrations. Given that we have invested a fair amount
of effort in the accurate representation of the spatial derivatives, it would be a waste not to treat
the time derivatives with some care as well. It is therefore reasonably common to integrate these
equations with an explicit fourth-order Runge-Kutta method. As for the explicit finite-difference
methods discussed in Section 6.2.3 the time step ∆t is limited by a Courant stability criterion.
For the uniform-grid methods in Section 6.2.3 we found that typically ∆t ∼ ∆x ∼ N−1. Here,
however, the collocation points cluster near the domain boundaries – from equation (6.119), the
distance ∆x between the collocation points X0 and X1, for example, is 1 − cos(π/N) ∼ N−2 –
which reduces the limit to ∆t ∼ N−2. This is less severe than it may sound, since N is typically
much smaller for spectral methods than for finite difference methods, and if needed this problem
can also be avoided by implementing implicit methods.

6.3.6 Comparison with finite difference methods

It may be useful to include a brief comparison between the respective advantages and disadvantages
of finite difference and spectral methods. There are other methods for solving partial differential
equations, of course, like finite element, Monte Carlo and variational methods, but since these
have not been adopted widely in numerical relativity we omit a discussion of them.
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The most attractive feature of spectral methods is the fact that, for many situations, solutions
converge exponentially with the number of basis functions. That means that for a fixed allocation
of computational resources, spectral methods can often achieve a much higher accuracy than
finite difference methods, which yield solutions that converge only as some power of the number
of gridpoints.

One of the disadvantages of spectral methods is that they can work well only when the solution
functions are well represented by the basis functions. In particular this means that the solutions
should be smooth, meaning that the functions and all their derivatives must be continuous (unless
the adopted basis functions are chosen to reflect any known discontinuous behavior). If this is
not the case, so-called “Gibbs phenomena” may appear (i.e., spurious oscillations of the spectral
solution near discontinuities), and this behavior adversely affects the convergence of the method.

As a consequence, spectral methods have been most successful for situations in which the
solutions are indeed smooth. One example in the context of numerical relativity are initial data
for binary black holes (see Chapter 12), for which all gravitational fields are expected to be
smooth outside of the black holes. For binary neutron star initial data the situation is already
more complicated, since the matter variables may have discontinuous derivatives on the stellar
surfaces. This problem can be circumvented by introducing “surface-fitting” coordinate patches.
The stellar interiors and exteriors are then handled on different computational domains. In each
one of them the solutions are smooth, and the different patches are glued together with suitable
boundary conditions on the stellar surfaces. This approach works well as long as the surface does
not develop cusps, which may result in Gibbs phenomena. This may happen, for example, just
before the star is tidally disrupted by a binary companion. We will discuss techniques and results
for binary neutron star initial data in Chapter 15, and for black hole-neutron star binaries in
Chapter 17.1.

The most attractive features of finite difference methods are their ease of implementation and
their robustness. In general, it is reasonably straight-forward to implement at least a low-order
finite difference algorithm, and in general these algorithms are reasonably robust, and are less
sensitive to the properties of the solutions than spectral methods are. These observations probably
explain why, with some notable exceptions, most recent dynamical simulations of binary mergers
have been carried out with finite difference simulations. This is especially true of simulations
involving fluid stars, where the presence of discontinuous shocks proves particularly challenging
for spectral methods. We will describe simulations of binary black holes in Chapter 13, for binary
neutron stars in Chapter 16, and for black hole-neutron star binaries in Chapter 17.2, where we
will summarize some of the different methods used to perform them.

6.4 Code validation and calibration

Before closing this Chapter we should briefly discuss some general strategies for testing numerical
codes. One obvious code test is to use the code to treat a case in which an analytical solution, or
at least some very accurate numerical solution, is available for comparison. For example, a code
that is designed to evolve multiple spinning black holes could used to simulate a single, stationary
black hole. The results could then be compared with a stationary Kerr spacetime. Even if we were
careful to employ only gauge-invariant quantities in performing such comparisons, we inevitably
would find that the numerical results do not agree exactly with the analytical results. The reason
for the discrepancy would be that, with very few exceptions, any numerical calculation will always
have some truncation error. Comparing a single simulation with an analytical solution is therefore
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not very meaningful, because it would not be possible to distinguish a deviation caused by a coding
error from a truncation error. A more meaningful test, one that can distinguish between coding
mistakes and truncation error, is performing a sequence of simulations and using the sequence to
check the convergence of the results to an analytical solution. The point is that the truncation
error decreases in a predictable way with increasing numerical resources, while coding mistakes do
not. We have already relied on such a convergence test in Chapter 5.2.4 to calibrate a relativistic
MHD code.

Focussing on finite-difference methods for the remainder of the Section, we will denote the
numerical solution at a point (t, x), achieved with a grid spacing h, as uh(t, x). We assume that
we can express this solution as a Taylor expansion about the analytical solution u(t, x), in which
case we may write

uh(t, x) = u(x, t) + hE1 + h2E2 + h3E3 +O(h4), (6.151)

where the error terms Ei are independent of the grid spacing h. For concreteness, imagine that
we constructed a second-order scheme, in which case E1 should be zero and the numerical error
should scale with h2

uh(t, x)− u(x, t) = h2E2 + h3E3 +O(h4). (6.152)

Now consider redoing the same calculation with a higher resolution, for example with a new grid
spacing h/2. The new error should then be

uh/2(t, x)− u(x, t) =
1

4
h2E2 +

1

8
h3E3 +O(h4) (6.153)

or

4(uh/2(t, x)− u(x, t)) = h2E2 +
1

2
h3E3 +O(h4). (6.154)

Doubling the resolution again we find

16(uh/4(t, x)− u(x, t)) = h2E2 +
1

4
h3E3 +O(h4). (6.155)

As we increase the resolution, the higher order terms keep decreasing, so that the right hand sides
converge to h2E2 (where h is the original grid spacing). In a convergence test to an analytical
solution we test this behavior by plotting the rescaled errors

22k(uh/k(t, x)− u(t, x)) → h2E2, (6.156)

which will converge only if the implementation is indeed second order accurate with E1 = 0. This
is a very strong test, since many coding mistakes and typos will result in errors that, even if they
are small, do not converge away.

For a convergence test to an analytical solution we need to compare the numerical solution
for at least three different resolutions. For the two finer resolutions the rescaled errors should
then be closer to each other than for the two coarser resolutions. In fact, many second-order
schemes are symmetric, in which case the third-order error terms E3 vanish also, and the rescaled
errors converge to O(h4). As an example, we show in Figure 6.12 a test for a code designed to
construct binary black hole-neutron star quasi-equilibrium initial data.33 In this test the code,
which solves partial differential elliptic equations in three spatial dimensions, is shown to converge,
in the absence of a black hole, to the Oppenheimer-Volkoff solution for a spherical equilibrium star
(see Chapter 1.4). The latter is not an analytical solution, but as a solution to a coupled set of
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Figure 6.12: The rest mass M̄0 of a spherical n = 1 polytrope as a function of a density parameter q
for three different grid resolutions h (dotted line), h/2 (dashed line) and h/4 (solid line), computed
with a code that solves elliptic equations in three dimensions for quasi-equilibrium binaries. The
crosses mark the high-accuracy solution obtained by solving the Oppenheimer-Volkoff ordinary
differential equations for an equilibrium star in spherical symmetry. The inset shows the rescaled
numerical errors, which clearly converge to a single line, establishing second-order convergence of
the code. [From Baumgarte et al. (2004).]

ordinary differential equations in one dimension it can be computed to sufficiently high accuracy
so serve as a “semi-analytical” solution in this test.

Interestingly, neither an analytical nor a semi-analytical solution is needed to test the con-
vergence of a code. In a self-consistent convergence test we can eliminte the unknown analytical
solution u(t, x) in (6.152) by subtracting (6.153)

uh − uh/2 =
3

4
h2E2 +

7

8
h3E3 +O(h4). (6.157)

We similarly find

4(uh/2 − uh/4) =
3

4
h2E2 +

1

2

7

8
h3E3 +O(h4). (6.158)

33Baumgarte et al. (2004); see Chapter 17.1.
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The higher order error terms again keep decreasing, and the rescaled differences approach

22k(uh/k(t, x)− uh/(2k)(t, x)) → 3

4
h2E2. (6.159)

This means that we can again check the convergence of our code, but this time completely in-
dependently of any analytical solution. Clearly, this is a very powerful tool. Often we can use
the convergence to an analytical solution to test codes in certain regimes for which an analytical
solution can be found. But these tests may or may not test all aspects of the computational
algorithm. Self-consistent convergence tests, on the other hand, can be used to test all parts of
a code. The one down-side of a self-consistent convergence test, compared to the convergence to
an analytical solution, is that we now need at least four different grid resolutions, so that we can
form three pairs whose convergence we can test.34

Exercise 6.25 Sometimes it is useful to “invent” an analytic solution where none are known in order
to perform a convergence test on a code. Consider the nonlinear, flat-space elliptic equation (6.54) for
the function f(r):

∇2f = fng, (6.160)

subject to boundary conditions

∂rf = 0 , r = 0 , (6.161)
∂r(rf) = 0 , r = ∞ , (6.162)

where r2 = x2 + y2 + z2. Take n = 4 for definiteness. Here we will write and test a code to solve this
equation in one dimension (spherical symmetry), two dimensions (axisymmetry), or three dimensions.
(a) Choose the arbitrary analytic function

f =
r2

1 + r3
, (6.163)

constructed to satisfy the boundary conditions, substitute it into equation (6.160) and solve for g.
Given this analytic source function g we now have an exact solution f to equation (6.160) that satisfies
the appropriate boundary conditions.
(b) Use the analytic source function g derived in part (a) to solve equation (6.160) by finite-differencing.
You may need to linearize the equation first, as discussed at the end of Section 6.2.2, and iterate the
solution.
(c) Perform a convergence test to check your code by comparing with the analytic solution. Does your
code converge at the expected convergence rate?

34We also point out that any typo or mistake in an analytic equation that propagates into a high-order code
will not be discovered by a self-consistent convergence test. Only by comparison with an analytic solution can a
convergence test alone reveal such an error.



Chapter 7

Locating Black Hole Horizons

Black holes are characterized by the horizons surounding them. Clearly, then, the numerical
simulation of black holes requires the ability to locate and analyze black hole horizons in nu-
merically generated spacetimes. In this Chapter we first review different concepts of horizons in
asymptotically flat spacetimes, and then discuss how these horizons can be probed numerically.

7.1 Concepts

Several different notions of horizons exist in general relativity. The defining property of a black
hole is the presence of an event horizon (Section 7.2), but, as we will see, apparent horizons (Section
7.3) also play an extremely important role in the context of numerical relativity. In addition, the
concepts of isolated and dynamical horizons (Section 7.4) serve as useful diagnostics in numerical
spacetimes containing black holes.

A black hole is defined as a region of spacetime from which no null geodesic can escape to
infinity. The surface of a black hole, the event horizon, acts as a one-way membrane through
which light and matter can enter the black hole, but once inside, can never escape. It is the
boundary in spacetime separating those events that can emit light rays that can propagate to
infinity and those which cannot. More precisely, the event horizon is defined as the boundary
of the causal past of future null infinity.1 It is a 2 + 1 dimensional hypersurface in spacetime
formed by those outward-going, future-directed null geodesics that neither escape to infinity nor
fall toward the center of the black hole. The event horizon is a gauge-invariant entity, and contains
important geometric information about a black hole spacetime.

The intersection H of the event horizon with a t = constant spatial hypersurface Σ, i.e. the
spatial “snapshot” of the horizon at the instant of time associated with Σ, forms a closed, two-
dimensional surface, whose proper surface area we denote as A. The area theorem2 of classical
general relativity states that this surface area can never decrease in time,

δA ≥ 0, (7.1)

as long as all matter satisfies the null energy condition.3 In the collision and coalescence of two
or more black holes, the surface area of the remnant black hole must be greater than the sum of
the progenitor black holes.

1See, e.g., Hawking and Ellis (1973); Wald (1984).
2Hawking (1971, 1972, 1973).
3The null energy condition requires that Tabk

akb ≥ 0 for all null vectors ka. For a perfect gas, this condition
requires ρ+ P ≥ 0.

201



202 CHAPTER 7. LOCATING BLACK HOLE HORIZONS

The fact that the event horizon area cannot decrease motivates the definition of the irreducible
mass4

Mirr ≡
(
A

16π

)1/2

. (7.2)

It is possible to extract energy and angular momentum from a rotating Kerr black hole. While
such an interaction can reduce the black hole’s mass, it cannot reduce its area, according to the
area theorem. The definition (7.2) then implies that the irreducible mass of the black hole cannot
decrease, which motivates its name.

Exercise 7.1 Verify that for a Schwarzschild black hole the irreducible mass Mirr is equal to the ADM
mass MADM.

The area theorem can be used to place a strict upper limit on the amount of energy that is
emitted in gravitational radiation in black hole collisions.

Exercise 7.2 Consider two widely separated, nonrotating black holes of masses M1 and M2, initially
at rest with respect to some distant observer. Use the area theorem to find an upper limit on the energy
emitted in gravitational radiation that arises from the head-on collision of the two black holes. Verify
that for equal mass black holes at most 29% of the total initial energy can be emitted in gravitational
radiation.

In Chapter 13 we will find that considerably less energy is emitted in collisions of black holes
than the upper limit allowed by the area theorem.

Given the irreducible mass Mirr and the angular momentum J of an isolated, stationary black
hole, we can compute the Kerr mass M (= MADM) from

M2 = M2
irr +

1

4

J2

M2
irr

. (7.3)

Solving for Mirr we find

M2
irr =

M2

2

(
1 +

√
1− J2

M4

)
, (7.4)

which implies that we have M2/M2
irr ≤ 2 for Kerr black holes, with equality in the extreme Kerr

limit when J = M2.
While the event horizon has some very interesting geometric properties, its global nature makes

it very difficult to locate in a numerical simulation. The reason is that knowledge of the entire
future spacetime is required to decide whether or not any particular null geodesic will ultimately
escape to infinity. In numerical simulations an event horizon can be found only “after the fact”,
i.e., after the evolution has proceeded long enough to have settled down to a stationary state.

Locating event horizons in “post-processing” may be sufficient for diagnostic purposes, i.e. for
analyzing the geometrical and physical consequences of a black hole simulation after it is com-
pleted, but it does not allow us to locate the black holes during the course of a numerical simulation.
The later can be important, and is sometimes essential, for allowing the simulation to continue in
the presence of one or more black holes. The spacetime singularities inside the black holes must
be excluded from the numerical grid, since they would otherwise spoil the numerical calculation.
Several of the following chapters treat simulations in which black holes are present and there

4Christodoulou (1970); Christodoulou and Ruffini (1971); see also Chapter 1.2.
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we will discuss several different strategies for avoiding black hole singularities numerically. One
approach is based on the realization that, by definition, the interior of a black hole is causally
disconnected from, and hence can never influence, the exterior. This fact suggests that we may
“excise”, i.e. remove from the computational domain, the spacetime region inside the event hori-
zon.5 Black hole “excision” requires at least approximate knowledge of the location of the horizon
at all times during the evolution, so the construction of the event horizon after the fact is not
sufficient.

The concept of apparent horizons allows us to locate black holes during the evolution. The
apparent horizon is defined as the outermost smooth 2-surface, embedded in the spatial slices Σ,
whose outgoing future null geodesics have zero expansion everywhere. We will explain this notion
in much greater detail in Section 7.3 below. As we will see, the apparent horizon can be located
on each slice Σ, when it exists, and is therefore a local (in time) concept. The singularity theorems
of general relativity6 tell us that if an apparent horizon exists on a given time slice, it must be
inside a black hole event horizon.7 This theorem makes it safe to excise the interior of an apparent
horizon from a numerical domain. Note, however, that absence of proof is not proof of absence:
the absence of an apparent horizon does not necessarily imply that a black hole is absent. One
example can be found in the Oppenheimer-Snyder collapse of spherical dust to a black hole as
constructed in Chapter 1.4; we will return to this example in Section 7.3.1. It is also possible to
construct slicings of the Schwarzschild geometry in which no apparent horizon exists.8 Also, it
is straightforward to show that apparent horizons do not form during spherical collapse in polar
slicing.9

These examples demonstrate the gauge-dependent nature of the apparent horizon. Neverthe-
less, the usual expectation when performing a black hole a simulation is that, except when choosing
a special slicing in which an apparent horizon is known to be absent, an apparent horizon will
eventually appear on the slice whenever a black hole is present. The fact that the apparent and
event horizons always coincide in a stationary spacetime promotes this expectation.

Now consider constructing the worldtube H formed by stacking together apparent horizons
on different spatial slices Σ. In general, H can make discrete jumps and does not need to be
continuous (see Chapter 1.4 and Figure 1.3). When matter or radiation falls into the black hole
the horizon H expands. When the black hole is isolated, however, and absorbs no more matter
or radiation, H becomes a null-surface. In this regime H can be described within the isolated
horizon framework.10 Using information on H, this formalism provides a coordinate-independent
definition of the black hole mass and angular momentum, as we will discuss below.

7.2 Event Horizons

Event horizons are spanned by outgoing light rays that neither reach future null infinity nor hit
the black hole singularity. As a nontrivial but analytical example, we located the event horizon
in the Oppenheimer-Snyder collapse of a dust sphere to a black hole in Chapter 1.4. In principle,
knowledge of the entire future evolution of a spacetime is necessary to determine the fate of

5Unruh (1984), as quoted in Thornburg (1987); see also Chapters 13.1.1 and 14.2.3.
6See Hawking and Ellis (1973); Wald (1984) for an introduction.
7This statement is not necessarily true in other theories of gravity. In Brans-Dicke theory, for example, apparent

horizons may exist outside of event horizons; see Scheel et al. (1995b) for a numerical example.
8Wald and Iyer (1991)
9See exercises 7.13 and 8.10.

10Ashtekar et al. (2000); Ashtekar and Krishnan (2004).
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outgoing light rays and thereby locate event horizons. In practice, however, event horizons can
be identified fairly accurately after a finite evolution time in a numerical simulation, provided the
spacetime has settled down to a nearly stationary state.

An obvious approach to locating an event horizon in this situation is to evolve null geodesics,11

whose worldlines are governed by the equation

d2xa

dλ2
+ (4)Γabc

dxb

dλ

dxc

dλ
= 0, (7.5)

where λ is an affine parameter. Splitting this second-order equation into two first-order equations
and substituting 3 + 1 metric quantities yields

dpi
dλ

= −αα,i(p0)2 + ∂iβ
kpkp

0 − 1
2
∂iγ

lmplpm

dxi

dλ
= γijpj − βip0,

(7.6)

where we have used pi = dxi/dλ and p0 = (γijpipj)
1/2/α (which enforces gabpapb = 0).

Exercise 7.3 Derive equation (7.6).

In a numerical spacetime, the lapse α, the shift βi and the spatial metric γij are known on the
computational grid, so that light rays can be ejected in different directions pi from every point
xa in spacetime and their geodesic trajectories tracked. The search for an event horizon can be
expedited by knowing the location of the apparent horizons. If all light rays sent out from an event
xa end up inside an apparent horizon (which is always located inside an event horizon) the event
must reside inside the event horizon as well. If, on the other hand, at least one light ray sent out
from the event escapes to large separations, it is not inside an event horizon. By distinguishing
events in this way, the ejection and propagation of light rays from various points in spacetime can
delineate the location of the event horizon.

In practice it is more expetitious to integrate null geodesics backwards in time.12 Future
directed light rays diverge away from the event horizon, either toward the interior of the black
hole or toward future null infinity. By contrast, backwards propagating rays converge on the event
horizon, which thus acts as an “attractor” for these rays. This method is particularly efficient if
one can identify a finite region in spacetime within which the event horizon is expected to reside.
It is then sufficient to integrate light rays from events residing in this region at late times, and
they will be attracted to the event horizon.

This method becomes quite transparent in spherical symmetry, where we can often find the
trajectories of “outgoing” null geodesics analytically. The label “outgoing” is somewhat mislead-
ing, since inside the event horizon all worldlines propagate to smaller areal radius. For example,
for a Schwarzschild black hole in Kerr-Schild coordinates, we noted in Exercise 6.3 that outgoing
null geodesics must satisfy

t− r = 4M ln |r/2M − 1|+ const. (7.7)

As shown in Fig 7.1, tracing these geodesics backwards in time inevitably brings us to the event
horizon at r = 2M .

In nontrivial applications, this technique has been used to probe the topology of the event
horizon arising during the head-on collision and merger of two black holes, as well as the collapse

11See, e.g., Hughes et al. (1994).
12See Hughes et al. (1994); Anninos et al. (1995); Libson et al. (1996).
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Figure 7.1: Worldlines of outgoing null geodesics in a Schwarzschild spacetime in Kerr-Schild
coordinates (see Exercise 6.3). Traced backwards in time, these rays are strongly attracted to the
event horizon at r/M = 2. These worldlines coincide with contours of the function f introduced
in equation (7.8).

of a rotating toroidal cluster to a toroidal black hole. The “pair of pants” that the event horizon
forms in a spacetime diagram for the collapse of two collisionless clusters to two black holes,
followed by their head-on collision, is depicted in Figure 10.5. We postpone a discussion of these
simulations until Chapter 10.2 and 10.4.

Instead of integrating individual null geodesics, we can also consider constructing a 2 + 1-
dimensional null hypersurface enclosing a bundle of outgoing null geodesics in spacetime.13 We
can define such a null hypersurface as a level surface of some function f(t, xi), say f(t, xi) = 0.
Given that the normal vector ∂af to such a null hypersurface must itself be null,14 the function f
must satisfy

gab∂af∂bf = 0. (7.8)

13See Anninos et al. (1995); Libson et al. (1996).
14See, e.g., Wald (1984), p. 65.



206 CHAPTER 7. LOCATING BLACK HOLE HORIZONS

Figure 7.2: The “pair of pants” formed by the event horizon in a spacetime diagram depicting the
head-on collision of two “eternal” black holes [From Matzner et al. (1995)].

Solving for ∂tf we then find an evolution equation for f ,

∂tf =
−gti∂if +

√
(gti∂if)2 − gttgij∂if∂jf

gtt
, (7.9)

where we have chosen the positive root so that the surface is generated by outgoing null geodestics.
Expressing the spacetime metric in terms of the lapse, shift and spatial metric we find

∂tf = βi∂if −
(
α2γij∂if∂jf

)1/2
. (7.10)

Exercise 7.4 Derive equation (7.10) from (7.8).

It is particularly easy to use equation (7.10) to locate an event horizon if, at late time, we can
bracket it by two null hypersurfaces, e.g. S1 and S2. Suppose each one of these two hypersurfaces
is defined by a certain value, say zero, of two functions f1 and f2. Knowing the location of the
apparent horizon at late times again facilitates the choice of S1 and S2. We can use equation (7.10)
to evolve f1 and f2 backwards in time, and find S1 and S2 at earlier times by locating f1 = 0 and
f2 = 0. The two hypersurfaces will converge on the event horizon.

In spherical symmetry it is easy to find the general solution for f , which illustrates why
this approach works. By construction, f is constant along outgoing light rays. In Kerr-Schild
coordinates, outgoing light rays travel along the characteristics (7.7). Any arbitrary function

f = f(t− r − 4M ln |r/2M − 1|) (7.11)

must therefore be a solution to equation (7.10).
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Figure 7.3: A smooth, two-dimensional, hypersurface S is embedded in Σ. The unit, outward-
pointing normal to S lying in Σ is sa, and the normal to Σ is na. The outgoing and ingoing null
tangent vectors ka and la are constructed as linear combinations of na and sa.

Exercise 7.5 Verify that any function f = f(t−r−4M ln |r/2M −1|) is a solution to equation (7.10).

This technique has been used to construct the event horizon for yet another scenario describing
the head-on collision of two black holes. We will also discuss this scenario, which involves “eternal”
black holes, in Chapter 10.2, but here, in anticipation, we show a spacetime diagram depicting the
event horizon in Figure 7.2.

7.3 Apparent Horizons

Consider a smooth, closed, two-dimensional hypersurface S residing in Σ. By construction, S
is spatial. Let sa be its outward pointing unit normal lying in Σ. Evidently sa then satisfies
sas

a = 1 and sana = 0. Just as the spacetime metric gab induces the spatial metric γab on Σ (see
Chapter 2.3), the metric γab induces a two-dimensional metric mab on S given by

mab = γab − sasb = gab + nanb − sasb . (7.12)

For each point on S we can now construct a pair of future-pointing null geodesics whose projection
on Σ is orthogonal to S. Up to an overall factor, the tangents ka and la to these geodesics on S
are

ka ≡ 1√
2

(na + sa) and la ≡ 1√
2

(na − sa) (7.13)

(see Fig. 7.3). By construction we have kak
a = 0 and mabk

a = 0 as well as lal
a = 0 and mabl

a = 0,
and we have chosen the normalization so that kala = −1. We call ka the tangent to the “outgoing”
and la the tangent to the “ingoing” null geodesic. These names are again somewhat misleading,
since inside a black hole both tangents point toward the black hole’s interior. Combining equations
(7.12) and (7.13) we can express mab in terms of ka and la as

mab = gab + kalb + lakb. (7.14)
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The expansion of the outgoing null geodesics orthogonal to S is

Θ = mab∇akb. (7.15)

Note that ka is only defined on S. The projection with mab insures that only derivatives tangent
to S enter this expression, so that no knowledge of ka away from S is required in this definition
of the expansion.

Exercise 7.6 Show that the definition (7.15) is equivalent to

Θ = ∇ak
a (7.16)

if we assume that the null tangent vectors ka are affinely parametrized, i.e. ka∇ak
b = 0, in a neigh-

borhood of S.

We now define an outer-trapped surface as a two-dimensional surface S embedded in Σ on
which the expansion Θ of the outgoing null geodesics orthogonal to S is negative everywhere.15 We
further define a trapped region as any region of Σ that contains outer-trapped surfaces.16 Finally,
we define the apparent horizon as the outer boundary of any connected trapped region. This
definition makes the apparent horizon a marginally outer-trapped surface on which the expansion
of outgoing null geodesics vanishes

Θ = 0. (7.17)

Before proceeding with the formal derivation it may be useful to illustrate the above concepts
with a simple example in spherical symmetry. Without loss of generality we can write the spacetime
line element in spherical polar coordinates in the form

ds2 = −(α2 − A2β2)dt2 + 2A2βdrdt+ A2dr2 +B2r2(dθ2 + sin2 θdφ2). (7.18)

The only nonvanishing component of the shift vector βi is the radial component, which we call β,
and we may further assume that α, β, A and B are functions of t and r only.

Consider a spherical surface S centered on the origin. The spatial normal vector si to S must
then be radial and take the form

sa = (0, A−1, 0, 0) (7.19)

and hence sa = (Aβ,A, 0, 0). We can now construct the outgoing null normal

ka =
1√
2

(Aβ − α,A, 0, 0) and ka =
1√
2

(α−1, A−1 − α−1β, 0, 0) (7.20)

as well as the induced metric on S

mab = diag(0, 0, B2r2, B2r2 sin2 θ). (7.21)

Computing the expansion Θ we find

Θ =

√
2

rB

(
1

α
∂t(Br) +

(
1

A
− β

α

)
∂r(Br)

)
. (7.22)

15E.g. Hawking and Ellis (1973); Wald (1984).
16Some authors define a trapped region in terms of trapped surfaces as opposed to outer-trapped surfaces. For

trapped surfaces the expansion of the ingoing null geodesics orthogonal to S is required to be negative, Θ(l) < 0,
in addition to Θ < 0. For the purposes of this Section this distinction is unimportant.
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Exercise 7.7 Derive equation (7.22).

So far this result is not too enlightening. It turns out, however, that the expression in paren-
theses is proportional to the rate of change of the areal radius along ka. The areal radius is
Rarea = Br, and its directional derivative along ka is therefore

ka∇aRarea = kt∂t(Br) + kr∂r(Br) =
1√
2

(
1

α
∂t(Br) +

(
1

A
− β

α

)
∂r(Br)

)
. (7.23)

Combining equations (7.22) and (7.23) we have

Θ =
2

Rarea

ka∇aRarea =
1

4πR2
area

ka∇a(4πR
2
area) . (7.24)

Equation 7.24 shows that the expansion Θ measures the fractional change of the cross-sectional
area of a bundle of outgoing null rays with tangent vectors ka, or, equivalently, the fractional
change in the area of an outward spherical flash of light.17

Exercise 7.8 Show that
Θ =

1
m1/2

Lkm
1/2 = Lk lnm1/2, (7.25)

where m is the determinant of the induced metric mab. Since m1/2d2x is the proper area element of a
cross-section of a bundle of null rays ka, it can then be shown that Θ measures its fractional change
of cross-sectional area in general, and not only in spherical symmetry.

With this result the definition of an apparent horizon becomes very simple to apply in spherical
symmetry. The area A of a spherical flash of light rays emitted radially outward will propagate
instantly to a larger area if it is emitted outside an apparent horizon, to a smaller area if emitted
inside an apparent horizon, and remain constant if emitted on the apparent horizon.

Consider, for example, a Schwarzschild black hole in isotropic coordinates (see, e.g., Table 2.1),
for which A = B = ψ2 = (1 +M/(2r))2, β = 0, and ∂t(Br) = 0. According to equation (7.22) the
expansion Θ then vanishes when ∂r(Br) = 0, which occurs at

r =
M

2
. (7.26)

In exercise 3.4 we have seen that this isotropic radius corresponds to an areal radius of Rareal = 2M .
Not surprisingly, the apparent horizon coincides with the event horizon in this static spacetime.

Exercise 7.9 Verify that for a Schwarzschild black hole in Schwarzschild, Kerr-Schild and Painlevé-
Gullstrand coordinates the apparent horizon is located at Rareal = 2M .

Returning to our general derivation, we would like to bring the expansion (7.15) into a form
that is more suitable for evaluation in a 3 + 1 numerical simulation and write it in terms of
three-dimensional spatial objects. Substituting equation (7.13) into (7.15) we have

√
2mab∇akb = mab∇a(nb + sb) = mij(Disj −Kij) (7.27)

or, using equation (7.12) in mijKij, we obtain
√

2mab∇akb = Dis
i −K + sisjKij. (7.28)

17See also the discussion in Poisson (2004), Section 2.4.



210 CHAPTER 7. LOCATING BLACK HOLE HORIZONS

Here we also have used the relation sasa = 1 as well as the definition (2.49) of the extrinsic
curvature. The apparent horizon condition is therefore

0 =
√

2 Θ = mij(Disj −Kij) . (7.29)

or equivalently

0 =
√

2 Θ = Dis
i −K + sisjKij (7.30)

Exercise 7.10 Show that with the conformal rescalings (3.5), (3.35) and si = ψ−2s̄i the apparent
horizon condition (7.30) can be written as

D̄is̄
i + 4s̄iD̄i lnψ − 2

3
ψ2K + ψ−4Āij s̄

is̄j = 0. (7.31)

It is often useful in the search for apparent horizons to characterize the horizon as a level
surface of a scalar function, e.g.

τ(xi) = 0. (7.32)

We can then write the unit normal si as

si = λDiτ, or si = λDiτ = λ∂iτ, (7.33)

where λ is the normalization factor

λ ≡
(
γijDiτDjτ

)−1/2
. (7.34)

In the expression
mijDi(λDjτ) = mijλDiDjτ +mij(Diλ)(Djτ) (7.35)

the second term vanishes, since Djτ is proportional to sj, which vanishes when contracted with
mij. Substituting equation (7.33) into (7.29) therefore yields

0 = mij(λDiDjτ −Kij) = mij(λ∂i∂jτ − skΓ
k
ij −Kij) . (7.36)

A particularly useful form of the level function τ is

τ(xi) = rC(xi)− h(θ, φ), (7.37)

where rC is the coordinate separation between the point xi and some fiducial point Ci inside the
τ = 0 surface, and where θ and φ are spherical polar coordinates centered on Ci. In the following
we will assume that Ci is the origin of the coordinate system, so that Ci = 0, but the generalization
to a point that does not coincide with the origin is straightforward. The function h then measures
the coordinate distance from the origin to the τ = 0 surface in the (θ, φ) direction.

The first derivative of equation (7.37) is

∂iτ = σi − ∂ih, (7.38)

where σi ≡ ∂irC is the unit vector in the (θ, φ) direction. In spherical polar coordinates rC is
simply r, so that σi = (1, 0, 0). Since ∂iσj = 0, the apparent horizon condition (7.36) reduces to

0 =
√

2Θ = mij(λ∂i∂jh− skΓ
k
ij −Kij) (spherical polar coordinates). (7.39)
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Exercise 7.11 Show that in Cartesian coordinates the apparent horizon condition (7.36) becomes

0 =
√

2Θ = mij

(
λ

rC
(δij − σiσj) + λ∂i∂jh− skΓk

ij −Kij

)
(Cartesian coordinates). (7.40)

We have now expressed the apparent horizon condition as a second-order partial differential
equation for the function h that measures the horizon’s coordinate distance from the origin. The
principal part of the equation, mij∂i∂jh, involves a Laplacian with respect to the two-dimensional
metric mij on the surface S. Finding solutions to these elliptic equations, and hence locating
apparent horizons, is in general not at all a trivial matter, in particular since the normal vector
si also contains derivatives of h. For the remainder of this Section we will discuss strategies for
locating apparent horizons on spatial hypersurfaces exhibiting spherical symmetry, axisymmetry,
and without any special symmetry.

7.3.1 Spherical Symmetry

In spherical symmetry h is a constant and does not depend on θ or φ. The second derivatives
in the differential equation (7.39) therefore vanish, and si = λσi can be constructed algebraically
from the metric. The expansion Θ then reduces to the algebraic expression

Θ = − 1√
2
mij(skΓ

k
ij +Kij) (7.41)

which only depends on radius r. Finding an apparent horizon simply amounts to finding a root of
this function. This simplification does not come as a surprise, of course, since we have seen before
that apparent horizons can be located quite easily in spherical symmetry.

Exercise 7.12 Verify that for a metric of the form (7.18) the expansion (7.41) yields (7.22).

Exercise 7.13 (a) Show that in spherical symmetry and isotropic coordinates (i.e. A = B in the
metric (7.18)) the apparent horizon condition reduces to

1 + r
∂rA

A
− Ar

2
KT = 0 , (7.42)

where KT is defined by equation (4.63).
(b) Use equation (7.42) to argue that apparent horizons do not form in polar slicing, provided drs/dr 6=
0, where r is the isotropic radius and rs is the areal radius.

In Chapter 1.4 we presented an instructive example in which an apparent horizon arises during
stellar collapse, namely the Oppenheimer-Snyder collapse of a homogeneous dust sphere to a
Schwarzschild black hole. The appearance of an apparent horizon is slicing-dependent; in this
example geodesic (Gaussian normal) slicing was employed. The adopted slicing and coordinate
conditions yield a spacetime that is completely analytic, including the location of the trapped
surfaces, the apparent horizon and the event horizon; see Figure 1.3. The figure shows that trapped
surfaces can appear suddenly and in a discontinuous manner, but this feature depends on the
slicing. In polar slicing, for example, no trapped surfaces arise, as demonstrated in Exercise 7.13.18

But it is already clear from this figure that the absence of an apparent horizon does not imply

18See Petrich et al. (1986) for Oppenheimer-Synder collapse in polar slicing and Chapter 8.2 for other examples
of spherical collapse in polar slicing.
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Figure 7.4: An schematic drawing of the surface r = h(θ), together with the vectors sa, σa, ma

and ua, defining an apparent horizon in axisymmetry.

the absence of an event horizon. Consider, for example, a spatial slice at τ = 10M . This slice
penetrates the event horizon, and hence the interior of the nascent black hole, but nowhere does
this slice exhibit any trapped surfaces or an apparent horizon.

7.3.2 Axisymmetry

In axisymmetry, the function h is allowed to depend on θ, h = h(θ). In equation (7.39) only
derivatives with respect to θ give a nonzero contribution, so that the apparent horizon condition
now becomes an ordinary differerential equation for h(θ). This differential equation is still quite
complicated (recall that both si = λ(σi − ∂ih) and λ contain derivatives of h), but we will bring
it into a tractable form as follows.

Adopting spherical polar coordinates, we may define

mi ≡ ∂iτ = σi − ∂ih = (1,−∂θh, 0), (7.43)

so that si = λmi. At each point xi ≡ (h, θ, φ) we introduce the tangent vector

ui ≡ ∂θx
i = (∂θh, 1, 0) (7.44)

(see Figure 7.4). Since for these vectors the φ components vanish, it is also useful to introduce
capital letter indices A,B, . . . that run only over r and θ.
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The vector uA is the tangent vector to the r = h surface in the θ direction, and we can compute
the arc length s of its integral curves from(

ds

dθ

)2

= γABu
AuB. (7.45)

We now ask the reader to derive two useful relationships.

Exercise 7.14 Show that

mAB =
λ2

γ(2)
uAuB , (7.46)

where γ(2) = γrrγθθ − γrθγrθ is the determinant of the metric induced in the (r, θ) hypersurface.

Exercise 7.15 Show that
ds

dθ
=

(γ(2))1/2

λ
. (7.47)

An immediate consequence of equation (7.46) is that the first term in equation (7.39) reduces
to

mijλ∂i∂jh =
λ3

γ(2)
∂θ∂θh. (7.48)

We now make the assumption that γrφ = γθφ = 0, which can always be arranged in axisymmetry.
The contractions in equations (7.39) then decouple into (r, θ) and φ terms; for example, mijKij =
mABKAB + γφφKφφ. With equations (7.46) and (7.47) and the relation si = λmi the apparent
horizon condition (7.39) becomes19

∂2
θh = −ΓABCmAu

BuC −
(
ds

dθ

)2

γφφΓAφφmA

−(γ(2))−1/2

(
ds

dθ

)
uAuBKAB − (γ(2))−1/2

(
ds

dθ

)3

γφφKφφ. (7.49)

Derivatives ∂θh are still hidden in uA, mA and ds/dθ, but we have eliminated λ, which depends
on ∂θh in a rather complicated way.

As anticipated, this equation is an ordinary differential equation for the location r = h of the
apparent horizon as a function of θ. The coefficients in this equation have to be evaluated at the
location h(θ). Exercise 7.16 provides an example for which this equation assumes a much simpler
form.

Exercise 7.16 Consider an axisymmetric spacetime at a moment of time symmetry (Kij = 0) that is
described by the conformally-flat three-metric

ds2 = ψ4(dr2 + r2(dθ2 + sin2 θdφ2)) , (7.50)

where ψ = ψ(r, θ). Show that equation (7.49) defining the apparent horizon surface r = h(θ) reduces
to

∂2
θh = −

(
(∂θh)3

h2
+ ∂θh

)(
4∂θψ

ψ
+ cot θ

)
+ (∂θh)2

(
3
h

+
4∂rψ

ψ

)
+ 2h+ h2 4∂rψ

ψ
. (7.51)

Exercise 7.17 Verify that for a Schwarzschild black hole in isotropic coordinates the apparent horizon
condition (7.51) recovers equation (7.26), h = M/2.

19See Eppley (1977), whose notation we adopt, for an alternative derivation originally due to D. Eardley.
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Boundary conditions for equation (7.49) arise from the requirement that the surface S be
smooth (e.g., no cusps at poles or equator). This requirement implies that the first derivative ∂θh
has to vanish at the poles θ = 0 and θ = π, and, in the case of equatorial symmetry, at θ = π/2.

Exercise 7.18 The term cot θ in equation (7.51) is irregular at the poles. Use a Taylor expansion of
h(θ) about θ = 0 to show that, to lowest order in θ, the differential equation (7.51) near the poles can
be written as

∂2
θh = h+ 2h2 ∂rψ

ψ
, (7.52)

demonstrating that the coordinate singularity there can be removed.

Using the above formalism we can now find the apparent horizon for the boosted black hole
solution that we discussed in Chapter 3.2.

Exercise 7.19 (a) Consider the boosted black hole solution of Chapter 3.2 and find the location of the
apparent horizon to leading order in the correction due to P . Specifically, write h as h = h0+hP +O(P 2)
where, from exercise 7.17, h0 = M/2, and show that to linear order in P equation (7.49) reduces to20

∂2
θhP − hP + (cot θ)∂θhP −

3P
16

cos θ = 0, (7.53)

where P = (P iP jγij)1/2 is the magnitude of the three-momentum P i, and where we have taken P i to
be aligned with the polar axis.
(b) Show that this equation, together with the boundary conditions at the poles, is solved by

hP = − P

16
cos θ. (7.54)

Hint: Compute Kij = ψ−2Āij from equation (3.80); also note that, according to exercise 3.13, correc-
tions to ψ enter only at second order in P , so that they can be neglected here.

To lowest order in P , the boost of the black hole therefore results in a translation of the
apparent horizon in the direction opposite to the boost. We can now use this result to compute
the irreducible mass (7.2) of this boosted black hole – at least approximately. The irreducible
mass (7.2) is defined in terms of the proper area of the event horizon, and we, of course, have only
located the apparent horizon. For stationary spacetimes the two horizons coincide, and for small
deviations from stationarity, as is the case here, the assumption is that the two are very close
to each other. Making this assumption, we will approximate the irreducible mass by its value in
terms of the apparent horizon.

Exercise 7.20 (a) Show that, for a conformally-flat three-metric in axisymmetry (equation 7.50), the
proper area of the black hole apparent horizon is given by

A =
∫ 2π

0

∫ π

0

ψ4h2

(
1 +

(
∂θh

h

)2
)1/2

sin θdθdφ. (7.55)

Hint: Treat the horizon as a “surface of revolution” r = h(θ) about the z − axis and use elementary
calculus, or use the results of Appendix C.

(b) Expand both h and ψ to second order in P , i.e., write

h = h0 + hP + hP 2 =
M
2

+ hP + hP 2 (7.56)

20See Appendix A.2 of Dennison et al. (2006); see also Cook and York, Jr. (1990).
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and

ψ = ψ0 +
P 2

M2
ψ(2) = 1 +

M
2h

+
P 2

M2
ψ(2) (7.57)

to show that

ψ4h2 = 16
(
M2

4
+
h2

P

2
+
P 2

2
ψ(2)

)
. (7.58)

Notice that the second-order perturbation of the horizon, hP 2 , has cancelled out of this expression,
so that the results of exercises 3.13 and 7.19 are sufficient to compute the irreducible mass to second
order.

(c) Now insert (7.58) into (7.55) to show that, to second order in P ,

A = 16πM+ 16πP 2

∫ π

0

ψ(2) sin θdθ + 16π
∫ π

0

h2
P sin θdθ + π

∫ π

0

16(∂θhP )2 sin θdθ. (7.59)

Finally insert the results of exercises 3.13 and 7.19, carry out the integrations, and use (7.2) to show
that21

Mirr = M
(

1 +
P 2

8M2

)
. (7.60)

The result of exercise 7.20 now helps to resolve an issue that we encountered in exercise 3.24,
where we found the expression

MADM = M+
5

8

P 2

M
+O(P 4) (7.61)

for the ADM mass of this boosted black hole solution (see equation (3.155)). At first sight, this
result seems surprising because we might have expected a factor of 1/2 instead of 5/8 in front
of the second term in order to obtain the correct Newtonian expression for the kinetic energy
(see also the paragraph following exercise 3.24). The culprit is the mass parameter M, which,
in general, is not a physical measure of the black hole mass. Now we can use equation (7.60) to
replace M with Mirr in equation (7.61). This yields

MADM = Mirr +
1

2

P 2

Mirr

+O(P 4), (7.62)

which is very reassuring. This example illustrates that the ADM mass of a boosted, nonspinning
black hole differs from its irreducible mass by its kinetic energy, which is all the mass-energy that
can be extracted from such a black hole.

Following these examples we now return to a more general treatment of the apparent horizon
in axisymmetry. We have reduced the problem of finding apparent horizons in axisymmetry
to a standard two point boundary value problem that can be solved with standard numerical
techniques, e.g. spectral methods, the shooting method, or relaxation methods.22

In a variant of the spectral method we can write the location h(θ) in a power series in cos θ

h(θ) =
nmax∑
n=0

cn cosn θ, (7.63)

which automatically satisfies the boundary conditions at the poles. Inserting this expansion into
equation (7.49) yields an equation for the coefficients cn that has to hold for all θ, say

P (c0, c1, ..., cn, θ) = 0. (7.64)

21See Appendix A.3 of Dennison et al. (2006).
22See, e.g., Press et al. (2007).
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We could solve this equation by evaluating it at a certain set of points, which yields a set of
equations for the cn that can then be solved by matrix inversion (see Chapter 6.3). In an alternative
iterative method we can vary each cn, keeping all other coefficients constant, until the integral∫
P 2dθ assumes a minimum.23 An apparent horizon will have been located provided this integral

becomes zero to within a desired tolerance.
Alternatively we can adopt a simple “shooting” technique. Starting at the pole θ = 0, we can

set ∂θh = 0 and take a trial value h(0) = h0 as initial data and integrate equation (7.49) either
to the equator (assuming equatorial symmetry) or to the other pole (in the absence of equatorial
symmetry). We can then vary h0 from values much larger than the suspected location of the
apparent horizon to values much smaller than this value and search for a sign change of ∂θh at
the equator or the other pole. If there is no sign change, there is no apparent horizon. If there
is a sign change, we can iterate over h0 until ∂θh = 0, which indicates that we have located the
apparent horizon.24

Finally, the apparent horizon condition (7.49) can be finite differenced and then solved by
relaxation.25

An interesting application of apparent horizon finders in axisymmetry is to examine the hori-
zons in Brill-Linquist initial data for two black holes (see Chapter 3.1). For a moment of time
symmetry (Kij = 0), a vacuum solution to the constraint equations describing two equal-mass
black holes momentarily at rest with respect to each other is given by

γij = ψ4ηij (7.65)

where

ψ = 1 +
M
2r1

+
M
2r2

(7.66)

(see equation (3.24) and the related discussion). We can choose the two black holes to be aligned
along the z-axis and the origin to lie midway between them. In this case we have r1/2 = (x2 +
y2 + (z ± z0)

2)1/2, where z0 is the coordinate separation between each singularity and the origin.
For large separations z0 � M each black hole is surrounded by its own “disjoint” apparent

horizon. For small separations there is also a “common” apparent horizon that surrounds both
black holes. It is of interest to locate the critical separation zcrit at which this common horizon
first appears. Numerical integrations give26 zcrit = 0.767M, at which point the common horizon
has an area of A = 62.5πM2.

7.3.3 General Case: No Symmetry Assumptions

In the absence of any symmetry assumptions the operator mij∂i∂j that acts on h in equation (7.39)
or (7.40) is a two-dimensional Laplace operator with respect to the metric mij induced on the two-
surface S. We can use several different numerical techniques to integrate either one of these partial
differential equations, including spectral methods, finite difference methods, and a flow method in
which the elliptic operator is converted into a parabolic operator.

23Eppley (1977).
24Nakamura et al. (1988); Shapiro and Teukolsky (1992b). Shapiro and Teukolsky (1992b) reintroduce the

parameter s (arc length) and integrate ordinary differential equations for h(s) and θ(s) simultaneously, in lieu of
equation (7.49).

25Cook and York, Jr. (1990).
26Brill and Lindquist (1963); Čadež (1974); Bishop (1982).



7.3. APPARENT HORIZONS 217

We implement a spectral method by expanding the location of the horizon r = h(θ, φ) in
spherical harmonics,27

h(θ, φ) =
lmax∑
l=0

l∑
m=−l

almYlm(θ, φ) , (7.67)

and then finding an iterative algorithm to determine the expansion coefficients alm. Spherical
harmonics are eigenfunctions of the flat-space Laplace operator L2 on a 2-sphere, i.e., L2Ylm =
−l(l + 1)Ylm. However, they are not eigenfunctions of the operator mij∂i∂j appearing in the ap-
parent horizon equation (7.39) or (7.40). Nevertheless, we can take advantage of the eigenfunction
property of the spherical harmonics by recasting the apparent horizon condition into an equation
for L2h, where

L2h ≡ ∂θ∂θh+ cot θ∂θh+ sin−2 θ∂φ∂φh . (7.68)

Suppose then that we rewrite the apparent horizon condition Θ = 0 as

L2h = ρΘ + L2h, (7.69)

where we substitute equation (7.39) for Θ. Let us choose the scalar function ρ so that the partial
derivative ∂θ∂θh, which appears in both Θ and L2h, exactly cancels on the right-hand side of
equation (7.69).28 Substituting equation (7.67) and using the eigenvalue equation for Ylm on the
left-hand side of equation 7.69, we can then multiply both sides of this equation by Y ∗lm and
integrate over S to obtain

− l(l + 1) alm =

∫
S

Y ∗lm(ρΘ + L2h) dΩ, (7.70)

where dΩ = sin θdθdφ, and where we have used the orthogonality property of the spherical har-
monics. A priori, this new equation is not very helpful, since the right-hand side must be evaluated
on S, whose location depends on the very coefficients alm that we are trying to determine. How-
ever, equation (7.70) can be used to establish an iteration procedure by which the integral on the
right-hand side is evaluated using a previous guess for the set anlm in order to determine a new,
improved set, an+1

lm . Clearly this algorithm works only for l ≥ 1, while for l = m = 0 the left hand
side of equation (7.70) vanishes. In this case we may consider the integral on the right hand side
a function of the coefficient a00 through Θ, and vary this coefficient until a root of the right hand
side has been located. This determines the improved value an+1

00 .
In an alternative approach we can determine the expansion coefficients alm with the help of a

multidimensional minimization method.29 Consider the integral of Θ2 over S,

S =

∫
S

Θ2dσ. (7.71)

Since Θ depends on h, and h is expressed in terms of the expansion coefficients alm, S is also
a function of these coefficients. We can then use a standard minimization method, for example
Powell’s method or a Davidson-Fletcher-Powell algorithm,30 to vary the alm until a mimimum of

27See, e.g., Nakamura et al. (1984, 1985); Kemball and Bishop (1991); Gundlach (1998)
28See Gundlach (1998) for a generalization.
29See Libson et al. (1996); Baumgarte et al. (1996); Anninos et al. (1998) who expand h in terms of symmetric

traceless tensors instead of spherical harmonics, which is completely equivalent, but more convenient in Cartesian
coordinates.

30See, e.g., Press et al. (2007).
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S has been found. An apparent horizon has been located if S can be brought sufficiently close to
zero within a specified tolerance.

We can also solve the apparent horizon condition (7.39) or (7.40) with finite difference meth-
ods.31 We can again write the condition as in equation (7.69), but now cover S with a finite
difference grid (θi, φj), on which h(θ, φ) is represented as hi,j. The operator (7.68) can then be
represented as

(L2h)i,j =
hi+1,j − 2hi,j + hi−1,j

(∆θ)2
+ cot θi

hi+1,j − hi−1,j

2∆θ
+

sin−2 θi
hi,j+1 − 2hi,j + hi,j−1

(∆φ)2
. (7.72)

As before, we can solve equation (7.69) using an iterative algorithm. On the right-hand side, the
operator L2 acting on h (equation 7.72) can be evaluated for a previous set of values hni,j. On the

left-hand side, the same operator acts on the new values hn+1
i,j . Evaluating equation (7.69) at all

gridpoints (θi, φj) then yields a coupled set of linear equations for the hn+1
i,j , which can be solved

with standard techniques of matrix inversion. Using the representation (7.69) which employs L2

simplifies the matrix that needs to be inverted, but alternatively we can also finite difference and
invert the operator mij∂i∂j directly, without employing equation (7.69).32

Yet another method that has been used for the locating apparent horizons in three spatial
dimensions is the curvature flow method.33 This method is related to solving an elliptic equation
by converting it into a parabolic equation in an artificial “time” coordinate – we have described
a similar approach for solving the maximal slicing condition in Chapter 4.2. During evolution in
“time”, the solution of such a parabolic problem settles down to equilibrium, which furnishes the
solution to the original elliptic equation. In this way, we can deform a trial surface S according to

∂xi

∂λ
= −siΘ, (7.73)

where λ is the “time” parameter. For time-symmetric data with Kij = 0 we have
√

2Θ = Dis
i, so

that the expansion becomes proportional to the trace of the extrinsic curvature of S in Σ, Dis
i.

The apparent horizon then satisfies Dis
i = 0 and is therefore a minimal surface,34 for which this

method is known to converge. For general data, the flow equation (7.73) is no longer guaranteed
to converge, but numerical experience shows that it typically does.35

Various variations and combinations of the above methods have been implemented, but it
is not clear whether any one of these methods are preferable to the others for all situations.36

We will encounter several examples of apparent horizon identification in nonaxisymmetric, 3 + 1
dimensional spacetimes when we discuss simulations of binary black holes in Chapters 12 and 13
and black hole-neutron star binaries in Chapter 17.
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Figure 7.5: Spacetime diagram distinguishing an isolated vs. a dynamical horizon. (see text for
details).

7.4 Isolated and Dynamical Horizons

The formalism of isolated and dynamical horizons combines in many respects the different ad-
vantages of event and apparent horizons as black hole diagnostics. Like apparent horizons, the
concept of an isolated or dynamical horizons is quasi-local and does not require global knowledge
of the spacetime. Like event horizons, but unlike apparent horixons, they furnish insight into
the evolution of a black hole. For example, isolated and dynamical horizons provide a framework
for a quasi-local formulation of black hole thermodynamics. This framework furnishes a useful
diagnostic of the physical properties (e.g. the mass and spin) of any black hole that may be present
in a numerical simulation. It also provides natural boundary conditions for initial data describing
black holes in quasiequilibrium.

Here we will restrict our discussion of isolated and dynamical horizons to a brief and qualitative
sketch of their definitions and properties. We shall refer the reader to the literature for a more
comprehensive discussion and proofs.37

Consider a sequence of apparent horizons S on neighboring spatial slices Σ. Since apparent

31Shibata (1997); also Shibata and Uryū (2000).
32See, e.g., Thornburg (1996); Huq et al. (2002); Schnetter (2003).
33Tod (1991).
34See discussion in Chapter 4.2.
35See also Gundlach (1998); Shoemaker et al. (2000) for implementations of related methods.
36See Baumgarte and Shapiro (2003c) for a more details.
37See the review article by Ashtekar and Krishnan (2004) for discussion, proofs and references, and Dreyer et al.

(2003); Schnetter et al. (2006) for an introduction in the context of numerical relativity.
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horizons can “jump” discontinuously on neighboring slices,38 the resulting world tube H may not
be continuous. Let us disregard these jumps, and instead focus on smooth sections of H. The
world tube H can then be either space-like or null. If matter or gravitational radiation is falling
into the horizon, the black hole is growing in mass, its horizon is expanding, H is space-like, and
we call it a dynamical horizon. If no matter or radition is falling into the black hole, H becomes
null and we call it a nonexpanding horizon. The definition of an isolated horizon requires some
additional mathematical structure, but for our purposes it is sufficient to identify a nonexpanding
horizon with an isolated horizon.39 The concepts of dynamical and isolated horizons are illustrated
in Fig. 7.5.

First consider dynamical horizons. Since H is space-like, we can apply, at least locally, the
same formalism that we developed to describe the spatial slices Σ in Chapter 2. In analogy with
the normal vector na on Σ, we can define τa as a time-like unit vector that is normal to H and
satisfies gabτ

aτ b = −1. We can then define the spatial metric qab = gab + τaτb induced on H
(cf. equation (2.27)), as well as the extrinsic curvature KH

ab = −q c
a q

d
b ∇cτd (cf. equation (2.49)).

Evidently, qab and KH
ab have to satisfy the Hamiltonian constraint (2.133) and the momentum

constraint (2.134). We also define a spatial normal on cross-sections S of H in analogy to sa;
while sa is the normal to S in Σ (see Fig. 7.3), we now define ra as the normal to S in H (see
Fig. 7.5). We also construct outgoing and ingoing null vectors ka and la in terms of τa and ra, in
analogy with equation (7.13).

We can now use this machinery to compute the angular momentum contained within S; i.e.,
the spin of the black hole. To do so we need a Killing vector field φa of qab, which is defined on
H and is tangent to all cross-sections S.40 Similar to the angular momentum integral (3.187) we
can define the angular momentum as

JS =
1

8π

∮
S

KH
abφ

adSb, (7.74)

where dSb = d2x
√
mrb and where m is the determinant of the induced metric on S. As it turns

out, we may replace KH
ab in the integrand with Kab (the extrinsic curvature of Σ) and ra in the

surface element with sa, so that we can compute the angular momentum directly in terms of 3 + 1
quantities.

Having defined the angular momentum JS, it can be shown that the horizon mass is given by

MS =
1

2RS

√
R4
S + 4J2

S, (7.75)

where RS = (AS/4π)1/2 is the areal radius of the horizon. This result is identical to that found
for Kerr black holes, but derived independenly within the framework of dynamical horizons.

It is also possible to derive thermodynamic laws, and to relate the changes in horizon mass
and angular momentum between two intersections S1 and S2 of H to the matter and radiation
flux across H between S1 and S2.

41

Now turn to isolated horizons. When no more matter or radiation fall into the black hole, the
outgoing null vector ka becomes tangent to H, which is now a null surface. The induced metric

38See Chapter 1.4 and Fig. 1.3 for an example.
39See Ashtekar et al. (2000); Ashtekar and Krishnan (2003) for precise definitions.
40In the absence of an exact Killing vector field, an approximate angular momentum can also be computed from

an approximate Killing vector field; see, e.g., Cook and Whiting (2007).
41Ashtekar and Krishnan (2003).
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on H is then degenerate;42 in fact, we may view the two-metric mab induced on the horizon S (see
equation (7.14)) as a degenerate three-metric on H.

Since ka is tangent to H, equation (7.25) implies that the horizon area

AS =

∮
S

m1/2d2x (7.76)

must remain constant. Several other interesting properties follow, and in particular we can still
measure the angular momentum and mass as in equations (7.74) and (7.75).

In anticipation of boundary conditions that we will use for the numerical construction of initial
data for black holes in equilibrium or quasiequilibrium (see Chapter 12.3) we shall discuss one
additional property of isolated horizons in more detail. By construction, the expansion Θ vanishes
everywhere on H. For isolated horizons, ka is tangent to H, so we must also have

LkΘ = 0. (7.77)

Before we proceed it is useful to define the projection of the gradient of ka as

Θab = m c
a m

d
b ∇ckd. (7.78)

We now decompose Θab into its trace, symmetric-tracefree and antisymmetric parts as

Θab =
1

2
Θmab + σab + ωab, (7.79)

where
Θ = mabΘab (7.80)

is the expansion scalar, with which we are well acquainted by now,

σab = Θ(ab) −
1

2
Θmab (7.81)

is the shear tensor, and
ωab = Θ[ab] (7.82)

is the rotation tensor.
Raychaudhuri’s equation applied to null geodesics with tangent vectors ka gives43

LkΘ = −1

2
Θ2 − σabσab + ωabωab −Rabk

akb. (7.83)

As we have discussed, on isolated horizons both Θ and LkΘ vanish. Since the vectors ka are
hypersurface orthogonal the rotation tensor ωab also must vanish.44 Invoking Einstein’s equation
on the horizon in the absence of matter, we see that the last term in equation (7.83) must be zero
as well. That leaves σabσab = 0, which implies the relation

σab = 0 (7.84)

on isolated horizons. As we will see in Chapter 12.3.2, this property of isolated horizons will
provide a boundary condition for the numerical construction of black holes in (quasi)equilibrium.

42We call a metric qab induced on a surface H degenerate if it has a degenerate direction, meaning that there
exists a vector Xa tangent to H so that qabX

a = 0. A surface H is null if the metric induced on the surface is
degenerate.

43See equation (2.39) in Section 2.4.3 of Poisson (2004).
44See exercise 2.10 and Section 2.4.3 in Poisson (2004).
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Chapter 8

Spherically Symmetric Spacetimes

Turn now from the most general spacetime in full 3+1 dimensions to the special case of spherical
symmetry. Why should we do this? Actually, spherical systems provide very useful computational,
physical and astrophysical insight and working with them serves multiple purposes. The field
equations reduce to 1+1 dimensions – variables may be written as functions of only two parameters,
a time coordinate t and a suitable radial coordinate r – and are much simpler to solve in spherical
symmetry. Solving them is a very cost-effective way of probing dynamical spacetimes with strong
gravitational fields, including spacetimes with black holes. After all, nonrotating stars and black
holes are themselves spherical, so many important aspects of gravitational collapse, including black
hole formation and growth, can be studied in spherical symmetry. For example, the numerical
study of spherically symmetric collapse to black holes led to the discovery of critical phenomena
in black hole formation. The simplification in the equations, together with the reduction in
the number of spatial dimensions, means that the system of spherical equations can be solved
more quickly, in terms of both human input and computer time, and with much higher accuracy,
than the set required for more general spacetimes. As a result, tackling problems in spherical
symmetry provides an excellent starting point for learning how to do numerical relativity. It also
serves as a convenient laboratory for experimenting with different gauge choices (coordinates) and
for generating high precision, testbed solutions for numerical codes designed to work in higher
dimensions.

Having said all of this, we must bear in mind that there are important features of dynamical
spacetimes that will be missed when we restrict our attention to spherical symmetry. Rotation
cannot be treated in spherical symmetry. Spinning stars, star clusters and black holes, rotational
instabilities in stars and star clusters, relativistic effects induced by the dragging of inertial frames
– none of these features are present in spherical symmetry. Moreover, gravitational radiation
cannot be generated in spherical spacetimes: Birkhoff’s theorem forbids it. We thus will have
to postpone studying rotation and gravitational wave generation until we relax the restriction to
spherical symmetry and advance to axisymmetry. In axisymmetry, spacetime has 2+1 dimensions
– two spatial coordinates, e.g., r and a polar angle θ, plus t are necessary to specify the value of any
function. Axisymmetry represents the lowest dimensionality at which rotation and gravitational
radiation arise in asymptotically flat spacetimes.1

1Both rotation and gravitational wave generation can arise in 1+1 dimensional spacetimes describing infinite,
axisymmetric cylinders; see, e.g., Piran (1979) for a discussion and references. Plane gravitational waves of infinite
extent can propagate in 1+1 dimensional spacetimes with planar symmetry; see, e.g., Bondi et al. (1959) and Ehlers
and Kundt (1962) for some exact solutions and Centrella and Wilson (1983, 1984) and Anninos et al. (1989) for
numerical simulations.
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The reduction in the number of degrees of freedom characterizing a spherical spacetime is
reflected in the reduced number of nontrivial components of the 3-metric γij that must be deter-
mined by solving the 3 + 1 equations. In general, there are six independent components of γij:
One component can be accounted for by the conformal factor ψ, which is fixed by the Hamiltonian
constraint (e.g., equation 3.37), leaving five components of the conformal 3-metric γ̄ij. Three of
these components are related to the three spatial coordinates and may be removed altogether
by a suitable choice of the components of the shift 3-vector βi. The remaining two components
characterize the two dynamical degrees of freedom associated with a gravitational field, namely,
the two polarization states of a gravitational wave. Axisymmetric systems with rotation may give
rise to both dynamical degrees of freedom. However, if such a system happens to be stationary
and nonradiating, like a Kerr black hole or a rotating equilibrium star, neither of these dynami-
cal degrees of freedom are present. Axisymmetric systems without rotation can possess only one
gravitational degree of freedom. However, if such a system is static and nonrotating, as in the
case of an oblate equilibrium star cluster, none are present. In spherical symmetric spacetimes,
neither dynamical degrees of freedom are allowed, ever. The spacetime is nonradiating no matter
how violently it may be changing with time.

Choices! Choices!

The high degree of symmetry permits us to write the 3-metric of a spherical spacetime in the
general form

dl2 = Adr2 +Br2(dθ2 + sin2θdφ2) , (8.1)

where A and B are functions only of t and r. To specify the full spacetime 4-metric we also
require the gauge functions α(t, r) and βr(t, r). As we discussed above, we really require only one
nontrivial 3-metric coefficient to fix the 3-geometry.2 But we have the gauge freedom inherent
in our choice of the radial shift function βr(t, r) to cast the spatial 3-metric in alternative forms.
There are a couple of different strategies we could adopt in choosing the shift, as we discussed in
Chapter 4.4. On the one hand, we could use the shift to reduce the number of nontrivial 3-metric
functions to the minimum required number, one. Thus we could set B = 1 in equation (8.1), in
which case the radial coordinate r is the areal or circumferential radius commonly referred to as
the Schwarzschild radial coordinate: r = rs = (A/4π)1/2 = (C/2π), where A is the proper area and
C is the circumference of a sphere centered at rs = 0. This is the “radial gauge” of Chapter 4.4.
Alternatively, we could set A = B, whereby r = r̄ is an isotropic radial coordinate and we have the
“isotropic gauge”. The later choice also serves to globally minimize the distortion on the grid, and
is a special case of the minimum distortion gauge condition, as discussed in Chapter 4.5. On the
other hand, we could employ the shift vector to accomplish a different task, like simplifying the
matter field rather than the gravitational field. For example, we might use the shift to maintain
comoving coordinates, whereby the matter remains at rest with respect to the spatial coordinates,
with its 4-velocity satisfying ua ∝ (∂/∂t)a at all times.3 Finally, we could simply get rid of the
radial shift altogether, setting βr = 0. While this may appear to be a simplification, the price we
pay is that we must now solve for both A and B, except in special cases where (∂/∂t)a is a Killing
vector and the metric functions do not change with time.

2Actually, we know from the Painlevé-Gullstrand metric for a Schwarzschild spacetime (see Table 2.1) that we
can have A = B = 1, so that no nontrivial components are needed to specify the 3-metric in some cases.

3See Taub (1978), §15, for a shift prescription that maintains comoving coordinates for fluids in arbitrary
dimensions and Eardley and Smarr (1979) for some numerical examples involving dust in spherical symmetry.
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Given everything we have discussed so far, we still have left the freedom to choose the lapse
function α to specify the time slicing. We could simply set α = 1, but we have seen in Chapter 4.1
that such a choice (“geodesic slicing”) often leads to fatal coordinate singularities in a numerical
simulation. The appearance of a black hole raises a special concern: the computational domain
must avoid the physical (curvature) singularity inside the hole at all costs, least the metric functions
blow up and cause the code to crash before the evolution is complete. One way to accomplish
this is to choose a geometric “singularity avoiding” lapse function, like maximal slicing or polar
slicing. Another way is to choose a “horizon penetrating” lapse condition that enables our spatial
hypersurfaces to cross the apparent horizon without encountering coordinate singularities in any of
the metric functions. That way we can employ black hole excision techniques, removing the central
singularity of the black hole and the surrounding neighborhood from the computational domain
altogether and replacing it, if needed, with a simple boundary condition at or just inside the
apparent horizon, where the metric is well-behaved. Yet another approach employs the “moving
puncture” method and gauge conditions, which we will discuss in greater detail in Chapter 13.1.3.

All of the gauge choices discussed above have been utilized numerically at one time or another.
Several of them will be explored in the examples which follow, where we will solve Einstein’s
equations in 1 + 1 dimensions to construct spherical spacetimes. We will begin with the simplest
nontrivial spacetime – a single, isolated Schwarzschild black hole – and work our way through
some more complicated examples.

8.1 Black Holes

Here we shall construct the spacetime for a nonrotating, vacuum black hole by solving the 1 + 1
equations. Starting from the same initial conditions, let us see how different lapse and shift
conditions lead to different foliations of spacetime. That is, let us see how the resulting t =
constant spatial slices differ, both in their “upward” climb in a spacetime diagram, which measures
the rate at which proper time as measured by a normal observer na advances from one slice to
the next at different spatial locations, and in their “lateral” extent, which measures the degree to
which the slicing covers the interior of the black hole at any time.

Familiar gauge choices

Before we solve the 1 + 1 equations formally to construct some examples of spherical black hole
spacetimes, let us anticipate the results we should rediscover if we adopt a few familiar, analytic
gauge conditions for α and βr together with suitable initial data. In all of these examples, the
lapse and shift form a Killing lapse and shift, as discussed at the end of Chapter 2.7, so that all
metric functions remain independent of time.

Begin with a case for which we specify the initial data on the time-symmetry slice in the
Kruskal-Szekeres diagram (see Figure 1.1): the spacelike v = 0 surface covering 0 ≤ u ≤ ∞ in the
u− v plane, or, equivalently, the ts = 0 slice from 2M ≤ rs ≤ ∞ in standard Schwarzschild time
and radial coordinates, ts and rs. Then we know that the familiar gauge choice

α(rs) = (1− 2M/rs)
1/2 , βrs(rs) = 0, (8.2)

gives the usual static solution for the 3-metric in Schwarzschild coordinates,

A(rs) =
1

1− 2M/rs
, B(rs) = 1. (8.3)
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Figure 8.1: Slices of constant Schwarzschild time ts for a spherical black hole, plotted in a Kruskal-
Szekeres diagram. The dashed line denotes the event horizon at rs/M = 2 and the sawtooth curve
denotes the central singularity at rs/M = 0.

Slices of ts = constant in this foliation are shown in Figure 8.1.
The limiting slice asymptotes to the event horizon at rs = 2M as ts → ∞; no slice ever

penetrates the horizon. Thus, standard Schwarzschild time slicing is singularity avoiding but it
is not horizon penetrating. A simple radial coordinate transformation can be used to express this
solution in terms of an isotropic radial coordinate r̄:

α(r̄) =
1−M/2r̄

1 +M/2r̄
, β r̄(r̄) = 0 , (8.4)

whereby

A(r̄) = B(r̄) =

(
1 +

M

2r̄

)4

. (8.5)

This is not a different foliation, but rather the same time slicing as Schwarzschild, only expressed
in terms of a different radial coordinate.

By contrast with Schwarzschild time slicing, Kerr-Schild (or ingoing Eddington Finkelstein)
slicing is horizon penetrating, but it is not singularity avoiding. These properties make Kerr-
Schild slicing (or a lapse condition close to it), a good candidate for black hole excision. As in
the case of Schwarzschild, the Kerr-Schild solution is analytic and static. However, none of the
Kerr-Schild tKS = constant slices are time-symmetric, since the diagonal components of Kij(rs)
never vanish. So we cannot expect the time-symmetric slice in the Kruskal-Szekeres diagram to
provide initial data for this solution. Instead, we need data on a tKS = constant slice, any one
of which will suffice, since the 3-geometry is still static in this time coordinate. The Kerr-Schild
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gauge conditions are

α(rs) =

(
rs

rs + 2M

)1/2

, βrs(rs) =
2M

rs + 2M
. (8.6)

and the 3-metric for this solution is given by

A(rs) = 1 +
2M

rs
, B(rs) = 1. (8.7)

To locate the tKS = constant time slices on a Kruskal-Szekeres diagram we need to express u
and v as functions of tKS and rs in regions I and II of the diagram. We find, up to an arbitrary
additive constant absorbed in tKS,

u = 1
2

[
e(tKS+rs)/4M + e(tKS−rs)/4M(rs/2M − 1)

]
,

v = 1
2

[
e(tKS+rs)/4M − e(tKS−rs)/4M(rs/2M − 1)

]
.

(8.8)

Exercise 8.1 Verify equation (8.8). Begin by matching the Schwarzschild and Kerr-Schild line elements
to show that

tKS = ts + 2M ln |rs/2M − 1|+ C, (8.9)

where C is a constant which can be set equal to zero. Then use this equation together with the
transformations between Kruskal-Szekeres and Schwarzschild coordinates, in regions I and II of the
Kruskal-Szekeres diagram,

(rs/2M − 1)ers/2M = u2 − v2 (8.10)

and

ts =
{

4M tanh−1(v/u) , in region I, rs > 2M ,

4M tanh−1(u/v) , in region II, rs < 2M ,
(8.11)

to derive
tKS = 4M ln(u+ v)− rs , (8.12)

which holds in both regions. Finally, use equations (8.10) and (8.12) to derive equation (8.8).

Using equation (8.8), we plot slices of constant tKS in Figure 8.2. We see from the figure that
all of the slices penetrate the horizon, and all of them hit the central singularity. So Kerr-Schild
time slicing is horizon penetrating but not singularity avoiding. This time slicing, and slicings
with lapse functions close to it, provide a good gauge for performing black hole excision.

Maximal slicing

Maximal slicing has the advantage that it is both horizon penetrating and singularity avoiding.
As a result, it has been adopted in many numerical simulations involving black holes. Typically,
imposing the maximal slicing condition does not admit an exact solution to the 1 + 1 equations.
Remarkably, for the case of a single, nonrotating black hole in the radial gauge, analytic solutions
for a maximal spacetime do exist, even in the presence of a radial shift. We already derived an
entire family of time-independent solutions in Chapter 4.2 (see equations 4.23- 4.25.) Here we
will construct another maximal slicing of the same spacetime, one that gives a time-dependent
or “dynamical slicing” of a Schwarzschild black hole.4 This spacetime is also analytic, if by
“analytic” we allow one-dimensional quadratures. The metric for this solution has some generic
features that characterize the metric that develops at late times during stellar collapse to a black

4Estabrook et al. (1973); our discussion is patterned after their treatment.
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Figure 8.2: Slices of constant Kerr-Schild (ingoing Eddington-Finkelstein) time of a Schwarzschild
black hole, plotted on a Kruskal-Szekeres diagram. The dashed line denotes the event horizon at
rs/M = 2 and the sawtooth curve denotes the central singularity at rs/M = 0.

hole when maximal slicing is employed. Not only will our examination of this solution be useful
to illustrate how maximal slicing works, but our reconstruction of the solution will provide a
convenient opportunity to review the typical steps required to build a spacetime in the 3 + 1
formalism, at least in spherical symmetry.

We start with the line element in the form

ds2 = −(α2 − β2/A)dt̄2 + 2βdt̄dr + Adr2 + r2(dθ2 + sin2θdφ2) (8.13)

where r is the Schwarzschild radial coordinate (we drop the subscript “s” in this section), β =
βr = Aβr, t̄ is the maximal time coordinate, and the functions α, β and A depend only on t̄ and
r. Given this form of the metric we compute all the 3-dimensional Christoffel symbols, which we
will need in the evaluation of the standard 3 + 1 or ADM equations. We find

Γrrr = ∂rA/(2A) , Γrθθ = −r/A , Γrφφ = −rsin2θ/A , (8.14)

Γθrθ = Γθθr = 1/r , Γθφφ = −sinθcosθ ,

Γφθφ = Γφφθ = cotθ , Γφrφ = Γφφr = 1/r ,

with the remaining coefficients equal to zero.

Exercise 8.2 For practice, obtain the Christoffel symbols displayed in equation (8.14) by employing
the Lagrangian

L = Aṙ2 + r2θ̇2 + r2sin2θφ̇2 (8.15)
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to write down the 3-dimensional Euler-Lagrange equations and then matching them to the 3-dimensional
geodesic equation

ẍi + Γi
jkẋ

j ẋk = 0 , (8.16)

to get the nonvanishing symbols.

Next we insert the Christoffel symbols in equation (2.142) to calculate the nonvanishing com-
ponents of the 3-dimensional Riemann tensor, Rij, obtaining

Rrr = ∂rA/(rA), Rθθ = Rφφ/sin
2θ = 1− 1/A+ r∂rA/(2A

2) . (8.17)

We now can get R = Ri
i, required to solve the Hamiltonian constraint equation (2.133):

R = 2∂rA/(rA
2) + 2(1− 1/A)/r2 . (8.18)

The nonvanishing components of the extrinsic curvature may be calculated from equation (2.135),
yielding

Krr = −(∂t̄A+ β∂rA/A− 2∂rβ)/(2α) , Kθθ = Kφφ/sin
2θ = rβ/(αA) . (8.19)

Maximal slicing requires K = Ki
i = 0, in which case equation (8.19) implies

Krr = −2β/(αr) , KijK
ij = 6(β/αAr)2 (8.20)

and
− ∂t̄ lnA+ (β/A)∂r ln(β2r4/A) = 0 . (8.21)

The Hamiltonian constraint (2.133) reduces to

R = KijK
ij , (8.22)

which, inserting equations (8.18) and (8.20), yields

3β2/(α2A) = A− 1 + r∂rA/A . (8.23)

When combined with equation (8.20) for Krr, the radial component of the momentum con-
straint (2.134) may be evaluated to give

∂r ln(βr2/Aα) = 0 . (8.24)

Maximal slicing also requires ∂t̄K = 0, in which case equation (2.138), combined with equa-
tion (8.22), gives D2α = αR. Substituting equation (8.18) in the right-hand side and expanding
the derivative on the left-hand side yields an equation for the lapse,

∂r∂rα + 2∂rα/r − (∂r lnA)∂rα/2 = 2α(A− 1 + r∂r lnA)/r2 . (8.25)

Finally, the evolution equation (2.136) for Krr gives

∂t̄ ln(β/α) = (3β/A+ α2A/β − α2/β)/r (8.26)

+3(∂rβ)/A+ (α2/β − 4β/A)(∂r lnA)/2 (8.27)

−(β/A+ α2/β)∂r lnα . (8.28)

where we have used equation (8.20) to replace Krr, equation (8.17) for Rrr, and equation (8.25)
for ∂r∂rα.
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We have now assembled the basic equations and are ready to integrate them to obtain the
solution. Note that in spherical symmetry, which contains no dynamical degrees of freedom (i.e. no
gravitational waves), it is not necessary to solve an evolution equation either for the 3-metric
variable A or the extrinsic curvature variable Kr

r. These longitudinal quantities are determined
on any time slice entirely by the Hamiltonian and momentum constraint equations. For example,
we may solve the constraint equation (8.22) for A in lieu of the evolution equation (8.21). For this
reason we say that in spherical symmetry the gravitational field evolution is completely constrained.

Equation (8.24) immediately gives

β = αAT/r2 , (8.29)

where T = T (t̄) is a constant of integration that can be a function of t̄ only. Substituting this
result into equation (8.23) and integrating yields

A =
1

1− 2M/r + T 2/r4
, (8.30)

where the new constant of integration M is again a function of t̄ only. By going to large r we
we will be able to identify M with the total mass-energy of the black hole, once we show that it
is independent of t̄. Taking a time derivative of equation (8.30) and using equations (8.21) and
(8.29) yields

∂r(αA
1/2) = A3/2(r∂t̄M/T − ∂t̄T/r

2) , (8.31)

which we will integrate for the lapse shortly. Substituting equation (8.29) into equation (8.26), and
using the time-derivative of equation (8.30) to help evaluate the left-hand side shows, after some
algebra, that ∂t̄M = 0, hence M is constant, as anticipated. We now integrate equation (8.31) to
get the lapse function, using equation (8.30) and the condition that α→ 1 as r →∞:

α = (1− 2M/r + T 2/r4)1/2

[
1 +

∂t̄T

M

∫ M/r

0

dx (1− 2x+ T 2x4/M4)−3/2

]
. (8.32)

Using equations (8.23) and (8.29) one can check that equation (8.25), which we have not needed
to solve for the lapse, is automatically satisfied by equation (8.32).

So far, the constant of integration T = T (t̄) is undetermined. We can now pick out a particular
maximal slicing of Schwarzschild by determining this function. Setting T = 0, for example, we
recover the familiar ts = const slices, for which equations (8.30) and (8.32) reduce to equations (8.3)
and (8.2) with zero shift.

Exercise 8.3 Check that the static Schwarzschild metric (8.3) and (8.2) satisfies equation (8.25).

If we set T to a constant, say T = C, we recover the family of time-independent maximal
slicings of Schwarzschild, equations (4.23) – (4.25), that we derived in Chapter 4.2 with the help
of an alternative “height-function” approach. Evidently, there exist many different maximal slices
of Schwarzschild.

How is it possible that the same maximal slicing condition for the lapse, equation (8.25), a
second-order partial differential equation, is satisfied for different solutions? The answer lies in
the different inner boundary condition imposed on the lapse on the black hole throat. Setting
α = 0 on the Einstein-Rosen bridge at the center of the throat leads to standard static time
slicing with T = 0. By contrast, setting ∂rα = 0 to require “smoothness” across the throat,
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results in a dynamical time slicing solution, the derivation of which we have nearly completed. In
obtaining equation (8.32) for the lapse by integrating equation (8.31) rather than by integrating
equation (8.25), we simply postponed having to specify inner boundary conditions on the throat.

The dynamical maximal time-slicing solution for the spacetime is given by equations (8.29),
(8.30) and (8.32). However, there still remains one unknown in these equations: the function T
and its dependence on t̄. Specifying this function will now require that we explicitly impose an
inner boundary condition on the black hole throat, and, as mentioned above, we shall impose
“smoothness” across the throat to get the desired solution. The simplest way to do this is to
transform to standard Schwarzschild coordinates, (t, r, θ, φ), where t = t(t̄, r) but where the spatial
coordinates are the same. Matching the line element (8.13) with the standard Schwarzschild line
element gives

∂t̄t = αA1/2 , (8.33)

∂rt = A1/2T/
[
r2(2M/r − 1)

]
. (8.34)

Exercise 8.4 Verify equations (8.33) and (8.34).

Integrating equation (8.34) yields

t/M = (T/M2)

∫ X(T )

M/r

dx(1− 2x+ T 2x4/M4)−1/2(2x− 1)−1 , (8.35)

where X(T ) is determined by differentiating equation (8.35) with respect to t̄, substituting into
equation (8.33), and using equation (8.32) to get

dX

dT
= T−1(2X − 1)(1− 2X + T 2X4/M4)1/2

[
M

∂t̄T
+

∫ X

0

dx(1− 2x+ T 2x4/M4)−3/2

]
. (8.36)

Now we can impose the “smoothness” requirement at the center of the Einstein-Rosen bridge
along t = 0 for r < 2M (i.e., along u = 0, v > 0, in Kruskal-Szekeres coordinates). Smoothness
requires that, when viewed in a Kruskal-Szekeres diagram, each t̄ = constant slice intersect the
center of the bridge in the normal direction, so that as t → 0, we have that ∂rt → ∞ as r
approaches its minimum value rmin = rmin(t̄) along the slice (see Figure 8.3). Demanding that this
condition be satisfied by equations (8.34) and (8.36) requires that rmin be equal to M/X(T ) for
that value of X(T ) that is the smaller of the two real roots of the 4th-order polynomial equation
1− 2x+ T 2x4/M4 = 0. It turns out that equation (8.36) is automatically satisfied when X(T ) is
a root of this polynomial.

We now can get the desired relation between T and t̄. Setting t̄ = t at r = ∞ in equation (8.35)
gives

t̄/M = (T/M2)

∫ X(T )

0

dx(1− 2x+ T 2x4/M4)−1/2(2x− 1)−1 . (8.37)

For each allowed value of T , where 0 ≤ T/M ≤ 3
√

3/4, the polynomial equation determines X(T )
and equation (8.37) gives the value of t̄ parametrizing the maximal hypersurface. Values of key
parameters on select hypersurfaces are listed in Table 8.1. It is relevant to note that the integral
in equation (8.37) diverges when the two real roots of the 4th-order polynomial coincide. This
occurs at T/M2 = 3

√
3/4, for which one finds t̄ = ∞, X = 2/3, rmin/M = 3/2 and α = 0. Thus

the foliation of the black hole spacetime terminates at this limit slice, beyond which maximal
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Figure 8.3: Maximal time slices of a Schwarzschild black hole, plotted on a Kruskal-Szekeres
diagram. The dashed line denotes the event horizon at rs/M = 2, the sawtooth curve denotes the
central singularity at rs/M = 0 and the darker solid line shows the limiting slice at rs = 3M/2.

Table 8.1: Parameters on selected maximal slices.

t̄/M T/M2 ∂t̄T/M X rmin/M

0 0 1 1
2

2
1 0.8104 0.5350 0.5249 1.9050
2 1.1384 0.1791 0.5670 1.7638
3 1.2460 0.0585 0.6019 1.6615
4 1.2814 0.0193 0.6263 1.5965
5 1.2931 0.0065 0.6422 1.5570
6 1.2970 0.0022 0.6521 1.5334
7 1.2984 0.0007 0.6581 1.5195
8 1.2988 0.0002 0.6617 1.5114

∞ 3
√

3
4

0 2
3

3
2

slicing cannot probe. Encountering a limit slice is a characteristic of maximal time slicing, and
even occurs in nonvacuum scenarios when using maximal slicing to follow the collapse of a star
or star cluster to a black hole. Given that all of the slices, including the limit slice, avoid hitting
the central singularity, while all events in the domain of outer communications are covered, such a
foliation of the black hole spacetime is “good news” from a numerical point of view. Otherwise, a
simulation designed to build the spacetime numerically would terminate due to computer overflows
upon encountering the central singularity. In this situation the numerical evolution would come
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Figure 8.4: The lapse α as a function of areal radius rs on selected maximal slices.

to an abrupt end, even if one were interested only in the black hole exterior.5

In Figures (8.4) - (8.6) we plot the profiles of α, β and A on selected maximal hypersurfaces.
The “collapse of the lapse” near the center of the Einstein-Rosen bridge inside r = 2M that we
expect with maximal slicing at late times6 is evident in Figure (8.4). The “bad news” from a
numerical standpoint is that metric functions like A blow up at the center of the bridge at rmin.
The metric coefficients in Kerr-Schild slicing, discussed in the previous section, do not blow up
on the slice until reaching the central singularity (cf. equation 8.7). However, Kerr-Schild slices
do hit the central singularity, which would be disastorous in a numerical simulation. So a better
solution to constructing the spacetime numerically would be to to eliminate at least part of the
black hole interior – after all, the black hole exterior cannot be affected by the interior, so there
should be no need to compute the interior. This black hole excision technique7 does not rely
on any particular slicing condition in the exterior, and can be used as long as the grid functions
remain sufficiently well-behaved outside the excision surface. We will discuss some examples in
Chapters 13 and 14. An alternative approach might use the moving-puncture approach,8 which
adopts a particularly well suited set of coordinates that avoids the spacetime singularities without
developing the pathologies described above. Examples of moving-puncture simulations will be
described in Chapters 13 and 17.

5However there do exist cases, e.g., extremely inhomogeneous dust balls, for which maximal slicing fails, hitting
the central singularity before covering the domain of outer communications of the resulting black hole; Eardley and
Smarr (1979).

6Recall our discussion in Chapter 4.2.
7See Chapters 13.1.2 and 14.2.3.
8See Chapter 13.1.3.
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Figure 8.5: The radial metric coefficient A (= γrr) as a function of areal radius rs on selected
maximal slices.

8.2 Collisionless Clusters: Stability and Collapse

Collisionless particles provide a convenient matter source for developing numerical relativity algo-
rithms in general, and for problems involving relativistic matter in particular. By the same token,
numerical relativity provides a powerful tool for studying the physical behavior and astrophysical
implications of self-gravitating clusters of relativistic, collisionless particles.

From a technical point of view, working with collisionless matter has some advantages over fluid
systems for designing and testing numerical relativity schemes. The collisionless matter equations
can be represented as ordinary differential equations (geodesic equations; recall Chapter 5.3 and
equation 5.222) and thus are straightforward to integrate, while hydrodynamical equations are
partial differential equations and require more more subtle handling. Furthermore, collisionless
matter is not subject to shocks or other discontinuities that often require special treatment, or
sophisticated schemes, in numerical simulations to give reliable results.

In recent years, numerical relativity simulations have resolved a number of longstanding issues
in relativistic stellar dynamics, issues which had been unresolved even for spherically symmetric
systems. These results have far wider applicability than stellar dynamics, in that the matter fields
need not be identified with stars per se but with any gas of self-gravitating, collisionless particles,
as emphasized in Chapter 5.3. As an example of such an issue, consider that, in contrast to the
situation for spherical fluid stars in general relativity, there exists only sufficient, but not necessary,
criteria for the dynamical radial stability of a spherical collisionless cluster. Specifically, linear
perturbation theory, using trial functions in a variational principle, had demonstrated that along
a one-paramter sequence of equilibrium clusters parametrized by zc, the central redshift of the
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Figure 8.6: The radial shift β as a function of areal radius rs on selected maximal slices.

configuration, the onset of instability occurs near the point of maximum fractional binding energy
(Eb ≡ (M0−M)/M0, where M is the total mass-energy and M0 is the rest-mass), independent of
the nature of the equilibrium models.9 In typical models a turning point in the relativistic binding
energy curve occurs at high redshift, zc ≈ 0.5. Subsequently, a theorem was then proven rigorizing
this result, but it is restricted, stating only that that the equilibrium configurations are stable at
least up to the first maximum of the fractional binding energy along the sequence.10 This contrasts
with the situation for a spherical fluid equilibria (stars) in general relativity, for which the binding
energy maximum, equivalent to the “turning point” along the M vs. ρc curve (see Chapter 1.3),
identifies precisely the onset of radial instability. Now, fully nonlinear, time-dependent simulations
furnish strong numerical evidence that the turning point in the binding energy curve does in fact
signal the the onset of dynamical radial instability along an equilibrium sequence of collisionless
clusters. Numerical relativity has thus “discovered” a theorem awaiting a formal proof.11

By far the most interesting and important results to emerge from the numerical simulations
deal with the nonlinear evolution and final fate of unstable clusters. They corroborate earlier
speculation12 that unstable clusters inevitably undergo catastrophic collapse to black holes. They
also demonstrate that when the nearly homogeneous core of a centrally concentrated (“core-halo”)
cluster undergoes collapse, a mass much larger than the core ultimately forms the central black

9Ipser and Thorne (1968); Ipser (1969a,b); Fackerell (1970).
10Ipser (1980).
11For numerical simulations in spherical symmetry, see Shapiro and Teukolsky (1985b,a,c, 1986) and, for a review

and references, Shapiro and Teukolsky (1992b). The discussion in this section is drawn from the later two references
and Rasio et al. (1989b). See also Olabarrieta and Choptuik (2002).

12Zel’dovich and Podurets (1965); see also Fackerell et al. (1969).
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hole. This occurs because of the so-called “avalanche effect”, whereby the black hole formed from
the collapse of the initial core grows by capture of lower-angular momentum stars that orbit at
increasingly larger apocenter from the center but wander close to the hole at pericenter. At the
end of the collapse, the cluster settles into a new stationary state consisting of a massive, nearly
Newtonian halo in orbit about a central black hole. This numerical example provides one viable
scenario for forming a supermassive black hole.

Relativistic “violent relaxation”, or “dynamical phase mixing”, has also been explored by
simulations. In violent relaxation, collective fluctuations in the time-varying gravitational field
lead to particle thermalization.13 In general relativity, a bound, nonequilibrium collisionless cluster
can either achieve virial equilibrium via violent relaxation or else collapse to a black hole.

In the sections that follow we will sketch exactly how some of the numerical calculations of
collisionless clusters have been performed. The key computational challenge involves black hole
formation and singularity avoidance in cases of catastrophic cluster collapse. We will focus on a
few of the ways that this challenge has been overcome successfully.

8.2.1 Particle Method

Physical Picture

Consider any spherical surface drawn in the interior of a spherical distribution of particles (see
Figure (8.7). The surface is densely and uniformly covered with an infinite number of particles,
each with an infinitesimal rest mass. Particles move both in the radial and transverse directions,
but to preserve spherical symmetry, their transverse motion must be isotropic. Accordingly, even
as individual particles may have nonzero angular momentum about the cluster center, the total
angular momentum summed over all the particles is strictly zero.

The restriction to spherical symmetry reduces the number of degrees of freedom in phase space
that we need to consider. In coordinate space the only nontrivial dynamical variable is the radius r
of a particle. In velocity space the only nontrivial dynamical variables are the radial and transverse
velocities, ur̂ and u⊥.

Newtonian Limit

Prior to describing the relativistic problem, it is useful to consider how a spherical cluster of
collisionless particles can be evolved in Newtonian physics. In this limit, the metric reduces to

ds2 = −(1 + 2Φ)dt2 + dr2 + r2dΩ2 , (8.38)

where Φ is the Newtonian potential. The particles move according to the geodesic equation, which
is simply Newton’s law of motion,

dxi

dt
= ui,

dui

dt
= −∇Φ , (8.39)

where xi and ui are the position and velocity 3-vectors of each particle. In spherical symmetry
these equations simplify to

dr

dt
= ur ,

13This was first discussed in Newtonian gravitation by Lynden-Bell (1967). See also Binney and Tremaine (1987)
for discussion.
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Figure 8.7: Schematic representation of the distribution of particles in a spherical cluster (see
text). [After Shapiro and Teukolsky (1992b)].

dur
dt

= −∂rΦ +
u2
φ

r3
, (8.40)

uθ = 0 (orbit confined to the plane θ =
π

2
) ,

duφ
dt

= 0 (conservation of angular momentum).

These equations are integrated forward in time for every particle for a small timestep. The new
particle positions yield the rest-mass density ρ at the new time:

ρ =
∑

all particles

mn , (8.41)

where m is the particle rest mass and n is the number density. The rest-mass density serves as
the (only) source term for the gravitational field equation, which in this case is just Poisson’s
equation,

∇2Φ = 4πρ . (8.42)

Solving this equation gives the self-consistent gravitational field at the new time. The new potential
is then inserted in the particle equations of motion and the process is repeated for another timestep.
This approach to evolving a self-gravitating, collisionless N -body system is known as a mean-field,
particle simulation scheme, and is well studied in the Newtonian domain.

The General Relativistic Formulation

A mean-field, particle simulation scheme for general relativity can be constructed in a similar
fashion to the Newtonian scheme described in the previous section, as shown by Shapiro and
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Teukolsky (1985b,a,c, 1986, 1992b). The matter is evolved by N -body particle simulation and
provides the source for the mean gravitational field, or metric. The metric is determined by
solving the standard 3 + 1 (ADM) equations.

For a spherical spacetime, we shall adopt the metric in isotropic form,

ds2 = −(α2 − A2β2)dt2 + 2A2βdrdt+ A2(dr2 + r2dθ2 + r2sin2θdφ2) . (8.43)

Here we have set β = βr, the contravariant radial component of the shift vector, the only nonva-
nishing component.

The stress-energy tensor for the matter is given by equation (5.221) and the equations of
motion (∇aT

ab = 0) are the geodesic equations for each particle, given by equations (5.223)
and (5.224), with normalization condition (5.225). As in Newtonian gravitation, these equations
simplify considerably in spherical symmetry, yielding

dr

dt
=

αur
A2(αu0)

− β ,

dur
dt

= −(αu0)∂rα + ur∂rβ +
u2
r

u0

∂rA

A3
+
u2
φ

u0

(
1

r3A2
+
∂rA

r2A3

)
, (8.44)

uθ = 0 ,
duφ
dt

= 0 .

The normalization condition uau
a = −1 gives

αu0 =

(
1 +

u2
r

A2
+

u2
φ

r2A2

)1/2

. (8.45)

Exercise 8.5 Verify equations (8.44) and (8.45). Show that they reduce to equations (8.40) in the
Newtonian limit, where A→ 1, α→ 1, ∂rα→ ∂rΦ, β → 0 and αu0 → 1.

Hence, given the metric at any time t, equations (8.44) and (8.45) are integrated forward in
time for the new particle positions and 4-velocities at t+ ∆t.

Given the particle positions and velocities, the matter source terms appearing in the field
equations can be calculated according to equations (5.226) – (5.229). For spherical systems, they
yield

ρ =
∑
A

mAnAW
2 , (8.46)

Sr =
∑
A

mAnAWuAr , (8.47)

Srr =
∑
A

mAnAu
A
r u

A
r , (8.48)

S = ρ−
∑
A

mAnA , (8.49)

where we regard each particle as being in its own category A, so that the sum over A is a sum
over particles (recall W = αu0

A). The number density nA can then be calculated according to
equation (5.230), which in spherical symmetry can be taken to be

nA =
1

4πWA3r2∆r
. (8.50)
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Here we treat the particle as smeared out over a zone size ∆r, which is the radial grid size.
In writing down the field equations we want to choose a suitable time coordinate, i.e. a lapse,

that allows us to integrate forward in time without encountering singularities in the case of black
hole formation. Based on our discussion in Section 8.1, where we constructed the spacetime for
a vacuum black hole, we suspect that maximal slicing might provide a reasonable choice. The
maximal slicing condition requires K = 0 = ∂tK (see Chapter 4.2), where we recall K ≡ Ki

i

is the trace of the extrinsic curvature. Taking the trace of the evolution equation for ∂tKij, i.e.,
equation (2.138), then leads to a linear elliptic equation for α,

∂r
(
Ar2∂rα

)
= αA3r2

[
3

2
(Kr

r)
2 + 8πρ+ 4πT

]
(maximal slicing) , (8.51)

where T = S − ρ is the trace of Tab. Alternatively, we might try polar slicing, for which the trace
of the part of Kij transverse to the radial direction is set to zero: KT ≡ Kθ

θ + Kφ
φ = 0. As we

have seen in exercise 6.14, and as we will rederive in exercise 8.10, polar slicing avoids regions of
spacetime containing trapped surfaces in spherical symmetry, suggesting that it might have better
singularity avoidance than maximal slicing when a black hole forms. The lapse equation for polar
slicing is a simple quadrature

α =

[
1−

(
M

2rmax

)2
]

exp

[
1

2

∫ r

rmax

r(∂rA/A)2 + 8πrSrr
1 + r∂rA/A

dr

]
(polar slicing) , (8.52)

where rmax is an arbitrary radius in the vacuum exterior (See Exercise 8.8). Both maximal and
polar slicings have been used in simulations of collisionless clusters.

It is convenient to use the quantity KT to express equations that are valid in both maximal
and polar gauges:

KT =

{
0 (polar slicing) ,
−Kr

r (maximal slicing) .
(8.53)

Then the evolution equation (2.135) for the metric coefficient A is

∂tA = β

(
∂rA+

A

r

)
− 1

2
αAKT . (8.54)

The Hamiltonian constraint (2.133) becomes a nonlinear elliptic equation for A,

1

r2
∂r
(
r2∂rA

1/2
)

= −1

4
A5/2

(
8πρ+

3

4
K2
T

)
. (8.55)

We used up our spatial coordinate freedom by choosing the 3-metric to be isotropic. This
choice automatically leads to a condition on the shift, β. This shift condition may derived by
using the definition of Kij, equation (2.135), to evaluate α(Krr −Kθθ), which yields

∂r

(
β

r

)
=
α

r
(Kr

r −Kθ
θ) , (8.56)

or

β = −r
∫ ∞

r

α(Kr
r −

1

2
KT )

dr

r
, (8.57)

(cf. Exercise 4.12).
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Exercise 8.6 In spherical symmetry, a “first-order form” of the minimal distortion gauge (cf. equa-
tion 4.70) may be written

(Lβ)ij = 2α(Kij −
1
3
Kγij) , (8.58)

where the vector gradient (Lβij) of the vector βi is defined in equation (4.67).14 Show that equa-
tion (8.56) is consistent with condition (8.58).

The momentum constraint (2.134) determines the radial component of the extrinsic curvature:

DiK
i
r −DrK = 8πSr , (8.59)

which yields

Kr
r =


(8π/(A3r3))

∫ r
0
A3r3Srdr (maximal slicing) ,

4πrSr/(1 + r∂rA/A) (polar slicing) .
(8.60)

The relevant field equations have now all been assembled. We point out again that in spherical
symmetry, which contains no dynamical degrees of freedom, it is not necessary to solve an evolu-
tion equation either for the one nontrivial 3-metric coefficient A or the one independent extrinsic
curvature variable Kr

r. These quantities on any time slice are determined entirely by the Hamil-
tonian and momentum constraint equations. Hence, we may solve the Hamiltonian constraint
equation (8.54) for A in lieu of the evolution equation (8.54), and similarly for Kr

r. The resulting
approach constitutes a completely constrained evolution scheme.

Exercise 8.7 Derive field equations (8.54) - (8.60). To do so you will first need to use the isotropic
metric (8.43) to calculate the following quantities:
(a) Γi

jk for all i, j, k ,
Hint: Use equation (3.7) with γ̄ij = (1, r2, r2sin2θ) to obtain

Γr
rr = ∂rA/A, Γr

θθ = −(r + r2∂rA/A), Γr
φφ = −rsin2θ − r2sin2θ∂rA/A,

Γθ
rθ = Γφ

rφ = 1/r + ∂rA/A, Γθ
φφ = −sinθcosθ, Γφ

θφ = cotθ.

(b) Rij ,
Hint: Use equation (3.10) to find

Rr
r = −2A−3[∂r∂rA+

1
r
∂rA−

1
A

(∂rA)2] , Rθ
θ = −A−3[∂r∂rA+

3
r
∂rA] = Rφ

φ.

(c) R ,
(d) Kij ,
Hint: Use equation (2.136) to show

Krr = −[∂tA
2 − 2∂rβr + 2βr∂rA/A]/(2α), Kθθ = −[∂tA

2 − 2βr(1/r + ∂rA/A)]r2/(2α) = Kφφ sin−2 θ,

where βr = A2β.
(e) K = Ki

i .

Exercise 8.8 (a) Derive the maximal slicing condition (8.51) .
(b) Derive the polar slicing condition (8.52) .
Hint Define d/dt ≡ ∂t − βi∂i. Then show that

dKj
i

dt
= −∂kβ

iKj
k + ∂jβ

kKk
i −DjD

iα+ α[Rj
i +KKj

i + 4πTδji − 8πSj
i] . (8.61)

14For spherical systems, the first-order form of the minimum distortion condition is sufficient, since there are no
radiative modes and only longitudinal shear is present. See equations (4.71) or (4.74) for the second-order form of
the minimal distortion condition.



8.2. COLLISIONLESS CLUSTERS: STABILITY AND COLLAPSE 241

Set KT = Kθ
θ +Kφ

φ, use equation (8.61), and demand that KT = 0 = dKT /dt.

To solve the field equations uniquely we need boundary conditions. Outer boundary conditions
are obtained by matching the metric to the isotropic form of the static Schwarzschild metric as
r →∞. In fact, it is easy to show that in polar slicing, the metric takes the isotropic Schwarzschild
form everywhere in the vacuum exterior. Set the right-hand side of equation (8.55) equal to zero
and integrate. Requiring that A tend asymptotically to the isotropic value at large r yields

A =

(
1 +

M

2r

)2

(polar slicing, exterior) (8.62)

for all r outside the matter. Substituting this result into equation (8.52), with Srr = 0, gives

α =
1−M/(2r)

1 +M/(2r)
(polar slicing, exterior), (8.63)

which is the familiar isotropic lapse function. Equation (8.60) shows that Kr
r = 0 everywhere

outside the matter, and hence by equation (8.57), β = 0 as well. Thus in polar slicing one need
only integrate Einstein’s equations inside the matter and match to the standard Schwarzschild
metric in isotropic coordinates at the matter surface. By contrast, in maximal slicing, the nonzero
β and Kr

r require the metric to be integrated to reasonably large values of r �M in the vacuum
exterior in order to match to the standard Schwarzschild line element. For maximal slicing at large
r matching yields A→ 1 + const/r to leading order in 1/r, and similarly for α. This behavior can
be imposed by setting a Robin boundary condition at the outermost grid point, ∂r[r(A− 1)] = 0,
and likewise for α. Equation (8.60) gives Kr

r ∼ r−3 as r → ∞, so that the asymptotic solution
to equation (8.57) is

β =
rKr

r

2
(1 +O(1/r)) (maximal slicing, large r) . (8.64)

The boundary conditions for the field variables at the center of the cluster are chosen to enforce
regularity, which is appropriate for a matter profile that is smooth near the origin and exhibits no
spikes (e.g ∂rρ = 0 = Sr, etc.):

0 = ∂rα = ∂rA = β = Kr
r (r → 0) . (8.65)

Solving the Hamiltonian equation (8.55) numerically for A1/2 by finite-differencing in r to
replace the second-order differential operator requires linearization of the right-hand side. The
resulting set of coupled, linear equations, differenced to second order in the grid spacing ∆r,
typically takes on a tridiagonal form, for which simple recipes exist for inverting the matrix.
Linearization requires iteration of the solution until convergence.15 Using the evolution equation
for A to provide a good initial guess on the new time slice, given its value on the previous
slice, usually accelerates the convergence. The maximal slicing condition (8.51) yields a similar
tridiagonal set of equations, but this equation is linear in α, so no iteration following inversion
is necessary. The other field equations may be solved either algebraically or by simple one-
dimensional, numerical quadrature.

Since there are no field evolution equations to solve in a completely constrained code, and
only ODEs for the matter, the timestep ∆t between computational time slices is not subject to a

15See Chapter 6.2.2.
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hyperbolic Courant condition (e.g. the light-travel time across a radial grid spacing; see Chapter
6.2.3). Rather, it is determined by the timescale for the matter source terms to change, i.e. the
dynamical timescale of the system. A reasonable time-step criterion that has worked in practice
is

∆t ≈ min

[
q

α

(
3π

32ρ

)1/2
]
, (8.66)

where q <∼ 0.1 is a constant. Here the quantity in parantheses is the free-fall collapse time for a
homogeneous dust ball at the local density ρ. The insertion of α in the denominator accounts
for the slowing down of proper time with respect to coordinate time as the lapse function falls to
zero. Equation (8.66) still guarantees that the matter source terms change only a small amount
between time steps, because they change only when proper time as measured by a normal observer
(dτ = αdt) increases by a significant fraction of the local free-fall time.

Diagnostics

As in any simulation, one can identify a number of nontrivial diagnostics that provide a check on
the accuracy of the numerical simulation. For example, the total mass-energy of the configuration
M = MADM, which can be computed as in equation (3.145) or (3.147), must remain constant
in time. In fact, in a spherical spacetime, one can use the conservation of mass-energy to prove
additional constraints on the metric, as suggested by Exercise (8.9).

Exercise 8.9 Everywhere in the vacuum exterior of a spherical spacetime, M may be expressed
invariantly as

M =
(
A

16π

)1/2(
1− ∇aA∇aA

16πA

)
, (8.67)

where A is the proper area of a 2-sphere of radius r.16 Evaluate equation (8.67) to show that in the
coordinates adopted in this section we have

A = 4πA2r2 (8.68)

and

M =
1
2
Ar

[
1 +

1
4
(ArKT )2 −

(
1 +

r

A
∂rA

)2
]
. (8.69)

The expression appearing on the right-hand side of equation (8.69) must therefore be constant
in space and time throughout the vacuum exterior and must equal the initial mass-energy of the
configuration. This provides a useful self-consistency check on the integrations. In the case of
polar slicing, where A is given by equation (8.62), the identity is satisfied trivially. The check in
this case thus reduces to seeing whether the expression for M formed from the gradient of A is
continuous at the matter surface.

A further check is available for stable, equilibrium clusters. Since the metric is static in such a
case, each particle has a conserved energy, E = −p0. It is thus useful to check for the conservation
of the total particle “energy”,

− E0 ≡
∑
A

mAu0
A . (8.70)

In cases where the cluster collapses to a black hole, it is useful to follow the growth of the
black hole event horizon. This can be done easily in spherical symmetry simply by calculating

16See Lightman et al. (1975), problem 16.10.
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the trajectories of outgoing radial null rays emitted from various spacetime points. The geodesic
equation for the jth ray is

drj
dt

=
α(t, rj)

A(t, rj)
− β(t, rj) . (8.71)

The location the event horizon is then found by finding pairs of null rays emitted from the same
radius at slightly different times, one of which escapes to infinity and one of which is pulled back
into the hole.17

Inside the black hole there can be trapped surfaces, i.e. regions where the cross sectional area
of an outgoing bundle of null rays immediately converges.18 In spherical symmetry this condition
can be expressed simply by the equation

dA
dt

≤ 0 , (8.72)

where d/dt is the total derivative along the null ray and A is given by equation (8.68) for a radially
propagating bundle of null rays spanning a 2-sphere. Using equations (8.54) and (8.71), we find
that condition (8.72) becomes

1 + r(∂rA)/A− ArKT/2 ≤ 0 . (8.73)

Recall that the apparent horizon is the outer boundary of the region of trapped surfaces and
occurs where equality holds in equations (8.72) and (8.73). In polar slicing, where KT = 0,
trapped surfaces do not form, as shown in Exercise 8.10.19

Exercise 8.10 Show that the existence of trapped surfaces in polar slicing would be equivalent to the
condition

drs
dr

≤ 0 , (8.74)

where rs = Ar is the Schwarzschild areal radial coordinate. Thus argue that in a nonpathological
spacetime where rs is a monotonic increasing function of r, no trapped surfaces are encountered.

For collapse to a black hole, trapped surfaces are generally found in maximal slicing, but the
polar slices avoid these regions. Thus polar slicing has a somewhat stronger “singularity avoidance”
property than maximal slicing.

α-Freezing

Integrating the above system of equations yields very accurate numerical spacetimes for the most
part, as we shall illustrate below. However, some simulations of collapsing clusters become in-
accurate before the exterior spacetime surround the growing, central black hole reaches a final
stationary state. This problem can be particularly severe for clusters with appreciable central
mass concentration – so-called “extreme core-halo configurations”. Such clusters are character-
ized by enormous dynamic range, with orbital timescales in the central core much shorter than
those in the outer halo. A “seed” black hole forms at the center well before the bulk of the matter
in the outer regions has had time to evolve significantly. Determining what fraction of the total
cluster mass ultimately forms a black hole and what fraction remains outside in orbit about the

17See Chapter 7.2.
18Recall Chapter 7.3.
19See also Exercise 7.13, where the result is derived by a more formal route.
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Figure 8.8: Schematic spacetime diagram of the collapse of a collisionless cluster to a black hole.
The vertical axis measures proper time τ measured by a normal observer and the horizontal axis
measures areal (Schwarzschild) radius rs. A singularity forms at the center in a finite proper time.
The time slicing chosen here avoids the singularity by “slowing down” the advance of proper time
near the center, hence the warping there of the spatial hypersurfaces with increasing coordinate
time t. Spherical polar coordinate lines appearing on each slice mark the spatial grid, with the
radial grid based on an isotropic coordinate r. When the spatial metric on the time slice t has the
“radial” form A2

sdr
2
s + r2

sdΩ2, a spike develops in As near the event horizon, as in the usual static
Schwarzschild geometry. When the isotropic metric A2dr2 + A2r2dΩ2 is used, no spike appears.
However, considerable radial grid must be expended along the throat near the horizon to determine
the metric accurately (“grid stretching”). [After Shapiro and Teukolsky (1986)].

hole can prove challenging in such cases. Yet the outcome may shed light on plausible mechanisms
for forming supermassive massive black holes in the cores of collisionless clusters arising in nature,
like dense star clusters or dark matter halos.

The traditional way of attacking this issue is to find coordinate conditions (i.e. lapse and shift
functions) that make the problem trackable. Figure (8.8) illustrates the main effect responsible for
the inability of the choices discussed in this section to track the late-time evolution of extreme core-
halo configurations. Isotropic coordinates, while preventing “spikes” from forming in the radial
metric component near horizons, lead to considerable grid stretching all along the black hole
throat. Grid stretching arises because the isotropic radial coordinate r must span many decades
along the black hole throat. The metric field also varies rapidly on the throat. Consequently, it is
necessary to cover the throat with an increasing number of grid points to determined the metric
accurately in a numerical calculation. But given finite computational resources, there are only a
finite number of radial grid points available to cover the throat. The result is that the growing
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numerical inaccuracies attributed to grid stretching ultimately force the integrations to terminate.
In addition, maximal time slicing, although successful in holding back the advance of proper

time at the center and thus postponing the appearance of singularities, causes the lapse function
α to decay and the spatial conformal factor A to increase exponentially at late times near the
center. This can eventually cause underflows and overflows in the computed metric components
whenever a black hole forms, forcing the integrations to terminate before the exterior spacetime
reaches a final stationary state.

Several techniques have been developed recently that allow us to evolve black holes for very
long times, without the occurence of the above problems. One such technique is black hole
excision;20 another is the “moving-puncture” approach.21 However, in the case of collisionless
particles undergoing spherical collapse to a black hole, there is a very simple and elegant choice of
coordinates and matter variables that provide accurate solutions for arbitrary late times. The idea
behind this choice is easily understood. At late times during the collapse the lapse goes to zero
exponentially with t near the cluster center (the “collapse of the lapse”; see Chapter 4.2). Hence
the proper time dτ = αdt measured by a normal observer near the cluster center goes to zero for a
finite interval of coordinate time dt. Thus we expect that any physical quantity measured by such
an observer will freeze, i.e. become constant with t, at late times, because there is no advance of
proper time in that observer’s reference frame.

As an example, consider the radial component of the velocity of a particle, vr̂, where the caret
denotes an orthonormal component measured by the normal observer na. We have

vr̂ = ur̂/u0̂ = −uaea(r̂)/uaea(0̂) , (8.75)

where ea
(0̂)

= na is the orthonormal time basis vector and ea(r̂) = ear/A is the orthonormal radial

basis vector. Evaluating equation (8.75) yields

vr̂ = (ur/A)/αu0 (8.76)

and similarly

vφ̂ = (uφ/Ar)/αu
0 . (8.77)

Substituting equations (8.76) and (8.77) into (8.45) gives

αu0 =
[
1− (vr̂)2 − (vφ̂)

]−1/2

. (8.78)

Since vr̂ and vφ̂ must freeze at late times, so must αu0, and since uφ is a constant of the motion,
we learn from equations (8.76) and (8.77) that the areal radius of a particle rs = Ar and the ratio
ur/A also freeze.

In this fashion it is straightforward to determine which quantities freeze and which do not as
α→ 0. We find that, as functions of rs, the source functions ρ and S freeze, while Sr and Srr do
not. The quantities β, A and r (the isotropic radius of a particle) do not freeze. Equation (8.44)
thus shows that even when α → 0, the shift continues to drive changes in r. The result is grid
stretching.

To overcome grid stretching one needs to take advantage of α−freezing and recast the equations
in terms of the freezing variables. In either polar or maximal time slicing, the equations of motion

20See Chapters 13.1.2 and 14.2.3 ff.
21See Chapter 13.1.3.
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of a particle become

drs
dt

= −1

2
αrsKT + α

(ur/A)

αu0

(
1− rs∂rsA

A

)−1

, (8.79)

d(ur/A)

dt
=

(
−(αu0)∂rsα + α

u2
φ

r3
s(αu

0)

)(
1− rs∂rsA

A

)−1

+ αKr
r(ur/A) . (8.80)

Since every term on the right-hand sides of the above equations contains an explicit factor of α or
∂rsα, we see that

drs
dt

→ 0 ,
d(ur/A)

dA
→ 0 as α→ 0 . (8.81)

This provides a formal proof of the freezing of the particle motion at late times near the center of
a collapsing configuration in either maximal or polar slicing.22 In the next section we will present
results of simulations, some of which utilize freezing variables.

Numerical calculations

As a test of the overall mean-field, particle simulation scheme, consider the results obtained for
Oppenheimer-Snyder collapse, i.e. the collapse from rest of a spherical, homogeneous dust ball
to a Schwarzschild black hole, as discussed in Chapter 1.3. The interior is given by the familiar
Friedman solution for a closed universe, which is known in closed analytic form in Gaussian normal
(geodesic) time and comoving spatial coordinates. The interior must be matched smoothly onto
the vacuum exterior, which is just the static, vacuum Schwarzschild metric. For comparison with
a numerical simulation, it is necessary to express the solution in the same coordinate system used
in the simulation. The transformation of the Oppenheimer-Synder solution to both maximal and
polar time slicing and isotropic spatial coordinates was carried out23 in order to compare numerical
with analytic solutions in these gauges.

In Figure (8.9) the lapse profile is plotted on selected maximal time slices during the collapse
from an initial areal radius R/M = 10. The agreement between the analytic and numerical
solutions is good, even after the black hole forms at t/M ≈ 40. Freezing-variables were not required
for this example. A spacetime diagram is plotted in Figure (8.10), showing that numerical code
tracts the matter worldlines fairly reliably. It is also reassuring that the event horizon appears
first at the origin and grows monotonically outwards, remaining stationary at rs/M = 2 once
the last particle crosses inside. Not surprisingly, the stellar surface approaches a limit surface at
rs/M = 3/2; this is the same limit surface that we found when we evolved a vacuum Schwarzschild
spacetime in maximal time slicing in Section 8.1. Maximal slicing is successful in holding back the
collapse and preventing the formation of central singularity, but not before the matter collapses
deep inside the event horizon. By contrast, in polar slicing, the matter surface asymptotes to
rs/M = 2 and no trapped surface forms, as depicted in Figure (8.11).

A more interesting case is the evolution of a collisionless ensemble of identical particles initially
in equilibrium and described by a truncated, isothermal Maxwell-Boltzmann distribution function,

f(E) =

{
K exp(−E/T ) , E ≤ Emax ,
0 , E > Emax .

(8.82)

22For the detailed form of the field equations using freezing variables, see Shapiro and Teukolsky (1986).
23Petrich et al. (1985, 1986).
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Figure 8.9: The lapse α as a function of areal radius rs on selected maximal time slices for
Oppenheimer-Snyder collapse from R = 10M . The solid lines are the results of exact integrations.
The dots are the results obtained with the numerical code. [From Shapiro and Teukolsky (1985b)].

Here K is a normalization constant, T is a constant “temperature”, E = −p0 is the energy of a
particle, and Emax is the maximum allowed energy, corresponding to a particle momentarily at
rest at the surface of the configuration, rs = R. The energy cutoff guarantees that all particles
are restricted to a finite region of space.

Relativistic star clusters in equilibrium with truncated Maxwell-Boltzmann distributions have
been studied extensively in the literature.24 Prior to the development of numerical relativity such
studies were restricted to the construction of static equilibria and depended on linear perturba-
tion theory employing trial functions to analyze stability. The precise point of onset of dynamical
instability along parametrized sequences of equilibria could not be determined by this approach.
Now however, by using these models as initial data in a relativistic mean-field, particle simula-
tion scheme, the point of onset of dynamical instability can be rigorously identified and, more
significantly, the full nonlinear evolution of unstable systems can be tracked and their final fate
ascertained.

As an example, consider the evolution of a Maxwell-Boltzmann cluster with areal radiusR/M =
9.2 and central gravitational redshift Zc = 0.52 along a one-parameter equilibrium sequence defined
by Emax/m = 1 − T/m, where m is the mass of each particle, assumed identical. This cluster is
only moderately centrally condensed, with the ratio of mean-to-central mass-energy density given
by 〈ρ〉/ρc = 0.072. It lies just beyond the point of onset of instability, which is near Zc = 0.42,
as determined by numerical simulations. The collapse of this cluster has been followed using both

24See, e,g, Zel’dovich and Podurets (1965); Ipser (1969b); Misner et al. (1973); Katz et al. (1975) for models.
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Figure 8.10: Spacetime diagram at late times for Oppenheimer-Snyder collapse in maximal slicing
from R = 10M . The dotted lines are worldlines of Lagrangian matter elements from exact
integrations. Each worldline is labelled by the fixed interior rest-mass fraction. The dots are
points for the corresponding elements obtained with the numerical code. The dashed line is
the event horizon. The shaded area is the region of trapped surfaces. Its outer boundary, the
apparent horizon, coincides with the event horizon. Its inner boundary is just inside the surface
of the matter. [From Shapiro and Teukolsky (1985b)].

maximal and polar time slicing and isotropic radial coordinates.25 Snapshots of the configuration
are shown at selected maximal times during the collapse in Figure (8.12).

By solving equation (8.71) and identifying pairs of outgoing null rays emitted at neighboring
points in spacetime, one of which escapes to infinity and the other of which is pulled back by the
black hole, the location of the black hole event horizon was determined. By solving equation (8.73)
in maximal slicing, the region of trapped surfaces and the apparent horizon were identified. All
the matter collapses inside the black hole and the surface approaches a limit surface at rs/M = 1.5
in this time slicing, As expected, both horizons merge and remain locked at rs/M = 2 once the
last particle is captured. In polar slicing the collapsing surface asymptotes to radius rs/M = 2
at late times and no trapped surface forms. A spacetime diagram showing the late-time behavior
is shown in Figure (8.13) for maximal slicing and in Figure (8.14) for polar slicing. Once again,
freezing variables were not required for this integration.

A more computationally challenging example is provided by the collapse of an unstable equi-
librium cluster with an extreme core-halo profile. Consider a relativistic, collisionless, spherical
polytrope of index n = 4 with a central redshift Zc = 0.50. The phase space distribution function

25Shapiro and Teukolsky (1985a, 1986).
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Figure 8.11: Spacetime diagram at late times for Oppenheimer-Snyder collapse in polar slicing
from R = 10M . The labelling is the same as in Figure (8.10). No trapped surface forms in this
slicing. [From Shapiro and Teukolsky (1986)].

for such a configuration has the form26

f(E) =

{
K (E/Emax)−5[1− (E/Emax)2]5/2 , E ≤ Emax ,
0 , E > Emax ,

(8.83)

where the variables have the same definitions as in equation (8.82). In this case, the relativistic
core contains only 0.5% of the total rest mass. The remainder of the mass resides in a nearly
Newtonian halo extending out to R/M ≈ 5000. The ratio of the mean-to-central density in the
cluster is tiny: 〈ρ〉/ρc = 4.0× 10−13; see Figure (8.15).

The cluster is dynamically unstable. During its collapse, approximately 5% of the cluster
mass, considerably more mass than the core, forms a central black hole. By the end of collapse,
the cluster settles into a new equilibrium state consisting of a massive Newtonian halo of particles
in orbit about a central black hole. Such a centrally condensed system could provide a plausible
model of a galaxy containing a supermassive black hole.27 The catastrophic collapse of an unstable,
collisionless gas like the one evolved here might even provide a viable formation mechanism for
such a supermassive black hole.28 Supermassive black holes are believed to be the engines that
power quasars and active galactic nuclei and their formation and growth remains one of the major
puzzles of cosmological structure formation.

26Fackerell (1970).
27Most galaxies containing a bulge, including the Milky Way, are observed to contain a central supermassive

black hole; see, e.g., Ho (2004) for reviews and references.
28Zel’dovich and Podurets (1965); Rees (1984); Shapiro and Teukolsky (1985c); Balberg and Shapiro (2002).
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Figure 8.12: The collapse of a marginally unstable gas of collisionless particles of arbitrary mass
M which at t = 0 obeys a truncated, isothermal Maxwell-Boltzmann distribution function with
an areal radius R/M = 9. Spherical flashes of light are used to probe the spacetime geometry; at
late times the light rays are trapped by the gravitational field. Their trajectories help locate the
black hole event horizon, which in this example eventually reaches rs/M = 2 and encompasses all
the matter. [From Shapiro and Teukolsky (1988)].

Freezing-variables, designed to handle configurations with large dynamic range, are required
to follow the evolution of this cluster reliably.29 Maximal slicing is not adequate to hold back the
collapse, as the value of the central radial metric coefficient increases above Ac ≈ 1049 and the
central lapse falls below αc ≈ 10−70, leading to inaccuracies due to excessive grid stretching. Polar
slicing with freezing variables proves necessary, in part because Ac grows much more slowly in this
gauge.

Highlights of the collapse are summarized in Figures (8.16) - (8.18). Snapshots of the imploding
central parts of the cluster inside rs/M = 2 are shown at selected times in Figure (8.16). There is
little evolution in the outer Newtonian halo where most of the mass resides. However, the growing
black hole is effective in “sweeping clean” the innermost region in and around the core. The cluster
settles into a stationary equilibrium state after t/M = 40. A spacetime diagram for the collapse

29Shapiro and Teukolsky (1986).
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Figure 8.13: Spacetime diagram in maximal slicing for the Maxwell-Boltzmann cluster depicted
in Figure (8.12). The solid lines are worldlines of fictitious Lagrangian matter tracers labelled by
the fixed interior rest-mass fraction. The dashed line is the event horizon. The shaded area is
the region of trapped surfaces. The event and apparent horizons both numerically asymptote to
rs = 2M to high accuracy. [From Shapiro and Teukolsky (1986)].

is shown in Figure (8.17).

In Figure (8.18) the trajectories of four typical particles orbiting near the cluster center are
plotted. The simulation is performed with Ntot = 7198 particles; at t/M = 0, a fraction N/7198
of the total cluster rest mass resides inside particle N . Particle 333, initially in an elliptical-
like orbit near rs/M = 1, moves along an inward spiral and is captured by the black hole after
two orbital periods. It illustrates the “avalanche-instablity” whereby the mass interior to this
particle at pericenter grows sufficiently in two periods to so that the particle, initially outside the
collapsing core, eventually finds itself on a capture orbit. Particle 338 moves in a nearly elliptical
orbit that extends out to rs/M = 1.5 and exhibits large perhelion precession about the central
hole. Pericenter for this particle is the one of the closest of all the ambient particles that do not
get captured. It is located at rs/M = 0.25 or rs/MH ≈ 5. This result is consistent with the
fact particles which orbit a stationary Schwarzschild black hole inside rs/M = 4 are inevitably
captured.30 It is also satisfying that the pericenter position of this marginally stable orbit remains
stationary with time, further confirming that by the time the integrations terminate at t/M = 439,
the cluster achieves a new dynamic equilibrium about a stationary central black hole. Particle 340
moves nearly unperturbed in a circular orbit at rs/M = 1.

Exercise 8.11 Interpret the behavior of particle 340 in light of Birkhoff’s theorem.

30see, e.g.. Misner et al. (1973).
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Figure 8.14: Spacetime diagram in polar slicing for the Maxwell-Boltzmann cluster depicted in
Figures (8.12) and (8.13). Labelling is the same as in Figure (8.13). No trapped surface forms in
polar slicing. The event horizon and matter surface both numerically asymptote to rs = 2M to
high accuracy. [From Shapiro and Teukolsky (1986)].

Particle 410 falls nearly radially from ≈ 7M into the black hole, illustrating how the mass of
the black hole grows beyond that of the collapsing core.

Finally, consider Figure (8.19) showing the fractional binding enery Eb/M0 versus central red-
shift along an equilibrium sequence of n = 4 polytropes. The onset of instability as determined
by linear perturbation theory using trial functions (ω2 < 0) occurs well beyond the turning point.
However, numerical integrations with the mean-field, particle simulation scheme show that all
configurations beyond the first turning point are dynamically unstable. From this result and sim-
ulations involving other examples of parametrized sequences of collisionless clusters, one concludes
that the turning point on the binding energy curve does signify the onset of dynamically instability,
as in fluid systems.

8.2.2 Phase Space Method

While the mean-field, particle simulation scheme discussed in the previous section determines
particle positions and velocities, it does not provide the phase space distribution function f . As
discussed in Chapter 5.3 a method to solve the relativistic Vlasov equation in spherical symmetry
directly for f by exploiting Liouville’s theorem has been developed.31 The key idea for determin-
ing f is to implement equation (5.231). Knowing f determines the matter source functions. The
gravitational field equations are the same as described in the previous section. The virtue of the

31Rasio et al. (1989b).
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Figure 8.15: Initial rest-mass density profile ρ0 for the relativistic polytrope with n = 4,Γ = 5/4,
and central redshift Zc = 0.50. Dots are located at points at which the interior rest-mass fraction
has the values shown. This extreme core-halo configuration has a highly relativistic core and an
extensive Newtonian halo. A the end of the simulation, the black hole which forms at the center
contains a fraction 0.05 of the total rest mass, approximately 10 times the initial core mass. [From
Shapiro and Teukolsky (1986)].

phase space method is that it accurately tracks the increasingly complicated fine-grained structure
of the distribution function due to phase mixing. For determining the global behavior of a colli-
sionless system, the mean-field particle-simulation scheme is quite adequate. However, to obtain
a detailed description of the phase space distribution, especially when there is counterstreaming
and phase mixing, the direct phase space method is necessary.

Adopt the form for the line element given in equation (8.43). Again assume for simplicity that
the gas consists of a single species of mass m. As coordinates in phase space, choose the radial
velocity ur, the specific angular momentum j given by

j ≡

√
u2
θ +

u2
φ

sin2 θ
, (8.84)

and the angle

ψ ≡ tan−1

(
uθ̂

uφ̂

)
= tan−1

(
uθ sin θ

uφ

)
, (8.85)

measuring the orientation of the transverse velocity. Here the carets denote orthonormal compo-
nents. In spherical symmetry, f cannot depend depend on ψ, and j is a conserved quantity, so
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Figure 8.16: Snapshots of the central regions rs/M ≤ 2 during the collapse of the extreme core-halo
configuration shown in Figure (8.15). The markers on frames are placed at intervals of ∆rs = 1M .
The times are labelled by T ≡ t/M . The circle in the last frame shows the event horizon at
rs/M = 0.1. The collapse of the innermost regions to a black hole is evident. By t/M ≈ 40, the
cluster reaches a quasistationary state consisting of central black hole surrounded by a massive
halo of orbiting particles. [From Shapiro and Teukolsky (1986)].

that the Boltzmann equation (5.217) reduces to

∂f

∂t
+

(
dr

dt

)
∂f

∂r
+

(
dur
dt

)
∂f

∂ur
= 0 (8.86)

since ∂f/∂ψ = 0 and dj/dt = 0. Here we have taken f = f(t, xj, uj) ≡ dN/(d3Vxd
3Vu), where

d3Vu = d3Vp/m
3 and where d3Vp is given by equation (5.213).

Exercise 8.12 Show that for a spherical metric given by equation (8.43), (−g)1/2 = A3αr2sin θ and

d3Vu =
durduθduφ

A3r2αu0sin θ
=

π

A3r2αu0
dj2dur , (8.87)

where the integral over ψ has been carried out in the last expression.

In spherical symmetry, we can thus write f = f(t, r, ur, j). The coefficients dr/dt and dur/dt
in equation (8.86) are given by geodesic equations (8.44) and (8.45). The field equations are
unchanged from those described in the previous section. The matter source terms are derived
from f as in equations (5.207) - (5.210), using equation (5.213. For example, the quantity ρ(t, r)
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Figure 8.17: Spacetime diagram in polar slicing for the relativistic polytrope shown in Fig-
ure (8.16). Labelling is the same as in Figure (8.13). The event horizon asymptotes to rs/M = 0.1,
at which point it encompasses 5% of the total cluster rest mass. [From Shapiro and Teukolsky
(1986)].

can be computed from

ρ = m

∫
(αu0)2fd3Vu =

πm

A3r2

∫ ∞

0

dj2

∫ ∞

−∞
durf

(
1 +

u2
r

A2
+

j2

A2r2

)1/2

. (8.88)

Note that one must be careful when evaluating the source terms at r = 0, where f 6= 0 only
for j = 0. The coordinate singularity at r = 0 in these quadratures is eliminated by recasting
the d3Vu in terms of velocity components in an orthonormal frame: d3Vu = (dux̂duŷduẑ)/u

0̂. The
point r = 0 is the center of symmetry, in which case the distribution function is isotropic and can
only depend on the magnitude u ≡ (u2

x̂ + u2
ŷ + u2

ẑ)
1/2 of the velocity. In this case we can write

d3Vu = (4πu2du)/(1 + u2)1/2, which gives finally

ρc = 4πm

∫ ∞

0

dufc(u)u2(1 + u2)1/2 . (8.89)

Here the subscript c indicates a value at r = 0 and fc(u) ≡ fc(t, r = 0, j = 0, ur = Acu).
Recall from our discussion in Chapter 5.3 that equation (8.86) is solved by applying Liouville’s

theorem in the form of equation (5.231). Specifically, f at any time t is evaluated numerically by
integrating a trajectory backward in time, from a point (r, ur, j) in phase space to t = 0, where f
is specified via the initial data. This trajectory is constructed by integrating ordinary differential
equations (8.44) using equation (8.45). The right-hand sides of these equations involve the values
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Figure 8.18: Orbital trajectories of four typical particles near the cluster center. Each particle N
surrounds a fraction N/7198 of the total cluster rest mass at t = 0. In each frame the spacing
between radial grid marks is ∆rs = 1M . In (a) the particle is initially in an elliptical-like orbit, but
spirals into the black hole after about two orbits. In (b) the particle moves in a nearly elliptical
orbit, exhibiting large perihelion precession about the central hole. In (c) the particle moves
essentially unperturbed in a nearly circular orbit. In (d) the particle falls nearly radially into the
black hole. [From Shapiro and Teukolsky (1986)].

of the fields and their derivatives, which therefore must be stored on a radial grid. The timestep
is chosen according to equation (8.66). A good check on the method is provided by calculating
the total mass-energy of the system via equation (8.69), which should be conserved in time.

As an example, consider the evolution in maximal slicing of the same truncated, isothermal
Maxwell-Boltzmann distribution function treated in the previous section by the particle simulation
method.32 The point of onset of instability along the equilibrium sequence is found to be at the
same point as before, i.e. the turning point in the binding energy at Zc = 0.42. The spacetime
diagram for the unstable collapse of a collisionless cluster at Zc = 0.52 is in excellent agreement
with the diagram plotted in Figure (8.13). The unique character of the phase-space method is
revealed in Figure (8.20).

Contours of f are plotted on two different slices of fixed j. The phase space coordinates in the
diagram are the freezing variables rs and vr̂ = ur/(Aαu

0) measured by a normal observer. The
expectation is that f expressed in these variables should exhibit a steady configuration at late
times when α→ 0. This is what is found: once all the matter with a given j collapses inside the
horizon, the distribution function evolves very slowly toward a final static structure.

32Rasio et al. (1989b).
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Figure 8.19: The fractional binding energy Eb/M and oscillation frequency ω2 in units of τ = ρc−P
ar plotted as functions of central redshift Zc for the n = 4 polytropic sequence. Clusters along the
sequence are labelled by their value of the relativity parameter α as defined in Fackerell (1970).
The dynamical fates of four models along the sequence, as determined by numerical simulation,
are as follows: open circles indicate stable equilibrium; filled circles indicate collapse to a black
hole. [From Shapiro and Teukolsky (1985a)].

The phase space method has also been used to demonstrate that it is possible to construct stable
relativistic star clusters with arbitrarily large central redshifts.33 Prior to this, it had generally
been believed that all clusters with Zc >∼ 0.5 would be dynamically unstable.

8.3 Fluid Stars: Collapse

The most important problem to date involving numerical simulations of fluid stars in spherical
symmetry has been the supernova problem. Here the collapse of the degenerate stellar core of a
massive star at the endpoint of stellar evolution is believed to lead to the formation of a neutron
star, accompanied by an explosion of the more massive stellar envelope. For the most massive
stars, core collapse can lead to the formation of a black hole instead of a neutron star, with or
without an explosion. The demarcation line between collapse to a neutron star and collapse to a
black hole is still uncertain, and all the detailed microphysical processes (e.g. the “hot” nuclear
equation of state; neutrino production mechanisms and transport, etc.) and all the important
macrophysical effects (e.g. general relativity, rotation, magnetic fields, convection, etc.) that make
up a realistic simulation are yet to be fully incorporated in a totally rigorous fashion.34 One thing
is certain: during stellar core collapse, the gravitational field becomes strong and fluid velocities
approach the speed of light, hence a reliable calculation requires a fully relativistic treatment. The

33Rasio et al. (1989a).
34For a general discussion and references, see Shapiro and Teukolsky (1983); Arnett (1996); Janka et al. (2007);

Burrows et al. (2007).
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Figure 8.20: Time evolution of the distribution function f for the Maxwell-Boltzmann cluster.
The areal radius rs (in units of M) and the radial velocity vr̂ ar used as phase space coordinates.
Each plane (rs, v

r̂) is a two-dimensional slice taken from the three-dimensional phase space by
setting the particle angular momentum j equal to a constant. The series on the left corresponds
to j = 0, while that on the right corresponds to j = 0.5M2, representing the angular momentum
of a “typical particle” in this cluster (0 ≤ j <∼ M2 for f 6= 0). Lines of constant f are shown,
equally spaced between 0 and its maximum value on the slice. Note that for j 6= 0, the matter
never reaches rs = 0. In the final plots, the entire mass of the cluster has collapsed inside an event
horizon at rs = 2M . [CAMBRIDGE: note that we have to change the y-axis label from ur̂ to vr̂.]
[From Rasio et al. (1989b)].

first relativistic treatment was the pioneering work of May and White (1966, 1967). Their work
represented an important milestone in computational astrophysics and helped launch numerical
relativity. Their code was based on the formulation of Misner and Sharp (1964) for spherically
symmetric gravitational collapse.35 This formulation has the desirable feature that the equations
take the form of Newtonian Lagrangian hydrodynamics plus relativistic corrections. Hence all
the machinery and expertise for handling Lagrangian hydrodynamics in Newtonian theory could

35The discussion in this section closely follows Baumgarte et al. (1995).



8.3. FLUID STARS: COLLAPSE 259

be taken over to the relativistic case. However, one fundamental problem with the Misner-Sharp
formalism and the coordinate system on which it is based is that collapse to a black hole cannot
be followed once the black hole forms, because the equations become singular. This means that
we are unable to follow the fate of the outer layers of the star when the inner core has formed a
black hole.

Schemes that avoid a singularity during spherical fluid collapse to a black hole have been
constructed by many groups over the years.36 The essential feature of these codes is a different
choice of time coordinate from that of Misner and Sharp, which allows the evolution to be followed
to late times, without encountering singularities. Indeed, we have already shown in Section 8.1
how different time slicings can be chosen to avoid singularities when evolving a vacuum black
hole spacetime, and we then demonstrated in Section 8.2 that the situation is very similar in
the presence of collisionless matter. For the most part, analogous schemes for fluid matter work
on a fixed Eulerian spatial mesh and adapt the Eulerian equations of relativistic hydrodynamics
discussed in Chapter 5.2 to spherical symmetry. In all of these schemes the equations depart much
more from Newtonian hydrodynamics than does the Misner-Sharp formulation. More significantly,
it is usually the case that greater computational effort is required in an Eulerian formulation to
attain the accuracy of a Lagrangian formulation. The reason is that the spatial grid in a Lagrangian
scheme follows the fluid elements, the entire fluid is automatically and completely covered by the
same fixed number of grid points that covered the fluid at the initial time. Besides the extra
effort required to make the hydrodynamics competitive with a Lagrangian scheme, an Eulerian
scheme suffers an additional penalty in treating the field equations. Specifically, a relativistic
Eulerian code typically requires an exterior grid extending to large distances outside the star in
order to impose boundary conditions on the asymptotically flat gravitational field. By contrast,
a spherical relativistic Lagrangian code only needs a grid that covers the matter.37 On the other
hand, Lagrangian codes are more difficult to extend to more than one spatial dimension, so they
are mainly useful for spherical systems.38

The problem of singularities is irrelevant if collapse always leads to the formation of a neutron
star, in which case the Misner-Sharp formulation is completely adequate. However, we expect
that the collapse of a very massive or supermassive star produces a black hole. For such cases it is
desireable to have a scheme that can handle black hole formation but with the advantages of the
Misner-Sharp formulation. Such a code was developed by Baumgarte et al. (1995) based on the
formulation of Hernandez and Misner (1966), which uses retarded time as a coordinate instead of
the usual Schwarzschild time that appears in the Misner-Sharp equations. This feature prevents
the computational grid following the fluid from penetrating inside any black hole that may form
and encountering a singularity.

In the next section we shall review the widely used Misner-Sharp formulation for spherical
hydrodynamics and show how its main deficiencies can be easily removed by adopting the closely
related Hernandez-Misner formulation. Both formulations yield Lagrangian simulation schemes.
We postpone a discussion of Eulerian treatments to Chapters 14, 16 and 17, where we describe

36See, e.g., Wilson (1979); Shapiro and Teukolsky (1980); Schinder et al. (1988); Mezzacappa and Matzner (1989)
for early work.

37Recall that no gravitational waves are generated in spherical symmetry, so there is no need to track their
propagation outside the star.

38Exceptions are Lagrangian fluid codes based on the SPH method, which are straightforward to construct for
multidimensional spacetimes; see Chapters 5.2, 16 and 17. See also Taub (1978) for shift prescriptions that maintain
comoving (i.e. Lagrangian) coordinates in arbitrary dimensions.
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some important applications of relativistic hydrodynamics in nonspherical spacetimes.39

8.3.1 Misner-Sharp Formalism

The Lagrangian equations of relativistic hydrodynamics in spherical symmetry were first derived
by Misner and Sharp (1964) and have been used in many numerical calculations, including those
of May and White (1966, 1967).40 A straightforward re-derivation of the equations is contained
in Misner et al. (1973)41 so we simply summarize the results below.

The line element is written in a diagonal form

ds2 = −e2φ(t,A)dt2 + eλ(t,A)dA2 +R2(t, A)dΩ2 , (8.90)

where R is the circumferential radius. In the parlance of 3 + 1, the lapse is eφ and the shift is
zero. We can think of each spherical shell of matter as labelled by a parameter A and R(t, A) as
the world line of the shell with label A. The comoving radial coordinate A can be chosen to be
the rest mass (e.g. baryon number) enclosed within R.

The matter is assumed to be a perfect fluid, for which the stress-energy tensor is given by equa-
tion (5.4) with specific enthalpy given by equation (5.5). In a comoving (Lagrangian) coordinate
frame, the fluid 4-velocity takes the form

ua = (e−φ, 0, 0, 0) . (8.91)

It is useful to define the quantities

m = 4π

∫ A

0

ρ0(1 + ε)R2(∂AR)dA , (8.92)

U = e−φ∂tR , (8.93)

Γ = e−λ/2∂AR . (8.94)

Here m can be interpreted as the gravitational mass inside A, U is the coordinate velocity (rate
of change of R along a fluid world line with respect to the proper time of that fluid element), and
Γ is simply a more convenient form for the radial metric function.42 Note that since U is only a
coordinate velocity, its magnitude may exceed unity.

In terms of these variables the equations of motion and the Einstein field equations can be
written as

∂tU = −eφ
(

4πΓR2

h
∂AP +

m+ 4πR3P

R2

)
, (8.95)

∂tm = −eφ4πR2PU , (8.96)

∂Aφ = − 1

ρ0h
∂AP , (8.97)

Γ = (1 + U2 − 2m/R)1/2 , (8.98)

ρ0 =
Γ

4πR2∂AR)
. (8.99)

39For a robust Eulerian relativistic hydrodynamics scheme specifically adapted to spherical symmetry, see Wilson
(1979).

40See also van Riper (1979).
41Misner et al. (1973), Exercise 32.7.
42Following convention, we use the symbol Γ in this section to denote the right-hand side of equation (8.94), and

γ to denote the adiabatic index of a perfect gas.
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Differentiating equation (8.92) and using equation (8.99) yields

∂Am = (1 + ε)Γ . (8.100)

Also, equations (8.94) and (8.99) can be combined to give

e−λ/2 = 4πρ0R
2 . (8.101)

This system of equations still has to be supplemented with the first law of thermodynamics

∂tε = −P∂t
(

1

ρ0

)
, (8.102)

as well as an equation of state of the form P = P (ρ0, ε). For a γ-law EOS we have, as usual,

P = (γ − 1)ρ0ε . (8.103)

The appropriate boundary conditions are

R = 0, U = 0, Γ = 1, m = 0 at the origin, A = 0 ,
P = 0, eφ = 1 at the surface, A = Atotal .

(8.104)

The choice of the boundary condition for φ is somewhat arbitrary; the choice made here ensures
that the coordinate time t agrees with the proper time on the surface of the star. The above
equations define an initial boundary-value problem for initial data U(R), ρ0(R) and ε(R), which
have to be chosen such that 1 + U2 − 2m/R > 0.

Exercise 8.13 Derive the Newtonian limit of the above equations. Specifically, take the limits U �
1, ε� 1, P/ρ0 � 1, and m/R� 1 to show

Γ = 1 = ∂Am . (8.105)

Hence argue that equation (8.105), together with the boundary conditions, implies that the rest mass
A and the gravitational mass m are the same in the Newtonian limit. Also argue that equation (8.96)
implies that m is now a constant of the motion.

Show that
∂mφ = − 1

ρ0
∂mP , (8.106)

from which we conclude that in the Newtonian limit the metric function φ approaches the Newtonian
potential. Argue that φ� 1, or eφ ≈ 1, hence all the evolution equations can be written independently
of φ. Consequently, show that equation (8.93) becomes

∂tR = U , (8.107)

while equation (8.95) yields the Lagrangian equation of motion for Newtonian spherical hydrodynamics,

∂tU = −
(
4πR2∂mP +

m

R2

)
, (8.108)

and equation (8.99) becomes

ρ0 =
1

4πR2(∂mR)
. (8.109)

As is apparent from Exercise (8.13), an obvious benefit of the this coordinate system is that
the relativistic equations are very close to the corresponding Newtonian ones. The meaning and
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interpretation of the variables can be carried over directly from the Newtonian theory. Most
important, an existing Newtonian code can easily be upgraded to a fully relativistic one simply
by adding a few terms and equations.

On the other hand, this coordinate system has a severe drawback. If a configuration collapses
to a black hole, a coordinate singularity arises which prevents any further evolution.

Exercise 8.14 Explore what happens to the lapse function α = eφ in comoving Misner-Sharp coordi-
nates.
(a) Consider first the case of dust collapse, where P = 0. Show that α = 1 (geodesic slicing), and recall
the discussion of Chapter 4.1 regarding the ultimate appearance of coordinate singularities when using
this slicing.
(b) Now treat the situation with pressure gradients. Use the Euler equation for the fluid acceleration
aa in the form

ρ0haa = −[∇aP + (ub∇bP )ua] (8.110)

to show that in comoving coordinates

Di lnα = − 1
ρ0h

DiP . (8.111)

Combine equation (8.111) with the second law of thermodynamics for adiabatic flow to obtain

Di lnα = − 1
h
Dih , or α ∝ 1

h
. (8.112)

Comment on the likely consequences of equation (8.112) for calculations of collapse to black holes.

The singularity problem motivated Hernandez and Misner to introduce a null coordinate u
and transform the above equations to what they called “observer time coordinates.” The virtue
is that these coordinates always stay outside event horizons. Not only are there no coordinate
singularities, but also these coordinates never encounter the physical curvature singularity at the
center of the black hole. We discuss this formalism in the next section.

8.3.2 The Hernandez-Misner Equations

Here we summarize the transformations of the equations to observer time coordinates.43 The idea
is to find a coordinate system in which the time coordinate t is replaced by a null coordinate u,
which is constant along outgoing light rays. In addition, u can be scaled so that it measures the
time of an observer at infinity (“observer time coordinates”). For a configuration that collapses
to a black hole, no light ray from inside the event horizon will, by definition, ever reach spatial
infinity. Therefore no event inside an event horizon corresponds to finite “observer time” u; in
fact, the event horizon itself is the surface u→∞.

We introduce the outgoing null coordinate u (outgoing Eddington-Finkestein coordinate) by

eψdu = eφdt− eλ/2dA , (8.113)

whereby the line element (8.90) takes the form

ds2 = −e2ψdu2 − 2eψeλ/2du dA+R2dΩ2 . (8.114)

We note that the lapse function is now given by eψ. The equations of the last section can be trans-
formed to this new coordinate system by transforming the differential operators. Equation (8.113)
gives

e−ψ∂u
∣∣
A

= e−φ∂t
∣∣
A
, (8.115)

43Details may be found in Hernandez and Misner (1966) or Baumgarte et al. (1995).
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while the chain rule for partial differentiation gives the new spatial derivative in terms of the old
ones according to

e−λ/2∂A
∣∣
u

= e−λ/2∂A
∣∣
t
+ e−φ∂t

∣∣
A
. (8.116)

The definition of coordinate velocity U in equation (8.93) becomes

U = e−ψ∂uR . (8.117)

Treating the spatial derivative on the right-hand side of equation (8.95) with care yields44

∂uU = − eψ

1− v2
s

(
4πΓR2

h
∂AP +

m+ 4πR3P

R2

)
(8.118)

− eψv2
s

1− v2
s

(
4πρ0R

2∂AU +
2UΓ

R

)
, (8.119)

where vs is the speed of sound given by

v2
s = ∂ρ∗P |s =

1

ρ2
0h

[
P ∂εP |ρ0 + ρ2

0 ∂ρ0P |ε
]
, (8.120)

and where ρ∗ = ρ0(1 + ε) is the total comoving mass-energy density. For a γ-law EOS the speed
of sound can be written

v2
s =

γ − 1

ρ0h
(P + ρ0ε) = (γ − 1)

h− 1

h
. (8.121)

Exercise 8.15 Derive equation (8.121) for the sound speed from equation (8.120).

The remaining Einstein equations (8.96), (8.94), and (8.99) now become

∂um = −eψ4πR2PU (8.122)

Γ = (1 + U2 − 2m/R)1/2 (8.123)

ρ0 =
Γ + U

4πR2∂AR
. (8.124)

An integration factor eφ was inserted in equation (8.113) to make du a perfect differential. This
requirement yields a differential equation to replace equation (8.97):

∂Aψ =
1

Γ
∂AU +

m

4πρ0R4Γ
+

P

ρ0ΓR
. (8.125)

Using equation (8.116) to replace the spatial derivative in equation (8.100), as well as equa-
tion (8.96), yields

∂Am = (1 + ε)Γ− PU

ρ0

. (8.126)

Once again, the equations have to be supplemented by the first law of thermodynamics for adia-
batic flow,

∂uε = −P∂u
(

1

ρ0

)
, (8.127)

44See Appendix B of Baumgarte et al. (1995).
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together with an EOS, P = P (ρ0, ε).
The boundary conditions are mostly the same as in the Misner-Sharp scheme described in the

last section:

R = 0, U = 0, Γ = 1, m = 0 at the origin, A = 0 ,
P = 0, eψ = Γ + U at the surface, A = Atotal .

(8.128)

Exercise 8.16 Show that the boundary condition for ψ matches the interior u to the exterior, where
observer time coordinates reduce to outgoing Eddington-Finkelstein coordinates. Begin by noting that
for an observer comoving the fluid at the surface of the configuration,

ds2 = −e2φdt2 = −dt2 . (8.129)

Next, express the exterior spacetime at the surface in Schwarzschild coordinates,

ds2 = −(1− 2M/R)dt2s + (1− 2M/R)−1dR2 +R2dΩ2 , (8.130)

to find dts/dt, then express du in terms of the same coordinates,

du = dts − (1− 2M/R)−1dR , (8.131)

to find du/dt. Combine with equation (8.113) to get the desired result.

Note that the boundary condition for ψ implies that u measures the proper time of a stationary
observer at infinity (cf. equations 8.130 and 8.131).

The Newtonian limit of the above equations results in the same equations found in the Newto-
nian limit of the Miser-Sharp equations and derived in exercise (8.13). The result is not surprising,
since the Newtonian limit corresponds to setting c = ∞, in which case the light cones along which
u = constant open up and coincide with with t = constant surfaces. In the Newtonian limit, ψ
disappears from the equations, as did φ in the previous case.

A summary of the two sets of equations appears in Box 8.1. All relevant equations are listed
next to each other and in the order in which they should be evaluated in a numerical scheme.45

We remark that the u = const surfaces are not characteristics of the Hernandez-Misner equa-
tions. This is because there is no gravitational radiation in spherical symmetry. Therefore we
are still dealing with a Cauchy problem for the fluid evolution, rather than a characteristic initial
value problem, and both the Misner-Sharp and Hernandez-Misner equations can be treated in the
same way.

It is clear that very few modifications are needed to transform the Misner-Sharp equations
to observer time coordinates. Hence a code using Misner-Sharp equations can be rewritten in
observer time coordinates simply by adding a few terms and using ψ instead of φ. The advantage
is that the revised code can handle black holes without breaking down.

There are two very attractive properties of observer time coordinates. One is that the coor-
dinate u immediately corresponds to the time at which a distant observer would see a certain
event, as for example a Gamma-ray burst (GRB) in a supernovae explosion. The other one is that
the global structure of spacetime is conveniently “hard-wired” into the integration scheme. This
means that there is no need to search for apparent horizons (actually, apparent horizons never
appear in observer time coordinates because they are always inside event horizons) or to track
null rays in order to locate event horizons. In this case the event horizon can be found simply
by looking for events at the which the lapse function eψ becomes exceedingly small. The lapse

45For a finite difference version of the Misner-Sharp equations, see van Riper (1979) and for the Misner-Hernandez
equations, see Baumgarte et al. (1995).
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Box 8.1: The Misner-Sharp and Hernandez-Misner Equations

For an easy comparison we list the equations of Misner and Sharp (1964) in the left column
and those of Hernandez and Misner (1966) in the right column:

∂tU = −eφ
[4πΓR2

h
∂A(P + Pvis) ∂uU = − eψ

1− v2
s

[4πΓR2

h
∂A(P + Pvis)

+
m+ 4πR3(P + Pvis)

R2

]
+
m+ 4πR3(P + Pvis)

R2

]
− eψv2

s

1− v2
s

(
4πρ0R

2∂AU + 2UΓ/R
)

+
1

1− v2
s

Γ

ρ0h
∂uPvis

∂tR = eφU ∂uR = eψU

∂tm = −eφ4πR2(P + Pvis)U ∂um = −eψ4πR2(P + Pvis)U

Γ = (1 + U2 − 2m/R)1/2 Γ = (1 + U2 − 2m/R)1/2

ρ0 =
Γ

4πR2∂AR
ρ0 =

Γ + U

4πR2∂AR
∂tε = −(P + Pvis)∂t(1/ρ0) ∂uε = −(P + Pvis)∂u(1/ρ0)

h = 1 + ε+ (P + Pvis)/ρ0 h = 1 + ε+ (P + Pvis)/ρ0

∂Am = (1 + ε)Γ ∂Am = (1 + ε)Γ− (P + Pvis)U/ρ0

∂Aφ = − 1

ρ0h
∂A(P + Pvis) ∂Aψ =

1

Γ
∂AU +

m

4πρ0R4Γ
+
P + Pvis

ρ0ΓR

v2
s =

1

ρ2
0h

(
(P + Pvis)

∂P

∂ε

∣∣∣∣
ρ0

+ ρ2
0

∂P

∂ρ0

∣∣∣∣
ε

)

We list the equations in the order in which they are typically evaluated in a numerical
scheme. For completeness we explicitly include an artificial viscosity term Pvis (see equation
5.24).

function plummets for every fluid element approaching the event horizon and essentially causes
its further evolution to cease. For a typical application involving collapse to a black hole, one can
terminate the evolution if and when eψ drops below, say 10−3 at the outermost shell. By then,
the lapse in the center can be considerably smaller and can reach machine underflow.

The only subtlety that arises in using observer time coordinates has to do with the implemen-
tation of initial data. It is usually convenient to specify initial data on a spatial t = constant
hypersurface instead of a null hypersurface. Consequently, for typical applications, the implemen-
tation of initial data occurs in two stages. First, initial data are given on a t = constant surface.
These are then evolved using a Misner-Sharp scheme. During this evolution, a null geodesic is sent
out from the center of the configuration, and the data on its path are stored. When the null ray
arrives at the surface, this stage of the evolution can be stopped and the data on the ray’s path can
now be used as initial data on a u = constant = 0 surface, at which point the Hernandez-Misner
scheme takes over for the rest of the evolution.
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Figure 8.21: Oppenheimer-Snyder collapse of a star with initial compaction R/M = 5. Shown
are a spacetime diagram with world lines of selected mass shells (top row), rest-density profiles
(middle row) and lapse function profiles (bottom row) at different observer times u. The analytic
solution is represented by solid lines (world lines of mass shells) and dashed lines (lines of constant
u), while numerical results are represented by dots. [From Baumgarte et al. (1995).]

As an example of the Misner-Hernandez scheme at work, we show in Figure (8.21) “test-bed”
results for the collapse of a homogeneous, dust ball initially at rest, i.e. Oppenheimer-Snyder (OS)
collapse. As we noted earlier, OS collapse provides one of the few highly nonlinear, dynamical
examples in general relativity for which the solution is known analytically (see Chapter 1.4).
However, as we noted in previous cases, before this analytic solution can be compared with the
numerical results, the solution must be transformed to the coordinate system adopted in the
numerical approach. This transformation has been carried out46 for null coordinates and the
comparison with a numerical simulation in these coordinates is shown in the figure.

A more interesting result is shown in Figure (8.22) for the collapse of a 1.4M�, n = 3 polytrope
with adiabatic index γ = 4/3 and initial central density ρ0c = 1012g cm−3. Plotted in the figure
is a spacetime diagram for the late time evolution of a configuration in which the initial pressure

46Baumgarte et al. (1995).
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Figure 8.22: Comparison of simulations of the collapse of a slightly pressure-depleted 1.4M� core
with ρ0 = 1012 and γ = 4/3. Plotted is a spacetime diagram of the late-time evolution showing
the world lines of Lagrangian mass shells obtained with a Hernandez-Misner code (solid lines) and
a Misner-Sharp code (crosses). The dashed line marks the event horizon. [From Baumgarte et al.
(1995)].

was slightly reduced everywhere by a factor d = 0.9946 below the equilibrium value at t = 0.47

In general relativity, all spherical equilibrium stars with γ = 4/3 are unstable to radial collapse,48

so it is not surprising that the star undergoes an implosion. This case serves as a crude model
for core collapse in a nonrotating, massive star at the endpoint of stellar evolution (at least prior
to reaching nuclear densities). By simply rescaling the mass, the calculation also provides a good
model for the collapse of a radially unstable, nonrotating, supermassive star.49 Results are shown
both for a Misner-Sharp simulation and a Hernandez-Misner simulation. The agreement in the
time of collapse is within 0.05%. We note, however, that the Misner-Sharp simulation penetrates
the event horizon and breaks down shortly after the formation of an apparent horizon, while the
Hernandez-Misner simulation covers the entire spacetime outside the event horizon.50

47This case was first studied by van Riper (1979).
48See, e.g., Shapiro and Teukolsky (1983), Chapter 6.9.
49In core collapse of a massive star, the EOS is dominated by relativistic, degenerate electrons above nuclear

densities, while in a supermassive star, the EOS is dominated by thermal radiation pressure. In both cases, γ ≈ 4/3.
50For more realistic examples of stellar core collapse employing the Hernandez-Misner formulation, including

neutrino emission, see Baumgarte et al. (1996,?).
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8.4 Scalar Field Collapse: Critical Phenomena

Initial data sets for relativistic collapse typically divide themselves into two groups: those that lead
to black hole formation and those that do not. One of the most important triumphs of numerical
relativity has been the discovery by Choptuik that at the threshold of black hole formation, grav-
itational collapse solutions in general relativiy exhibit “critical behavior”.51 Specifically, collapse
solutions for initial data at black hole threshold exhibit universality, scaling and self-similarity in
analogy with critical behavior in statistical mechanics. The existence of such “critical phenom-
ena” are interesting for revealing the surprising structure and simplicity that underlies collapse
solutions in general relativity and for providing insight into cosmic censorship and the dynamical
character of Einstein’s field equations. Following their discovery, critical phenomena have been
pursued by numerous numerical simulations and also by perturbation treatments which utilize the
formalism and techniques of dynamical systems theory and the renormalization group.52

Remarkably, critical phenomena can be explored in some detail by working with one of the
simplest examples of gravitational collapse: the implosion of a massless scalar field in spherical
symmetry. In fact, it was this model that was probed by Chopuik in his original analysis. The
existence of critical behavior in in such a system arises from the generic competition between two
dynamical effects: the kinetic energy of the field, which tends to disperse it to infinity, and its
gravitational potential energy, which, if sufficiently strong, can trap some of the mass-energy in a
black hole. Choptuik realized that for any family of initial data, the dynamical competition could
be controlled by tuning a parameter in the initial conditions (e.g, the amplitude of the initial
field). If the parameter p is less than some critical (threshold) value p∗, the scalar field disperses
completely, while if p > p∗, a black hole forms.

To examine quantitatively what happens for p in the neighborhood of p∗, we first need to
evolve the system numerically. Toward this end, we assemble the full set of equations for evolving
a massless scalar field in spherical symmetry in the next section. This is a good exercise in working
with the equations of numerical relativity and then applying them to address a fundamental physics
issue.

Basic Equations

Suppose we start with the spherical metric in the form given by equation (8.13). Here r is the
areal coordinate, whereby the surface area of a 2-sphere of constant t and r is 4πr2. Adopt polar
time slicing, for which

K = Kr
r, Kθ

θ = Kφ
φ = 0. (8.132)

According to equation (8.19), the requirement of polar slicing implies β = 0, i.e. the shift must
be zero everywhere. Setting A = a2 we can thus cast the metric in the simple diagonal form

ds2 = −α2(t, r)dt2 + a2(t, r)dr2 + r2(dθ2 + sin2θ dφ2) , (8.133)

which serves as the starting point of Choptuik’s analysis. We need to find two field equations to
determine the two functions α and a in the metric. We can obtain an equation for a from the

51Choptuik (1993); as reported here, the discovery came about as the direct result of a question posed to
Choptuik in 1987 by Christodoulou: “will black hole formation turn on at finite or infinitesimal mass for a generic
interpolating family at threshold?”

52For excellent reviews and references, see Gundlach (2000, 2003) and Choptuik (1998), from which much of the
discussion in this section is drawn
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Hamiltonian contraint, equation (2.133), which simplifies to R = 16πρ in the adopted slicing, since
K2 = KijK

ij. Using equation (8.18) to evaluate R, we arrive at

1

a

da

dr
+
a2 − 1

2r
= 4πρra2 . (8.134)

The slicing condition ∂tKθθ = 0 yields the equation for α. Using equation (2.136), we may write

0 = ∂tKθθ = α(Rθθ −DθDθα− 8πα

[
Sθθ −

1

2
r2(S − ρ)

]
. (8.135)

Using equation (8.17) to evaluate Rθθ, and using DθDθα = r∂rα/a
2, yields the desired equation

for α,
1

α

dα

dr
− 1

a

da

dr
− a2 − 1

r
= −8π

a2

r

[
Sθθ −

1

2
(S − ρ)

]
. (8.136)

The matter source is given by the stress energy tensor for a massless, noninteracting scalar field,

Tab = ∇aϕ∇bϕ−
1

2
gabg

cd∇c∇dϕ , (8.137)

(cf. equation 5.232). Defining the auxiliary scalar field variables Φ and Π according to

Φ(t, r) ≡ ∂rϕ(t, r) , (8.138)

Π(t, r) ≡ a

α
∂tϕ(t, r) , (8.139)

and referring to equation (2.139), we can express the matter source terms as follows:

ρ = (Φ2 + Π2)/(2a2) , (8.140)

jr = −(ΦΠ)/a, (8.141)

Srr = ρ , (8.142)

Sθθ = Sφφ = (Π2 − Φ2)/(2a2) , (8.143)

S = (3Π2 − Φ2)/(2a2) . (8.144)

The field equations (8.134) and (8.136) thus reduce to

1

a

da

dr
+

a2 − 1

2r
− 2πr(Π2 + Φ2) = 0 , (8.145)

1

α

dα

dr
− 1

a

da

dr
− a2 − 1

r
= 0 . (8.146)

Exercise 8.17 Derive an evolution equation for a. Use equation (8.19) for Krr, together with the
momentum constraint (2.134), to show

∂ta = 4πrαΦΠ . (8.147)

It is thus not necessary to solve any evolution equations for the gravitational field, like equa-
tion (8.147), but instead one can integrate the first order ODE equations (8.145) and (8.146),
(really radial quadratures), at each new time slice. Such a “constrained” scheme typically pro-
duces a more stable and accurate integration; equation (8.147) will be satisfied automatically.
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The matter field, however, must be evolved. The equation of motion is the massless Klein-Gordon
equation (5.235). In terms of the auxiliary variables, this wave equation may be cast as two
first-order equations,

∂tΦ = ∂r

(α
a

Π
)
, (8.148)

∂tΠ =
1

r2
∂r

(
r2α

a
Φ
)
. (8.149)

Exercise 8.18 Derive the two first order equations above.

A useful geometric diagnostic is the mass function m(t, r) which in spherical symmetry can
defined invariantly by

1− 2m(t, r)

r
≡ ∇ar∇ar = a−2 , (8.150)

(cf. Exercise 8.9). In the limit r → ∞, m approaches the ADM mass (= total mass-energy) of
the spacetime. As we have discussed, polar slices cannot cross apparent horizons. However, black
hole formation is definitely signaled by 2m/r → 1 at some areal radius r = RBH; at this radius,
the mass of the final black hole can be calculated from MBH = RBH/2.

Boundary conditions on the field and matter variables are now straightforward to specify.
Equations (8.145) and (8.146) can be integrated outward from r = 0, where we can set a = 1 and
α = 1. The boundary value for a guarantees regularity at the origin according to equation (8.150).
The boundary value for α makes the coordinate time t the proper time measured by a normal
observer at the origin, which is a convenient parametrization of the t = constant hypersurfaces.
For the scalar field, regularity at the origin requires ∂rϕ = 0. At large radii, where the spacetime
is asymptotically flat, we can impose outward spherical wave boundary conditions, e.g., rϕ(t, r) =
f(t− r) for some function f . An equivalent way to write this condition is ∂r(rϕ) + ∂t(rϕ) = 0 as
r →∞, which is simple to impose.

Exercise 8.19 Translate the inner and outer boundary conditions on ϕ(t, r) to boundary conditions
on Φ(t, r) and Π(t, r).

We have now assembled all of the relevant equations required in Choptuik’s original analysis.

Exercise 8.20 Show that the rescaling

t→ kt , r → kr , ϕ→ ϕ , Π → k−1Π , Φ → k−1Φ , (8.151)

transforms one solution into another for any positive k.

Numerical Results

Suppose we now consider 1-parameter families of massless scalar field initial data and evolve them
for many different values of the parameter p. For example, one of the many families considered
by Choptuik consisted of ingoing Gaussian wave packets ϕ(0, r) = ϕ0r

3exp(−[(r − r0)/δ]
q), with

the parameter p taken variously to be the amplitude ϕ0, the centroid r0, the width δ and the
power-law q. A typical profile is sketched in Figure (8.23).

Exercise 8.21 Consider the evolution of a massless spherical scalar field in flat space for a specified
initial packet ϕ(0, r). Derive the initial auxiliary scalar fields Φ(0, r) and Π(0, r) in terms of ϕ(0, r) by



8.4. SCALAR FIELD COLLAPSE: CRITICAL PHENOMENA 271

Figure 8.23: Typical initial profiles of the scalar field ϕ (solid lines) and the radial mass-energy
density dm/dr (dotted lines) for four families of initial data considered by Choptuik. [From
Choptuik (1993)].

requiring that the initial data yield a purely ingoing spherical wave.
Hint: Argue that the solution must be of the form ϕ(t, r) = g(t+ r)/r for some function g(x).

The parameter p is a measure of the strength of the gravitational interaction. Strong inter-
actions (high p, say) lead to black hole formation; weak interactions (low p) do not and lead to
dispersal instead.53 The critical transition value p∗ is found empirically.

The first significant result to emerge from Choptuik’s study is that for generic families of initial
scalar field data, the black hole masses are well-fit by the scaling relation

MBH = C|p− p∗|γ , (8.152)

where C is a constant that depends on the family but where the exponent γ is universal, γ ' 0.37,
independent of family. The evidence is displayed in Figure (8.24).

Black hole formation turns on at infinitesimal mass in the case of a massless scalar field, and
this situation is designated a Type II critical phenomenon. By contrast, in a Type I transition,
black holes first appear at finite mass.54 The designations are in analogy with first and second order
phase transitions in statistical mechanics. The two possibilities are distinguished schematically in
Figure (8.25).

The second surprising result was the appearance of universality, the phenomenon whereby for
a finite length of time in a finite region of space, the spacetime generated by all families of near-
critical initial data approach the same solution. This universal critical solution to the equations
of motion is approached by all initial data that are close to black hole threshold, on both sides

53Christodoulou (1986, 1991, 1993) established that weak spherical scalar waves disperse and strong waves form
black holes, and that these are the only two final states.

54The collapse of a massive scalar field is a Type I phenomenon, as is the collapse of collisionless matter.
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Figure 8.24: Typical evidence for mass scaling in the collapse of a spherical massless scalar field.
The initial data consists of a one-parameter family of ingoing Gaussian pulses of scalar field in
which the amplitude ϕ0 is varied. The mass-scaling exponent, γLS ≈ 0.376, is determined from
a least-squares fit. The inset shows that the transition is Type II. For Gaussian initial data, the
scaling persists well beyond the critical limit, p→ p∗. [From Choptuik (1998)].

of the critical solution, for any 1-parameter family. The solution is determined up to an overall
scale factor depending on the family. The critical solution is obviously unstable, as the slightest
perturbation will result either in black hole formation or complete dispersal. When the evolution
chooses one of the two routes, the universal phase ends.

The third finding revealed by Chotpuik’s simulations is scale-echoing. This phenomenon is a
form of discrete self-similarity, whereby as one tunes closer and closer to the critical solution, the
dynamical character of the solution repeats itself at ever-decreasing time and length scales related
by a factor of e∆, where ∆ ' 3.44, so that e∆ ' 30. Mathematically, the critical solution ϕ∗(t, r)
and associated spacetime satisfy

t′ = e−n∆t (8.153)

r′ = e−n∆r (8.154)

ds′
2

= e−2n∆ds2 (8.155)

ϕ∗(t′, r′) = ϕ∗(t, r) (8.156)

(n = 1, 2, 3 . . .) . (8.157)

The dimensionless critical exponent γ and echo period ∆ are two interesting constants whose
origins are still somewhat of a mystery.

The behavior discovered by Choptuik has been found in other forms of matter coupled to
gravity. It has even been demonstrated in the collapse of axisymmetric gravitational waves in
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Figure 8.25: Schematic illustration of possible black-hole threshold behavior. The top panel repre-
sents a Type I (“first-order”) transition, where the “order parameter” MBH is nonzero at threshold.
The bottom panel shows a Type II (“second order”) transition, where MBH is infinitesimal at the
critical point. [From Choptuik (1998)].

pure vacuum spacetimes.55 The existence of the critical exponent and echo period appears to be
universal, but their values depend on the type of matter.

A significant consequence of Type II critical solutions is that they produce naked singularities:
a critical solution results in a point of infinite curvature which is visible to observers at future null
infinity. For example, the spacetime scalar curvature (4)R grows without bound near r = 0 in a
precisely critical massless scalar field evolution.

Exercise 8.22 Show that (4)R is easily evaluated for a massless scalar field as

(4)R = 8π∇aϕ∇aϕ = 8π(Φ2 −Π2)/a2 . (8.158)

Thus Type II critical solutions provide counterexamples to the Cosmic Censorship Conjec-
ture,56 which asserts that the collapse of well-behaved initial data does not result in a naked
singularity. While it is always possible to restate the Conjecture so that it applies only to the
collapse of generic initial data, and thereby rule out these critical solutions on technical grounds,
these counterexamples do highlight why is has been so difficult to fashion a rigorous proof.57

55Abrahams and Evans (1993); γ ≈ 0.37,∆ ≈ 0.6
56Penrose (1969).
57See Berger (2002) for discussion and references; see also Chapter 10.1.
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Chapter 9

Gravitational Waves

Spherically symmetric spacetimes, which we discussed in Chapter 8, do not admit gravitational
radiation. Once we relax this symmetry restriction, as we shall do in the following chapters, we
will encounter spacetimes that do contain gravitational radiation. In fact, simulating promising
sources of gravitational radiation and predicting their gravitational wave signals are among the
most important goals of numerical relativity. This goal is especially urgent in light of the new
generation of gravitational wave laser interferometers which are now operational. A book on
numerical relativity therefore would not be complete without a discussion of gravitational waves.

In this chapter we review several topics related to gravitational waves. We start in Section
9.1 with a discussion of linearized waves propagating in nearly Minkowski spacetimes and the
role that these waves play even in the case of nonlinear sources of gravitational radiation. In
Section 9.2 we survey plausible sources of gravitational waves, highlighting those that seem most
promising from the perspective of gravitational wave detection. We briefly describe some of the
existing and planned gravitational wave detectors in Section 9.3. Finally, in Section 9.4 we make
contact with numerical relativity, and review different strategies that have been employed to
extract gravitational radiation data from numerical relativity simulations.

9.1 Linearized Waves

Most of this book deals with strong-field solutions of Einstein’s equations, including black holes,
neutron stars, and binaries containing these objects. As long as these solutions are dynamical and
nonspherical, they will emit gravitational radiation. In the near-field region about such sources,
the gravitational fields consist of a combination of longitudinal and transverse (i.e. radiative) com-
ponents that cannot be disentangled unambigiously. As the transverse fields propagate away from
their sources, however, they will reach an asymptotic region in which they can be modeled as a
linear perturbation of a nearly Minkowski spacetime. These linearized gravitational waves carry
information about the nature of the nonlinear sources that generated them. It is these linearized
waves that are measured by gravitational wave detectors. The goal in simulating astrophysi-
cally promising sources of gravitational radiation is therefore to predict the emitted gravitational
waveforms that reach this asymptotic regime. We will discuss this numerical “extraction” of grav-
itational waveforms in Section 9.4. Before doing so, however, we begin with a review of some of
the basic properties of linearized gravitational waves.

275
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9.1.1 Perturbation Theory and the Weak-Field, Slow-Velocity Regime

A detailed discussion and derivation of the generation and propagation of gravitational waves
in the weak-field, slow velocity regime of general relativity can be found in any of the standard
textbooks on general relativity. We already have provided a brief summary in Section 1.1; here
we will review the main results and use them in several applications.

Consider a small perturbation hab of a known “background” solution to Einstein’s equations.
In principle the background could be any solution, but here we are interested in waves propagating
in a nearly Minkowski spacetime, for which the metric becomes1

gab = ηab + hab, |hab| � 1. (9.1)

It is convenient to introduce the “trace-reversed” perturbation

h̄ab ≡ hab −
1

2
ηabh

c
c . (9.2)

We can now exploit our coordinate-freedom to impose the “Lorentz gauge” condition,

∇ah̄
ab = 0, (9.3)

in which case Einstein’s equations in vacuum reduce to the wave equation

�h̄ab = ∇c∇ch̄ab = 0 , (vacuum) . (9.4)

As it turns out, the Lorentz-gauge condition (9.3) does not determine h̄ab uniquely, since we
can introduce further infinitesimal gauge transformations that leave this condition unchanged. We
can therefore use this remaining gauge freedom to impose further conditions on the perturbations
h̄ab. Particularly useful is the transverse-traceless or “TT” gauge, in which

h̄TTa0 = 0, h̄TT aa = 0. (9.5)

The first condition implies that the only nonzero components of h̄TTab are purely spatial. The
second condition implies that h c

c = 0, so that, according to equation (9.2), the trace-reversed
metric perturbations h̄ab are identical to the original perturbations hab, and we are entitled to
drop the bars whenever we write down results in the TT gauge. In the TT gauge the time-space
components of the four-dimensional Riemann tensor are simply expressed in terms of the metric
perturbations:

(4)Ri0j0 = −1

2
ḧTTij . (9.6)

Here the double dot denotes the second time derivative. Equation (9.6) exhibits the special role
that the metric perturbations in the TT gauge play in providing a direct measure of the Riemann
tensor, which determines the gravitational tidal field. Together, the conditions (9.3) and (9.5)
provide eight constraints on the originally ten independent components of hab

2 . The remaining two
degrees of freedom correspond to the two possible polarization states of gravitational radiation. It

1Departing from the notation in most of the rest of the book we shall adopt Cartesian coordinates here, whereby
ηab = diag(−1, 1, 1, 1).

2Superficially, it appears as if the conditions (9.3) and (9.5) provided nine conditions, not eight. However, one
of the four equations h̄TT

a0 = 0 in (9.5) is redundant with one of the conditions in (9.3), reducing the number of
conditions to eight. See, for example, Section 35.4 in Misner et al. (1973) for a more detailed discussion.
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Figure 9.1: Lines of force associated with the two polarization states h+ and h× of a linear plane
gravitational wave traveling in vacuum in the z-direction. [From Abramovici et al. (1992).]

is often convenient to express these two polarization states in terms of the two polarization tensors
e+ab and e×ab. For a linear plane wave propagating in vacuum in the z-direction, for example, we
have

e+xx = −e+yy = 1 , e×xy = e×yx = 1 , all other components zero. (9.7)

A general gravitational wave is then specified by two dimensionless amplitudes h+ and h× as

hTTjk = h+e
+
ij + h×e

×
ij. (9.8)

The effect of a passing gravitational wave on two nearby, freely-falling test particles at a spatial
separation ξi is to change their separation according to

ξ̈i =
1

2
ḧTTij ξ

j. (9.9)

Equation (9.9) is a direct consequence of the equation of geodesic deviation applied to the two
particles, combined with equation (9.6). The relative strain δξ/ξ between these two particles is
therefore proportional to the gravitational wave amplitude, which explains why hTTij is sometimes
called the gravitational wave strain. In Figure 9.1 we show the lines of force associated with the
two polarization states h+ and h×. For the h+ polarization, for example, particles separated along
the x direction (with coordinate axes chosen as in the Figure), will be pulled apart while particles
along the y direction are pushed together, and vice versa a half-cyle later.

Consider now the generation of gravitational radiation from a weak-field, slow-velocity source.3

For such a source, Einstein’s equations reduce to4

�h̄ab = ∇c∇ch̄ab = −16πTab , (weak-field, slow-velocity) . (9.10)

Imposing an outgoing-wave boundary condition, we can solve equation (9.10) with the help of a
Green’s function to obtain the integral equation,

h̄ab(t, x
i) = 4

∫
d3x′

Tab(t− |xi − x′i|, x′i)
|xi − x′i|

. (9.11)

3Weak-field means Φ � 1, where Φ is the Newtonian potential of the source; slow-velocity means v � 1, where
v is the characteristic speed of the source and its internal components.

4In what follows, adopting the weak-field, slow-velocity limit allows us to neglect the stress-energy pseudotensor
tab that must be added to Tab on the right-hand side of equation (9.10) in the general case; see Misner et al. (1973),
Section 36.10.
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Here t−|xi−x′i| is the retarded time; it implies that h̄ab at the event (t, xi) depends on the stress
energy-tensor Tab on the event’s past light cone.

In the wave zone at large distances r from the source we may expand the retarded integral in
equation (9.11) in powers of x′i/r to find

h̄ij(t, x
k) =

4

r

∫
d3x′Tij(t− r, x′k). (9.12)

We now use the tensor virial theorem5∫
d3x′T ij =

1

2

d2

dt2

∫
d3x′T ttx′ix′j, (9.13)

together with the expression T tt ≈ ρ0, valid for Newtonian sources, and the definition of the second
moment of the mass distribution,

I ij(t) =

∫
d3x′ρ0(t, x

′k)x′ix′j , (9.14)

to rewrite (9.12) as

h̄ij(t, x
k) =

2

r
Ïij(t− r). (9.15)

It is then convenient to define the reduced quadrupole moment as the traceless part of the second
moment of the mass distribution,

Iij = Iij −
1

3
ηijI, (9.16)

where I = Iaa. The reduced quadrupole moment has a more transparent physical meaning than
the second moment of the mass distribution, since it appears in the near-zone expansion of the
Newtonian gravitational potential,

Φ = −
(
M

r
+
dix

i

r3
+

3

2

Iijxixj

r5
+ . . .

)
. (9.17)

Here M is the total mass of the system, and di is its dipole moment.
Finally, to bring equation (9.15) into the TT gauge, we need to project out its transverse-

traceless part. Using the projection operator

P j
i ≡ η j

i − nin
j, (9.18)

where ni = xi/r is a unit vector pointing in the wave’s local direction of propagation, this can be
accomplished by defining

ITTij ≡
(
P k
i P

l
j −

1

2
PijP

kl

)
Ikl. (9.19)

We then have

hTTij (t, xk) =
2

r
ÏTTij (t− r) , (weak-field, slow-velocity) . (9.20)

since the TT parts of Iij and Iij are identical. We emphasize that equation (9.20), referred to as the
“quadrupole approximation”, holds only for a weak-field, slow-velocity source. But a majority of

5This can be proven by using ∂2
t T

tt = −∂t∂kT
tk = ∂k∂lT

lk (a consequence of successive application of the
conservation of energy-momentum in the weak-field limit, ∂aT

ab = 0) and repeated integration by parts.
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the most promising sources of detectable gravitational waves are characterized by strong-fields and
high velocities, for which numerical relativity is required to determine the waveforms. Nevertheless,
equation (9.20) often provides a useful first approximation even in these cases. It also serves as a
good check on numerical calculations in the appropriate limit.

Exercise 9.1 A distant observer at (r, θ, φ) in the wave zone measures a gravitational wave from
a radiating source at the origin. Decompose the waveform into its two polarization modes as in
equation (9.8), whereby the the 3-metric in the wave zone may be written

dl2 = dr2 + (1 + h+)r2dθ2 + (1− h+)sin2θφ2 + 2h×sinθdθdφ . (9.21)

(a) Show that the two polarization modes are related to to Iı̂̂ according to

h+ =
1
r
(Ïθ̂θ̂ − Ïφ̂φ̂) , (9.22)

h× =
1
r
Ïφ̂φ̂ , (9.23)

where Iı̂̂ are the components of the reduced quadrupole moment in an orthonormal basis (er̂, eθ̂, eφ̂).
(b) Show that if we relate spherical polar coordinates to Cartesian coordinates (x,y,z) in the usual way,
the two polarization modes can be expressed in terms of the components of Iij in a Cartesian basis
according to

h+ =
1
r

[
Ïxx − Ïyy

2
(1 + cos2θ)cos(2φ) + Ïxy(1 + cos2θ)sin(2φ)

+

(
Ïzz −

Ïxx + Ïyy

2

)
sin2θ

]
, (9.24)

h× =
1
r

[
−Ïxx − Ïyy

2
cosθ sin(2φ) + Ïxycosθ cos(2φ)

]
. (9.25)

Exercise 9.2 Consider a Newtonian binary consisting of two point masses m1 and m2 in circular orbit
about each other. Choose coordinates so that the binary orbits in the xy plane and is aligned with the
x axis at t = 0.
(a) Compute the reduced quadrupole moment in the center-of-mass frame to show that it can be
written as

Iij =
1
2
µR2

 cos 2Ωt+ 1/3 sin 2Ωt 0
sin 2Ωt − cos 2Ωt+ 1/3 0

0 0 −2/3

 , (9.26)

where Ω is the orbital angular velocity, µ = m1m2/(m1 + m2) the reduced mass, and R the binary
separation.
(b) Show that a distant observer situated at (r, θ, φ), where, without loss of generality, φ = 0, measures
the waveforms to be

h+ = −2
r
Ω2µR2(1 + cos2 θ) cos 2Ω(t− r) ,

h× = −4
r
Ω2µR2 cos θ sin 2Ω(t− r) .

Thus the magnitude h of the waveform amplitude is of order

h ' 4µΩ2R2

r
=

4µM2/3Ω2/3

r
=

4
r

µM

R
, (9.27)

where the total mass is given by M = m1+m2 and where we have used Kepler’s law Ω2 = M/R3. Note
that the frequency of the wave is twice the frequency of the orbit in the quadrupole approximation.



280 CHAPTER 9. GRAVITATIONAL WAVES

Gravitational radiation carries energy, momentum, and angular momentum. To see this for-
mally6 we need to expand Einstein’s equations to second order. In vacuum, the resulting second-
order equations contain two different kinds of terms – terms that are linear in the second-order
perturbations of the metric, and terms that are quadratic in the first-order perturbations hij.
Upon suitable averaging, the latter constitute a source term for the background curvature. This
source term thus defines an “effective” stress-energy tensor for the gravitational waves, TGW

ab . In
a (nearly) Minkowski frame of linearized theory, this effective stress-energy tensor reduces to

TGW
ab =

1

32π
〈∂ahTTij ∂bhTT ij〉, (9.28)

where 〈〉 denotes an average over several wavelengths. We can now use this stress-energy tensor
to compute the energy, momentum and angular momentum carried off by the gravitational waves.
The outgoing energy flux in the radial direction, for example, is given by the T trGW component of
equation (9.28). To find the gravitational wave luminosity, which is equal and opposite the energy
change of the source, we integrate the energy flux passing through a large sphere surrounding the
source,

LGW ≡ −dE
dt

= − lim
r→∞

∫
TGW
tr r2dΩ. (9.29)

We can express the radiated energy in terms of the wave amplitudes h+ and h× of the outgoing
gravitational radiation according to

LGW = −dE
dt

= lim
r→∞

r2

16π

∫
〈ḣ2

+ + ḣ2
×〉dΩ, (9.30)

where we have used the fact that ∂rh
TT
ij = −∂thTTij for radially outgoing radiation. Similarly, we

can find the loss of angular momentum due to radiation,7

dJi
dt

= lim
r→∞

r2

16π

∫
<〈Ḣ∗ ĴiH〉dΩ, (9.31)

where H ≡ h+ − ih× and where the operator Ĵi is defined as

Ĵx = − sinφ∂θ − cosφ(cot θ∂φ + 2i csc θ) (9.32)

Ĵy = cosφ∂θ − sinφ(cot θ∂φ + 2i csc θ) (9.33)

Ĵz = ∂φ . (9.34)

In particular, this relation gives

dJz
dt

= lim
r→∞

r2

16π

∫
〈∂th+∂φh+ + ∂th×∂φh×〉dΩ . (9.35)

Finally, the loss of linear momentum due to radiation is

dP i

dt
= lim

r→∞
− r2

16π

∫
xi

r
〈ḣ2

+ + ḣ2
×〉dΩ. (9.36)

6The proceedure is know as the “shortwave approximation”; see Misner et al. (1973), Section 35.13 - 35.15.
7See, e.g., Ruiz et al. (2008).
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In all the above expressions the quantities E, J and P i refer to the source, and their changes
are equal and opposite to the corresponding quantities carried off by the waves. We note that
equations (9.30) - (9.36) apply even in the case of strong-field sources, since the waves they
generate constitute small perturbations to the nearly flat background spacetime once they reach
large distances from the source, where these fluxes are evaluated.

In the case of a weak-field, slow-velocity source, we can express the radiated energy in terms
of the source’s reduced quadrupole moment. Inserting equation (9.20) into (9.29) and integrating
yields8

LGW = −dE
dt

=
1

5
〈
...

Ijk
...

I
jk
〉. (9.37)

This energy loss can also be modeled with a corresponding radiation-reaction force F react
i that can

be written as the gradient of a radiation-reaction potential Φreact

F react
i = −mDiΦ

react, Φreact =
1

5
I(5)
jk x

jxk. (9.38)

Here the superscript (5) denotes a fifth time derivative. To show that equations (9.37) and (9.38)
are consistent with each other we compute the energy loss of a swarm of particles, labeled by an
index A, as9

dE

dt
=

∑
A

viAF
react
i = −

∑
A

mAv
i
ADiΦ

react = −2

5
I(5)
ij

∑
A

mAv
i
Ax

j
A

= −1

5
I(5)
ij

d

dt

∑
A

mAx
i
Ax

j
A = −1

5
I(5)
ij I ij(1). (9.39)

In the last step we have been able to convert an I ij into an I ij since Iijηij = 0. Taking an average

over several wave cycles we can integrate by parts twice to convert I(5)
ij I ij(1) into I(3)

ij I ij(3), which
yields equation (9.37). We can perform a very similar calculation to compute the loss of angular
momentum, obtaining

dJi
dt

= −2

5
εijk〈Ïjm

...

I k
m〉. (9.40)

The so-called “quadrupole formulae” (9.37) and (9.40) can be used to calculate the loss of energy
and angular momentum from any weak-field, slow-velocity source. As an example, we return in
Exercise 9.3 to the point-mass binary system of Exercise 9.2.

Exercise 9.3 Revisit the point-mass binary of Exercise 9.2 and evaluate (9.37) and (9.40) to find

dE

dt
= −32

5
µ2R4Ω6 (9.41)

and
dJz

dt
= −32

5
µ2R4Ω5 (9.42)

The loss of energy and angular momentum due to gravitational radiation causes the binary
orbit to shrink, i.e., gravitational radiation drives binary inspiral. The inspiral and merger of

8Before the integration can be carried out, the transverse-traceless components of ITT
ij in equation (9.20) have

to be expanded in terms of Iij , whereby the normal vector ni = xi/r in the projection operator (9.18) introduces
a (quadrupolar) angular dependence. See, e.g., Carroll (2004), page 313, for details.

9See, e.g., Burke (1971) as well as the discussion in Shapiro and Teukolsky (1983).
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binaries containing compact stars is a very promising source of gravitational waves for detection
by laser interferometers (see Section 9.2). Consequently, compact binary inspiral and merger is a
central theme in this book, and we shall return to this topic on several occasions.10

Exercise 9.3 provides an example of the remarkable relationship

dE = Ω dJ, (9.43)

which holds under quite general conditions involving relativistic systems in quasi-stationary equi-
librium undergoing secular changes. We will encounter this relation several times later in this
book. For example, in exercise 12.2, we will see that equation (9.43) guarantees that a circular bi-
nary undergoing slow inspiral due to gravitational wave emission will remain in a (nearly) circular
orbit.

9.1.2 Vacuum Solutions

Return now to Einstein’s linearized equations (9.4) in vacuum,

�h̄ab = 0. (9.44)

Just as in electrodynamics, this type of equation admits simple plane wave solutions of the form

h̄ab = <
(
Aabe

ikcxc)
. (9.45)

Here ka = (ω, ki) is a four-dimensional wave vector, xa = (t, xi) denote the inertial coordinates
of a point in spacetime and Aab is a constant tensor representing the wave amplitude. Einstein’s
equations (9.44) then demand that ka be a null vector,

kak
a = 0, (9.46)

whereby ω = |ki|. This dispersion relation implies that gravitational waves propagate at the speed
of light. The Lorentz condition (9.3) requires

kaAab = 0, (9.47)

implying that gravitational waves are transverse. The above results are quite general, since we
can always decompose an arbitrary, linear gravitational wave propagating in a nearly flat, vacuum
spacetime into a superposition of the plane wave solutions (9.45).

From a numerical point of view the plane wave solutions found above are not the most useful.
Most numerical simulations treat spacetimes with finite, bounded sources, for which the waves
propagate radially outward at large distance. Moreover such spacetimes approach asymptotic
flatness at least as fast as r−1. Clearly spacetimes containing with plane waves (9.45) do not share
these properties. More useful for simulation purposes are multipole expansions of linear, vacuum
solutions to equation (9.45) expressed in terms of tensor spherical harmonics. Tensor spherical
objects are defined in Appendix D.

When working in spherical coordinates, it is more convenient to express the two polarization
states of gravitational radiation in terms of even– and odd-parity modes rather than the + and
× modes of equation (9.7) An even-parity mode (`,m) has parity (−1)` under space inversion
(θ, φ) → (π−θ, φ+π), while an odd-parity mode has parity (−1)`+1. Evidently, depending on the

10See Section 12.1 for a more detailed overview of binary inspiral.
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index `, both odd– and even-parity modes can have odd or even parity. To choose a less confusing
name, some authors therefore refer to the even-parity modes as polar and the the odd-parity modes
as axial.

Of particular interest is the quadrupole l = 2 wave, which often is the dominant mode for
many sources of gravitational radiation.11 For even-parity or polar quadrupole modes, the metric
takes the form

ds2 = −dt2 + (1 + Afrr) dr
2 + (2Bfrθ) rdrdθ + (2Bfrφ) r sin θdrdφ+ (1 + Cf

(1)
θθ + Af

(2)
θθ ) r2dθ2

+[2(A− 2C)fθφ] r2 sin θdθdφ+ (1 + Cf
(1)
φφ + Af

(2)
φφ ) r2 sin2 θdφ2. (9.48)

Here the coefficients A, B and C can be constructed from an arbitrary function F (x), where we
have x = t− r for an outgoing solution or x = t + r for an ingoing solution. In the general case,
we may take

F = F1(t− r) + F2(t+ r) (9.49)

and define

F (n) =

[
dnF1(x)

dxn

]
x=t−r

+ (−1)n
[
dnF2(x)

dxn

]
x=t+r

. (9.50)

In terms of F (x) and its derivatives we then have

A = 3

[
F (2)

r3
+

3F (1)

r4
+

3F

r5

]
, (9.51)

B = −
[
F (3)

r2
+

3F (2)

r3
+

6F (1)

r4
+

6F

r5

]
, (9.52)

C =
1

4

[
F (4)

r
+

2F (3)

r2
+

9F (2)

r3
+

21F (1)

r4
+

21F

r5

]
. (9.53)

The angular functions fij in the metric (9.48) depend on the axial parameter m. We list these
functions in the order m = ±2,±1, 0, with the functions corresponding to the upper sign displayed
on top of those corresponding to the lower sign:

frr = sin2 θ

(
cos 2φ
sin 2φ

)
, 2 sin θ cos θ

(
cosφ
sinφ

)
, 2− 3 sin2 θ,

frθ = sin θ cos θ

(
cos 2φ
sin 2φ

)
, (cos2 θ − sin2 θ)

(
cosφ
sinφ

)
, − 3 sin θ cos θ,

frφ = sin θ

(
− sin 2φ
cos 2φ

)
, cos θ

(
− sinφ
cosφ

)
, 0,

f
(1)
θθ = (1 + cos2 θ)

(
cos 2φ
sin 2φ

)
, 2 sin θ cos θ

(
− cosφ
− sinφ

)
, 3 sin2 θ,

f
(2)
θθ =

(
− cos 2φ
− sin 2φ

)
, 0, − 1,

fθφ = cos θ

(
sin 2φ
− cos 2φ

)
, sin θ

(
− sinφ
cosφ

)
, 0,

f
(1)
φφ = −f (1)

θθ

f
(2)
φφ = cos2 θ

(
cos 2φ
sin 2φ

)
, 2 sin θ cos θ

(
− cosφ
− sinφ

)
, 3 sin2 θ − 1.

(9.54)

11Teukolsky (1982); linear, vacuum quadrupole waves in this representation are sometimes referred to as “Teukol-
sky waves”. For generalization to all multipoles, see Rinne (2008b).



284 CHAPTER 9. GRAVITATIONAL WAVES

Exercise 9.4 Consider a superposition of ingoing and outgoing waves with

F1(x) = −F2(x). (9.55)

(a) Show that if F1(x) is an odd function in x, then t = 0 corresponds to a moment of time symmetry
(i.e. show that Kij = 0 at t = 0).
(b) Now consider the specific choice

F1(x) = −F2(x) = Axe−(x/λ)2 , (9.56)

where A is an amplitude and λ measures the spatial extend of the wave packet. Perform an expansion
around r = 0 to show that the wave form is regular (i.e. nonsingular) at the origin.
Hint: It may be helpful to use an algebraic package like Mathematica, or else to restrict the analysis
to t = 0.

To translate to the h+ and h× polarizations, we can introduce a local orthonormal coordinate
system and identify

h+ = hTT
θ̂θ̂

= Cf
(1)
θθ (9.57)

and

h× = hTT
θ̂φ̂

= −2Cfθφ. (9.58)

Here we have kept only those terms that fall off with 1/r, dropping higher-order terms.

Exercise 9.5 Use equation (9.30), without averaging over wave cycles, to show that the total energy
emitted by an even-parity ` = 2, m = 0 wave is

dE

dt
= −6

5
r2Ċ2 = − 3

40

(
F (5)

)2

, (9.59)

provided the F (4)/r term constitutes the dominant contribution to C at large r.

Similarly, the odd-parity or axial metric takes the form

ds2 = −dt2 + dr2 + (2Kdrθ) rdrdθ + (2Kdrφ) r sin θdrdφ+ (1 + Ldθθ) r
2dθ2

+(2Ldθφ) r2 sin θdθdφ+ (1 + Ldφφ) r2 sin2 θdφ2. (9.60)

Here we construct the coefficients K and L from a function

G = G1(t− r) +G2(t+ r) (9.61)

and its derivatives

G(n) =

[
dnG1(x)

dxn

]
x=t−r

+ (−1)n
[
dnG2(x)

dxn

]
x=t+r

(9.62)

according to

K =
G(2)

r2
+

3G(1)

r3
+

3G

r4
, (9.63)

L =
G(3)

r
+

2G(2)

r2
+

3G(1)

r3
+

3G

r4
. (9.64)
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The angular functions dij are again listed in the order m = ±2,±1, 0, yielding

drθ = 4 sin θ

(
cos 2φ
sin 2φ

)
, − 2 cos θ

(
cosφ
sinφ

)
, 0,

drφ = −4 sin θ cos θ

(
sin 2φ
− cos 2φ

)
, − 2(cos2 θ − sin2 θ)

(
sinφ
− cosφ

)
, − 4 cos θ sin θ,

dθθ = −2 cos θ

(
cos 2φ
sin 2φ

)
, − sin θ

(
cosφ
sinφ

)
, 0,

dθφ = (2− sin2 θ)

(
sin 2φ
− cos 2φ

)
, cos θ sin θ

(
sinφ
− cosφ

)
, − sin2 θ,

dφφ = 2 cos θ

(
cos 2φ
sin 2φ

)
, sin θ

(
cosφ
sinφ

)
, 0 .

(9.65)
As we have seen in exercise 9.4, we can construct superpositions of ingoing and outgoing waves

in vacuum that at t = 0 are time symmetric with Kij = 0. If the amplitude A of the wave is
small (A � 1), the metric for the complete spacetime is given by the linearized solutions (9.48)
or (9.60) to equation (9.44). For a nonlinear wave, the 3 + 1 equations must be solved numerically
to determine the spacetime. However, a time-symmetric waveform at t = 0 automatically satisfies
the momentum constraint (2.134). To completely specify the initial data for such a nonlinear
wave, we only need to solve the Hamiltonian constraint (2.133).12 Linearized waves provide useful
analytic solutions for testing initial value routines and 3 + 1 vacuum evolution codes designed to
handle nonlinear problems.

9.2 Sources

The gravitational waves that we hope to observe on Earth have exceedingly small amplitudes.13

For a binary, for example, we can evaluate equation (9.27) to estimate the typical gravitational
wave strain h. For equal-mass binaries we have µ = M/4, so

h ' 4

r

µM

R
' 5× 10−20

(
1 Mpc

r

)(
M

M�

)(
M

R

)
. (9.66)

For a binary of stellar-mass black holes with M = 10M�, for example, located in the Virgo cluster
at a distance of about 20 Mpc, at a binary separation of about14 R = 6M , we see that the strain
h is smaller than about 10−20. Similar estimates hold for other stellar sources of gravitational
radiation. Clearly it is a formidable challenge to observe this radiation, and we will return to this
issue in Section 9.3. In the meantime we recognize that for an astrophysical object of a given mass
M to emit strong gravitational radiation, its compaction M/R needs to be large. This requirement
singles out compact objects as the most promising stellar sources of gravitational radiation.

Of course, there may also be other astrophysical sources of gravitational radiation that are not
related to stars. Processes in the early Universe, for example, may generate gravitational radiation

12Time-symmetric, nonlinear wave solutions constructed in this way in axisymmetry are often refered to as
Brill-waves (see exercise 3.5).

13Our discussion in this Section is drawn from Flanagan and Hughes (2005), who provide a more detailed overview
as well as numerous references.

14As we will see in Chapters 12 and 13, this binary separation is close to the ”innermost stable circular orbit”,
at which the binary inspiral becomes increasingly rapid and decreasingly circular.
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that may still be observable today, not unlike the cosmic microwave background. Potential origins
of such a radiation include primordial fluctuations in the Universe’s geometry, amplified during
inflation, and phase transitions. String theory also predicts possible mechanisms for the generation
of gravitational radiation, including vibrating cosmic strings and the condensation of branes.
Finally, one might suspect that there are sources of detectable gravitational radiation of which we
are unaware at the time of the writing of this book. Every time another form of radiation has
opened up a new window for us to view the Universe, we have been surprised by some unexpected
observations. These observations, in turn, have led to a new and deeper understanding of the
Universe. It is entirely possible that nature will reward us with a similar surprise when we are
able to observe and measure gravitational radiation at sufficiently high sensitivities.

Different sources of gravitational radiation emit waves at vastly different frequencies. It is
useful to divide this large spectrum of gravitational radiation into different frequency bands. The
high frequency band includes frequencies in the range 1 Hz <∼ f <∼ 104 Hz, the low frequency band
covers the range 10−5 Hz <∼ f <∼ 1 Hz, the very low frequency band spans 10−9 Hz <∼ f <∼ 10−7 Hz,
and the ultra low frequency band covers 10−18 Hz <∼ f <∼ 10−13 Hz.

The partition into these different bands is motivated in part by the means by which we detect
them, as we will discuss below. It is also motivated by the different classes of potential sources.
To distinguish the later, we shall estimate the characteristic gravitational wave frequency from a
stellar object of mass M , radius R and compaction M/R by15

f ' 1

M

(
M

R

)3/2

' 2× 105 Hz

(
M�

M

)(
M

R

)3/2

(9.67)

The highest frequency sources are compact objects with large compactions (black holes or neutron
stars) and small masses; stellar-mass compact objects fall into this category. These sources fall into
the high frequency band. Objects with either larger masses (supermassive black holes) or smaller
compactions (white dwarfs, or binaries with large binary separation) radiate in the low frequency
band. Other stellar sources may radiate with even lower frequencies; however, the strain of their
radiation is so weak that this radiation is not interesting from an observational perspective. That
leaves non-stellar sources as the most interesting sources of gravitational radiation in the very low
and ultra low frequency bands.

9.2.1 The High Frequency Band

The high frequency band includes frequencies in the approximate range 1 Hz <∼ f <∼ 104 Hz.
This frequency band is observable with the new generation of ground-based gravitational wave
interferometers, which we will discuss in Section 9.3. The upper limit of this band corresponds
to the highest frequency of gravitational radiation that we may expect from stellar sources. As
discussed above, we can estimate this limit from equation (9.67) for stellar-mass compact objects
with large compactions , i.e. neutron stars or stellar-mass black holes. The lower limit of this band
is set by our ability to dectect gravitational radiation with ground-based interferometers. For
smaller frequencies, it becomes increasingly difficulty to decouple the signal from the noise arising
from low-frequency vibrations, both mechanical and gravitational, on the ground. Curiously, the
high frequency band coincides more or less with the audible range of human hearing; if converted
to sound, we would be able to hear the gravitational radiation in this band.

15For binaries this relation follows directly from Kepler’s third law. For other objects we can estimate their
characteristic frequency from their dynamical timescale: f ' 1/τdyn '

√
ρ, which again results in equation (9.67).
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Promising sources in this frequency band include compact, stellar-mass binaries, stellar core
collapse, rotating neutron stars, and stochastic backgrounds.16

Compact Binaries

Compact binaries – binary neutron stars, binary black holes, and binary black hole-neutron stars –
are probably the most promising sources of gravitational radiation for ground-based gravitational
wave detectors. Very simple estimates of the emitted gravitational wave signals can be obtained
from Exercises 9.2, 9.3 and 12.3. More accurate predictions applicable for close, mildly rela-
tivistic orbits require post-Newtonian calculations; see Appendix E for a brief summary of these
calculations. The highly relativistic late inspiral, plunge and merger phases of the orbit require
full numerical simulations for the evolution and emitted gravitational radiation. Such numerical
simulations will be described in detail in Chapters 12–13 and 15–17.

Compact binaries are know to exist, at least in the case of binary neutron stars. Since the
discovery by Hulse and Taylor (1975) of PSR 1913+16, a binary neutron star system containing a
radio pulsar, a number of similar systems have been identified.17 While several of these binaries will
coalesce within a Hubble time18 none have small enough binary separation to be observable with
the current generation of gravitational wave detectors. However, for some binaries the gravitational
wave back-reaction is strong enough for us to measure its effect on the binary orbit. By monitoring
the orbit of PSR 1913+16 by radio pulsar techniques, Hulse and Taylor were able to confirm for
the first time the validity of equation (9.37) and, hence, the rate at which gravitational radiation
carries off energy as predicted by general relativity in the weak-field, slow-velocity limit.

We can use a statistical analysis based on the known sample of observed binary neutron stars
to estimate the rate of binary neutron star coalescence per Milky-Way-type galaxy. Since this
sample is rather small, the estimates are not very rigorous, but presumably they improve with
each new discovery of a binary neutron star system.19 To date, no binary black hole or black
hole-neutron star system has been discovered, so we cannot perform such an analysis to estimate
their merger rates.

An alternative way of estimating compact binary coalescence rates is to model the evolution
of stellar populations. These “population synthesis” calculations rely on theoretical models for
the late stages of stellar evolution and the formation of compact binaries and have significant un-
certainties. Observations constraints can sharpen these population synthesis estimates, yielding20

merger rates of binary neutron stars of approximately 10−5 − 10−4 per year per Milky-Way-type
galaxy, 10−6 − 10−5 for binary black hole-neutron stars, and 10−7 − 10−6 for binary black holes.
Thus, to have an appreciable detection rate, gravitational wave detectors must be able to observe
mergers out to sufficiently large distances so that the volume they survey contains many galaxies.
We shall discuss the sensitivities of the current generation of detectors in Section 9.3.

One payoff of measuring gravitational waves from compact binaries is that we can use the
wave data to perform “stellar spectroscopy”. Specifically, once the data are analyzed using the-
oretical templates and “matched-filtering” techniques (see Section 9.3), they can provide direct

16We refer to Cutler and Thorne (2002), both for a more detailed discussion of these and other sources and a
perspective on the possibility of their detection.

17See, e.g., Stairs (2004) for a review.
18At least seven such neutron star binaries have been discovered via radio pulsar observations at this time. They

are J0737-3039 (a double pulsar), J1518+4904, B1534+12, J1811-1736, J1829+2456, B1913+16 (the Hulse-Taylor
binary), and B2127+11C; see Stairs (2004).

19See Burgay et al. (2003).
20Kalogera et al. (2007).
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measurements of the masses and spins of the inspiraling companions. These gravitational wave
measurements are the only way we can obtain these parameters for binary black holes, since they
emit no other form of radiation. Unlike other means used to estimate the masses and spins of
black holes in gaseous environments, gravitational wave measurements from binary inspiral do not
have the complications and uncertainties associated with the modeling of nonvacuum physics near
black holes, such as turbulent MHD accretion or electromagnetic radiation transport. The accu-
racy to which binary parameters can be determined from a gravitational wave detection depends
on several factors, including the masses of the binary companions themselves.21 For a “typical”
observation of a binary black hole system consisting of two 10 M� black holes with ground-based
gravitational wave detectors (see Section 9.3.1), an analysis of the the lowest-order quadrupole
radiation emitted during the inspiral phase22 is sufficient to determine the so-called chirp mass
(m1m2)

3/5(m1 + m2)
−1/5 to within a fraction of a percent.23 Determining the individual masses

m1 and m2 requires additional information, for example the reduced mass, which appears at the
next post-Newtonian order. Unfortunately, the effects of black hole spin also appear in these post-
Newtonian terms. Measuring these quantities individually therefore requires some way of breaking
the degeneracy. At least in principle, one approach may involve observations of the binary merger.
As we will see in Chapter 13, the black hole spins do have an important effect on the dynamics
of the binary black hole mergers; matching observed gravitational wave signals from the merger
phase to numerical simulations may therefore hold the key to determining the individual black
hole parameters.

The expectation that compact binaries are significant sources of detectable gravitational radi-
ation, together with their unique role as fundamental probes of general relativity, make compact
binaries of crucial importance for gravitational wave physics and astronomy. This is why we devote
so much attention to these objects in this book.

Stellar Core Collapse

Stellar core collapse, which occurs in a Type II supernova, for example, may also emit a strong
gravitational wave signal. Core collapse will lead to the formation of a neutron star or, for the
most massive progenitors, of a black hole. Such an event involves a large amount of mass moving
very rapidly in a very small volume. Just how much gravitational radiation is emitted nevertheless
depends on how much the collapse deviates from spherical symmetry. If the progenitor star has
very little rotation, then the collapse will proceed almost spherically, and only a very small amount
of gravitational radiation will be emitted. If the progenitor star rotates more rapidly, however,
then the collapsing core will be deformed and this will induce a time-varying quadrupole moment
and, hence, a potentially significant burst of gravitational radiation.

A rotating star in equilibrium is oblate – even the Earth has a slightly larger radius at the
equator than at the poles. The degree of oblateness increases with as the ratio of the rotational
kinetic energy T = IΩ2/2 = J2/(2I) to the the gravitational binding energy |W | increases. Here
I is the moment of inertia, J = IΩ the angular momentum, and W is the gravitational potential
energy of the star.24 During the collapse the mean radius of the core, R, decreases. Since I ∝ R2

21The mass of the binary affects the frequency range of the emitted gravitational wave pattern (equation 9.67),
and hence it determines whether or not the signal is received in a part of spectrum at which the gravitational wave
detectors is sensitive; compare the gravitational wave “noise-curves” in Section 9.3.

22See Chapter 12.1, including Figure 12.1 and Exercise 12.3.
23See, e.g., Cutler and Flanagan (1994); Cutler and Thorne (2002).
24For an incompressible, rotating Newtonian star T/|W | ∼ e2 for small e2 � 1, where e2 ≡ 1 − R2

pol/R
2
eq, Rpol
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and |W | ∝ 1/R, we find
T

|W |
∝ 1

R
. (9.68)

The above relationship implies that, assuming conservation of angular momentum, the ratio T/|W |
increases during the collapse. Even a modestly oblate progenitor star will therefore become in-
creasingly oblate following collapse. Such a collapse leads to a gravitational wave burst signal. It
would be particularly exciting to observe such a signal in conjunction with an electromagnetic or
a neutrino counterpart.

It is also possible that the collapsed core does not remain axisymmetric. If the ratio T/|W |
becomes sufficiently large, nonaxisymmetric instabilities may be triggered. Best understood is
the so-called bar-mode instability (see Chapters 14.2.2 and 16.3), which deforms the star into a
triaxial ellipsoid, i.e., the shape of an American football. Typically, the critical value of T/|W |
for this to happen is about 0.14, which is quite large. However, other instabilities – including
a single-arm m = 1 spiral mode or the r-mode – may develop at smaller values of T/|W |. If
a bar-mode instability develops in a neutron star remnant following core collapse, the remnant
would emit a periodic gravitational wave signal in addition to the initial burst. Depending on its
strength, the periodic signal may be much easier to identify via gravitational wave observations,
since the periodicity can be exploited to build up a higher signal–to–noise ratio in the output of
a gravitational wave detector.

Finally, we mention the possibility of a neutron star remnant ultimately undergoing collapse
to a black hole (see Chapter 14.2.1). A number of different scenarios suggest how such a “delayed
collapse” could be triggered – by phase transitions as a newly-formed neutron star cools, by
accretion fall-back of the stellar mantle, or by changes in the angular velocity profile of the remnant
induced by magnetic braking or viscosity. If the remnant is rotating, delayed collapse will result
in a delayed burst of gravitational waves, and this burst will be followed by emission from the
quasinormal ringing of the black hole as it settles into stationary equilibrium.

Rotating Neutron Stars

Rotating neutron stars are also promising sources of gravitational radiation in the high-frequency
band. We have observed many rotating neutron stars as radio and X-ray pulsars, so we know
not only that they exist, but also where they are located. Also, such a star emits a periodic
gravitational wave signal at a nearly constant, known frequency, which serves to increase the
signal-to-noise ratio as mentioned above.

A perfectly axisymmetric, rotating neutron star in stationary equilibrium emits no gravitational
radiation. For the star to radiate gravitational waves, its axisymmetry has to be broken. A number
of different mechanisms have been suggested that could accomplish this: an ultra-strong internal
magnetic field that is not aligned with the axis of rotation, accretion pile-up from a companion
star, or a small “mountain” that emerges on the crust from a starquake.25 It is difficult to predict
how large a deformation to expect from these mechanisms, making it somewhat uncertain how
strong we may expect the gravitational wave signal to be. Current gravitational wave detectors
already provide useful upper limits on the gravitational wave emission from a few rapidly rotating
pulsars, and hence, on their nonaxisymmetric deformation.26

is the polar radius and Req is the equatorial radius. See Shapiro and Teukolsky (1983), equation (7.3.24), for the
exact expression, as well as Chapters 7.3 and 16.8 in that text for further discussion.

25See, e.g., Shapiro and Teukolsky (1983), Chapter 10.5 and 10.11 for discussion and references.
26See The LIGO Scientific Collaboration: B. Abbott et al. (2007).
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Stochastic Backgrounds

Random, independent and uncorrelated sources that we cannot resolve observationally give rise
to so-called “stochastic background” radiation. Stochastic backgrounds include the gravitational
radiation that may have been produced in the early Universe, for example by phase transitions,
from quantum fluctuations arising during inflation or from cosmic strings.27 Stochastic background
radiation could exist at all frequencies, and thus spans all the frequency bands considered here.
Physically useful upper limits on stochastic background radiation in the high-frequency regime
already can be established with current gravitational wave detectors.28

9.2.2 The Low Frequency Band

The low frequency band between 10−5 Hz <∼ f <∼ 1 Hz cannot be observed with ground-based
detectors, since their coupling – both mechanically and gravitationally – to a host of Earth-
related sources of noise is too strong. This leaves space-based observatories as the best means of
detecting such radiation, and we will describe one such planned instrument, LISA, in Section 9.3.

As we can infer from equation (9.67), promising stellar sources in the low-frequency regime
include both high compaction , supermassive objects, such as a supermassive black hole binaries,
and low compaction, stellar-mass objects, such as white dwarf binaries. As discussed above, there
also may be stochastic background radiation present in the low frequency band, but here we will
focus only on stellar sources.

Supermassive Black Holes

Supermassive black holes (M ∼ 106 − 109M�) are believed to be the engines that power quasars
and active galactic nuclei. Most, if not all, nearby bulge galaxies host a supermassive black hole at
their centers. Black holes can grow to supermassive scale in the early Universe by a combination of
accretion and binary mergers.29 Because supermassive black hole masses are well-correlated with
the velocity dispersions of stars in the central bulges of their host galaxies, as well as with the
total bulge masses, it appears that supermassive black hole formation and growth are intimately
connected with galaxy formation.30

Binaries containing supermassive black holes are promising sources of quasi-periodic, low fre-
quency gravitational radiation. They can be divided into two broad categories. One category
consists of two supermassive black holes of comparable mass in binary orbit. The other category
consists of a supermassive black hole with a stellar-mass companion, sometimes referred to as an
“extreme mass ratio inspiral”, or EMRI, binary.

Binaries containing two supermassive black holes of comparable mass can form when two
galaxies collide and merge. Galaxy mergers are believed to provide an important mechanism for
the hierachical build-up of large-scale structure in the early Universe. Such mergers continue to
be observed in the present epoch. Thus, the formation of massive and supermassive binary black
holes may not be uncommon.31

27See, e.g., Peacock (1999) and Flanagan and Hughes (2005) for further discussion and references.
28See The LIGO Scientific Collaboration: B. Abbott (2007).
29One quasar, QSO SDSS 1148+5251, observed at redshift z = 6.43 (Fan, X. et al. (2003)), is believed to host a

supermassive black hole that has grown to a mass of about 109M� within 0.9 Gyr after the Big Bang; see Shapiro
(2005) and references therein.

30See articles in Ho (2004) for an overview and references.
31See Sesana et al. (2007) for the tentative implications for LISA.
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From a computational point of view, the inspiral and coalescence of two supermassive black
holes is identical to that of two stellar-mass black holes. We will discuss general relativistic
simulations of binary black hole coalescence in detail in Chapter 13. LISA, or a detector like
it, may be able to observe supermassive black hole mergers up to fairly high redshift (possibly
z ∼ 5 − 10), whereby we can use gravitational waves to probe structure formation in the early
Universe and provide insight into how supermassive black holes form in the first place.

EMRI binaries form when a supermassive black hole captures a smaller, stellar-mass object.
These binaries are promising sources of gravitational radiation if the binary is compact, i.e. if
the stellar-mass object is a black hole, neutron star or white dwarf. For these compact EMRI
binaries, tidal effects on the low-mass companion are small and the stars are completely intact
when they are swallowed by the supermassive black hole. The challenge in modeling these binaries
lies in correctly accounting for the gravitational radiation reaction force, which causes a gradual
deviation of the object’s orbit from a pure geodesic. Observing such a binary may provide our
best opportunity to map out the strong-field geometry of a Kerr black hole. Tentative estimates
suggest that LISA may be able to observe at least several of these systems per year.

We also mention the possibility that LISA may detect intermediate-mass black holes with
masses somewhere between stellar-mass and supermassive black holes (i.e., M ∼ 102 − 104M�).
There are been some tentative observational suggestions that such black holes may exist.32 Since
binaries involving intermediate-mass black holes would also radiate in the low frequency band,
gravitational wave observations of, say, a binary containing one or more intermediate-mass black
hole could provide unambiguous evidence of their existence.

White Dwarf Binaries

White dwarf binaries constitute a well established and understood group of weak-field sources in
the low frequency band. These systems emit gravitational radiation that is strong enough to be
detected by proposed detectors like LISA, but weak enough that the radiation reaction force on
the binary orbit is very small, making the signal almost perfectly periodic over typical observation
timescales. In fact, these sources are so well understood that they can be used to calibrate LISA
once the instrument is operational.

From a “new discovery” point of view, these sources are not so exciting as some of the strong-
field sources we have described. Since we already understand these binaries fairly well, there is not
much we can learn about them from gravitational radiation. We may nevertheless discover many
more of these binaries, and, in addition, there are some aspects of known binaries that we may
be able to probe better with the help of gravitational waves. For example, the orbit’s inclination
angle, which is difficult to determine from other observations, can be deduced from the relative
amplitudes of the polarization waveforms h+ and h×.

It is expected that LISA will be able to detect so many periodic binary sources that they will
form a stochastic background noise. This background is likely to exceed the instrument’s intrinsic
noise at low frequencies f <∼ 10−3 Hz.

9.2.3 The Very Low and Ultra Low Frequency Bands

The timescales associated with the very low frequency band, 10−9 Hz <∼ f <∼ 10−7 Hz, correspond
to a few months to a few decades. These limits are set by the observational technique – pulsar

32See van der Marel (2004) and references therein.
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timing – that has been used already to establish upper limits on the gravitational radiation in
this band. Radio pulsars are extremely precise clocks, but the pulses’ arrival times on Earth may
be modulated by the presence of gravitational waves. Making these measurements sufficiently
accurate requires integrating the pulsar data for at least a few months, which sets the higher
limit of the frequency band; on the other hand, we have observed pulsars only for a few decades,
which sets the lower limit. Pulsar timing analysis has been used to establish upper limits both
on stochastic background radiation and on supermassive black hole binaries that have such large
masses or binary separations that they radiate in the very low frequency band.

The ultra low frequency band spans frequencies of approximately 10−18 Hz <∼ f <∼ 10−13 Hz, or
wavelengths that are comparable to the Universe’s Hubble length. Waves in this frequency band
may be generated by quantum fluctuations in the early Universe and are amplified during inflation.
Measuring the amplitude of this gravitational radiation would therefore probe the inflation epoch
and help discriminate between competing models. Gravitational waves in this frequency range
leave an imprint in the cosmic microwave background, and may therefore be detected indirectly
by analyzing the cosmic microwave background and its polarization.33

9.3 Detectors and Templates

In many ways, gravitational wave detection is more like hearing than seeing.34 In most other
astronomical observations we detect photons, which behave very differently from their gravitational
analogs. Photons typically have wavelengths that are much shorter than the emitting object, so
that we can create images. Gravitational waves, on the other hand, have wavelengths that are
larger than or at least comparable to the size of the emitting object. That means that we cannot
use gravitational waves to create an image of the emitting object. In analogy to hearing we
cannot even locate a gravitational wave source in the sky with just one detector. This makes it
so important to operate a number of different gravitational wave detectors, spread far apart over
the Earth or in space.

Photons are also emitted incoherently from very small regions within the emitting object, usu-
ally from atoms or electrons, and we therefore observe the radiation’s intensity – which measures
the time-average of the square of the wave amplitude – rather than the individual waveform itself.
By contrast, gravitational waves are created coherently by the bulk motion of the emitting ob-
ject, and we observe the gravitational waveform directly. This difference has two very important
consequences.

The first consequence is related to the fact that the wave amplitude falls off with one over
the distance from the emitting object, while the intensity falls of with one over the square of
the distance. That means that an increase of a factor of two, say, in the sensitivity of our
gravitational wave detector doubles the distance out to which we can observe certain objects. The
total observable volume of the universe then increases by a factor of eight - meaning that doubling
the sensitivity increases the expected event rate by almost a factor of ten! For instruments that
measure the intensity of electromagnetic radiation, the corresponding increase in the event rate is
smaller by the square root of eight.

The second consequence is that gravitational wave astronomy benefits from theoretically pre-
dicted waveforms. Gravitational wave detectors measure gravitational amplitudes directly, as a
function of time, and this measurement can be compared with theoretical models. Clearly such a

33See, e.g., Smith et al. (2006).
34Flanagan and Hughes (2005) explore this analogy in detail.
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Figure 9.2: Schematic diagram of a Michelson-Morley interferometer as used in laser interferometer
gravitational wave detectors. [From Abramovici et al. (1992).]

comparison will be necessary for the physical interpretation of any observed signal. In addition,
“matched-filtering” techniques – in which the noisy output of the detector is compared with a
catalog of theoretical gravitational waveform templates – dramatically increase the likelihood of
identifying a particular signal. Using this technique, the distance out to which an object can be
observed increases approximately with the square root of the number of wave cycles – which again
may increase the effective event rate significantly.

The first gravitational wave detector was a bar detector constructed by Joseph Weber, one of
the pioneers of gravitational wave astronomy. Several bar detectors are still operational. These
detectors have a high sensitivity only in a very narrow frequency range. While these detectors are
probably not as promising as the new generation of gravitational wave interferometers, they may
provide some useful and important complementary information.

Gravitational wave interferometers currently come in two different types: ground-based and
space-based. As we discussed in Section 9.2, the ground-based detectors are designed to observe
gravitational wave sources in the high frequency band (Section 9.2.1), while space-based detectors
will be able to detect sources in the low frequency band (Section 9.2.2).

9.3.1 Ground-based gravitational wave interferometers

Ground-based gravitational wave detectors are giant Michelson-Morley interferometers. As illus-
trated in Figure 9.2, the basic idea is to send a laser beam on a beam splitter that splits the beam
into two. The two beams are then sent down two orthogonal vacuum tubes, or “arms”, reflected
by mirrors at their end, and reassembled upon returning to the beam splitter, possible after several
return trips through the arms. A passing gravitational wave will distort the relative length of the
two arms according to equation (9.9),35 and will therefore modify the interference pattern of the
two returning light beams.

35Recall the effect of the two gravitational wave polarizations illustrated in Figure 9.1.
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Figure 9.3: The LIGO observatory in Hanford, Washington. [From LIGO website,
http://www.ligo-wa.caltech.edu.]

The challenge, of course, lies in the fact that gravitational radiation is so weak. As we have seen
from equation (9.66), even a reasonably optimistic estimate predicts a gravitational wave strain
in the order of h ∼ 10−20. From (9.9) we then have δξ ∼ 10−20ξ; inserting a few kilometers for ξ
(which is the armlength for the largest ground-based detectors), we still end up with a dauntingly
small distortion, similar in size to a small fraction of the nucleus of the hydrogen atom. To
measure such a small effect is an extraordinary proposition indeed! Undeterred by these challenges
a generation of gravitational wave pioneers have not only designed the necessary instruments,
but also demonstrated that these instruments are capable of detecting such exceedingly small
distortions.

Several ground-based detectors are currently either operational or in the planning phase. The
Laser Interferometer Gravitational-wave Observatory – LIGO – in the US operates three interfer-
ometers: one interferometer with an arm-length of four kilometers in Livingston, Lousiana, and
a pair of interferometers with arm-lengths of two and four kilometers in Hanford, Washington.
Figure 9.3 shows an areal view of the Hanford facility. VIRGO is a joint French-Italian instrument,
located in Pisa, Italy, with an arm-length of 3 km. GEO600 is a detector with an arm-length of 600
m, operated by a English-German collaboration near Hannover, Germany. While this instrument
has a slightly smaller arm-length, it uses a very advanced interferometer technology that makes
its sensitivity comparable to those with longer arm-lengths. It is also being used as a testbed for
advanced technologies to be used in the next generation of larger detectors. TAMA300 , a 300-m
interferometer located close to Tokyo, Japan, was the first operatonal, large-scale gravitational
wave interferometer, and a successor with a longer arm-length is being planned. The only gravi-
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Figure 9.4: The noise curve h̃(f) for several planned LIGO Interferometers. Also included is the
signal strength h̃s(f) for a number of promising sources in the high-frequency band (see Section
9.2.1). Whenever a point on the signal curve lies above the interferometer’s noise curve, the signal
is detectable with a false alarm probability of less than one percent. [From Cutler and Thorne
(2002).]

tational wave interferometer in the southern hemisphere, ACIGA, is being constructed near Perth
in Australia. The current instrument is a 80-meter interferometer, but the hope is that it can be
extended to a multi-kilometer instrument some time in the future.

Figure 9.4 shows noise curves h̃(f) for the LIGO instruments, together with the signal strenghts
h̃s(f) for several different gravitational wave sources that we discussed in Section 9.2. Ignoring for
simplicity the exact definition of these quantities36 we merely note that a point on the signal curve
that lies above a noise curve in the graph can be detected with the corresponding instrument with
a false-alarm probability of less than one percent.

The upper curve in Figure 9.4 is the design noise curve for LIGO-I, which already has been
achieved by the LIGO collaboration. The graph then indicates that with this instrument we would
be able to detect a black hole binary inspiral of two 10 M� binaries at a distance of 100 Mpc.
Whether or not we will indeed observe such an inspiral with this generation of gravitational wave
interferometers depends primarily on nature’s generosity, i.e., on whether or not such an inspiral
and merger happens to occur within this distance while the detectors are operating.

36See Cutler and Thorne (2002).
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Figure 9.5: LISA’s orbit about the Sun. The top image shows how the triangle of three LISA
spacecrafts trails Earth’s orbit about the Sun by 20◦. The bottom image follows one of the three
satellites’ orbit about the Sun, demonstrating how the triangle’s orientation changes during the
course of a year. [From LISA web site, http://lisa.nasa.gov.]

Figure 9.4 also includes two noise curves for the next-generation of detector, LIGO-II or Ad-
vanced LIGO. One of these curves, labeled “WB LIGO-II”, is basically the improved “wide-band”
version of LIGO-I with reduced noise sources. However, LIGO-II will also have the capability of
fine-tuning the noise-curve to a narrow band of promising sources. The Figure shows an exam-
ple, labeled “NB LIGO-II”, that is fine-tuned to typical frequencies in low-mass X-ray binaries.
Clearly, LIGO-II should be able to detect many more potential gravitational wave sources than
its predecessor LIGO-I.

9.3.2 Space-based detectors

As we have seen in Section 9.2, gravitational waves in the low-frequency band cannot be observed
with ground-based detectors. Observing gravitational radiation in this frequency band therefore
requires space-based instruments. One such instrument, the Laser Interferometer Space Antenna
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instrument noise; the thick-dashed curve is the noise curve incorporating the expected stochastic
background of gravitational radiation from unresolved white-dwarf binaries. Wave strengths above
these curves have sufficiently high signal-to-noise ratio that they should be detectable using optimal
signal processing. [From Cutler and Thorne (2002).]

– LISA – is currently being planned as a joint venture between the US space agency NASA and
its European counterpart ESA.

As currently envisioned, LISA will be made up of three spacecraft located at the corners of a
triangle of a side length of about 5 × 106 km. Each spacecraft houses two lasers that send laser
beams along the sides of the triangle. In essence, each side of the triangle functions as the arm
of a large interferometer. As illustrated in Figure 9.5, the instrument as a whole will be placed
in a solar orbit, trailing the Earth in its orbit about the Sun by about 20◦. To maintain an
approximately equal distance between the spacecrafts over the course of a year, each spacecraft is
placed into a slightly eccentric orbit, with a phase difference of 120◦ between each one of them.
The resulting motion of an individual spacecraft is illustrated in the bottom panel of Figure 9.5.
The whole configuration therefore exhibits a “rolling” motion, which turns out to be very useful
for locating sources in the sky.

In Figure 9.6 we show the projected noise curve for LISA, together with some of the potential
low-frequency band sources that we discussed in Section 9.2.2. At low frequencies, the noise
arising from unresolved white dwarf binaries is expected to exceed LISA’s intrinsic instrument
noise. Evidently LISA has great potential to detect and discover extremely interesting objects.
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Another space-based detector is the gravitational wave antenna DECIGO (Deci-hertz Inter-
ferometer Gravitational Wave Observatory ), proposed by scientists in Japan. This instrument
will bridge the gap between LISA and terrestrial detectors like LIGO, as it is most sensitive to
gravitational waves in the frequency range f ∼ 0.1− 10 Hz.

9.4 Extracting Gravitational Waveforms

We now turn to the topic that is most important from a numerical relativity perspective: the
extraction of gravitational waveforms in a numerical simulation. One of the major motivations for
performing numerical relativity simulations is the accurate calculation of gravitational waveforms
from promising sources in order that these theoretically computed signals can be compared with
observational data from gravitational wave detectors. As we discussed in Section 9.3, such a
comparison will be needed not only for the physical interpretation of any observed data, but
also to increase significantly the liklihood of a detection in the first place. The latter can be
accomplished by employing a “matched-filtering” technique that compares observed signals with
templates of theoretical waveforms.

Far from the sources, gravitational radiation is weak and can be described very conveniently in
terms of the formalism introduced in Section 9.1. In particular, the wave information can be ex-
pressed in terms of two polarization amplitudes in the TT gauge. Numerical relativity simulations,
however, focus on the strong-field regime of the sources, and compute a 3 + 1 spacetime metric
decomposed in terms of a lapse function, shift vector and spatial three-metric. The functional
form of this spacetime metric is strongly dependent on the chosen coordinate system. Under some
special gauge conditions, we can directly read off the wave polarization amplitudes h+ and h×
from the evolved metric.37 In general, however, it is not trivial to extract, in a gauge-invariant
way, the linearized wave quantities that we introduced in Section 9.1.

In this Section we focus on two different strategies for this gravitational wave extraction.38

The first approach, described in Section 9.4.1, employs the gauge-invariant Moncrief formalism,
and involves decomposing the metric into spherical harmonics and then combining the latter in a
gauge-invariant way. The second method, summarized in Section 9.4.2, is based on the Newman-
Penrose formalism and uses Weyl scalars, which are computed from a projection of the Weyl tensor
onto a null tetrad.

9.4.1 The Gauge-Invariant Moncrief Formalism

The Moncrief formalism is based on a perturbative decomposition of the metric.39 In particular,
we assume that at a large distance from any source we can decompose the spacetime metric gcd
into a background metric gBcd, which we take to be the Schwarzschild metric, and a perturbation
hcd,

gcd = gBcd + hcd. (9.69)

The basic idea is then the following: As we did for the linearized wave solutions (9.48) and
(9.60), we split the perturbative metric hcd into even- and odd-parity parts hecd and hocd, and then

37See Shibata (1999b,a) for an example.
38We are greatly indepted to Y. T. Liu, who provided useful notes for this section.
39In this Section we will present most results without proof; we refer to the original paper by Moncrief (1974),

as well as the review by Nagar and Rezzolla (2005), for more details.
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decompose both in terms of spherical harmonics,

hcd =
∞∑
l=2

l∑
m=−l

(he lmcd + ho lmcd ). (9.70)

For each mode we can form a gauge-invariant Moncrief function that satisfies a certain wave
equation. From these Moncrief functions we can then determine the gravitational wave forms h+

and h×.

The decomposition into spherical harmonics involves scalar, vector and tensor spherical har-
monics, which we review in Appendix D. As a brief reminder, any scalar on the unit sphere can
be decomposed into scalar spherical harmonics Ylm. To represent a vector on the unit sphere, we
need two basis vectors Elm

a and Slma , which we can express in terms of derivatives of the scalar
spherical harmonics on the unit sphere. To represent a symmetric, traceless rank-2 tensor on the
unit sphere we require two basis tensors, Z lm

ab and Slmab , which we can express in terms of second
derivatives of the scalar spherical harmonics. As we might expect, the decomposition of the even-
parity perturbations will involve those spherical harmonics with even parity (namely the scalar
spherical harmonics Ylm, the vector spherical harmonics Elm

a , and the tensor spherical harmonics
Z lm
ab ), while the decomposition of the odd-parity perturbations only involves odd-parity spherical

harmonics (the vector spherical harmonics Slma , and the tensor spherical harmonics Slmab ).

We now alert the reader to a departure from our general notation convention. Instead of
separating spatial indices from spacetime indices, it is more convenient, in the context of the
spherical coordinates used in this Section, to separate the angular coordinates θ and φ from the
remaining spacetime coordinates r and t. Following this convention, we will label the former (θ
and φ) with lower-case letters a, b, . . ., and the latter (t and r) with upper-case letters A,B, . . ..
In fact, we have already adopted this convention for the vector and tensor spherical harmonics
in the previous paragraph, which only have θ and φ components. Similarly, the two-dimensional
metric σab on the unit sphere S2, given by

σabdx
adxb = dθ2 + sin2 θdφ2, (9.71)

has only angular components.

Before discussing the specific decompositions of the even- and odd-parity perturbations we
can already anticipate their general character. The completely angular parts of the perturbative
metric, hlmab , will involve tensor spherical harmonics. For the odd-parity perturbations this can
only be the Slmab , but for the even-parity perturbations this could be a combination of the tensor
spherical harmonics Z lm

ab and a scalar spherical harmonic multiplying the two-dimensional metric,
Ylmσab. Similarly, we will express the mixed angular-nonangular parts of the metric, hlmAb, as vector
spherical harmonics. For the even-parity perturbations this will involve the Elm

a ; for the odd-parity
parturbations the Slma . Finally, the nonangular parts of the metric, hlmAB, decompose like scalars.
Since we can express scalars only in terms of the even-parity scalar spherical harmonics Ylm, these
terms can be non-zero only for the even-parity perturbations.
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Even-Parity (Polar) Modes

As we discussed above, we can express the nonangular parts of the perturbative metric, he lmAB , in
terms of scalar spherical harmonics. We denote these components as40

he lmtt =

(
1− 2M

r

)
H0lm(t, r)Ylm(θ, φ) , (9.72)

he lmtr = H1lm(t, r)Ylm(θ, φ) , (9.73)

he lmrr =
H2lm(t, r)

1− 2M/r
Ylm(θ, φ) , (9.74)

where H0lm, H1lm and H2lm are expansion coefficients. The mixed angular-nonangular parts of
the metric, he lmAb , are decomposed into electric-type vector spherical harmonics Elm

a ,

he lmAb = hAlm(t, r)Elm
b (θ, φ), (9.75)

where we will use labels 0 for A = t and 1 for A = r in the expansion coefficients hAlm. Finally,
we decompose the angular part of the metric he lmab according to

he lmab = r2
(
Klm(t, r)σab(θ)Ylm(θ, φ) + 2Glm(t, r)Z lm

ab (θ, φ)
)
, (9.76)

where the expansion coefficient Klm captures the trace and Glm the traceless part of he lmab . In
matrix form, the perturbative metric then appears as

he lmµν =


ΛH0lmYlm H1lmYlm h0lmE

lm
θ h0lmE

lm
φ

sym H2lmYlm/Λ h1lmE
lm
θ h1lmE

lm
φ

sym sym r2(KlmYlm +GlmWlm) r2GlmXlm

sym sym sym r2 sin2 θ(KlmYlm −GlmWlm)

 ,

(9.77)
where we have abbreviated Λ = 1 − 2M/r, and used equation (D.25) to express Z lm

ab in terms of
the functions Xlm and Wlm (see equations (D.10) and (D.11)). We have also denoted components
that can be inferred from symmetry with a sym.

A numerical simulation will result in a spacetime metric. In most cases, this spacetime metric
is decomposed into the lapse α, the shift βi, and the spatial metric γij. We now would like to
express the asymptotic metric in the form of equation (9.77). To do so, we compute the expan-
sion coefficients appearing in equation (9.77) using the orthogonality relations for the spherical
harmonics (see Appendix D), evaluating the surface integrals at a large radius. In particular, we
find the following expressions for the spatial components:

H2lm =

∫ (
1− 2M

r

)
γrrY

∗
lmdΩ (9.78)

h1lm =
1

l(l + 1)

∫
σab(Elm

b )∗γradΩ

=
1

l(l + 1)

∫ (
(∂θYlm)∗γrθ + (∂φYlm)∗

γrφ
sin2 θ

)
dΩ (9.79)

Klm =
1

2r2

∫
γcdσ

cdY ∗lmdΩ =
1

2r2

∫
γ+Y

∗
lmdΩ (9.80)

Glm =
1

(l − 1)l(l + 1)(l + 2)r2

∫
γcd(Z

cd
lm)∗dΩ

40Here we follow the notation of Shibata (1999a).
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=
1

2(l − 1)l(l + 1)(l + 2)r2

∫ (
γ−W

∗
lm +

2γθφ
sin2 θ

X∗
lm

)
dΩ, (9.81)

where we have used the abbreviation

γ± ≡ γθθ ±
γφφ

sin2 θ
. (9.82)

Exercise 9.6 Show that for an even-parity, l = 2, m = 0 linearized wave represented by equa-
tion (9.48), the coefficients (9.78) – (9.81) are given by

H2 20 = 4A
√
π

5
(9.83)

h1 20 = 2rB
√
π

5
(9.84)

K20 = −2A
√
π

5
(9.85)

G20 = (2C −A)
√
π

5
. (9.86)

Hint: Instead of inserting the metric coefficients defined by (9.48) into the quadratures (9.78) – (9.81)
and carrying out the integrations, it may be easier to express the angular dependence in the metric
coefficients in terms of spherical harmonics, and then use their orthogonality relations to find the
integrals.

We can now combine the coefficients (9.78) – (9.81) to form the gauge-invariant Moncrief
function

Rlm =
r[l(l + 1)k1lm + 4(1− 2M/r)2k2lm]

l(l + 1)[(l − 1)(l + 2) + 6M/r]
, (9.87)

where the functions

k1lm = Klm + l(l + 1)Glm + 2

(
1− 2M

r

)(
r∂rGlm −

h1lm

r

)
, (9.88)

k2lm =
H2lm

2(1− 2M/r)
− 1

2
√

1− 2M/r
∂r

(
r[Klm + l(l + 1)Glm]√

1− 2M/r

)
(9.89)

are gauge-invariant themselves. In a Schwarzschild spacetime, the function Rlm satisfies the famous
Zerilli equation41

∂2
tRlm − ∂2

r∗Rlm + V
(e)
l Rlm = 0. (9.90)

Here V
(e)
l is the Zerilli potential

V
(e)
l (r) =

(
1− 2M

r

)
× (9.91)

× l(l + 1)(l − 1)2(l + 2)2r3 + 6(l − 1)2(l + 2)2Mr2 + 36(l − 1)(l + 2)M2r + 72M3

r3 ((l − 1)(l + 2)r + 6M)2 ,

and r∗ denotes the tortoise coordinate

r∗ = r + 2M ln
( r

2M
− 1
)
. (9.92)

41Zerilli (1970) and references therein.
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Exercise 9.7 Revisiting the even-parity, l = 2, m = 0 linearized wave of Exercise 9.6, show that the
Moncrief function R20 is given by

R20 =
r

6

√
π

5
(r∂rA− 6A− 6B + 12C). (9.93)

From the Moncrief functions Rlm we can determine the asymptotic gravitational wave ampli-
tudes h+ and h×. We postpone displaying these expressions (see equation (9.106)) until after we
have introduced the odd-parity (or axial) modes.

Odd-Parity (Axial) Modes

Recall that the only odd-parity spherical harmonics are the magnetic-type vector spherical har-
monics Slma and the tensor harmonics Slmab . Accordingly, the nonangular parts of the metric cannot
have an odd-parity perturbation, and we must have

ho lmAB = 0. (9.94)

The mixed angular-nonangular parts can be expanded in terms of the vector spherical harmonics
Slma ,

ho lmtc = Vlm(t, r)Slmc (θ, φ) (9.95)

ho lmrc = Clm(t, r)Slmc (θ, φ), (9.96)

and the completely angular part in terms of the tensor spherical harmonics Slmab ,

ho lmcd = −2r2Dlm(t, r)Slmcd (θ, φ). (9.97)

In matrix form, the perturbative matrix then appears as

ho lmµν =


0 0 −VlmSlmφ / sin θ Vlm sin θSlmθ Ylm
0 0 −ClmSlmφ / sin θ Clm sin θSlmθ Ylm

sym sym r2DlmXlm/ sin θ −r2DlmWlm sin θ
sym sym sym −r2DlmXlm sin θ

 , (9.98)

where we have used equation (D.25) to express Slmab in terms of the functions Xlm and Wlm (see
equations (D.10) and (D.11)).

As for the even-parity modes, we can find the expansion coefficients Vlm, Clm and Dlm for a
given spacetime metric from a surface integration at large radius. Using the orthogonality relations
in Appendix D we find

Clm =
1

l(l + 1)

∫
σab(Slmb )∗γradΩ

= − 1

l(l + 1)

∫
1

sin θ
((∂φYlm)∗γrθ − (∂θYlm)∗γrφ) dΩ (9.99)

and

Dlm = − 1

(l − 1)l(l + 1)(l + 2)r2

∫
γcd(S

cd
lm)∗dΩ

=
1

(l − 1)l(l + 1)(l + 2)r2

∫
1

sin θ
(γ−X

∗
lm − γθφW

∗
lm) dΩ. (9.100)
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We now combine the coefficients Clm and Dlm to form the odd-parity, gauge-invariant Moncrief
function

Qlm =
1

r

(
1− 2M

r

)
(Clm + r2∂rDlm). (9.101)

In a Schwarzschild spacetime, Qlm satisfies the vacuum Regge-Wheeler equation42

∂2
tQlm − ∂2

r∗Qlm + V
(o)
l Qlm = 0, (9.102)

where the Regge-Wheeler potential is

V
(o)
l (r) =

(
1− 2M

r

)(
l(l + 1)

r2
− 6M

r3

)
. (9.103)

The Moncrief functions Qlm are the odd-parity equivalent of the functions Rlm for even-parity
modes, and we can now discuss how to extract gravitational radiation from these two functions.

Gravitational Wave Extraction

We start by splitting the two gravitational wave polarizations h+ and h× into even- and odd-parity
parts,

h+(t, r, θ, φ) = h
(o)
+ (t, r, θ, φ) + h

(e)
+ (t, r, θ, φ) (9.104)

h×(t, r, θ, φ) = h
(o)
× (t, r, θ, φ) + h

(e)
× (t, r, θ, φ). (9.105)

It then turns out that we can express both parts in terms of the gauge-invariant Moncrief functions
at spatial infinity r →∞. For the even-parity modes we have

h
(e)
+ − ih

(e)
× =

1

r

∞∑
l=2

l∑
m=−l

√
(l + 2)!

(l − 2)!
Rlm(t, r) −2Ylm(θ, φ), (9.106)

where −2Ylm is the s = −2 spin-weighted spherical harmonic (see equation (D.9)), and for the
odd-parity modes we find

h
(o)
+ − ih

(o)
× = − i

r

∞∑
l=2

l∑
m=−l

√
(l + 2)!

(l − 2)!
qlm(t, r) −2Ylm(θ, φ). (9.107)

Here the functions qlm can be computed from the Moncrief function Qlm by integrating over time,

qlm(t, r) =

∫ t

−∞
Qlm(t′, r)dt′. (9.108)

Using the property (D.6) of spherical harmonics, we can compute the individual even- and odd-
parity polarizations to be

h
(e)
+ =

1

r

∞∑
l=2

(
Rl0Wl0 + 2

l∑
m=1

Re(RlmWlm)

)
(9.109)

42Regge and Wheeler (1957).
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h
(e)
× =

2

r

∞∑
l=2

l∑
m=1

Re

(
Rlm

Xlm

sin θ

)
(9.110)

h
(o)
+ = −2

r

∞∑
l=2

l∑
m=1

Re

(
qlm

Xlm

sin θ

)
(9.111)

h
(o)
× =

1

r

∞∑
l=2

(
ql0Wl0 + 2

l∑
m=1

Re(qlmWlm)

)
. (9.112)

We are now ready to use this decomposition to compute the change in energy, angular mo-
mentum and linear momentum of a source due to gravitational radiation. To compute the energy
change, we insert equations (9.109) - (9.112) into equation (9.30) and use the orthogonality relation
for spin-weighted spherical harmonics (D.13) to find

dE

dt
= − 1

16π

∞∑
l=2

l∑
m=−l

(l + 2)!

(l − 2)!
(|Qlm|2 + |Ṙlm|2). (9.113)

Similarly, we can find the change in angular momentum from equation (9.35),

dJz
dt

= − i

16π

∞∑
l=2

l∑
m=−l

m
(l + 2)!

(l − 2)!
(q∗lmQlm +R∗lmṘlm)

=
1

8π

∞∑
l=2

l∑
m=1

m
(l + 2)!

(l − 2)!
Im(q∗lmQlm +R∗lmṘlm). (9.114)

We could also compute the change in linear momentum from equation (9.36). The result in terms
of Moncrief variables is rather complicated, however, and we refer the reader elsewhere for the
relevant expression.43

Exercise 9.8 Returning to the even-parity, l = 2, m = 0 linearized wave of Exercises 9.6 and 9.7,
find the wave polarizations h+ and h× from equations (9.109) and (9.110) and compare with the
results you would obtain from equations (9.57) and (9.58). Then compute the radiated energy from
equation (9.113) and compare with the result of Exercise 9.5.

It may be useful to illustrate this procedure with a concrete, numerical example. Consider an
even-parity, l = 2, m = 0 linearized wave, as in Exercises 9.4 through 9.8. Choose the function
F (x) to have the form of equation (9.56), with amplitude A = 0.001 and spatial extend λ = 1
(in arbitrary units). Using this wave to specify the initial data (γij = gij, Kij = 0) in a numerical
simulation we now evolve it by adopting the BSSN 3 + 1 formalism described in Section 11.5. We
employ a finite-difference implementation that is fourth-order accurate in space and second-order
in time (cf. Section 6.2). We also adopt geodesic slicing with α = 1 and βi = 0 (Section 4.1),
assume equatorial symmetry, and use a spatial grid of 120 × 120 × 60 gridpoints in the x, y and
z directions, respectively.44 Extracting the Moncrief coefficients at a radius of r = 6.0,45 we can

43See Koppitz et al. (2007), equation (3), for the relation.
44This is the same gauge as used to express the linearized wave spacetime solutions in equations 9.48 and 9.60, so

we can compare the numerical and analytic values of gab directly. But were we to evolve with a different lapse and
shift we would compare gauge-invariant quantities, like the gauge-invariant Moncrief variables, or the polarization
amplitudes h+ and h× .

45This simulation was carried out using a ”fisheye” coordinate system that provides radial adaptivity in a simple
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Figure 9.7: The Moncrief function R20 at r = 6.0 for a l = 2, m = 0 linear wave. The solid
(black) line denotes numerical results, and the dashed (red) line is the analytical value given by
equation (9.93).

compute the Moncrief function R20 as a function of time. In Figure 9.7, we show this function
together with its analytical value, which is given by equation (9.93). We could then compute h+

from equation (9.109), but we shall postpone this step until we can compare this procedure with
the Newman-Penrose formalism in Figure 9.8 at the end of the following Section.

Exercise 9.9 In many problems the dominant modes of gravitational wave emission are the even l = 2
mass quadrupole modes. Show that in this case the waveform reduces to

h+ =
1
r

[√
5

64π
(R22+cos 2φ+R22−sin 2φ)(1 + cos2 θ) +

√
15
64π

R20∗sin2 θ

]
, (9.115)

h× =
2
r

[√
5

64π
(−R22+sin 2φ+R22−cos 2φ)cos θ

]
, (9.116)

where

R22+ =
√

24 Re(R22) , (9.117)

R22− = −2
√

24 Im(R22) , (9.118)

R00∗ = 4
√

3R20 . (9.119)

Thus, equations (9.115) and (9.116) are the relativistic generalizations of the weak-field, slow-velocity
quadrupole expressions (9.24) and (9.25).

way (see, e.g., Campanelli et al. (2006)). The grid-spacing in this coordinate system is ∆x̄ = ∆ȳ = ∆z̄ = 0.075,
and gravitational waves are extracted at r̄ = 4, which corresponds to a physical radius of r = 5.9987.
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9.4.2 The Newman-Penrose Formalism

The four-dimensional Riemann tensor (4)Rabcd contains 20 independent components. Ten of these
are absorbed in its trace, the Ricci tensor, and the other ten in its traceless part, the Weyl tensor
(4)Cabcd. In the Newman-Penrose formalism,46 the ten independent components of the Weyl tensor
are expressed in terms of five complex scalars, ψ0 . . . ψ4, which are sometimes called Newman-
Penrose scalars and sometimes Weyl scalars. These scalars are formed by contracting the Weyl
tensor with a complex null tetrad. Unfortunately there is not one unique such null tetrad, and
different choices for this tetrad affect the Weyl scalars and their physical interpretation. One of the
conceptional issues in the Newman-Penrose formalism is therefore the identification of a suitable
null tetrad.47 It is possible to identify a class of tetrads, called transverse frames, in which the
”odd” scalars ψ1 and ψ3 vanish. In a subset of these frames, the so-called quasi-Kinnersley frames,
we can then interpret the scalars ψ0 and ψ4 as measures of the ingoing and outgoing gravitational
radiation, while ψ2 represents longitudinal, or ”Coulombic” parts of the gravitational fields, related
to the mass and angular momentum of the spacetime. In this Section we are particularly interested
in the Weyl scalar ψ4.

To construct a null tetrad suitable for our purposes here, we start by choosing two real vectors
la and ka that are radially outgoing and ingoing null vectors, respectively. We also construct a
complex vector ma from the two spatial vectors that are orthogonal to la and ka in such a way
that the only non-vanishing inner products between these four-vectors are

− laka = 1 = mam̄a, (9.120)

where m̄a is the complex conjugate of ma. We then define the Weyl scalar ψ4 as

ψ4 = −(4)Cabcdk
am̄bkcm̄d, (9.121)

where (4)Cabcd is the Weyl tensor (1.26).

Exercise 9.10 Show that we may replace the Weyl tensor (4)Cabcd with the Riemann tensor (4)Rabcd

in the definition (9.121) of the Weyl scalar ψ4.48

Some authors adopt a different sign convention in equation (9.121). Further differences exist
in the procedure and conventions for constructing specific tetrads. For simplicity we will use a
tetrad formed from an orthonormal spherical polar basis according to

la =
1√
2

(
eat̂ + ear̂

)
ka =

1√
2

(
eat̂ − ear̂

)
ma =

1√
2

(
ea
θ̂

+ iea
φ̂

)
m̄a =

1√
2

(
ea
θ̂
− iea

φ̂

)
.

(9.122)

Exercise 9.11 Verify that the tetrad (9.122) satisfies the orthogonality relations (9.120).

46See Newman and Penrose (1962, 1963).
47See, for example, Lehner and Moreschi (2007) for a recent discussion of some of the related issues.
48We may always replace the Weyl tensor with the Riemann tensor in vacuum, where they are identical, but in

the definition of ψ4 we may make this replacement everywhere.
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We can now verify that ψ4 indeed provides a measure of outgoing radiation. According to
Exercise 9.10 we may contract the Riemann tensor (4)Rabcd with ka and m̄a to compute ψ4 in
equation (9.121), which yields

ψ4 = −1

4

(
(4)Rt̂θ̂t̂θ̂ − 2i (4)Rt̂θ̂t̂φ̂ − 2 (4)Rt̂θ̂r̂θ̂ + 2i (4)Rt̂φ̂r̂θ̂ −

(4)Rt̂φ̂t̂φ̂ +

(4)Rr̂θ̂r̂θ̂ + 2i (4)Rt̂θ̂r̂φ̂ + 2 (4)Rt̂φ̂r̂φ̂ − 2i (4)Rr̂φ̂r̂θ̂ −
(4)Rr̂φ̂r̂φ̂

)
. (9.123)

To linear order in small deviations from flat spacetime the Riemann tensor reduces to

(4)Rabcd =
1

2
(∂a∂dhbc + ∂b∂chad − ∂b∂dhac − ∂a∂chbd) . (9.124)

In the TT gauge, the only nonvanishing components of a radially propagating wave are the
transverse, angular components hTT

θ̂θ̂
= −hTT

φ̂φ̂
and hTT

θ̂φ̂
= hTT

φ̂θ̂
. As in equations (9.57) and (9.58),

we may identify the former with h+ and the latter with h×. Since all terms in equation (9.123)
have exactly two angular components, the only nonzero terms in equation (9.124) are those for
which these two angular indices appear in the metric perturbation hab, and the t and r indices
appear in the partial derivatives. For example, the first term in equation (9.123) reduces to

(4)Rt̂θ̂t̂θ̂ = −1

2
∂2
t h

TT
θ̂θ̂

= −1

2
ḧ+. (9.125)

For an outgoing wave at large r we know that hTTij (t, r, θ, φ) = hTTij (t − r, θ, φ), hence ∂rh
TT
ij =

−∂thTTij , so that we can express radial derivatives in terms of time derivatives. Collecting all terms,
we then find49

ψ4 = ḧ+ − iḧ×. (9.126)

Exercise 9.12 Retrace the steps outlined above to show that for a pure ingoing wave the Weyl scalar
ψ4 vanishes.

As claimed above, the Weyl scalar ψ4 thus provides a measure of outgoing gravitational ra-
diation. We can therefore use ψ4 to compute gravitational wave signals, as well as the radiated
energy and angular and linear momentum. Before proceeding to do that, however, we point out a
computational issue.

Computing ψ4 involves the four-dimensional Riemann tensor (4)Rabcd. Many numerical simu-
lations, however, employ a 3+1 formalism that is based on working with three-dimensional spatial
quantities. Before we can compute ψ4, then, we first have to construct (4)Rabcd from these spatial
quantities. In principle, we may do this by reversing the steps in Section 2.5 and using the Gauss,
Codazzi and Ricci equations. More specifically, we can find (4)Rabcd from equation (2.61), which
expresses (4)Rabcd in terms of its spatial and normal projections. We can then substitute equa-
tions (2.68), (2.73) and (2.103), which relate these projections to purely spatial quantities. Under
some circumstances, this procedure simplifies significantly.

If we may assume that in some asymptotically flat regime the deviations of the lapse from unity
and the shift from zero are at most as large as the Riemann tensor itself, then we may approximate

49This expression again depends on conventions. It sometimes appears with the opposite sign in the literature,
related to the sign convention in equation (9.121), or with a factor of 1/2, if a different normalization is used in the
tetrad definition (9.122).
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the normal vector in equations (2.73) and (2.103) as na ' δa0. Restricting equations (2.68), (2.73)
and (2.103) to spatial indices, and assuming vacuum, then yields

(4)Rijkl = Rijkl + 2Ki[kKl]j
(4)R0jkl = 2∂[kKl]j + 2Km[kΓ

m
l]j

(4)R0j0l = Rjl −KjmK
m
l +KKjl.

(9.127)

The above expressions for (4)Rabcd may then be used in equation (9.121) to evaluate ψ4 at large r
in the wave zone on each time slice in a 3 + 1 numerical simulation.

Exercise 9.13 Some authors define the ingoing null tetrad vector ka in equation (9.122) in terms of
the normal vector na plus a purely spatial, radially outward pointing vector va, e.g.

ka =
1√
2

(na − va) . (9.128)

Show that with this definition, ψ4 can be expressed as

ψ4 = −
(
γ p

a γ
q

b γ
r

c γ
s

d
(4)Rpqrsv

avc − 2γ p
a γ

q
b γ

s
d

(4)Rpqrsn
sva + γ q

b γ
s

d
(4)Rpqrsn

pnr
)
m̄bm̄d, (9.129)

into which we can then substitute equations (2.68), (2.73) and (2.143) for the projections of (4)Rabcd.

We now return to computing the gravitational wave emission from ψ4. We can find the gravita-
tional wave forms h+ and h× by integrating the real and imaginary parts of equation (9.126) twice.
Knowing h+ and h×, we can then compute the radiated energy and momenta by substituting into
equations (9.30), (9.35) and (9.36). In particular, we find

LGW = −dE
dt

= lim
r→∞

r2

16π

∫
dΩ

∣∣∣∣∫ t

−∞
dt′ ψ4

∣∣∣∣2 (9.130)

for the gravitational wave luminosity and corresponding loss of energy from the source,

dJz
dt

= lim
r→∞

r2

16π

∫
dΩ<

((∫ t

−∞
dt′ψ4

)(
∂φ

∫ t

−∞
dt′
∫ t′

−∞
dt′′ ψ∗4

))
(9.131)

for the angular momentum loss, and

dP i

dt
= lim

r→∞
− r2

16π

∫
dΩ

xi

r

∣∣∣∣∫ t

−∞
dt′ ψ4

∣∣∣∣2 (9.132)

for the linear momentum loss.
For many applications it is useful to decompose ψ4 into s = −2 spin-weighted spherical har-

monics

ψ4(t, r, θ, φ) =
∞∑
l=2

l∑
m=−l

ψlm4 (t, r) −2Ylm(θ, φ) (9.133)

(see Appendix D). Using the orthogonality relation (D.13) we can find the expansion coefficients
ψlm4 from

ψlm4 =

∫
dΩ −2Y

∗
lmψ4. (9.134)
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Exercise 9.14 Compare equation (9.126) with equations (9.106) and (9.107) to show that ψlm
4 is

related to the Moncrief variables Rlm and Qlm by

ψlm
4 =

1
r

√
(l + 2)!
(l − 2)!

(R̈lm − iQ̇lm). (9.135)

In terms of the coefficients ψlm4 , the gravitational wave luminosity (9.130) is

LGW = −dE
dt

= lim
r→∞

r2

16π

∞∑
l=2

l∑
m=−l

∣∣∣∣∫ t

−∞
dt′ ψlm4

∣∣∣∣2 , (9.136)

while the loss of angular momentum due to gravitational waves, equation (9.131), becomes

dJz
dt

= lim
r→∞

r2

16π

∞∑
l=2

l∑
m=−l

m=

((∫ t

−∞
dt′ψlm4

)(∫ t

−∞
dt′
∫ t′

−∞
dt′′ ψlm∗4

))
. (9.137)

For some purposes it is useful to introduce real functions Alm and Blm whose second time derivative
equals the real and imaginary parts of ψlm∗4 ,

ψlm4 = Älm − iB̈lm. (9.138)

In terms of these, the loss of energy and angular momentum due to waves become

LGW = −dE
dt

= lim
r→∞

r2

16π

∞∑
l=2

l∑
m=−l

(Ȧ2
lm + Ḃ2

lm) (9.139)

and
dJz
dt

= lim
r→∞

r2

16π

∞∑
l=2

l∑
m=−l

m(ȦlmBlm − ḂlmAlm). (9.140)

Smilarly we can express the loss of linear momentum (9.132) in terms of these coefficients, but as
in the Moncrief formalism that leads to a rather lengthy expression that we shall omit.50

Before closing this Chapter we return to the numerical example at the end of Section 9.4.1,
namely the l = 2, m = 0 even-parity linearized wave. We evolve the same initial data with the
same numerical code as described there, but instead of extracting the Moncrief variable R20 (see
Figure 9.7) we now compute the Weyl scalar ψ4 at a point (r, θ, φ) = (6.0, 0.79, 0.52) (see footnote
45 above). We compare the numerical values with analytical expressions in the left panels of Figure
9.8. In the right panels we also graph the analytic gravitational waveforms for both polarizations,
as well as the corresponding numerical waveforms using both the Moncrief formalism (computed
from equation (9.109)) and the Newman-Penrose formalism (computed from equation (9.126)).

Figure 9.8 demonstrates that, for this particular example, the Moncrief formalism leads to a
better agreement with the analytical results than the Newman-Penrose formalism (even though
both converge to the analytical results as the numerical resolution is increased51). This difference
can be attributed to two factors. One difference between the two approaches is that the Moncrief

50See, e.g., Ruiz et al. (2008).
51We also point out that while h× computed in in Figure 9.8 from the Newman-Penrose formalism is not as close

to the analytic value of zero as the value computed by the Moncrief formalism, it is still more than an order of
magnitude below the amplitude of the dominant h+ polarization amplitude for the adopted resolution.
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Figure 9.8: The left panels show the Weyl scalar ψ4 for an even-parity l = 2, m = 0 linearized
wave at a point (r, θ, φ) = (6.0, 0.79, 0.52). The dotted (blue) line shows numerical results, and the
dashed (red) line analytical values. The right panels show the gravitational waveforms h+ and h×
for the same wave. The dashed (red) lines show the analytical waveforms (which are computed in
Exercise 9.8), the solid (black) lines are the numerical waveforms based on the Moncrief formalism
(computed from R20, shown in Figure 9.7, using equation (9.109)), and the dotted (blue) line
shows the numerical waveforms constructed from the Weyl scalar ψ4 in equation (9.126).

formalism requires taking only a first derivative of the metric (in equations (9.88) and (9.89) for the
even-parity modes, or equation (9.101) for the odd-parity modes) to find the Moncrief functions,
and only one integration (in equation (9.108)) to reconstruct the gravitational waveforms. In the
Newman-Penrose formalism, by contrast, we need second derivatives of the metric to compute
ψ4 (which are hidden in the Weyl tensor (4)Cabcd in equation (9.121)), and then two integrations
(in equation (9.126)) to compute h+ and h×. Not surprisingly, the additional derivative and
integration introduce additional numerical error.

Another difference in our particular calculation is that we computed the Moncrief quantities
from a modes, and the Newman-Penrose quantities locally, without doing a modal decomposition.
Computing the modes involves surface integrals, which effectively filters out some of the numerical
noise present in the higher-order modes. Many applications that employ the Newman-Penrose
formalism therefore also compute the modes (9.134) and then reconstruct ψ4 locally from the
decomposition (9.133). This procedure yields more accurate results, at least for the dominant,
lowest-order modes.



Chapter 10

Collapse of Collisionless Clusters in
Axisymmetry

As we learned in Chapter 8, where we studied spherical systems, collisionless clusters provide a
simple relativistic source for exploring the nature of Einstein’s equations and experimenting with
numerical techniques to solve them. Once we relax the restriction to spherical symmetry, the
spacetimes can exhibit two new dynamical features: rotation and gravitational waves. Not much
is known about nonspherical collisionless systems in general relativity, even for stationary equi-
libria. Some interesting results have emerged by exploiting numerical relativity to investigate the
equilibrium structure and collapse of nonspherical rotating and nonrotating clusters in axisymme-
try.1 To highlight the power of the technique, we shall summarize a few of the simulations and
their key findings in this chapter.

The examples discussed below are chosen to demonstrate how numerical relativity, quite apart
from providing accurate quantitative solutions to dynamical scenarios involving strong gravita-
tional fields, can provide qualitative insight into Einstein’s equations in those cases where uncer-
tainty still prevails. It can even be helpful as a guide to proving (or disproving) theorems about
strong-field spacetimes in those instances where analytic means alone have not proven adequate.

10.1 Collapse of Prolate Spheroids to Spindle Singularities

It is well-known that classical general relativity admits solutions with singularities, and that such
solutions can be produced by the gravitational collapse of nonsingular, asymptotically flat initial
data. The Cosmic Censorship Conjecture of Penrose2 states that such singularities will always be
clothed by event horizons and hence can never be visible from the outside (no naked singularities).
If cosmic censorship holds, then there is no problem with predicting the future evolution outside
the event horizon. If it does not hold, then the formation of a naked singularity during collapse
would pose a dilemma for general relativity theory. In this situation, one cannot say anything
precise about the future evolution of any region of space containing the singularity since new
information could emerge from it in a completely arbitrary way.

1For calculations of nonspherical equilibrium clusters see. e.g., Shapiro and Teukolsky (1993b,a). For the collapse
of nonrotating clusters, see, e.g., Shapiro and Teukolsky (1991b,a), and for a review and additional references,
Shapiro and Teukolsky (1992a); see also Abrahams et al. (1994, 1995). For collapse of rotating clusters, see, e.g.,
Shapiro and Teukolsky (1992b); Abrahams et al. (1994); Hughes et al. (1994); Shapiro et al. (1995).

2Penrose (1969).
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No definitive theorems guarantee that an event horizon always emerges to clothe a singularity.
Proving the validity of cosmic censorship remains one of the most outstanding problems in the
theory of general relativity.3 Counter-examples have all been restricted to spherical symmetry and
typically involve shell crossing, shell focusing, or self-similarity. We also discussed in Chapter 8.4
how scalar field collapse in spherical symmetry generates a critical solution that produces a naked
singularity. A key issue is whether such singularities are accidents of spherical symmetry.

In the absence of general theorems, and prior to simulations of nonspherical collapse, Thorne4

proposed the hoop conjecture: Black holes with horizons form when and only when a mass M
(= MADM) gets compacted into a region whose proper circumference in every direction is C <∼ 4πM .
If the hoop conjecture is correct, aspherical collapse with one or two dimensions appreciably larger
than the others might lead to naked singularities.

That such a scenario is at all possible is suggested by Lin-Mestel-Shu instability, which concerns
the collapse of a nonrotating, homogeneous spheroid of collisionless matter in Newtonian gravity.5

Such a configuration remains homogeneous and spheroidal throughout collapse. However, if the
spheroid is slightly oblate at the onset, the configuration ultimately collapses to a flat pancake,
while if the spheroid is slightly prolate, it collapses to an infinitesimally thin spindle. While in both
cases the density becomes infinite, the formation of a spindle during prolate collapse is particularly
severe. The gravitational potential, gravitational force, tidal force, kinetic and potential energies
all blow up to infinity in this case.

Might the Lin-Mestel-Shu instability in Newtonian gravitation have relevance to general rel-
ativity? In general relativity it is known that infinite cylinders do collapse to line singularities
which, in accord with the hoop conjecture, are not hidden by event horizons.6 Of course, these
configurations are not asymptotically flat, hence they do not qualify as counterexamples to cosmic
censorhip. But what about configurations of finite size?

Shapiro and Teukolsky (1991b,a) explored this question by employing a mean-field, particle
simulation scheme to solve Einstein’s equations for the evolution of nonrotating, collisionless mat-
ter in axisymmetric spacetimes.7 Their 2 + 1 axisymmetric scheme is an extension of their 1 + 1
spherical code described in Chapter 8.2.8 The code was tailored to handle cases in which colli-
sionless matter could collapse to a singularity, as in oblate collapse to a flat pancake or prolate
collapse to a thin spindle.

The metric is written in the form

ds2 = −α2dt2 + A2(dr + βrdt)2 + A2r2(dθ + βθdt)2 +B2r2 sin2 θdφ2 . (10.1)

The full set of gravitational field and matter equations are listed in Appendix F. The code is fully
constrained. Maximal slicing and quasi-isotropic spatial coordinates were adopted as the gauge
choices. A large battery of test-bed calculations were performed to ensure the reliability of the
code. These tests included the propagation of linearized analytic gravitational waves with and
without matter sources and nonlinear Brill waves in vacuum spacetimes;9 maintaining equilibria
and identifying the point of onset of radial instability for spherical equilibrium clusters; reproduc-
ing Oppenheimer-Snyder collapse of homogeneous dust spheres and the collapse of homogeneous

3See Berger (2002) for a discussion and references.
4Thorne (1972); see also Misner et al. (1973), p. 867.
5Lin, Mestel & Shu (1965).
6Thorne (1972).
7See Shapiro and Teukolsky (1991a) for a popular discussion.
8For the Newtonian version of this scheme in axisymmetry, with applications, see Shapiro and Teukolsky (1987).
9Brill waves are gravitational waves resulting from time-symmetric initial data in axisymmetric, vacuum space-

times; see Exercise 3.5. See also Eppley (1977) for numerical evolutions of Brill waves.
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Newtonian spheroids in the weak field limit.10 A number of geometric probes were constructed
to diagnose the evolving spacetime. For example, the total mass and outgoing radiation energy
flux were calculated to monitor mass-energy conservation. To confirm the formation of a black
hole, the spacetime was probed for the appearance of an apparent horizon11 and its area and
shape were computed when it is present. To assess the growth of a singularity, the Riemann
invariant I ≡ (4)Rabcd

(4)Rabcd, which measures the strength of the gravitational tidal field, was
computed at every spatial grid point. To test the hoop conjecture, the minimum equatorial and
polar circumferences outside the matter was determined.

Typical simulations were performed in equatorial symmetry with a spatial grid of 100 radial
and 32 angular zones, and with 6000 test particles. A key adaptive grid feature that enabled the
simulations to snuggle close to singularities was that the angular grid was allowed to fan and the
radial grid was allowed to contract to follow the matter. In addition, the particles were permitted to
move on larger timesteps than the field variables, which were restricted by the Courant condition.
In particular, the particles were only advanced on a timestep comparable to the local dynamical
timescale, as in equation (8.66). They were thus held frozen until the field variables caught up
after being advanced every Courant time step (see, e.g., equation 6.72, with v = c = 1).

The code was utilized to track the collapse of nonrotating relativistic prolate and oblate
spheroids of various initial sizes and eccentricities. The matter particles comprising the spheroids
are taken to be instantaneously at rest at t = 0. The technique adopted for constructing exact,
time-symmetric prolate spheroids12 is given in Exercise 10.1. In the Newtonian limit, these initial
configurations reduce to homogeneous spheroids, but relativistic configurations are inhomogeneous
with density increasing outwards. Given a density profile, particles are distributed to sample the
initial phase-space distribution function. When the spheroids are large (size �M in all directions)
the code correctly tracks the Newtonian solutions.

Exercise 10.1 For a homogeneous spheroid in Newtonian gravitation, Poisson’s equation ∇2ΦN =
4πρN relates the potential ΦN to the rest-mass density ρN where

ρN =


MN

4πa2c/3
, R2/a2 + z2/c2 ≤ 1 ,

0 , elsewhere .
(10.2)

Here MN is the total Newtonian rest mass, a is the equatorial radius, c is the polar radius and R and
z are cylindrical coordinates. The solution for the potential is well-known, but is not needed for this
exercise. The resulting Newtonian gravitational binding energy for a prolate spheroid of eccentricity
e = (1− a2/c2)1/2 is given by

WN = −1
2

∫
ρNΦNd

3x =
3
10
M2

N

ce
ln

1 + e

1− e
. (10.3)

(a) Consider a homogeneous spheroid of collisionless particles momentarily at rest in general relativity.
To try and minimize the initial radiation content of the spacetime, choose a conformally flat spatial
metric γij = ψ4ηij (i.e., A = B = ψ2 in equation (10.1)) and argue that the only nontrivial equation
that the initial data must satisfy is the Hamiltonian constraint (3)R = 16πρ, where ρ = T abnanb is the
mass density (= rest-mass density in this case), T ab is the stress-energy tensor for collisionless matter
and na is the normal vector to the initial t = 0 hypersurface. Show the constraint condition reduces to

∇2ψ = −2πψ5ρ , (10.4)

10Lin et al. (1965); Shapiro and Teukolsky (1987).
11See Chapter 7.3.
12Nakamura et al. (1988).
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with the boundary conditions

∇ψ = 0, at r = 0, ψ → 1 +
M

2r
, as r →∞ , (10.5)

where M = MADM is the total mass energy of the configuration.
(b) Choose the density profile ρ according to 2πψ5ρ ≡ 4πρN , for which the solution to equation (10.4)
is immediately given by ψ = 1 − ΦN . Argue that the density ρ is therefore inhomogeneous, increases
outward from the center, and is constant on self-similar coordinate spheroidal surfaces. From this
conclude that the total rest-mass energy of spheroid is

M0 = 2MN + 4WN , (10.6)

and the total mass-energy is

M = 2MN =
2M0

1 + (1 + αM0)1/2
, (10.7)

where, for a prolate spheroid,

α =
6

5ce
ln

1 + e

1− e
. (10.8)

(c) Evaluate the Riemann invariant I = (4)Rabcd (4)Rabcd = RijklRijkl in Cartesian coordinates to find

I = 96ψ−12
(
∂iψ∂

iψ
)2 − 96ψ−11∂j∂iψ∂

iψ∂jψ + ψ−10∂j∂iψ∂
j∂iψ . (10.9)

Evaluating equation (10.9) reveals13 that as e→ 1, prolate configurations form spindle singu-
larities located just outside the matter on the axis. When the spheroids are sufficiently compact
(<∼ M in all of its spatial dimensions) solving equation (7.51) shows that there is an apparent
horizon; otherwise there is none. A sequence of these momentary static prolate spheroids of fixed
rest mass, but increasing eccentricity, foreshadows the evolutionary collapse sequence of Shapiro
and Teukolsky (1991b) that we shall now describe.

The left panels of Figure 10.1 show the fate of a typical, highly compact prolate configuration;
such a configuration always collapses to a black hole. To appreciate the scale, recall that in isotropic
coordinates a Schwarzschild black hole on the initial time slice would have a radius r = 0.5M ,
corresponding to a Schwarzschild radius rs = 2M . The right panels in Figure 10.1 depict the
outcome of prolate collapse with the same initial eccentricity but from a larger semi-major axis.
Here the configuration collapses to a spindle singularity at the pole without the appearance of an
apparent horizon. A search for either a single global horizon centered on the origin, or a small
disjoint horizon around the singularity in each hemisphere, comes up empty. The spindle consists
of a concentration of matter near the axis in the vicinity of r ≈ 5M . Figure 10.2 shows the
growth of the Riemann invariant I at r = 6.1M on the axis, just outside the matter.14 Prior
to the formation of the singularity, the typical size of I at any exterior radius r on the axis is
∼M2/r6 � 1.15 With the formation of the spindle singularity, the value of I rises without bound
in the region near the pole. The maximum value of I determined numerically is limited only by
the resolution of the angular grid: the better the spindle is resolved, the larger the measured value
of I before the singularity causes the code (and possibly the spacetime!) to break down. Unlike
shell-crossing singularities, where I blows up in the matter interior whenever the matter density
is momentarily infinite, the spindle singularity also extends outside the matter beyond the pole at
r = 5.8M (Figure 10.3). In fact, the peak value of I occurs in the vacuum at r ≈ 6.1M . Here the
exterior tidal gravitational field is blowing up, which is not the case for shell crossing.

13Nakamura et al. (1988).
14The calculation of I during a 3 + 1 simulation is simplified by decomposing it into spatial field and matter

variables on each time slice; see York (1989), equation (109).
15Recall that in Schwarzschild geometry, I = 48M2/r6s , where rs is the Schwarzschild areal radius.
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Figure 10.1: Left panels. Snapshots of the particle positions at initial and late times for pro-
late collapse. The positions (in units of M) are projected onto a meridional plane. Initially the
semi-major axis of the spheroid is 2M and the eccentricity is 0.9. The collapse proceeds non-
homologously and terminates with the formation of a spindle singularity on the axis. However,
an apparent horizon (marked by the dashed line) forms to cover the singularity. At t/M = 7.7
its area is A/16πM2 = 0.98, close to the expected value of unity (gravitational radiation losses
are negligible). Its polar and equatorial circumferences at that time are CAH

pole/4πM = 1.03 and
CAH

eq /4πM = 0.91, At later times these circumferences become equal and approach the expected
value of unity. The minimum exterior polar circumference is shown by a dotted line and does
not coincide with the matter surface. Likewise, the minimum equatorial circumference, which is a
circle, is indicated by a solid dot. Here Cmin

eq /4πM = 0.59 and Cmin
pole/4πM = 0.99. The formation

of a black hole here is thus consistent with the hoop conjecture. Right panels. Snapshots of the
particle positions at the initial and final times for prolate collapse with the same initial eccentricity
as in the left panel but with initial semi-major axis equal to 10M . The collapse proceeds as in the
left panel and terminates with the formation of a spindle singularity on the axis at t/M = 23. The
minimum polar circumference is Cmin

pole/4πM = 2.8. There is no apparent horizon, in agreement
with the hoop conjecture. This may be a candidate for a naked singularity. [From Shapiro and
Teukolsky (1991b).]

Probing the spacetime in the vicinity of the singularity suggests that it is is not a point, but
rather an extended region which, while including the matter spindle, grows most rapidly in the
vacuum exterior above the pole. The local geometry near the spindle exhibits behavior similar to
the late-time geometry near the axis along which a naked singularity forms following the collapse of
an infinite cylinder. The spatial metric components grow slowly with time, rising to a maximum
of A ≈ B ≈ 1.7. The maximum occurs near the origin and is only moderately larger than
one, the value at large distance from the spheroid. However, the tidal-field invariant I, which
depends on second derivatives of the metric, diverges much more rapidly. This behavior mimicks
the logarithmic divergence of the metric found along an analytic, prolate sequence of momentary
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Figure 10.2: Growth of the Riemann invariant I (in units of M−4) versus time for the collapse
shown in the right panels of Figure 10.1. The simulation was repeated with various angular grid
resolutions. Each curve is labeled by the number of angular zones used to cover one hemisphere.
Dots indicate where the singularity has caused the code to become inaccurate. [From Shapiro and
Teukolsky (1991b).]

static configurations of increasing eccentricity.16 Of course, any such description of the singular
region and the metric depends on the time slicing and may be different for other choices of time
coordinate. In principle the spindle singularity might first occur at the center rather than the pole
with a different time slicing.

The key question is whether or not this spindle singularity is naked or not. The absence of an
apparent horizon does not necessarily imply the absence of a global event horizon, although the
converse is true. This point has been emphasized by showing17 that even Schwarzschild spacetime
can be sliced with nonspherical slices that approach arbitrarily close to the singularity without
any trapped surfaces. Because such singularities cause numerical integrations to terminate, one
cannot map out a spacetime arbitrarily far into the future, which would be necessary to completely
rule out the formation of an event horizon.

It may be telling that in the case of collapse from an initially compact state, outward null
geodesics are always found to turn around near the singularity, as expected when the singularity
resides inside an event horizon. By contrast, for collapse from large radius, outward null geodesics
are still propagating freely away from the vicinity of the singularity up to the time the integrations
terminate. It remains an open question for future research whether any time slicing can be found
which will be more effective in snuggling up to the singularity without actually hitting it. Such
a slicing might enable one to confirm whether all outward null geodesics manage to propagate
to large distances, thereby determining whether or not the singularities arising from nonrotating,
prolate collapse are truly naked.

Recent vacuum simulations of highly prolate, Brill-wave initial data may shed additional light
on the issue of prolate collapse in general relativity. Prolate initial wave packets can be con-

16See Exercise 10.1.
17Wald and Iyer (1991).
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Figure 10.3: Profile of I in a meridional plane for the collapse shown in the right panels of
Figure 10.1. For the case shown here employing 32 angular zones to cover one hemisphere, the
peak value of I is 24/M4 and occurs on the axis just outside the matter. [From Shapiro and
Teukolsky (1991b).]

structed without apparent horizons but with arbitrarily large curvatures.18 What is the fate of
such configurations – black holes or naked singularities? The original attempt19 to evolve this
data used a partially constrained, axisymmetric scheme that could not proceed sufficiently long
to settle the question, due to a lack of resolution on the compactified spatial grid. Subsequently,
however, a fully constrained scheme, which used a multigrid method for the elliptic equations and
fixed mesh refinement, was able to evolve the same initial data for much longer20 The same gauge
conditions employed by Shapiro and Teukolsky (1991b,a) were used here, but the code was written
in cylindrical, rather than spherical polar, coordinates. The longer evolution ultimately revealed
an apparent horizon, confirming the formation of a black hole rather than a naked singularity.21

10.2 Head-On Collision of Two Black Holes

As we know from high energy physics, a good way to to probe the underlying field theory governing
the interactions of a relativistic system is to perform a collision experiment. This is the motivation
behind the simulations we shall summarize in this section, where we will consider the the head-on

18Abrahams et al. (1992).
19Garfinkle and Duncan (2001).
20Rinne (2008a).
21But as pointed out by Garfinkle and Duncan (2001), highly prolate Brill waves tend to become less prolate

during collapse rather than more, in contrast to prolate collisionless matter spheroids. So the final fates of the two
systems may be qualitatively different.
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collision of two identical clusters of “collisionless” particles in general relativity.22 Recall that
these particles are called “collisionless” because they interact exclusively by gravity and hence
obey the relativistic Vlasov equation. Such particles could represent stars in a cluster, massive
neutrinos, axions, or any other form of collisionless matter. Simulations of head-on collisions have
been performed for several nonrotating, initial configurations including: (1) a binary consisting of
identical spheres of particles, all momentarily at rest; (2) a binary of identical spheres of particles,
where each sphere is boosted towards each other; and (3) a binary of identical spheres of particles,
where the particles in each sphere are in randomly oriented, circular orbits about their respective
centers. In the first two cases, the particles in the two spheres implode towards their respective
centers before colliding and form two, well-separated, black holes. Such scenarios have been very
useful for studying the head-on collision of binary black holes. In the third case, each clusters
is constructed to be in near-equilibrium initially, so it does not implode prior to merger. Their
collision from rest leads either to coalescence and virialization to a new equilibrium configuration,
or to collapse to a black hole. This third collision scenario is the collisionless analog of colliding
neutron stars in relativistic hydrodynamics.

Exercise 10.2 Consider the following quantity as a diagnostic of virial equilibrium in a particle
simulation,

E0 = −
∑

j

(1 + uj
0) , (10.10)

where ua
j is the four-velocity of the jth particle and the sum is over all the particles.

(a) Why does E0 become constant in time in virial equilibrium?
(b) What is the meaning of E0 in the Newtonian limit?
(c) What other quantities can be evaluated and compared to determine that virial equilibrium has
been achieved? Hint: consider various mass measures of the configuration.

Shapiro and Teukolsky (1992b) used the same mean-field particle simulation scheme discussed
in Section 10.1 and summarized in Appendix F to tackle these scenarios. This scheme adopts
the same form of the metric and gauge conditions as before and handles general nonrotating,
axisymmetric spacetimes containing collisionless matter. The simulations took the system center
of mass in each case to reside in the equatorial plane and then exploited symmetry across the
equator. The simulations then employed approximately 250 radial zones and 32 angular zones to
cover the spatial grid in the upper hemisphere. The initial data for the two spheres was constructed
from prescriptions similar to the one described in Exercise 10.1 for single spheroids. The approach
described in that exercise was generalized to allow for binary systems, and modified to account
for an initial velocity boost in scenario two and for circular particle velocities in scenario three.

Topology of the Event Horizon

The most interesting case is scenario two, the head-on collison of well-separated, boosted spheres
in which the particle velocity dispersion in each sphere is initially zero. In this case each cluster
collapses on itself to form a black hole prior to merger. Hence this scenario simulates the head-
on collision of two nonrotating black holes. The spheres each have an initial coordinate radius
a/M = 0.8 and their centers are located at z0 = ±1.4M along the collision axis. Searches
for apparent horizons are performed by solving equation (7.51) on each time slice. There are no
apparent horizons initially. The spheres are given an inward boost velocity of v = 0.15 as measured
by a normal observer.

22Shapiro and Teukolsky (1992b).
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Figure 10.4 shows spatial snapshots of the collision at four different instants of time. Common
as well as disjoint horizons appear, as shown in the figures. The event horizon is found23 by inte-
grating null geodesics backwards in time in the curved background, as discussed in Chapter 7.2.
These integrations can only be performed after the evolution has terminated and the global space-
time has been fully determined. Disjoint event horizons appear within the spheres of matter by
t/M ≈ 0.13, much earlier than the formation of the common apparent horizon at t/M ≈ 6.5 or the
disjoint apparent horizons at t/M ≈ 7.1. Note how the tidal field of each companion causes a dis-
tortion in the shape of the nascent black holes and their disjoint event horizons, giving rise to the
“hour glass” appearance of the merging holes when they first come into contact. The disjoint event
horizons grow towards each other until they coalesce at t/M ≈ 2.16. By the time the integrations
terminate at t/M ≈ 11.7, all of the matter is encompassed by a single black hole and the exterior
spacetime is close to Schwarzschild. The event and common apparent horizons coincide and have
an area A/16πM2 ≈ 1.1, a polar circumference Cpole/4πM ≈ 1.1 and an equatorial circumference
Ceq/4πM ≈ 1.0. The deviations of these ratios from unity, their Schwarzschild values, is a measure
of the numerical error in the evolution. The total energy in gravitational waves radiated in the
collision is ∆E/M ≈ 3× 10−4.

Figure 10.5 is a spactime diagram of the collision and merger. The time axis is along the
vertical direction, while spacelike hypersurfaces (with one of the spatial directions suppressed)
are horizontal planes at any instant of time. The collision axis goes from left to right and the
black hole horizon is shown as the dark shaded surface. Some of the light rays which generate
the horizon (“null generators of the horizon”) are shown. Their trajectories were traced by nu-
merically propagating light rays in the background spacetime. The inset shows a closeup view of
the formation and merger of the two horizons and how the rays enter the horizons at those early
events.

Figure 10.5 is the famous “pair of pants” picture of the event horizon for coalescing black holes
that was sketched in general relativity textbooks in the 1970’s.24 The figure shown here, produced
over 20 years later, was the first real calculation of such a diagram. Many things were known
about the the topology of the merging horizons and the null generators prior to these numerical
simulations, but a few important details were not. It was well known that the black hole is
spanned by null generators, which can intersect or cross each other only at those points at which
they enter the horizon. Once on the horizon, a null generator can never propagate off, nor can it
ever cross another null generator. These properties were all understood and nicely corroborated by
the simulation. But in addition, the simulation revealed for the first time a line of crossover points
for the null generators that extends from the “crotch” on the “pair of pants” down along each
inside trouser seam, around each bottom, and continuing a small distance up each outside “seam”
(see Figure 10.5). The points on the outside seam at which the line of crossover terminates are
caustics, where the intensity of the intersecting light rays becomes infinite. For a single, isolated
cluster undergoing spherical collapse to a black hole, the caustic would arise at the base of the
spacetime diagram at the point at which the event horizon first forms, and there would be no
crossovers. Here, the gravitational tidal field of the colliding black holes shifts the location of the
caustic and produces the line of crossovers. An analysis of the simulation25 shows that the line of
crossovers is spacelike, which means that they cannot be traced by light rays or particles moving
slower than c. As this line approaches the caustics on the sides, it becomes asymptotically null.

23Hughes et al. (1994).
24Hawking and Ellis (1973); Misner et al. (1973).
25Matzner et al. (1995).
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Figure 10.4: Spatial snapshots of the head-on collision of boosted clusters. (a) Initial data. Each
sphere has an initial radius a/M = 0.8, an inward boost velocity v = 0.15, and their centers are
at z0/M = ±1.4. Sample particles from the collisionless matter distribution are represented by
white dots. A clock displaying the elapsed fraction of the total evolution time appears in the
corner. (b) Horizon coalescence. At time t/M = 2.18 the two event horizons coalesce (shaded
hour glass). The cluster’s centers are at z/M = ±1.07. The scale of the image has been enlarged
by about a factor of 2 over (a). (c) Appearance of apparent horizons. At time t/M ≈ 6.5, the
common apparent horizon appears, well inside the event horizon. At time t/M ≈ 7.1 (shown here)
the disjoint apparent horizons appear. The outer shaded region denotes the event horizon, the
darker shaded region just inside is the common apparent horizon, and the two darkest regions
are the disjoint apparent horizons. (d) Final state. By time t/M ≈ 11.7 shown here, the event
and common apparent horizons have settled down to a quasistationary state and coincide. [From
Hughes et al. (1994).]
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Figure 10.5: Spacetime diagram for the collision depicted in Figure 10.4. The diagram shows some
of the null generators of the horizon. The time axis is vertical, the collision axis goes from left to
right; one of the spatial dimensions is suppressed. The inset on the left zooms in on the caustic
and crossover structure at the birth of the event horizon. [From Matzner et al. (1995).]

The topology of the event horizon for merging black holes is somewhat different in the case of
vacuum black holes, or “eternal” black holes not formed from matter collapse. Figure 7.2 shows
the results of a head-on collision of two nonrotating, vacuum black holes that are initially at rest
at finite separation at a moment of time symmetry (Kij = 0).26 The initial data are the analytic
Misner initial data (3.26) discussed in Chapter 3.1.2. The initial separation between horizons L
(see equation 3.28) is determined by the parameter µ appearing in the three-metric; for the case
shown, µ = 2.2, we have L/M = 8.92. The simulation proceeds using maximal slicing for a time
∆t ≈ 150M , at which point the merger is complete (note the spacetime diagram in Figure 7.2 goes
only up to t/M = 25). At late times, the horizon oscillates with decaying amplitude, emitting
gravitational wave quasinormal “ringdown” radiation of a vibrating Schwarzschild black hole.
The figure shows the event horizon structure from t/M = 5 to t/M = 20. The event horizon is
found by integrating equation (7.10). Figure 7.2 differs from Figure 10.5 in two ways. First, as
discussed above, the black holes in Figure 10.5 are “born” from the collapse of matter, while the
black holes in Figure 7.2 are eternal. Second, Figure 10.5 plots the coordinate circumference of
the event horizon, while Figure 7.2 plots its proper polar circumference. In the later case, the
the monotonic increase the area at early times and its constancy at late times are evident, in
compliance with black hole area theorems.

In contrast to black holes filled with matter, the legs in Figure 7.2 do not exhibit cusps, but
continue into the past from the times shown in the diagram. As in the case with matter, there does
exist a crossover line along the inside seam of the “pair of pants”. Note that while the spacetime is
symmetric about the initial time, the horizon is not, as it expands monotonically into the future.
This is evident in the expansion of the null generators seen in the figure at the initial time.

26Anninos et al. (1995) and references therein; Matzner et al. (1995).



322 CHAPTER 10. COLLAPSE OF COLLISIONLESS CLUSTERS IN AXISYMMETRY

Exercise 10.3 Can one conclude from the time-symmetry of the spacetime that its past evolution
describes a time-reversed collision: ingoing radiation propagates from infinity onto a single, Schwarz-
schild black hole, bifurcating it into two holes that move apart until coming to a momentary pause,
followed by outgoing radiation as the two holes merge?

10.3 Disk Collapse

Many astrophysical systems are best represented by infinitesimally thin disks of collisionless mat-
ter. Not surprisingly, numerous studies of the dynamical behavior of collisionless disk systems have
been performed over the years in Newtonian gravitation.27 As it happens, thin disks provide par-
ticularly simple, but amazingly useful, sources for simulations in numerical relativity. The collapse
of an axisymmetric disk of collisionless matter provides the simplest example of matter collapse
exhibiting the two most significant and challenging aspects of relativistic gravitation: black hole
formation and gravitational radiation generation. Since the matter source resides entirely in the
equatorial plane, the matter evolution equations in axisymmetry are one-dimensional (i.e. they
depend on r alone). The source influences the gravitational field, which is two-dimensional (i.e., a
function of r and θ), via “jump conditions” across the equator. When the disk matter is initially
at rest, the ensuing collapse provides an interesting analogy to Oppenheimer-Snyder collapse to a
black hole in spherical symmetry, but with the added important feature of gravitational radiation
production. Since the gravitational field is dynamical in disk collapse, the full machinery of nu-
merical relativity is required to follow the evolution, while spherical Oppenheimer-Snyder collapse
is analytic.

The same equations discussed earlier in this chapter to evolve the axisymmetric collapse of
isolated clusters and the head-on collision of binary clusters are readily adapted to handle in-
finitesimally thin disks of collisionless particles.28 These equations, together with the relevant
jump conditions, are summarized in Appendix F. Dynamical simulations that solve these equations
have explored different relativistic systems and dynamical effects. The growth of ring instabilities
in “cold” equilibrium disks, and their suppression in disks with sufficient velocity dispersion (i.e.
“hot” disks), has been studied. Gravitational radiation from oscillating disks, as well as damping
of the oscillations by radiation reaction, has been determined. The calculation of gravitational
waveforms from disk collapse to black holes has been particularly useful. It has provided another
arena for advancing computational machinery – in this case perturbation methods – that can be
used in conjunction with numerical simulation data to determine late-time gravitational wave-
forms when the final state of a dynamical system approaches a Schwarzschild black hole.29 We
will discuss this application below.

We focus on the collapse of a disk of nonrotating, cold matter to a black hole. In this case
all the disk matter is instantaneoulsy at rest at t = 0 and the spacetime evolution begins at a
moment of time symmetry. The construction of appropriate initial data can be accomplished in
much the same way that initial data for spacetimes containing relativistic prolate spheroids can
be built from their Newtonian counterparts, as in Exercise 10.1. For thin disks, however, we
need to construct oblate spheroids, taking the limit as their eccentricity goes to unity to get flat
configurations. Such a construction is summarized in Exercise 10.4.

27See, e.g., Hockney and Eastwood (1981); Fridman and Polyachenko (1984); Binney and Tremaine (1987).
28Abrahams et al. (1994).
29Abrahams et al. (1995).
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Exercise 10.4 Consider as in Exercise 10.1 a homogeneous spheroid in Newtonian gravitation. The
potential obeys Poisson’s equation, ∇2ΦN = 4πρN , where the density ρN is again given by equa-
tion (10.2). Now treat an oblate spheroid, for which the eccentricity is defined to be e = (1− c2/a2),
and the Newtonian gravitational binding energy is given by

WN = −1
2

∫
ρNΦNd

3x =
3
5
M2

N

a

arcsin(e)
e

. (10.11)

(a) Construct a relativistic spheroid by setting 2πψ5ρ ≡ 4πρN as in Exercise 10.1, but now for the mass
density ρ inside an oblate spheroid of collisionless particles momentarily at rest. As in Exercise 10.1,
the conformal factor satisfies ψ = 1−ΦN , where ΦN is the potential for the corresponding Newtonian
spheroid. Show that equations (10.6) and (10.7) apply once again, but for the parameter α given by

α =
12
5ae

arcsin(e) . (10.12)

(b) Consider the infinitesimally thin disk of radius a obtained by letting e→ 1 in the oblate spheroid
considered above. Show that for the homogeneous Newtonian spheroid, the surface density satisfies

σN =
3MN

2πa2

(
1− r2

a2

)1/2

, (10.13)

while for the corresponding relativistic disk, the total mass density σ and rest-mass surface density σ0

are given by

σ = σ0 =
∫ +

−
ρr sinθdθ =

2
ψ5
σN . (10.14)

(c) Show that the total mass and rest-mass of the relativistic disk are related by

M =
2M0

1 + (1 + 6πM0/5a)
1/2

. (10.15)

The collapse of a thin disk constructed in this fashion is homologous (i.e. self-similar), and
the solution is analytic, in Newtonian gravitation.30 In general relativity, by contrast, one has to
integrate the full set of 2 + 1 equations to determine the spacetime. The simulation summarized
here was performed using a spatial grid of 300 radial and 16 angular zones in the upper hemisphere,
with the matter source sampled by 24,000 particles. Plots of the particle positions at selected times
during the collapse of a disk with initial radius R0/M = 1.5 are shown in Figure 10.6 (recall that
in isotropic coordinates, a Schwarzschild black hole has a radius R0/M = 0.5. The location of
the apparent horizon, which appears at about t/M = 4.0, is also shown. The moving radial mesh
algorithm, in which the innermost zones follow the infall of the matter, enables the integrations
to continue reliably for a time ∆t/M ≈ 15 after the appearance of the horizon. Beyond that, the
effect of “grid stretching” along the black hole throat induces numerical inaccuracies. Well before
this point, however, all of the matter is well inside the horizon.

Close Limit Approximation

Even though disk collapse is one of the simplest radiating systems with a matter source, it is not
possible to track the evolution long enough with this code to read off the full waveform directly
from the simulation. The problem is that a significant amount of the radiation is still in the
near-zone, strong-field region at the time the simulation breaks down. This difficulty occurs even
though all of the matter has long since disappeared into the black hole. This problem can be
overcome in one of several ways. Black hole excision or moving puncture techniques are two

30See Abrahams et al. (1994), Section III.A, with h = 0 = ξ.
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Figure 10.6: Snapshots of the particle positions for the collapse of a cold relativistic disk. Initially
the radius is R0/M = 1.5 and the particles are all at rest. The apparent horizon (dashed line) first
appears at t ' 4.0M . The coordinate labels (t, x, y) are in units of M . [From Abrahams et al.
(1994).]

approaches; we will discuss these methods in detail in Chapters 13.1 and 14.2.3. Here instead
we discuss a different approach that is particularly useful when the final state of a dynamical
system is a Schwarzschild black hole, as is the case here. The method is based on black hole
perturbation theory and approximates the spacetime at late time as a single perturbed black hole.
The perturbation of the black hole is computed on a spatial slice from the numerical metric and
extrinsic curvature using gauge-invariant perturbation theory.31 Wave forms are determined by
evolving this perturbation to infinity using the Zerilli equation (9.90).

The method employed here for the collapsing disk is an extension of the “close limit” approach
introduced by Price and Pullin (1994) to treat radiation from merging black holes. Price and
Pullin considered Misner initial data representing two black holes at a moment of time-symmetry.32

They realized that when the two holes were sufficiently close, the system could be treated as a
single, perturbed black hole. By applying gauge invariant perturbation theory, they calculated this

31Moncrief (1974); see discussion in Chapter 9.4.1.
32See Chapter 3.1, equation (3.26) for Misner initial data.



10.3. DISK COLLAPSE 325

perturbation and evolved it using the Zerilli equation. This allowed them to compute asymptotic
wave forms and emitted energies. Remarkably, for fairly small separations, the energies and wave
forms agreed well with the results of full 2 + 1 numerical simulations, like the ones discussed in
the previous section.33

The remarkable success of the “close limit” approach can be explained, at least in part, by
the presence of the black hole horizon and its use as an inner boundary at which all matter and
radiation are purely ingoing. Once the horizon forms and the spacetime settles down to a perturbed
Schwarzschild black hole, data obtained by further evolution with a 2 + 1 numerical routine are
no longer required to obtain the final gravitational wave form. The 2 + 1 simulation can be
terminated at a relatively early epoch; instead of continuing the simulation in order to propagate
the exterior radiation pulse out to the weak-field extraction regime, a simpler set of black hole
perturbation equations can be solved for the wave form, using the field on the last numerical time
slice for initial data. However, this “close limit” approach does require the formation of a black
hole during the numerical simulation: its horizon is essential for preventing all further evolution
inside the black hole from influencing the spacetime outside. The same pproach does not work
for, say, an oscillating neutron star, where there is no horizon.

In the perturbation approach we treat the spacetime metric as a static Schwarzschild black
hole plus a perturbation (see Chapter 9.4.1). Since for our applications all perturbations have
even (i.e. polar) parity, we can restrict the analysis to the even-parity modes and identify, from
the perturbations, the gauge-invariant Moncrief functions Rlm, as well as their time derivatives,
on a spatial slice (see equation 9.87). In axisymmetry, the only nonvanishing modes are those with
m = 0, Rl0. These functions now provide initial data for the Zerilli equation (9.90)

∂2
tRl0 − ∂2

r∗Rl0 + V
(e)
l Rl0 = 0, (10.16)

where r∗ = rs+2M ln(rs/M−1) is the tortoise coordinate, rs = r(1+M/2r)2 is the Schwarzschild

radius corresponding to (isotropic) radius r, and the Zerilli potential V
(e)
l is given by equation

(9.91). Given that this equation depends on only one spatial coordinate, it can integrated on a
fine mesh from a small radius very close to the event horizon, say r∗/M = −500, to a very large
radius, say r∗/M = 1000, until the perturbation has propagated out to a large distance, well beyond
the peak of the potential just outside the horizon. At large radius, the even-parity gravitational
wave amplitude h+ can be computed from the Rl0 as in equation (9.109). This perturbation
waveform can be compared with the waveform calculated by standard spacelike extraction of the
2 + 1 radiation data at large distance.34 In contrast to the perturbation result, the amplitude
found from standard extraction is cut short once the 2 + 1 integrations break down due to, e.g.,
grid stretching.

We can now mention another advantage of the perturbation method over wave extraction at
a finite radius. Integrating the Zerilli equation (10.16) to large radii automatically takes into
account the effects of gravitational wave backscatter off the black hole curvature. These effects
can only be incorporated approximately with standard extraction methods, if an integration over
a timelike cylinder is used to separate off near-zone effects.

The perturbation and standard extraction waveforms are compared for disk collapse in Fig-
ure 10.7.35 The perturbation results used simulation data at t/M ≈ 4.7. Since the simulation

33See also Abrahams and Cook (1994), who extended this technique to initial data representing boosted black
holes with a common apparent horizon.

34Chapter 9.2.2. The extraction algorithm of Abrahams and Evans (1990) was actually employed for the disk
scenario described here.

35Abrahams et al. (1994).
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Figure 10.7: The gravitational waveform computed using the perturbation method for disk collapse
is plotted as a function of retarded time in units of M . For comparison, the gravitational waveform
computed at a radius r/M = 8 using a standard spacelike radiation extraction technique is also
shown (crosses). [From Abrahams et al. (1995).]

becomes inaccurate within t/M ≈ 20M there is little time for the wave to reach the numerical
extraction radius at r/M = 8. The standard method can only measure the wave from the ini-
tial infall phase and the first black hole oscillation before the simulation breaks down. The two
waveforms are in good agreement during this epoch. But the perturbation waveform continues to
track the black hole ringdown radiation, exhibiting the dominant quasinormal mode oscillations
(of wavelength λ/M ≈ 16.8 for the lowest l = 2 mode) that characterize a perturbed Schwarzschild
black hole. More recent simulations that employ either black hole excision or the moving puncture
method can track the fully nonlinear evolution of black holes, from formation to ringdown, to
arbitrarily late times.

10.4 Collapse of Rotating Toroidal Clusters

Most objects found in nature have spin, including relativistic configurations like neutron stars and
black holes. So it is imperative that we learn how to evolve numerical spacetimes with net rotation.
For an axisymmetric spacetime with rotation, the form of the metric given by equation (10.1) for
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the nonrotating case must be generalized. The spatial line element in the quasi-isotropic gauge in
spherical polar coordinates now becomes

dl2 = A2(dr2 + r2dθ2) +B2r2(ξdθ + sinθdφ)2 , (10.17)

and all three components of the shift vector, (βr, βθ, βφ), may all be present. Each of the metric
components is a function of t, r and θ, but not φ. Once again the variable η represents the even-
parity radiative polarization state, as η → h+ at large distances from the source. In the case of
rotation, the odd-parity polarization state can also be present. At large distance the variable ξ is
a measure of the odd-parity wave amplitude, as ∂ξ/∂r → −∂h×/∂t when there is purely outgoing
radiation.

The adopted form of the 2 + 1 field equations, and the mean-field, particle simulation scheme
used to integrate them, are generalizations of the ones used for the nonrotating systems described
in the previous sections of this chapter and summarized in Appendix F.36 The scheme is fully
constrained: the Hamiltonian constraint is used to obtain a 3-metric component, and the three
momentum constraints are used to compute components of the extrinsic curvature. The two
remaining 3-metric components and two extrinsic curvature components are evolved. The shift
vector components βi are used to maintain the quasi-isotropic spatial gauge condition. The lapse
function α is determined by the maximal time slicing condition K = ∂tK = 0. The Hamiltonian
constraint and lapse equations are elliptic equations, while the shift equations comprise a mixed
parabolic-elliptic system of equations.

The above scheme has been used in a number of applications, including a study of the stability
of rotating polytropic and toroidal clusters. The formation of Kerr black holes following the col-
lapse of unstable clusters has been demonstrated. The collapse of highly rotating configurations
is particularly interesting, since it is impossible to form a Kerr black hole with angular momen-
tum J/M2 ≥ 1. In axisymmetry, where angular momentum cannot be radiated, such collapses
must result either in new, stationary, nonsingular equilibrium configurations, or Kerr black holes
surrounded by rapidly rotating disks, or naked singularities. In a parameter study of collapsing
toroidal clusters of varying J/M2, clusters with J/M2 ≤ 1 all collapse to black holes, while those
with J/M2 ≥ 1 all collapse to new equilibrium configurations. While not unexpected theoret-
icaly, it is reassuring to obtain this outcome numerically. We will return to this same issue in
Chapter 14.2.3 when we treat collapse of fluid stars.

Toroidal Black Holes and Topological Censorship

One of the most interesting outcomes of the simulations of the collapse of rotating toroidal clusters
of collisionless particles to Kerr black holes is the emergence of the black hole event horizon as a
toroid.37 The initial matter distribution is based on a solution for a relativistic toroidal cluster
in dynamical equilibrium. A discussion of the construction of initial data for rotating equilibrium
systems, given a phase space distribution function, is postponed to Chapter 14.1.3. The adopted
distribution function for a toroidal cluster is chosen to be of the form

f(E, Jz) = g(E)h(Jz) , (10.18)

36See Abrahams et al. (1994) for the full set of field and collisionless matter equations for rotating spacetimes in
axisymmetry and a summary of the numerical method.

37Abrahams et al. (1994); Hughes et al. (1994).
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where E = −u0 is the energy and Jz = uφ is the angular momentum of a particle, both per unit
mass. Toroidal clusters with net spin then can be generated most simply by taking

g(E) = Kδ(E − Emax) , (10.19)

h(Jz) = δ(Jz − J0) . (10.20)

Here the the total angular momentum J = JADM is related to J0 by J = (M0/m)J0, where M0 is
the total rest mass of the configuration and m is the rest mass of one particle. The quantity K is
an arbitrary normalization constant and Emax is chosen to be the maximum energy of a particle
in a spherical cluster of areal radius Rs, Emax = (1− 2M/Rs)

1/2.
Here we will discuss the results for a toroidal cluster with an outer circumferential radius of

Rs/M = 4.5. Collapse was induced by multiplying the angular velocity of each particle by a factor
of 0.5, resulting in a nonequilibrium cluster with a total angular momentum of J/M2 = 0.65.
Re-solving the constraint equations after reducing the angular velocities to get valid initial data,
the collapse was followed numerically. The computational mesh consisted of 200 radial zones and
16 angular zones (for one hemisphere) and 3,000 particles. The outer boundary of the mesh was
placed at 50M , well outside the matter source.

The toroid initially collapses along the rotation axis to a thin hoop. Then, while undergoing
oscillations along the rotation axis, it collapses radially inwards. The final configuration is a
stationary Kerr black hole containing all of the matter. The matter distribution and horizons are
plotted at selected times in Figures 10.8 and 10.9. The event horizon is determined by tracing null
rays backwards in time from the end of the simulation at t/M = 23.2, at which point the apparent
horizon coincides with the event horizon.38 The topology of the event horizon is rather remarkable:
it initially develops as a toroid, beginning at t/M = 13.2. The event horizon is seen to form initially
entirely in the vacuum between the origin and the inner edge of the collapsing toroidal cluster. It
then expands to fill up the the “doughnut hole”, becoming topologically spherical at t/M ≈ 13.5.
At this instant the outer edge of the event horizon has reached the inner edge of the matter toroid.
The spactime diagram for the collapse looks quite similar to the diagram plotted in Figure 10.5.
The line of crossover points at which light rays enter the horizon, and the cusp formed by rays at
the point at which the line of crossovers terminates, are all present as in Figure 10.5.

Of course, some aspects of the collapse noted above are gauge-dependent; the collapse could
look quite different in a different time-slicing, for example. Nevertheless, when the results of the
numerical simulation were first reported, it appeared that they might be in conflict with black hole
theorems regarding “topological censorship”. These theorems permit a nonstationary black hole
to have the topology of a two-sphere or a torus,39 but a torus can persist only for a short time.
According to topological censorship,40 the hole in a toroidal horizon must close up quickly, before
a light ray can pass through. Moreover, the black hole must be a two-sphere if no null generators
enter the horizon at later times.41

Once the numerical simulations were studied in detail and the geometry of the transient toroidal
event horizon was analyzed by means of a spacetime diagram like Figure 10.5, the results were
shown to be completely consistent with the theorems concerning the topology of black hole hori-
zons.42 At late times, when equilibrium has been reached, the topology is spherical, in agreement

38Hughes et al. (1994); see discussion in Chapter 7.2.
39Gannon (1976).
40Friedman et al. (1993); Jacobson and Venkataramani (1995).
41Browdy and Galloway (1995).
42Shapiro et al. (1995).
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Figure 10.8: Snapshots of the collapse of a rotating toroid of collisionless particles at selected
times. The left panels display meridional slices, the right panels show the equatorial plane. The
solid line denotes the event horizon, the dashed line the apparent horizon. The earliest times
shown occur soon after the appearance of the toroidal event horizon. By the final time shown
here, the event and apparent horizons coincide. The coordinate labels (t, x, y, z) are in units of
M . [From Hughes et al. (1994).]

with the theorem of Hawking.43 At early times, the topology is temporarily toroidal. However,
the line of crossovers traced out by a point on the inner rim of the torus is spacelike. That implies
that the “hole” in the torus indeed closes up faster than the speed of light, in compliance with
topological censorship. Finally, at intermedidate times, when the horizon is spanned by its full
complement of null generators, the rotating black hole has a spherical topology, in accord with

43Hawking (1972).
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the theorems of Browdy and Galloway.
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Figure 10.9: Three-dimensional views of the collapse of the rotating toroid shown in Figure 10.8.
The images are viewed from 45◦ above the equatorial plane. The first image shows the initial
configuration. The remaining three images are at the same times as the last three images in
Figure 10.8. The outermost shaded region is the event horizon, the shaded region inside it is the
apparent horizon. The scale of the last three images is larger by a factor of 2 over the first image.
The clock on the lower right denotes the fraction of time that has elapsed since the onset of the
simulation. [From Hughes et al. (1994).]
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Chapter 11

Recasting the Evolution Equations

At this point we might suspect that we are all set to carry out dynamical simulations involving
relativistic gravitational fields in three spatial dimensions, i.e. dynamical simulations in full 3+1-
dimensional spacetimes. After all, we have derived the 3+1 evolution equations for the gravita-
tional fields in Chapter 2, developed techniques for the construction of initial field data in Chapter
3, and discussed strategies for imposing suitable coordinate conditions in Chapter 4. Should the
spacetime in which we are interested contain the most common matter sources, we can consult
Chapter 5 for the matter source terms and the matter equations of motion. Beyond assembling
all of the relevant equations, we have also sketched algorithms for solving them numerically in
Chapter 6. If black holes are present, we have derived methods to locate and measure their hori-
zons in Chapter 7; if gravitational waves are generated we have discussed how to extract radiation
waveforms numerically in Chapter 9. Finally, we have evolved relativistic systems in spherical
symmetry (1+1 dimensions) in Chapter 8 and in axisymmetry (2+1 dimensions) in Chapter 10.
What else is left to do before going on to perform simulations in full 3+1 dimensions?

Suppose then we were to plunge ahead with the tools currently at our disposal to build a
dynamical spacetime in 3+1 dimensions. We could gain some confidence and computational
experience by choosing to explore as our first case a simple dynamical system with a known
analytic solution. A linear gravitational wave propagating in vacuum would do very nicely. We
could grab the initial data for such a wave from Chapter 9.1.2, choose a reasonable set of coordinate
conditions from the sample menu provided in Chapter 4 and employ the standard 3+1 (ADM)
evolution equations derived in Chapter 2 to evolve the wave.

What would we find? Unfortunately, despite all of our methodical preparation and best nu-
merical implementation, most likely our code would crash after a rather short time! The problem
is illustrated in Figure 11.1 which shows the failure of our standard evolution scheme to evolve
such a linear wave in a stable fashion. What might we conclude? Simply the following: if even this
simple, linear, vacuum spacetime encounters numerical difficulties when evolved with the standard
set of 3 + 1 equations, we could expect that most other dynamical spacetime in 3+1 dimensions
will encounter such difficulties.

As it turns out, the standard evolution equations as derived in Chapter 2 are not yet in a form
that is suitable for stable numerical integration. Most unconstrained simulations that implement
these equations, at least in three spatial dimensions, turn out to be unstable.1 The failure of these
equations can be understood in terms of their mathematical properties, as we will briefly discuss

1The high degree of spatial symmetry in spherical symmetry and even axisymmetry allows for a number of
different strategies to obtain stable evolutions, including fully or partially constrained evolution, the use of special
coordinate systems, or the introduction of new variables.
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in Section 11.1. Following this summary, we will discuss reformulations of the evolution equations
that avoid these problems and have proven more robust and successful numerically. But first, in
order to model the shortcomings of the standard evolution equations of Chapter 2 in a simple
way and to obtain some guidance on how to fix them, we shall return to Maxwell’s equations
in Section 11.2. Fortified by the insight provided by this example, we will then present several
different reformulations of the 3+1 evolution equations that have proven very successful in many
numerical simulations.

11.1 Notions of Hyperbolicity

Recall from Chapter 6 that we can cast a hyperbolic partial differential equation – for example
the simple wave equation (6.3) – in the first-order form

∂tu + A · ∂xu = S, (11.1)

where u is a solution vector, S = S(u) is a source vector, and where we have called the matric
A the velocity matrix (see equation (6.7)). Here we have assumed that the solution depends on t
and x only; in more than one spatial dimension we may generalize equation (11.1) to read

∂tu + Ai · ∂iu = S. (11.2)

If the solution vector u has n components, then each matrix Ai is a n×n matrix. For the purposes
of this Section we may ignore the source term and set S = 0.

We call a problem well-posed if we can define some norm ‖ . . . ‖ so that the norm of the solution
vector satisfies2

‖u(t, xi)‖ ≤ keαt‖u(0, xi)‖ (11.3)

for all times t ≥ 0. Here k and α are two constants that are independent of the initial data
u(0, xi). Stated differently, solutions of a well-posed problem cannot increase more rapidly than
exponentially. Clearly, this is a very desirable property, but it is not guaranteed for all hyperbolic
systems.

As it turns out, there exist different types of hyperbolicity, and only for some of these types
are the equations well-posed. To analyze these hyperbolicity properties, we consider an arbitrary
unit vector ni and construct the matrix P = Aini, which is sometimes referred to as the principal
symbol or the characteristic matrix of the system. Based on the properties of P we then distinguish
different notions of hyperbolicity. In particular, we call the system3

• symmetric hyperbolic if P can by symmetrized in a way that is independent of ni,

• strongly hyperbolic if, for all unit vectors ni, P has real eigenvalues and a complete set of
eigenvectors,

• and weakly hyperbolic if P has real eigenvalues but not a complete set of eigenvectors.

Simple wave equations, for example, are symmetric hyperbolic. Symmetric hyperbolic systems are
automatically strongly hyperbolic. The key result for our purposes states that strongly hyperbolic
equations are well-posed, while systems that are only weakly hyperbolic are not.4

2Much of this Section follows the arguments of Alcubierre (2008); see also Kreiss and Lorenz (1989).
3Note that different authors use slightly different conventions.
4See, e.g., Kreiss and Lorenz (1989). Note that this analysis focusses on the principal part of the equations only;

the source term may also lead to faster-than-exponential growth.
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We are not quite ready yet to analyze the hyperbolicity of the ADM evolution equations (2.135)
and (2.136), since our analysis above applies to first-order equations, while the ADM equations
are second-order in space. One approach to deal with this is to introduce a so-called first-order
reduction of the equations, achieved by writing all second derivatives in terms of first derivatives
of a new set of auxiliary functions that contain first derivatives of the original variables.5 An
analysis of a first-order reduction of the ADM evolution equations shows that these equations are
in fact only weakly hyperbolic.6 As a consequence, the evolution problem is not well-posed, and
we have no reason to expect the solutions – or numerical implementations – to be well-behaved.

Clearly, then, we should try to recast these equations in a form that is strongly hyperbolic.
How can we do that without modifying Einstein’s equations? The answer lies in the constraint
equations. We first observe that the constraints vanish, at least analytically.7 We are therefore
entitled to add multiples of the constraint equations to the evolution equations. Furthermore,
the constraints contain up to second derivatives of the gravitational fields, as do the evolution
equations. Adding the constraints to the evolution equations therefore affects the appearance of the
highest-order derivatives, which in turn affects the principle symbol P and hence the hyperbolicity.
We will see that many reformulations of the evolution equations also involve the introduction of
new variables that absorb some of the first derivatives of the gravitational fields.

Before proceeding we add a word of caution. The notion of well-posedness rules out modes that
grow faster than exponentially with time.8 From a numerical perspective, however, exponentially
growing modes are still very bad, and can easily terminate a simulation after only a short time.
In fact, many of the symmetric or strongly hyperbolic systems that have been introduced over
the years lead to such exponentially growing modes in numerical implementations. Unless these
modes can be controlled,9 these systems are not very useful for numerical simulations. From a
numerical perspective, then, well-posedness is a necessary but not a sufficient condition.

In the following we will discuss several different approaches that lead to different reformulations
of the evolution equations that are both strongly hyperbolic and that have been used successfully in
numerical simulations. In the remainder of this Chapter we will pursue a more heuristic approach
than the one sketched in this Section and will marshal mathematical intuition and exploit analogies
to motivate the different approaches. In fact, some of the systems discussed below were developed
in exactly this way and were discovered to have desirable numerical properties empirically before
they were analyzed mathematically and revealed to be strongly hyperbolic. To illustrate some of
these heuristic arguments for a simple and familiar example we will begin by discussing Maxwell’s
equations in Section 11.2.

5For an alternative approach see, e.g., Gundlach and Martin-Garcia (2006a), who introduce a notion of hyper-
bolicity that applies to systems that are second-order in space.

6See, e.g., Kidder et al. (2001).
7Here we mean that if we move the source terms appearing in equations (3.1) and (3.2) to the left-hand sides,

the combination of terms on the left-hand sides must then add up to zero at all times; see, e.g., equations (11.48)
and (11.49).

8At least in the absence of source terms; see footnote 4 above.
9See, e.g., Scheel et al. (1998); Kidder et al. (2001) for examples.
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11.2 Recasting Maxwell’s Equations

In Chapter 2.2 we have seen that we can bring Maxwell’s evolution equations in a Minkowski
spacetime into the form

∂tAi = −Ei −Diφ (11.4)

∂tEi = −DjDjAi +DiD
jAj − 4πji (11.5)

(see equations 2.11 and 2.12). Recall that Ai is the three-vector potential, the magnetic field
satisfies Bi = εijkD

jAk and therefore is automatically divergence-free, φ is a gauge potential, and
the electric field Ei has to satisfy the constraint equation (2.5),

DiE
i = 4πρe. (11.6)

In the above equations ρe is the electric charge density and ji the current density.
In Chapter 2.7 we have discussed some of the similarities of Maxwell’s equations in the above

form with the ADM evolution equations (2.135) and (2.136), namely

∂tγij = −2αKij +Diβj +Djβi (11.7)

and
∂tKij = α(Rij − 2KikK

k
j +KKij)−DiDjα− 8πα(Sij − 1

2
γij(S − ρ))

+βk∂kKij +Kik∂jβ
k +Kkj∂iβ

k.
(11.8)

If we identify the vector potential Ai with the spatial metric γij and the electric field Ei with
the extrinsic curvature Kij, we see that the right-hand sides of both equations (11.4) and (11.7)
contain a field variable and a spatial derivative of a gauge variable, while the right-hand sides of
both equations (11.5) and (11.8) involve matter sources as well as second spatial derivatives of the
second field variable. In equation (11.8) these second derivatives are hidden in the Ricci tensor
Rij, which we can write, for example, as

Rij =
1

2
γkl
(
∂l∂iγkj + ∂j∂kγil − ∂j∂iγkl − ∂l∂kγij

)
+ γkl

(
Γmil Γmkj − ΓmijΓmkl

)
. (11.9)

We can now exploit these similarities by focussing on the simpler Maxwell system of equations to
identify some of the computational shortcomings of these forms of the evolution equations.

We first note that equations (11.4) and (11.5) almost can be combined to yield a wave equa-
tion, which would make the system symmetric hyperbolic. To see this, take a time derivative of
equation (11.4) and insert equation (11.5) to form a single equation for the vector potential Ai,

− ∂2
tAi +DjDjAi −DiD

jAj = Di∂tΦ− 4πji. (11.10)

On the left-hand side, the second time derivative combines with the Laplace operator DjDjAi to
form a wave operator (d’Alembertian). Equations (11.4) and (11.5) would then constitute a wave
equation for the components Ai if it weren’t for the mixed derivative term DiD

jAj.
In general relativity the situation is very similar. The Ricci tensor Rij on the right-hand side of

equation (11.8) contains three mixed derivative terms in addition to the term with a Laplace-like
operator acting on γij, i.e., γkl∂l∂kγij. Without these mixed derivative terms the standard ADM
equations could be written as a set of wave equations for the components of the spatial metric,
which would make them symmetric hyperbolic. As we discussed in Section 11.1 we would like
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to evolve a system that is well-posed, but the presence of these additional terms may spoil this
property.

These considerations suggest that it would be desirable to eliminate the mixed derivative terms.
In electrodynamics, three different approaches can be taken to eliminate the DiD

jAj term: one
can make a special gauge choice; one can bring Maxwell’s equations into a first-order symmetric
hyperbolic form; or, one can introduce an auxiliary variable. In the remainder of this section we
will discuss briefly each one of these three strategies.

11.2.1 Generalized Coulomb gauge

The most straightforward approach to eliminating the undesirable terms is to choose a gauge so
that the term DiD

jAj disappears. Define the quantity

Γ ≡ DiAi. (11.11)

To eliminate the offending term, we may then set

Γ = 0. (11.12)

This choice is the familiar Coulomb gauge condition.

Exercise 11.1 Show that in the Coulomb gauge the gauge potential φ satisfies Poisson’s elliptic
equation

DiDiφ = −4πρe. (11.13)

In general relativity, an analogous approach can be taken by choosing harmonic coordinates,
which bring the equations into the form of a wave equation.10 (The reader may wish to review
Section 4.3, and, especially, exercise 4.10.) We will return to this strategy in Section 11.3 below.

This approach has disadvantages, too. As exercise 11.1 demonstrates, the choice (11.12) forces
us to satisfy a constraint that may be inconvenient to solve. In general relativity, the analogous
harmonic gauge condition, (4)Γa = 0, similarly imposes a coordinate choice – the lapse and shift
now have to satisfy equations (4.44) and (4.45). These coordinates may not be well-suited to the
problem at hand, and may lead to coordinate singularities. One way to regain coordinate freedom
is not to set Γ = 0 as in equation (11.12), but instead to set Γ equal to some yet-to-be-chosen
gauge source function H(t, xi),

Γ = H(t, xi). (11.14)

Retracing the steps in exercise 11.1 we could find out how a particular choice of H affects the gauge
potential φ. Similarly, in general relativity we can relax the harmonic gauge condition with the
help of a four-dimensional gauge source function, (4)Γa = Ha(t, xi), as we will see in Section 11.3.
This approach is commonly refered to as “generalized harmonic coordinates”, and, in analogy, we
could refer to the condition (11.14) imposed on Γ as the “generalized Coulomb gauge”.

10This property was first realized by De Donder (1921) and Lanczos (1922). Many of the early hyperbolic
formulations of Einstein’s equations were based on this gauge choice, e. g. Choquet-Bruhat (1952, 1962); Fischer
and Marsden (1972).
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11.2.2 First-order hyperbolic formulations

An alternative, gauge-covariant approach to bringing Maxwell’s equations into a symmetric hy-
perbolic form is to take a time derivative of equation (11.5) instead of equation (11.4), which then
yields

∂2
tEi = DiD

j(−Ej −DjΦ)−DjD
j(−Ei −DiΦ)− 4π∂tji. (11.15)

Using the constraint (11.6) we can eliminate the first term and find a wave equation for Ei,

− ∂2
tEi +DjD

jEi = 4π(∂tji +Diρe), (11.16)

which is symmetric hyperbolic. Interestingly, the gauge fields Ai and Φ have disappeared entirely
from this equation.11

If desired we can write the wave equation (11.16) as a system of coupled first-order equations
by introducing a new set of first-order variables. This is exactly how we found the system (6.6)
from the wave equation (6.3) in Section 6.1. We will discuss similar approaches in general relativity
in Section 11.4.

11.2.3 Auxiliary variables

A third approach to “fixing” Maxwell’s equations is in some ways similar to the first one. We
again use the auxiliary variable Γ defined in equation (11.11). However, instead of setting this
variable to a predetermined function – given by the gauge source function – we now treat this
variable as a new, independent field that we evolve. We can derive an evolution equation for Γ
from equation (11.4),

∂tΓ = ∂tD
iAi = Di∂tAi = −DiEi −DiD

iΦ = −DiD
iΦ− 4πρe. (11.17)

Note that we have used the constraint equation (11.6) in the last equality, similar to the way we
used the same constraint to arrive at the wave equation (11.16). Exercise 11.4 below demonstrates
how this step affects the properties of constraint violations.

In terms of Γ, the evolution equation (11.5) for Ei becomes

∂tEi = −DjD
jAi +DiΓ− 4πji. (11.18)

Equations (11.4), (11.17) and (11.18) now constitute the evolution equations in this new formula-
tion, and equations (11.6) and (11.11) are the constraint equations. In this formulation the mixed
derivative term DiD

jAj has been eliminated without using up any gauge freedom, which is still
imposed via the choice of φ. In Section 11.5 we will introduce an analogous reformulation of the
ADM equations.

11.3 Generalized Harmonic Coordinates

One way to avoid the problems associated with the standard ADM evolution equations (11.7)
and (11.8) is to abandon these equations completely. Instead of using a 3+1 decomposition of
Einstein’s equations as a starting point, we could start with the original four-dimensional version

Gab = 8πTab (11.19)

11To quote from Abrahams and York, Jr., (1997), “the dynamics of electromagnetism have been cleanly separated
from the gauge-dependent evolution of the vector and scalar potentials.”
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in the form (4)Rab = 8π(Tab − (1/2)gabT ). Substituting the Ricci tensor as expressed by equa-
tion (4.46) yields

1
2
gcd∂d∂cgab − gc(a∂b)

(4)Γc − (4)Γc (4)Γ(ab)c − 2ged (4)Γce(a
(4)Γb)cd − gcd (4)Γead

(4)Γecb

= −8π
(
Tab − 1

2
gabT

)
, (11.20)

where we have reintroduced the definition (4.40)

(4)Γa ≡ gbc(4)Γabc = − 1

|g|1/2
∂

∂xb

(
|g|1/2gab

)
= gbc∇b∇cx

a (11.21)

(see exercises 4.8 and 4.10 and the discussion that follows these exercises). The (4)Γa are con-
tractions of Christoffel symbols, and therefore do not transform like vectors under coordinate
transformations. We can now introduce a gauge by setting these quantities equal to some given
gauge source functions Ha,

(4)Γa = Ha(t, xi). (11.22)

This approach follows very closely our electromagnetic example of Section 11.2.1, and equa-
tion (11.22) is the direct analog of (11.14). Just like the choice (11.14) led to the elimination
of the “mixed derivatives” terms in Maxwell’s equations (11.10), inserting equation (11.22) into
Einstein’s equations (11.20) yields a nonlinear wave equation for the spacetime metric gab.

12 After
some manipulations this equation can be brought into the form13

gcd∂d∂cgab + 2∂(ag
cd∂cgb)d + 2H(a,b) − 2Hd

(4)Γdab + 2 (4)Γcbd
(4)Γdac = −8π (2Tab − gabT ) . (11.23)

Here we have lowered the indices of Ha with the spacetime metric gab, Ha ≡ gabH
b. For the special

choice Ha = 0 we recover the harmonic coordinates of Section 4.3. More generally we refer to
this approach as “generalized harmonic coordinates”.14 This formalism was adopted by Pretorius
(2005b,a) in his simulations of binary black hole coalescence and merger, which we will discuss in
more detail in Chapter 13.

Identifying equations (11.21) and (11.22) imposes a new, four-dimensional constraint

Ca ≡ Ha − gbc (4)Γabc = 0. (11.24)

Equation (11.23) can be integrated directly for the spacetime metric gab. To stabilize the system,
it is sometimes necessary to add linear combinations of the constraints (11.24) to the evolution
equations (11.23), i.e., it is necessary to add terms proportional to the quantities Ca, which may
not be identically zero due to numerical errors.15 We will discuss why adding constraints tends to
stabilize evolution equations in Section 11.5.

The generalized harmonic approach to determing the metric in a dynamical spacetime differs
in several ways from the 3+1 formalism, so that it is worthwhile to discuss some aspects of this
formalism in some more detail. Most importantly, equation (11.23) is a second-order equation in
time for the spacetime metric, while in the usual 3+1 decomposition we integrate coupled equations

12See Friedrich (1985); Garfinkle (2002). See also the related “Z4” formalism suggested by Bona et al. (2003).
13See Pretorius (2005b).
14This name is somewhat misleading, however, since it does not single out any particular family of coordinate

systems. Instead, any arbitrary coordinate system can be generated by (11.22) with a suitable choice of Ha.
15To stabilize his simulations of binary black holes, Pretorius (2005a) added a combination of these constraints

to the evolution equations (11.23), as suggested by Gundlach et al. (2005).
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for spatial metric and the extrinsic curvature that are first-order in time. This difference effects
both the initial data and the numerical implementation.

Within the 3+1 decomposition, a set of initial data consists of values of the spatial metric
γij and the extrinsic curvature Kij that satisfy the constraint equations (e.g. (2.133) and (2.134))
at one instant of time. Given a choice for the lapse α and the shift βi, γij and Kij can then
be integrated forward in time with the evolution equations (e.g. (2.135) and (2.136)). Equation
(11.23), on the other hand, requires the spacetime metric gab and its first time derivative at some
instant of time t as initial data.

One way of constructing such initial data is the following. We could first solve the contraint
equations (2.133) and (2.134), in, say, the conformal thin-sandwich formalism described in Section
3.3. The freely specifiable variables then are the conformally related metric γ̄ij and its time
derivative, together with the trace of the extrinsic curvature K and its time derivative. Solving
the equations yields the conformal factor ψ, the lapse α and the shift βi. This is all the information
required to construct the spacetime metric gab (e.g. equation (2.132)). To find the time derivative
of gab we can first evaluate the evolution equation (2.135), which yields ∂tγij at t = 0. We can find
the time derivatives of α and βi, from the condition (4)Γa = Ha, again evaluated at t = 0. For the
special case Ha = 0 this condition yields equations (4.44) and (4.45), which we can solve for the
desired time derivatives (see exercise 4.9). If Ha 6= 0 these equations have additional source terms,
but the derivation is very similar. From the time derivatives of the spatial metric, the lapse and
the shift we can finally construct the time derivative of the spacetime metric, which completes the
initial data for equation (11.23).

The appearance of second-order time derivatives in equation (11.23) also poses some numerical
challenges. In finite-difference applications these second derivatives can be handled by choosing
a three-level scheme and using a finite-difference representation similar to the one described by
equation 6.22). The situation is complicated by the presence of the mixed space-time derivatives,
which couple the function values at the new time level. To avoid an implicit scheme, the resulting
system of equations can be solved iteratively.16 Alternatively, equation (11.23) can be recast into
a system of coupled first-order equations.17

Another important difference between this approach and 3+1 decompositions is the way in
which coordinates are imposed. In the 3+1 decomposition, we choose a coordinate system with
the help of the lapse α and the shift βi. These quantities are directly related to the geometry
of the spatial slices Σ, and in Chapter 4 we have seen how geometric considerations can guide
the search for coordinate systems with particularly desirable properties. In this “generalized
harmonic coordinate” approach, on the other hand, the coordinates are imposed by the gauge
source functions Ha. These quantities do not have a direct geometrical meaning, and it is therefore
much less clear how to construct a coordinate system with desirable properties. Pretorius (2005a)
chose Ht to satisfy a wave equation that includes the lapse α (computed from gtt) as a source,
and Hi = 0. A priori there is not much reason to expect this choice to lead to a well-behaved
coordinate system, but in binary black hole merger simulations it evidently does.

While the wave-like structure of equation (11.23) is very appealing, the uncertainty over how
to impose suitable coordinate conditions has served to discourage many researchers from using this
formalism. Instead, a number of other formulations of Einstein’s equations have been constructed
with similar desirable mathematical properties as equation (11.23) but which, by contrast, impose
the gauge conditions via a lapse and shift.

16Pretorius (2005b).
17Lindblom et al. (2006).
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11.4 First-order Symmetric Hyperbolic Formulations

As we discussed in Section 11.1, it could prove quite desirable to cast the evolution equations
into a first-order hyperbolic form.18 The first such formulations were based on harmonic coor-
dinates19 and used as a starting point the formalism of Section 11.3 with Ha = 0. The first
formulations that departed from the assumption of harmonic coordinates were based on a spin-
frame formalism.20 Other formulations introduced partial derivatives of the metric and other
quantities as new independent variables.21 In analogy to the electromagnetic example in Section
11.2.2, it is also possible to take a time derivative of equation (11.8) to derive what is sometimes
referred to as the “Einstein-Ricci” system of equations.22 Another system of equations, some-
times called the “Einstein-Bianchi” system, can be derived from the Bianchi identities.23 The
“Einstein-Christoffel” system is constructed by introducing additional “connection” variables.24

We also mention a so-called “λ”-system that embeds Einstein’s equations into a larger symmetric
hyperbolic system with the constraint surface of Einstein’s equations acting as an attractor of the
evolution.25

It is beyond the scope of this volume to review all of these formulations. Some have features
that are not very desirable numerically, in that they restrict the gauge freedom, introduce extra
derivatives of the matter variables, or introduce a large number of auxiliary variables. Only few
of these formulations have been implemented numerically, and many of these implementations
adopted simplifying symmetry conditions (e.g., spherical symmetry). Some of these implementa-
tions display advantages over the standard 3+1 formalism,26 but others reveal additional problems.
For example, a particular equation in the “Einstein-Ricci” system turns out to produce an expo-
nentially growing mode, which can be removed in spherical symmetry, but not in more general 3+1
simulations.27 Only a few of these systems have been implemented in 3 + 1 dimensions, including
the one of Bona and Massó (1992), and versions of the “Einstein-Christoffel” system of Anderson
and York, Jr. (1999).28 Since this “Einstein-Christoffel” formulation is particularly elegant, we
provide a brief summary of this system as an example of a first-order hyperbolic formulation.

Starting with the standard 3+1 or ADM formalism of Chapter 2 we define the new variables29

fkij = Γ(ij)k + γkiγ
lmΓ[lj]m + γkjγ

lmΓ[li]m. (11.25)

These functions are now promoted to independent functions. It can then be shown that the
evolution equations (11.7) and (11.8) can be rewritten as the coupled system

dtγij = −2αKij

dtKij + αγkl∂lfkij = αMij ,
dtfkij + α∂kKij = αNkij.

(11.26)

18See Reula (1998) for a more extensive survey than provided in this Section.
19See Choquet-Bruhat (1952, 1962); Fischer and Marsden (1972).
20e.g. Friedrich (1981, 1985)
21e.g. Bona and Massó (1992); Frittelli and Reula (1994)
22Choquet-Bruhat and Ruggeri (1983); Abrahams et al. (1995); Abrahams and York, Jr., (1997).
23Friedrich (1996); Anderson et al. (1997).
24Anderson and York, Jr. (1999).
25Brodbeck et al. (1999).
26e.g. Bona and Massó (1992).
27Scheel et al. (1997, 1998).
28The latter have been implemented numerically by Kidder et al. (2001, see also Kidder et al. (2000)) using

spectral methods.
29Here we adopt the notation of Kidder et al. (2000).
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Here we have introduced the abbreviation

dt ≡ ∂t − Lβ , (11.27)

and the source terms Mij and Nijk given by

Mij = γkl(KklKij − 2KkiKlj) + γklγmn(4fkmif[ln]j

+4fkm[nfl]ij − fikmfjln + 8f(ij)kf[ln]m + 4fkm(ifj)ln
−8fklifmnj + 20fkl(ifj)mn − 13fiklfjmn)
−∂i∂j ln ᾱ− (∂i ln ᾱ)(∂j ln ᾱ) + 2γijγ

klγmn(fkmn∂l ln ᾱ

−fkml∂n ln ᾱ) + γkl
(

(2f(ij)k − fkij)∂l ln ᾱ

+4fkl(i∂j) ln ᾱ− 3(fikl∂j ln ᾱ + fjkl∂i ln ᾱ)
)

−8πSij + 4πγijT ,

(11.28)

and
Nkij = γmn

(
4Kk(ifj)mn − 4fmn(iKj)k +Kij(2fmnk − 3fkmn)

)
+2γmnγpq

(
Kmp(γk(ifj)qn − 2fqn(iγj)k)

+γk(iKj)m(8fnpq − 6fpqn) +Kmn(4fpq(iγj)k − 5γk(ifj)pq)
)

−Kij∂k ln ᾱ + 2γmn(Km(iγj)k∂n ln ᾱ−Kmnγk(i∂j) ln ᾱ)
+16πγk(ijj).

(11.29)

We have also used the “densitized” lapse function

ᾱ = γ−1/2α (11.30)

(see equation 3.100) and, in addition to the matter source terms defined in Chapter 2, the four-
dimensional trace of the stress energy tensor,

T = gabTab. (11.31)

The first-order, symmetric hyperbolic (“FOSH”) system (11.26) is equivalent to the original set
of evolution equations (11.7) and (11.8). Since the fkij are evolved as independent functions, the
defining relations (11.25) can be considered as a new set of constraint equations in addition to the
usual ones given by equations (2.133) and (2.134). Note also that the source terms Mij and Nijk

on the right-hand sides do not contain any derivatives of the fundamental variables (other than of
the arbitrary lapse function ᾱ). Equations (11.26) can be combined to yield a wave equation for
the components of the spatial metric γij in which the right-hand sides appear as source terms.

Evolutions of a single black hole using a spectral implementation of this system are still un-
stable, but the lifetime of these simulation can be extended to late times by a generalization of
the equations.30 This generalization involves a redefinition of the independent variables and the
addition of new constraints. The above equations can be embedded into a 12-parameter family
of strongly hyperbolic formulations. The stability properties of the system depend sensitively on
the choice of the free parameters, which can be understood analytically in terms of energy argu-
ments.31 Given this need for fine-tuning, and given the successes of both the generalized coordinate
formalism of Section 11.3 and the BSSN formulation discussed below, this “Einstein-Christoffel”
system has lost some of its appeal.

30Kidder et al. (2001).
31See, e.g. Lindblom and Scheel (2002). Also see exercise 11.4 below and the related discussion, which illustrate

how the addition of constraints affects the properties of evolution systems.
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11.5 The BSSN Formulation

In our illustration of Section 11.2 employing electromagnetism we have seen that we can also elim-
inate the “mixed second derivatives” in Maxwell’s equations (11.10) by promoting the contraction
Γ defined in equation (11.11) to be a new, independent function. In Sections 4.3 and 11.3 we have
seen similarly that we can absorb the mixed second derivatives in the Ricci tensor with the help of
the connection functions (11.21). The BSSN formalism32 adopts a similar strategy to simplify the
three-dimensional, spatial Ricci tensor.33 In addition, the conformal factor and the trace of the
extrinsic curvature are evolved separately in the BSSN formalism, which follows the philosophy of
separating transverse from longitudinal, or, equivalently, radiative from nonradiative, degrees of
freedom. The later idea was also the basis of the conformal decompositions discussed in Chapter
3 for the construction of initial data.

To derive this formulation, we begin by writing the conformal factor ψ as ψ = eφ so that we
have

γ̄ij = e−4φγij. (11.32)

We then require that the determinant of the conformally related metric γ̄ij be equal to that of the
flat metric ηij in whatever coordinate system we are using, i.e.,

φ =
1

12
ln

(
γ

η

)
. (11.33)

In the following we will adopt a Cartesian coordinate system, so that γ̄ = η = 1.
As in equation (3.31) we split off from the extrinsic curvature its trace and conformally rescale

the remaining traceless piece Aij. However, we choose a conformal rescaling that is different from
equation (3.35) and, instead, rescale Aij the same way as we did for the metric itself,

Ãij = e−4φAij. (11.34)

We will use tildes as opposed to the bars used in Chapter 3 to distinguish between these different
rescalings. Indices of Ãij will be raised and lowered with the conformal metric γ̄ij, so that Ãij =
e4φAij.

Evolution equations for φ and K can now be found by taking the trace of the evolution
equations (2.137) and (2.138), which yields

∂tφ = −1

6
αK + βi∂iφ+

1

6
∂iβ

i (11.35)

and

∂tK = −γijDjDiα + α(ÃijÃ
ij +

1

3
K2) + 4πα(ρ+ S) + βi∂iK. (11.36)

Subtracting these equations from the evolution equations (11.7) and (11.8) leaves the traceless
parts of the evolution equations for γ̄ij and Ãij according to

∂tγ̄ij = −2αÃij + βk∂kγ̄ij + γ̄ik∂jβ
k + γ̄kj∂iβ

k − 2

3
γ̄ij∂kβ

k , (11.37)

32Shibata and Nakamura (1995); Baumgarte and Shapiro (1999b).
33See also Nakamura et al. (1987).
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and

∂tÃij = e−4φ
(
−(DiDjα)TF + α(RTF

ij − 8πSTFij )
)

+ α(KÃij − 2ÃilÃ
l
j)

+βk∂kÃij + Ãik∂jβ
k + Ãkj∂iβ

k − 2

3
Ãij∂kβ

k .
(11.38)

In the last equation, the superscript TF denotes the trace-free part of a tensor, e.g. RTF
ij =

Rij − γijR/3. Note that in equations (11.35) through (11.38) the shift terms arise from Lie
derivatives Lβ of the respective evolution variable appearing on the left-hand side. The divergence
of the shift, ∂iβ

i, appears in the Lie derivative because the choice γ̄ = 1 makes φ a tensor density
of weight 1/6, and γ̄ij and Ãij tensor densities of weight −2/3 (see Section A.3).

Exercise 11.2 Derive equations (11.35) through (11.38).

According to equation (3.10) we can split the Ricci tensor into two terms

Rij = R̄ij +Rφ
ij, (11.39)

where Rφ
ij depends only on the conformal function φ. We can identify the form of Rφ

ij by inserting
φ = lnψ into equation (3.10). We could compute the conformally related Ricci tensor R̄ij by in-
serting γ̄ij into equation (2.143), but that would again introduce the mixed second derivatives that
we are trying to avoid. Analogously to the way we introduced a new variable Γ in equation (11.11)
to eliminate the mixed derivatives in Maxwell’s evolution equations, we can now define “conformal
connection functions”

Γ̄i ≡ γ̄jkΓ̄ijk = −∂j γ̄ij (11.40)

to perform accomplish the same task in the above evolution equations for the gravitational field.
Here the Γ̄ijk are the connection coefficients associated with γ̄ij, and the last equality holds in
Cartesian coordinates when γ̄ = 1. In terms of these conformal connection functions we can now
write the Ricci tensor as

R̄ij = −1

2
γ̄lm∂m∂lγ̄ij + γ̄k(i∂j)Γ̄

k + Γ̄kΓ̄(ij)k + γ̄lm
(
2Γ̄kl(iΓ̄j)km + Γ̄kimΓ̄klj

)
. (11.41)

The only explicit second-derivative operator acting on γ̄ij in this expression involves a Laplacian,
γ̄lm∂m∂l – all other second-derivatives are absorbed in first derivatives of Γ̄i. This derivative
structure is similar to the one we encountered in the four-dimensional Ricci tensor in Sections
4.3 and 11.3, where the only explicit second derivatives on the metric appearing in that quantity
managed to form a convenient wave operator (d’Alembertian).

In the generalized harmonic formalism of Section 11.3 we set the four-dimensional analogs
(4)Γa of the conformal connection functions Γ̄i equal to some specified gauge source function.
Here we do not follow this approach but instead promote the Γ̄i to new independent functions,
in complete analogy to our treatment of Maxwell’s equations in Section 11.2.3. Adopting this
approach requires us to derive separate evolution equations for the Γ̄i. By analogy with the
derivation of equation (11.17) we interchange a partial time and space derivative in the definition
(11.40) to obtain

∂tΓ̄
i = −∂j

(
2αÃij − 2γ̄m(j∂mβ

i) +
2

3
γ̄ij∂lβ

l + βl∂lγ̄
ij
)
. (11.42)
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We can now eliminate the divergence of the extrinsic curvature with the help of the momentum
constraint (2.134), which then yields the desired evolution equation,

∂tΓ̄
i = −2Ãij∂jα + 2α

(
Γ̄ijkÃ

kj − 2

3
γ̄ij∂jK − 8πγ̄ijSj + 6Ãij∂jφ

)
+βj∂jΓ̄

i − Γ̄j∂jβ
i +

2

3
Γ̄i∂jβ

j +
1

3
γ̄li∂l∂jβ

j + γ̄lj∂j∂lβ
i .

(11.43)

Equations (11.35) through (11.38), together with (11.43), form a new system of evolution
equations that is equivalent to equations (11.7) and (11.8). Since the Γ̄i are evolved as indepen-
dent functions, the defining relation (11.40) serves as a new constraint equation, in addition to
equations (2.133) and (2.134). We summarize the resulting BSSN formalism in Box 10.1.

Exercise 11.3 Show that the shift terms in equation (11.43) arise from the Lie derivative of Γ̄i along
βi,

LβΓ̄i = βj∂jΓ̄i − Γ̄j∂jβ
i +

2
3
Γ̄i∂jβ

j +
1
3
γ̄li∂l∂jβ

j + γ̄lj∂j∂lβ
i . (11.44)

Hint: First show that the conformal connection coefficients transform according to

Γ̄a′ = J−W ∂xa′

∂xb
Γ̄b + J−W γ̄ij ∂x

b′

∂xi

∂xc′

∂xj

∂xa′

∂xl

∂2xl

∂xb′∂xc′
− 1

2
J−W γ̄bc ∂x

a′

∂xb
∂c(lnJW ), (11.45)

where J is the Jacobian of the transformation and W the weight of γ̄ij . The first term is the usual
transformation term for a tensor (except for the Jacobian factor), the second term arises because the
connection coefficients do not transform like tensors, and the third term appears because γ̄ij is a tensor
density. Then use the definition (A.7) to find equation (11.44) for W = −2/3 (cf. equations A.36 and
A.37).

While the different formulations are equivalent analytically, the difference in performance of
numerical implementations is striking. In Figure 11.1 we return to the example of linear grav-
itational wave propagation cited at the beginning of this Chapter. In this example,34 a small
amplitude, time-symmetric, even-parity l = 2, m = 0 gravitational wave of the kind discussed in
Section 9.1.2 is evolved with harmonic slicing (see Section 4.3), zero shift, and a simple outgoing
wave boundary condition. Both the standard 3+1 and BSSN systems give very similar results early
on, but the standard system crashes very soon, while the BSSN system remains stable. Similar
improvements have been found for many other applications that employ a BSSN scheme, including
the propagation of nonlinear gravitational waves and the evolution of spacetimes containing black
holes and neutron stars. The BSSN system, or a variation closely related to it, is currently the
form of the Einstein’s equations most commonly used in numerical relativity. With the exception
of some that use the generalized harmonic coordinate approach of Section 11.3, most successful
simulations of binary black holes, binary neutron stars and binary black hole-neutron stars, as
well as stellar collapse, use a version of the BSSN system.

Constraint propagation and damping

The improved numerical stability properties of the BSSN system can be understood in terms
of the hyperbolicity criteria discussed in Section 11.1; the BSSN system can be shown to be
strongly hyperbolic, and hence well-posed, while the original 3+1 (ADM) formulation is only
weakly hyperbolic, and hence ill-posed.35 We can also gain some heuristic insight into its improved

34Baumgarte and Shapiro (1999b); see also a similar example in Shibata and Nakamura (1995).
35See, e.g. Sarbach et al. (2002); Yoneda and Shinkai (2002); Gundlach and Martin-Garcia (2006a,b), and refer-

ences therein.
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Figure 11.1: Comparison of the evolution of a linearized gravitational wave using the standard
3+1 or ADM equations (dashed lines) and the BSSN equations (solid lines). Shown is the extrinsic
curvature component Kzz as a function of time. A blow-up of the plot at early times is shown
in the bottom insert, where both systems agree very well. The evolution at later times is shown
in the top insert, just before the standard 3 + 1 system crashes. For the BSSN system, which
remains stable, the quantity Kzz is constructed from Āzz, φ and K. [From Baumgarte and Shapiro
(1999b).]

behavior by considering the propagation of the constraints.36 Linearizing the standard 3 + 1 and
BSSN equations on a flat Minkowski background reveals37 that modes that violate the momentum
constraint do not propagate in the standard equations. Such zero-speed modes lead to instabilities
when nonlinear source terms are included. However, when the momentum constraint, which should
be zero if the Einstein equations are satisfied exactly, is added to the Γ̄i evolution equation (11.43)
of the BSSN system, the momentum constraint violating modes now propagate with nonzero
speed. Consequently, rather than growing locally, as in the standard system, constraint violations
can now propagate off the numerical grid,38 thereby stabilizing the simulation.

To illustrate this effect in a simple setting, let us return to Maxwell’s equations and measure
the violation of the constraint (11.6) by introducing the variable C defined as

C ≡ DiEi − 4πρe. (11.56)

By differentiating the continuity equation Dij
i+∂tρe = 0 and using the evolution equation (11.5),

36Cf., Frittelli (1997).
37Alcubierre et al. (2000).
38Provided that appropriate boundary conditions are imposed.
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it is easy to show that the time derivative of this constraint variable vanishes identically,

∂tC = ∂t(D
iEi − 4πρe) = Di∂tEi − 4π∂tρe

= −DiDjDjAi +DiDiD
jAj − 4π(Diji + ∂tρe) = 0. (11.57)

This result indicates that any violation of the constraint (i.e. C 6= 0) will persist and not propagate
away.

The situation is different in the BSSN-like reformulation of Maxwell’s equations of Section
11.2.3. In fact, we can use this example to show the effect of adding the constraint (11.6) in the
evolution equation (11.17). Instead of using the constraint to completely replace the divergence
DiEi as we did in deriving the Γ-evolution equation (11.17), consider adding the constraint vio-
lation parameter C times some constant a2 (which we are always allowed to do, since constraint
violations are supposed to vanish),

∂tΓ = ∂tD
iAi = Di∂tAi = −DiEi −DiD

iΦ + a2C = (a2 − 1)DiEi −DiD
iΦ− 4πa2ρe. (11.58)

With a2 = 1 we recover equation (11.17). We can now reconsider the propagation of the constraint
violations, i.e., the time evolution of the parameter C. again. In deriving equation (11.57) we used
the evolution equation (11.5), but this evolution equation is no longer part of the new BSSN-like
evolution system consisting of equations (11.4), (11.17) and (11.18). For this system, we can show
that the constraint violation parameter now satisfies a wave equation.39

Exercise 11.4 Show that in the system (11.4), (11.17) and (11.18) constraint violations measured by
the parameter C defined in equation (11.56) satisfy the wave equation

(−∂2
t + a2DiD

i) C = 0. (11.59)

According to equation (11.59), constraint violations measured by C now propagate like waves
with a characteristic speed a. For a = 0, the constraints again do not propagate, but with a = 1
they propagate with the speed of light. We thus see that adding the constraint in equation (11.17)
was crucial in achieving this property, in direct analogy to the results found for the linearized
Einstein equations.

If the condition C = ∂tC = 0 holds initially, then the two systems are equivalent analytically,
since both will guarantee that C = 0 in the domain of dependence of the initial spatial hypersurface.
However, the two systems behave very differently numerically, since any numerical (e.g. roundoff)
error will lead to a constraint violation |C| > 0, which will then evolve differently in the two
systems.

The addition of the constraints to the evolution equations, which comes under the general
category of constraint damping or constraint sweeping, is by no means unique to the BSSN system.
We have already discussed in Section 11.1 that adding constraints to the evolution equations
affects the principal part of the system, and hence its well-posedness. This technique has been
applied in the context of MHD, as we mentioned in Chapter 5.2.4. It was pointed out early
on40 that constraint violations can be controlled by adding additional terms to the standard
3 + 1 evolution equations. The importance of the propagation of constraints in unconstrained
evolution calculations was demonstrated and shown to be linked to the addition of the Hamiltonian
constraint to the evolution equations.41 Several investigators have also experimented with adding

39See Knapp et al. (2002), who demonstrate this effect in a numerical example.
40Detweiler (1987).
41Frittelli (1997); see also Kelly et al. (2001).
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the momentum constraints to the standard equations and have found stabilizing effects.42 We
have already mentioned that in the presence of black holes, the generalized harmonic approach
summarized in Section 11.3 requires the addition of constraints. It also turns out that in some
situations the stability properties of the basic BSSN system itself can be enhanced further by
explicitly adding Hamiltonian and/or momentum constraints.43 We will describe some of these
enhancements when we discuss a few specific applications that employ the BSSN formalism in
later Chapters.44

42See, e.g. Yoneda and Shinkai (2001).
43See Yoneda and Shinkai (2002); Yo et al. (2002); Duez et al. (2004); Marronetti (2005, 2006).
44See, e.g., Chapter 14.2.3.
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Box 11.1: The BSSN equations

In the BSSN formulation of the 3 + 1 equations the spatial metric γij is decomposed into
a conformally related metric γ̄ij with determinant γ̄ = 1 and a conformal factor eφ,

γij = e4φγ̄ij. (11.46)

We also decompose the extrinsic curvature into its trace and a traceless part and confor-
mally transform the traceless part as we do the metric,

Kij = e4φÃij +
1

3
γijK. (11.47)

In terms of these variables the Hamiltonian constraint (2.133) becomes

0 = H = γ̄ijD̄iD̄je
φ − eφ

8
R̄ +

e5φ

8
ÃijÃ

ij − e5φ

12
K2 + 2πe5φρ , (11.48)

while the momentum constraint (2.134) becomes

0 = Mi = D̄j(e
6φÃji)− 2

3
e6φD̄iK − 8πe6φSi . (11.49)

The evolution equation (2.137) for γij splits into two equations,

∂tφ = −1

6
αK + βi∂iφ+

1

6
∂iβ

i, (11.50)

∂tγ̄ij = −2αÃij + βk∂kγ̄ij + γ̄ik∂jβ
k + γ̄kj∂iβ

k − 2

3
γ̄ij∂kβ

k, (11.51)

while the evolution equation (2.136) for Kij splits into the two equations

∂tK = −γijDjDiα + α(ÃijÃ
ij +

1

3
K2) + 4πα(ρ+ S) + βi∂iK, (11.52)

∂tÃij = e−4φ
(
−(DiDjα)TF + α(RTF

ij − 8πSTFij )
)

+ α(KÃij − 2ÃilÃ
l
j)

+βk∂kÃij + Ãik∂jβ
k + Ãkj∂iβ

k − 2

3
Ãij∂kβ

k.
(11.53)

In the last equation the superscript TF denotes the trace-free part of a tensor, e.g. RTF
ij =

Rij − γijR/3. We also split the Ricci tensor into Rij = R̄ij + Rφ
ij, where Rφ

ij can be found
by inserting φ = lnψ into equation (3.10). We express R̄ij in terms of the conformal
connection functions Γ̄i ≡ γ̄jkΓ̄ijk = −∂j γ̄ij , which yields

R̄ij = −1

2
γ̄lm∂m∂lγ̄ij + γ̄k(i∂j)Γ̄

k + Γ̄kΓ̄(ij)k + γ̄lm
(
2Γ̄kl(iΓ̄j)km + Γ̄kimΓ̄klj

)
. (11.54)

The Γ̄i are now treated as independent functions that satisfy their own evolution equations,

∂tΓ̄
i = −2Ãij∂jα + 2α

(
Γ̄ijkÃ

kj − 2

3
γ̄ij∂jK − 8πγ̄ijSj + 6Ãij∂jφ

)
+βj∂jΓ̄

i − Γ̄j∂jβ
i +

2

3
Γ̄i∂jβ

j +
1

3
γ̄li∂l∂jβ

j + γ̄lj∂j∂lβ
i .

(11.55)
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Chapter 12

Binary Black Hole Initial Data

In this chapter we wish to construct initial data for quasiequilibrium binary black holes. That
is, we seek solutions corresponding to two black holes in stable, nearly circular orbit about each
other. In contrast to Newtonian theory, a stellar binary in general relativity can never be in
strict equilibrium, with the companions moving in exactly circular orbits at constant separation
for all time. Instead, gravitational radiation emission inevitably leads to loss of orbital energy
and angular momentum, causing the orbit to decay. The resulting trajectory then traces out
an inspiral rather than a perfect circle. For sufficiently large separations, the binary motion
is nearly Newtonian, hence the orbit is nearly circular, decaying very little during one orbital
period. If isolated from outside perturbations (e.g. gravitational encounters with other stars),
it is expected that astrophysical binaries composed of compact stars (i.e. compact binaries) will
ultimately evolve to a quasiequilibrium state following their formation at large separation.1 The
reason is that gravitational radiation loss drives orbital circularization as well as decay, as we will
discuss in the next section. Only when the orbits become very close and highly relativistic, just
prior to radial plunge and binary merger, do the deviations from circular motion become large.

The construction of quasiequilibrium binary initial data poses a number of conceptual chal-
lenges. Getting started, however, is fairly straightforward. To find solutions we shall follow the
approaches outlined in Chapter 3. Specifically, we need to solve the constraint equations (2.133)
and (2.134), which can be cast into a convenient form with the help of the conformal transformation
(3.5) of the spatial metric γij,

γij = ψ4γ̄ij. (12.1)

Recall that ψ is the conformal factor and γ̄ij the conformally related metric. Recall also that we
can separate the trace of the extrinsic curvature from its traceless part and conformally rescale
the latter according to equation (3.35), so that

Kij = ψ2Āij +
1

3
γijK. (12.2)

In terms of these quantities the Hamiltonian constraint then takes the form (3.37),2

8D̄2ψ − ψR̄− 2

3
ψ5K2 + ψ−7ĀijĀ

ij = 0, (12.3)

1Exceptions include extreme-mass-ratio binaries consisting of stellar-mass companions (which may be compact
stars) orbiting supermassive black holes in dense stellar systems. The orbits of the companions, which evolve via
gravitational encounters (scattering) with other stars as well as by gravitational radiation reaction forces, may be
highly eccentric. See Chapter 9.2.2 for discussion and references.

2Remember that all barred quantities are associated with the conformally-related metric.

351



352 CHAPTER 12. BINARY BLACK HOLE INITIAL DATA

while the momentum constraint reduces to equation (3.38),

D̄jĀ
ij − 2

3
ψ6γ̄ijD̄jK = 0, (12.4)

Here we have specialized to the binary black hole problem and assumed that all matter sources
vanish.

In Section 3.1 we saw that under the assumption of time-symmetry (where Kij = 0) solu-
tions containing multiple black holes can be constructed remarkably easily (see equation 3.23).
Unfortunately, binary black holes in circular orbit are not time-symmetric, so that these simple
solutions are not useful for purposes of obtaining quasiequilibrium solutions. In Chapter 3 we
discussed two separate decompositions of the traceless part of the extrinsic curvature Āij, namely
the transverse-traceless decomposition (CTT) in Section 3.2 and the conformal thin-sandwich de-
composition (CTS) in Section 3.3. We will follow a very similar approach again in this Chapter,
adopting CTT in Section 12.2 and CTS in Section 12.3. Before constructing these binary black hole
initial data, we first shall review some of the physical characteristics of compact binary inspiral,
which will motivate some of the choices that we will make in later Sections.

12.1 Binary Inspiral: Overview

The evolution of compact binaries – binary black holes, neutron stars, or black hole-neutron stars
– proceeds in several distinct phases. By far the longest epoch is the initial inspiral phase, followed
by the plunge and merger phase when the two objects coalesce, and finally the ringdown phase
during which the merger remnant settles down to stationary equilibrium. These different phases
are illustrated schematically in Figure 12.1.

As long as the binary is nearly Newtonian, with the orbital separation much larger than the
total mass M , we may model the emitted gravitational waves as small perturbations propagating
on an otherwise flat background spacetime. As reviewed in Chapters 1.1 and 9.1 the losses of orbital
energy and angular momentum in the weak-field, slow-velocity regime appropriate to Newtonian
binaries are then given to lowest order by the quadrupole expressions,

LGW ≡ −dE
dt

=
1

5
〈
...

Ijk
...

Ijk〉 (12.5)

and
dJi
dt

= −2

5
εijk〈Ïjm

...

Ikm〉. (12.6)

Here Iij is the reduced quadrupole moment,

Ijk =

∫
ρ

(
xjxk −

1

3
δjkr

2

)
d3x =

∑
A

mA

(
xjxk −

1

3
δjkr

2

)
, (12.7)

the bracket 〈〉 denotes an average over several orbital periods, and the triple dot denotes the third
time derivative. For a binary at large separation we may treat the stars as point masses and
insert their stellar masses mA and Newtonian trajectories xi(t) into equation (12.7) to evaluate
equations (12.5) and (12.6). For a binary orbit with eccentricity e the emission of gravitational
radiation always leads to a decrease in the eccentricity, ė < 0.3 Put differently, gravitational

3Peters (1964); see also Lightman et al. (1975), Problem 18.7.
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Figure 12.1: The different phases of compact binary inspiral and coalescence. The gravitational
wave amplitude h(t) is sketched schematically and the analysis technique is identified for each
phase.

radiation circularizes elliptical orbits. This result implies that during the late stages of compact
binary inspiral, we may approximate the orbit as circular.4

Exercise 12.1 Consider a Newtonian binary consisting of two point masses m1 and m2 at a binary
separation r. Write the binary’s Hamiltonian H(r, φ, Pr, Pφ), which is equal to its conserved energy
E, as

E = H =
1
2
P 2

r

µ
+

1
2
P 2

φ

µr2
− µM

r
, (12.8)

where M = m1 +m2 is the total mass and µ = m1m2/M is the reduced mass. Define Ωorb ≡ φ̇ to be
the orbital angular velocity, and J ≡ Pφ to be the orbital angular momentum.
(a) Use Hamilton’s equations to show the following: Pr = µṙ, J = µr2Ωorb, and J is conserved.
(b) Apply Hamilton’s equations to show that a circular orbit with Pr = Ṗr = 0 satisfies

∂E/∂r = 0. (12.9)

(c) Substitute equation (12.8) into equation (12.9) to obtain the virial relation between the kinetic
energy T and potential energy W ,

T = −1
2
W, (12.10)

4See also Exercise 12.2, which shows that once they become circular, the orbits remain circular as they shrink
in radius.
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which implies that the binary’s equilibrium energy is

Eeq(r) = −1
2
Mµ

r
. (12.11)

(d) Use the virial theorem to evaluate Ωorb for circular equilibrium, obtaining Kepler’s third law,

Ωorb =
(
M

r3

)1/2

. (12.12)

The condition (12.9) shows that we can identify a circular orbit by finding an extremum of
the energy at constant angular momentum, which we illustrate in Figure 12.2. A minimum of the
energy corresponds to a stable circular orbit, while a maximum corresponds to an unstable orbit.
The left panel in the figure plots the Newtonian energy (12.8), for which circular orbits can be
found for arbitrarily small binary separations. The transition between stable and unstable circular
orbits occurs at a turning point in the equilibrium energy curve, i.e. when

∂Eeq/∂r = 0 . (12.13)

Equation (12.13) is the turning-point criterion for indentifying marginal stability in an equilibrium
configuration, including a circular binary orbit.5 For Newtonian point-mass binaries, the extrema
of the energy are all minima, as seen in the figure; equivalently, there are no turning points in the
equilibrium energy curve, as indicated by equation (12.11) and by the shape of the equilibrium
energy curve plotted in the figure. Hence all of these circular orbits are stable. Condition (12.9),
which identifies circular orbits, is equivalent to imposing the virial theorem (12.10) at every instant
of time (and not simply as an orbit average, which applies for eccentric orbits also). These same
general criteria for finding quasiequilibrium binaries obeying the virial theorem and identifying
the onset of orbital instability also apply to relativistic systems (see, e.g. Exercise 12.4), and they
will be used in Sections 12.2.3 and 12.3.3.

Exercise 12.2 Return to exercise (12.1) and show that changes in the equilibrium energy Eeq(r) and
the angular momentum Jeq(r) of Newtonian point-mass binaries that reside along sequences of circular
equilibrium are related according to

dEeq = Ωorb dJeq. (12.14)

Combined with the results of Exercise 9.3, which shows that the energy and angular momentum emitted
by gravitational radiation satisfy the same relation, equation (12.14) implies that gravitational wave-
driven binary inspiral will leave circular orbits circular.

As we have mentioned, an exactly circular orbit can only exist in Newtonian gravity, since
in general relativity gravitational radiation makes the orbit shrink.6 We can estimate the orbital
decay rate dr/dt and the time dependence of the radial separation r(t) from equation (12.5), as
shown in Exercise 12.3.

5We apply the same turning-point criterion to identify the onset of radial instability in equilibrium stars in
Chapters 1.3 and 14.1.2.

6Unless, of course, the loss of energy and angular momentum by gravitational radiation emission is exactly
cancelled by some ad hoc incoming gravitational radiation. In fact, several authors have suggested approaches for
modeling equilibrium relativistic binaries by invoking such a “standing-wave” approximation to maintain exactly
circular orbits (see, e.g., Detweiler (1989); Andrade et al. (2004)).



12.1. BINARY INSPIRAL: OVERVIEW 355

Figure 12.2: The energy E as a function of separation for a point-mass Newtonian binary (left
panel), and a toy model problem that incorporates relativistic effects (right panel). The solid lines
are contours of constant angular momentum J , with the values of J increasing from the bottom
to the top. Extrema of these contours correspond to circular orbits (equation 12.9). The dashed
line connects the circular orbits and represents the equilibrium energy Eeq. A turning point in this
equilibrium energy represents the ISCO (equation 12.13) and is marked by dots for relativistic,
tidal and combined relativistic and tidal effects. [From Baumgarte (2001).]

Exercise 12.3 (a) Revisit the Newtonian binary of Exercise 12.1 and use the results of Exercise 9.3
to show that

LGW =
32
5
M3µ2

r5
(12.15)

for a circular orbit.
(b) Combine equation (12.15) with the binary’s equilibrium energy Eeq to find

dr

dt
=
dEeq/dt

dEeq/dr
= − LGW

dEeq/dr
= −64

5
M2µ

r3
. (12.16)

Now integrate equation (12.16) to find the binary separation r as a function of time,

r(t) = 4
(
µM2

5
(T − t)

)1/4

, (12.17)

where T is the time of the coalescence when r = 0.
(c) Combine equation (12.17) with Kepler’s law (12.12) to find the gravitational wave quadrupole
frequency as a function of time,

fGW(t) =
Ωorb

π
=

1
8π

(
5

µM2/3(T − t)

)3/8

. (12.18)

(d) Gravitational wave interferometers are sensitive to the number of wave cycles dNcyc observed in a
given wave frequency interval dfGW. Show that for the Newtonian binary, one obtains a “chirp signal”

dNcyc

d ln fGW
≡ f2

GW

dfGW/dt
=

5
96π

1
(πMfGW)5/3

, (12.19)



356 CHAPTER 12. BINARY BLACK HOLE INITIAL DATA

where M ≡ µ3/5M2/5 is called the “chirp mass”. Note that post-Newtonian corrections to equa-
tion (12.19) can be expressed as a series expansion in the parameter πMfGW � 1.

In Exercise 12.3 we adopted circular orbits to estimate the deviation from circular motion.
This procedure is justified as long as the deviation from circular motion is small. To assess the
deviation from circularity, we first define the orbital decay timescale τGW due to gravitational wave
emission according to

τGW =

∣∣∣∣ r

dr/dt

∣∣∣∣ . (12.20)

Substituting equation (12.16) we find

τGW =
5

64

r4

M2µ
. (12.21)

We can now compare this orbital decay timescale with the orbital period

P =
2π

Ωorb

= 2π

(
M

r3

)−1/2

, (12.22)

by forming the dimensionless ratio

τGW

P
=

5

128π

r5/2

M3/2µ
. (12.23)

For a binary of mass ratio q we can express equation (12.23) as

τGW

P
=

5

128π

(q + 1)2

q

( r
M

)5/2

. (12.24)

This ratio increases steeply with r and is greater than unity, thereby justifying the assumption of
circular orbits, provided

r

M
>
rcrit
M

≡
(

128π

5

)2/5
q2/5

(1 + q)4/5
≤ 5.78. (12.25)

The critical separation rcrit takes its maximum value of 5.78M for equal-mass binaries with q = 1.
This value suggests that we may indeed approximate the binary orbit during the inspiral phase as
quasicircular up to very small binary separations, on the order of a few Schwarzschild radii.

At these small binary separations deviations from the simple Newtonian point-mass potential
in equation (12.8) affect the binary’s evolution, both quantitatively and qualitatively. Deviations
stem from relativistic corrections to the Newtonian interaction and from finite-size effects that lead
to tidal interaction between the binary companions. Post-Newtonian techniques can handle the
relativistic perturbations to the point-mass inspiral, furnishing the corrections as a power series
in the parameter ε ≡ v2/c2 ∼ GM/r (see Appendix E). Numerical simulations are required to
handle tidal interactions, as well as the late inspiral, plunge and merger phases when relativistic
and, in the case of neutron stars, hydrodynamic effects become increasingly strong.

Consider how these corrections to the Newtonian point-mass potential lead to qualitatively new
features in the binary orbit. We can mimic the effect of the relativistic correction by borrowing a
relativistic interaction potential

Erel = −M
µ

J2

r3
(12.26)
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from the effective potential for test particles in a Schwarzschild spacetime (see Exercise 12.4).
Adding this term to the Newtonian energy (12.8) and evaluating the circular equilibrium criterion
(12.9) shows that circular orbits now have the equilibrium energy

Eeq = −1

2

Mµ

r

r − 4M

r − 3M
. (12.27)

This relativistic “toy model” is also illustrated in the right panel of Figure 12.2. Without the new
term, the energy curves at constant angular momentum are dominated by the positive kinetic en-
ergy term J2/(2µr2) at small binary separations r. With the addition of the relativistic correction,
however, these curves are dominated by the new negative term (12.26) for small r. For sufficiently
large J this correction adds a new maximum to the previous minimum in the J = const energy
curves; for smaller values of J these curves no longer have extrema. This behavior means that
circular orbits can only exist for sufficiently large values of J .

As a result of this correction, the equilibrium energy (12.27), which connects the extrema in
the J = const energy curves and is represented by the dashed line in Figure 12.2, now exhibits a
turning point at

rISCO = 6M , (12.28)

at which point equation (12.13) is satisfied. Beyond this turning point the extrema are minima
and thus represent stable circular orbits, while inside they are maxima and represent unstable
circular orbits. The turning point in the equilibrium energy therefore represents an innermost
stable circular orbit, or ISCO for short. Binary companions on quasicircular inspiral trajectories
start accelerating radially inward, plunging toward each other, after they reach the ISCO. This
dynamical transition from the inspiral phase to the plunge and merger phase will induce a cor-
responding transition in the gravitational wave signal, yielding an observable diagnostic of the
transition.

For a point particle orbiting a Schwarzschild black hole, from which we constructed the cor-
rection term (12.26), the location of the ISCO at rISCO = 6M refers to the areal radius of the
orbit. It is more useful to express the critical binary separation in terms of an invariant, like the
orbital angular frequency Ωorb measured by a distant observer. For a point particle orbiting a
Schwarzschild black hole we have MΩISCO = 1/63/2 ≈ 0.0680. In Section 12.4 we will find similar
values for binary black holes.

Exercise 12.4 Consider the orbit of a test-particle mtest around a Schwarzschild black hole M . The
exact relativistic analog of equation (12.8) in this case is7

Ẽ2 =
(
dr

dτ

)2

+ V (r) , (12.29)

where

V (r) ≡
(

1− 2M
r

)(
1 +

J̃2

r2

)
(12.30)

is the “effective potential”, Ẽ = E/mtest, J̃ = J/mtest, r is the areal radius, and τ is proper time.
(a) Circular orbits occur when dr/dτ = 0 and ∂V/∂r|J = 0 = ∂Ẽ/∂r|J , which is the relativistic
counterpart of equation (12.9). Show that such orbits satisfy

Ẽ2
eq =

(r − 2M)2

r(r − 3M)
, (12.31)

J̃2
eq =

Mr2

r − 3M
(12.32)

7See, e.g. Shapiro and Teukolsky (1983), Chapter 12.3.
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as quoted in Chapter 1.2.
(b) The transition from orbital stability to instability occurs when ∂2V/∂r2|J = 0, which gives rISCO =
6M . Show that this transition occurs when

∂Ẽeq/∂r = 0 = ∂J̃eq/∂r , (12.33)

which is the counterpart of equation (12.13). Thus the point of marginal stability corresponds to a
simultaneous turning-point in the equilibrium energy and angular momentum curves. The existence
of simultaneous turning-points in the two curves is a general result that follows from equation (12.14)
in Newtonian gravitation and equation (12.112) in general relativity.
(c) Apply equation (12.14), together with equations (12.31) and (12.32), to show that Ωorb is again
given by equation (12.12) in these coordinates.

We emphasize, however, that for binaries with similar masses, q ≈ 1, the transition from
inspiral to plunge is not sharp. This can be seen from equation (12.24), which shows that τorbit/P
approaches unity close to the ISCO if q ≈ 1. For such a binary, the radial inspiral is already
appreciable over an orbital period as it reaches the ISCO, so that the transition from inspiral to
plunge and merger is gradual rather than sharp. Stated differently, the deviations from circular
orbit are already large as binaries with companions of comparable mass approach our so-called
ISCO. In Chapter 13 we will see that dynamical simulations of binary black hole merger indeed
verify this expectation. The notion of the ISCO is nevertheless a useful concept for the comparison
and characterization of initial data sets.

It is useful to note that any attractive interaction potential that falls off more steeply than
1/r2 results in an ISCO.

Exercise 12.5 (a) Show that any attractive interaction potential of the form −λan+1/rn, where λ > 0
is a dimensionless constant and a > 0 carries dimensions of length, leads to a positive contribution to
the equilibrium energy Eeq provided that n > 2.
(b) Find the minimum of Eeq to locate the ISCO at

rn−1
ISCO = λn(n− 2)

an+1

Mµ
, (12.34)

which is again positive if n > 2.

The ISCO is therefore not only a relativistic phenomenon, but can also arise in Newtonian
gravitation. For example, two fluid stars treated not as point masses but as hydrodynamic equi-
libria of finite size, experience a tidal interaction.8 For irrotational, identical stars, for example,
we can model these tidal effects by including a tidal interaction term

Etidal = −λ µMR5

r6
. (12.35)

Here R is the stellar radius, and the dimensionless parameter λ depends on the equation of state.
For an incompressible fluid λ = 3/2, and from equation (12.34) we find the ISCO is located at

rISCO = (24λ)1/5R ≈ 2.05R, (12.36)

implying that such a binary would reach the ISCO just before the two stars touch. We have
plotted this result in Figure 12.2 for identical stars of compaction m/R = 0.2, where m = M/2
is the mass of the individual stars; we also show the combined effects of relativistic corrections

8See Lai et al. (1993b, 1994b) and references therein for a semi-analytic analysis and models.
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and tidal interactions in determining the ISCO. For compressible stars λ is smaller than 3/2, so
that in Newtonian gravitation these stars would merge before they could encounter any ISCO.
However, in general relativity, for identical irrotational companions constructed with a moderately
stiff equation of state, the entire equilibrium sequence actually terminates at a finite separation
prior to merger, at which point the stellar density profiles form a cusp (see Chapter 15.3). Orbital
decay beyond this point will then trigger some tidal disruption prior to eventual merger (see
Chapter 16).

After reaching the ISCO, the binary companions plunge and merge on an orbital timescale.
Depending on the nature and masses of the compact companions, their coalescence leads to the
formation of a merged object, or remnant, that may either be a rotating neutron star or a black
hole. During the final ringdown phase of the binary evolution this remnant settles down into an
equilibrium state. In the case of a hypermassive neutron star, secular effects (viscosity or magnetic
fields) can lead later to delayed collapse to a black hole (see Chapters 14 and 16.)

During the inspiral phase, up to reasonably small binary separations, the binary can be mod-
eled very accurately by post-Newtonian expansions (see Appendix D). The ringdown phase can
described very well by strong-field perturbative techniques. Numerical relativity simulations are
needed to connect these two regimes, beginning with the late inspiral phase, and continuing
through the dynamical plunge and merger phase. Numerical relativity is also required to treat
delayed collapse. Not surprisingly, considerable effort in numerical relativity has focussed on com-
pact binaries in close quasicircular orbits. In the rest of this chapter we will construct initial data
for binary black holes in such orbits.

12.2 The Conformal Transverse-Traceless Approach: Bowen-

York

12.2.1 Solving the momentum constraint

In the transverse-traceless approach we assume both conformal flatness, so that γ̄ij = ηij, and
maximal slicing, so that K = 0. The momentum constraint (12.4) then reduces to

D̄jĀ
ij = 0, (12.37)

where D̄j is now a flat-space covariant derivative. In Cartesian coordinates this operator reduces
to the partial derivative ∂j. Our assumptions have simplified the momentum constraint to the
point where the decomposition of Āij into a transverse and a longitudinal part (see equation 3.48)
is somewhat pointless, since both of them now have vanishing divergence. It is nevertheless useful
to keep this decomposition in mind, since it makes the counting of freely specifiable variables
more transparent. In particular we will choose ĀijTT = 0, which amounts to making two arbitrary
choices for its two independent variables. We still have to find solutions ĀijL , but as we have seen
in Section 3.2 we can construct these analytically given our assumptions of conformal flatness
and maximal slicing. This, in fact, is the essence of this so-called Bowen-York approach: we can
solve the momentum constraint analytically, leaving only the Hamiltonian constraint to be solved
numerically.

In Section 3.2 we found two such analytical black hole solutions to (12.37); one that carries a
linear momentum P i,

ÂijP =
3

2r2

(
P inj + P jni − (ηij − ninj)nkPk

)
, (12.38)
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(see equation 3.80) and one that carries an angular momentum Si,

ÂijS =
6

r3
n(iεj)klSknl (12.39)

(see equation 3.66). Here we are assuming Cartesian coordinates, r =
√
x2 + y2 + z2 is the

coordinate distance to the center of the black hole (which is located at the origin), and ni = xi/r
is the normal vector pointing away from the black hole’s center. In Exercise 3.32 we evaluated the
surface integral (3.195)

P i =
1

8π

∮
∞
KijdSj (12.40)

to show that the linear momentum associated with equation (12.38) is indeed P i, and in Exercise
3.29 we computed

Ji =
εijk
8π

∮
∞
xjKkldSl (12.41)

to verify that the angular momentum associated with equation (12.39) is Si.
To allow for a black hole located at a point Ci we introduce a subscript (or occasionally

superscript) C. We then have

ÂijCP = 3
2r2C

(
P injC + P jniC − (ηij − niCn

j
C)nkCPk

)
, (12.42)

and

ÂijCS = 6
r3C
n

(i
Cε

j)klSkn
C
l . (12.43)

where rC = ||xi−Ci|| is the coordinate distance to the center of the black hole located at xi = Ci,
and ni = (xi − Ci)/rC is the normal vector.

Given that the momentum constraint (12.37) is linear, we can construct a binary black hole
solution by superposition of single solutions

Âij = ÂijC1P1
+ ÂijC1S1

+ ÂijC2P2
+ ÂijC2S2

(12.44)

This completes an analytic solution of the momentum constraint describing two black holes with
arbitrary momenta and spins.

Exercise 12.6 Show that9

P = P1 + P2 (12.45)

is the total linear momentum of the solution (12.44) and

J = C1 ×P1 + C2 ×P2 + S1 + S2 (12.46)

its total angular momentum about the origin of the coordinate system.

For a binary system, S1 and S2 can be associated with the spin of the individual black holes
only in the limit of infinite binary separation, but we nevertheless take the liberty to define the
orbital angular momentum L as

L ≡ J− S1 − S2. (12.47)

9To represent the momenta P i and spins Si of these solutions it is convenient to use bold-face notation P and
S instead of index notation.
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12.2.2 Solving the Hamiltonian constraint

With a solution to the momentum constraint at hand we can now proceed to solve the Hamiltonian
constraint (12.3). Under the assumptions of conformal flatness and maximal slicing, this equation
reduces to

D̄2ψ = −1

8
ψ−7ĀijĀ

ij. (12.48)

Evidently we have reduced the construction of binary black hole initial data to solving a single
nonlinear elliptic equation. On the right hand side, the term ĀijĀ

ij can be computed analytically
from (12.44). Unfortunately this term diverges at the black holes’ centers Ci. Dealing with this
singularity requires some extra care.

Two different approaches have been adopted in the literature to solve this problem, which
ultimately differ in the topology of the resulting solution. Recall our discussion in Section 3.1,
which demonstrated that initial data sets representing multiple black holes are not unique. As a
starting point, we can look for generalizations of the time-symmetric solution

ψ = 1 +
M1

rC1

+
M2

rC2

(12.49)

which solves equation (12.48) for Āij = 0 (i.e. Laplace’s equation). This solution represents the
three-sheeted topology sketched in Figure 3.2. In this topology each black hole generates an
Einstein-Rosen bridge to its own asymptotically flat universe, meaning that the solution is not
symmetric across each throat. This symmetry can be recovered, however, by introducing “spherical
inversion images”. This approach leads to a two-sheeted topology, schematically represented in
Figure 3.3, in which the two black holes connect two identical asymptotically flat universes.

In the conformal imaging approach10 a two-sheeted topology is assumed. Establishing the
isometry between the two sheets requires adding image terms to the extrinsic curvature (12.44).11

Once this has been done, the two sheets, representing two asymptotically flat universes connected
by two Einstein-Rosen bridges (see Figure 3.3), are exact mirror images of each other. We therefore
need to solve the Hamiltonian constraint (12.48) only on one of these two sheets; we could always
find the conformal factor on the other sheet from the symmetry. This means that we eliminate
the black hole interior, containing the black hole singularities, from the computational domain,
and solve (12.48) only in the black hole exterior. This is an example of black hole excision, which
we will encounter many more times.

Clearly we need a boundary condition for the conformal factor ψ on the black hole throats,
the interior of which we excise. These boundary conditions follow immediately from the isometry
that is imposed on the throats.

While the isometry of the resulting two-sheeted solutions is aesthetically appealing, the conformal-
imaging approach requires complicated image terms for the extrinsic curvature as well as the im-
position of boundary conditions on internal boundaries. The puncture approach,12 which leads to
a three-sheeted topology, avoids both of these difficulties.

The key idea of the puncture approach is to absorb the singularities arising in the solution
to equation (12.48) in analytical terms. As we have said before, the expression (12.49) satisfies
the Hamiltonian constraint (12.48) for Âij = 0. We may therefore write the general solution as

10See Cook (1991); Cook et al. (1993); Cook (1994).
11See Kulkarni et al. (1983).
12See Beig and Ó Murchadha (1994, 1996); Brandt and Brügmann (1997).
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equation (12.49), the homogeneous solution, plus a new term correcting for finite Âij. As it turns
out, this new term satisfies an equation that is regular everywhere.

We begin by writing

ψ = 1 + 1/α + u , (12.50)

where α is defined by
1

α
≡ M1

rC1

+
M2

rC2

. (12.51)

Here we may refer to the Mi as the puncture masses. It is important to realize, though, that
they can be equated to the black hole’s ADM mass or irreducible mass only in the limit of infinite
separation. For any finite separation these parameters have no immediate physical meaning.

The Hamiltonian constraint now reduces to an equation for the correction term u,

D̄2u = −β (α(1 + u) + 1)−7 (12.52)

where we have used the abbreviation

β ≡ 1

8
α7ĀijĀ

ij. (12.53)

Notice that α goes to zero at each one of the “punctures” Ci. It also enters β with a sufficiently high
power to suppress the divergence in ĀijĀ

ij. As a consequence the source term in equation (12.52)
is regular everywhere. We have thus eliminated the need for both the image terms in Āij and for
black hole excision, and can, instead, solve for u with any standard method for nonlinear elliptic
equations (see, e.g., our discussion in Section 6.2.2 following equation 6.54). To impose asymptotic
flatness, we impose a Robin boundary condition

∂(ru)

∂r
= 0 (12.54)

at large distances from the black holes.
Once we have found the conformal factor ψ numerically, we can compute the ADM mass MADM

from equation (3.145),

MADM = − 1

2π

∮
∞
D̄iψdS̄i. (12.55)

Within the puncture approach we can insert the ansatz (12.50) to find

MADM = − 1

2π

∮
∞
D̄i

(
1

α

)
dS̄i −

1

2π

∫
D̄2u dV

= M1 +M2 +
1

2π

∫
β (α(1 + u) + 1)−7 dV. (12.56)

Here the volume integral in the last term extends over all space.

12.2.3 Identifying circular orbits

Up to now we have discussed how, for particular choices of black hole positions Ci, momenta Pi,
spins Si and puncture masses Mi, we can construct a solution to the constraint equations. We
now ask how we can pick these parameters in such a way that the resulting black holes represent
a binary in circular orbit.
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In a zero-momentum frame we have P = 0 and therefore

P1 = −P2. (12.57)

For a circular orbit these momenta must also be perpendicular to C ≡ C1 −C2,

C ·P1 = 0 . (12.58)

This requirement corresponds to the condition Pr = 0 in Exercise 12.1 and dr/dτ = 0 in Exercise
12.4. We will focus on black holes that have Si = 0, meaning that they are not spinning as seen in
an inertial frame. We will later refer to such binaries as nonspinning. With this choice the problem
has been reduced to a four-dimensional parameter space. The four independent parameters may
be taken to be the puncture masses M1 and M2, the momentum P1 = ||P1|| and the coordinate
separation C = ||C||. For spinning black holes we also have to pick the black hole spins Si.

13

Given these input parameters, we can comstruct a binary configuration by solving the con-
straint equations as outlined above in Sections 12.2.1 and 12.2.2. For each configuration we can
then compute the significant physical quantities, including the total ADM mass MADM (equa-
tions 12.55 or 12.56) and the angular momentum J (equation 12.46). We then define the binding
energy Eb as

Eb ≡MADM −m1 −m2 . (12.59)

Here the black hole masses m1 and m2 are assigned to be their irreducible masses,14

mi = (Ai/16π)1/2 , (12.60)

where Ai is the proper area of the event horizon of the ith black hole (see equation 7.2). Sometimes
the quantity Eb is referred to as the effective potential (recall Exercise 12.4).

Exercise 12.7 Evaluate Eb for two black holes in circular orbit at infinite separation and determine
the sign of Eb when the circular orbit is at finite separation.

As we discussed in Section 7.1, locating the black hole’s event horizon requires knowledge of
the entire future. We only construct data on one timeslice Σ, so clearly we cannot compute the
irreducible mass mirr exactly. For most of the binary inspiral, however, the event horizons are very
well approximated by the black hole’s apparent horizons (see Section 7.3), and it is reasonable to
compute mirr from these.15 In the conformal imagine approach these apparent horizons coincide
with the throats on which the isometry is imposed. The horizons are therefore at a fixed coordinate
location, and their proper area A can be computed quite easily. In the puncture method, however,
we do not know the location of the apparent horizons a priori, and instead we have to find them
by implementing one of the methods discussed in Section 7.3 before their area can be computed.16

Lastly we compute the proper separation between the two horizons l. In practice it is much
easier to compute the proper separation along C, which is a very good approximation to the
shortest proper, or geodesic, separation (within Σ) for many configurations.

13See Pfeiffer et al. (2000).
14Some authors define the binding energy as the difference between the ADM mass and the black holes’ Kerr

masses (7.3) (e.g. Cook (1994); Pfeiffer et al. (2000)). For the nonspinning black holes that we focus on here this
distinction clearly does not make any difference. In general, however, the definition (12.59) seems more natural.
Since the irreducible mass Mirr is constant along quasistationary evolutionary sequences, the definition (12.59)
leads to simultaneous turning points in the equilibrium binding energy and the ADM mass.

15But see Pfeiffer et al. (2000) for a discussion of rapidly spinning black holes in close binaries.
16See Baumgarte (2000).
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Figure 12.3: [CAMBRIDGE: replace m with M in label.] The binding energy Eb/µ as a function
of separation l for various values of the angular momentum J/µM (thin lines) as obtained by the
Bowen-York conformal-imaging method for an equal mass, nonspinning black hole binary. The
thick line connects a sequence of stable quasicircular orbits, which correspond to minima of the
binding energy (equation 12.61), and yields Eeq as a function of l (“effective potential approach”).
This sequence terminates at the ISCO, identified where a Eb curve at constant J exhibits a point
of inflection. [From Cook (1994).]

The condition (12.58) insures that each black hole’s momentum is perpendicular to the sep-
aration axis, at least momentarily. Imposing this condition is not sufficient for a circular orbit,
however, since it also holds at the apocenter and pericenter of a noncircular orbit. To guarantee a
circular orbit we must impose the additional condition that the binding energy (i.e. the effective
potential) Eb be at a stationary point along a sequence of constant angular momentum J for fixed
black hole masses m1 and m2,

∂Eb
∂l

∣∣∣∣
J,m1,m2

= 0. (12.61)

We already employed this condition in Exercises 12.1 and 12.4 to identify circular orbits. Once
we identify the circular orbits, we can construct an equilibrium sequence of binaries of fixed black
hole masses m1 and m2 at different separations. As in equation (12.14) (or equation 12.112) we
can then find the binary’s orbital angular velocity Ωorb at each separation from

Ωorb =
∂Eeq

∂Jeq

∣∣∣∣
m1,m2

. (12.62)

To identify the ISCO, we can apply the turning-point criterion to the function Eeq(l), as in
equations (12.13) and (12.33). Alternatively, we can apply the turning-point criterion to the
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equilibrium angular momentum Jeq(l), as noted in Exercise 12.4. As pointed out in the same
exercise, applying the turning-point criterion is equivalent to finding a point of inflection in the
effective potential, ∂2Eb/∂l

2 = 0.
Figure 12.3 illustrates the numerical construction of a quasiequilibrium binary consisting of

equal-mass, nonspinning black holes in circular orbit using conformal imaging and the effective
potential approach.17 Convenient fitting formulae have been derived18 for the same system, using
the puncture method. These handy formulae specify the puncture masses, M, momenta P , and
the quantities MADM, JADM and Ωorb as functions of the puncture coordinate separation D, all
normalized by the total ADM mass of the binary at infinite separation (which equals the total
irreducible mass.)

We will review the resulting orbits from these numerical calculations in greater detail in Sec-
tion 12.4. But first we will discuss an alternative approach to constructing binary black holes that
probably provides a better approximation to binaries in quasiequilibrium.

12.3 The Conformal Thin-Sandwich Approach

12.3.1 The notion of quasiequilibium

The appeal of the Bowen-York approach is that we can solve a large part of the problem (i.e. the
momentum constraints) analytically, which furnishes useful insight into how black hole binary
initial data can be constructed. However, in Section 12.4 we will find some evidence suggesting
that the resulting binary solutions may not describe astrophysically realistic, circular-orbit, binary
black holes as closely as we might like. The core of the problem is that the Bowen-York formalism
does not provide any direct means of imposing quasiequilibrium conditions on the metric. We
invoke global energy minimum arguments to select models in the initial data set that presumably
are close to quasiequilibrium, but there is no guarantee that the spacetime corresponding to these
models will maintain quasiequilibrium once we evolve off the initial time slice.

Following our discussion in Section 12.1 we seek to construct black hole binaries at moderately
close separations, at which point the orbits have become quasicircular. At these separations
we assume that the individual black holes have settled into a quasiequilibrium state, whereby
no matter and very little gravitational radiation fall into them to disturb this state. Now a
stationary spacetime in strict equilibrium possesses two important Killing vectors: ∂/∂t, associated
with stationary symmetry and ∂/∂φ, associated with rotational symmetry. The spacetime for a
quasiequilibrium binary system has no such Killing vectors, but it does possess an approximate
helical Killing vector ξahel given by a linear combination of these two vectors. In particular, the
approximate Killing vector ξahel generates a circular orbit with orbital angular velocity Ωorb, as
illustrated in Figure 12.4. In the coordinate system of an inertial observer at infinity we may write
ξahel as

ξahel = (∂/∂t)a + Ωorb (∂/∂φ)a . (12.63)

If ξahel were an exact helical Killing vector we would have Lξhel
gab = 0. In other words, the spacetime

geometry of the binary system would be invariant if we were to move through an infinitesimal angle
dφ = Ωorbdt in an infinitesimal time dt. Consequently, we could choose a corotating coordinate

17Cook (1994).
18Tichy and Brügmann (2004). Quasiequilibrium is achieved by imposing the relativistic virial relation MK =

MADM; see Chapter 3.5 and Exercise 12.9. A lapse is required for this condition and is obtained by imposing
∂K/∂t = 0 (equation 4.12).
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Figure 12.4: Illustration of a helical Killing vector generating a circular binary orbit.

system in which the time axis ta = αna+βa remains aligned with ξahel,
19 so that, in this coordinate

system, all partial derivatives of the metric with respect to time would vanish. In quasiequilibrium,
we can expect that, in such a corotating coordinate system, the corresponding time derivatives
will vanish approximately.

The Bowen-York approach provides no mechanism to impose this notion of quasiequilibrium.
We can construct a spatial metric and extrinsic curvature that solve the constraint equations, but
we have no control over their time evolution. In the conformal thin-sandwich decomposition of
Section 3.3, on the other hand, we can explicitly set several of these time derivatives to zero. This
approach therefore seems more promising for the construction of quasiequilibrium initial data.

In Section 3.3 we introduced the time derivative of the conformally related metric as

ūij ≡ ∂tγ̄ij (12.64)

(see equation 3.94) and then expressed the extrinsic curvature Āij in terms of ūij with the help of
the evolution equation (2.135),

Āij =
ψ6

2α

(
(L̄β)ij − ūij

)
(12.65)

(see equation 3.99). Inserting this into the momentum constraint (12.4) then yields

(∆̄Lβ)i − (L̄β)ijD̄j ln(ψ−6α) = ᾱD̄j(ψ
6α−1ūij) +

4

3
αD̄iK, (12.66)

while the Hamiltonian constraint (12.3) remains

8D̄2ψ − ψR̄− 2

3
ψ5K2 + ψ−7ĀijĀ

ij = 0. (12.67)

Here we have again assumed a vacuum spacetime.
For the construction of quasiequilibrium data it now seems natural to choose the requirements

that

ūij = 0 (12.68)

19Note that this choice leads to a spacelike time coordinate at large separations.
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and
∂tK = 0 (12.69)

in the corotating coordinate system where ta ∝ ξahel. The latter condition then yields an equation
for the lapse α,

D̄2(αψ) = αψ

(
7

8
ψ−8ĀijĀ

ij +
5

15
ψ4K2 +

1

8
R̄

)
+ ψ5βiD̄iK, (12.70)

while the former reduces the momentum constraint (12.66) to

(∆̄Lβ)i − (L̄β)ijD̄j ln(ψ−6α) =
4

3
αD̄iK . (12.71)

The extrinsic curvature Āij is given in terms of these unknowns by

Āij =
ψ6

2α
(L̄β)ij. (12.72)

Equations (12.67), (12.70) and (12.71) now form a coupled system of elliptic equations for
the lapse α, the conformal factor ψ and the shift βi. Outer boundary conditions follow from
asymptotic flatness and equation (12.63),

lim
r→∞

ψ = 1, lim
r→∞

α = 1, lim
r→∞

βi = Ωorb

(
∂

∂φ

)i
= (Ωorb × r)i . (12.73)

Here we are assuming that the coordinate system is centered on the binary system’s center of
mass-energy at coordinate radius r = 0, where r2 = x2 + y2 + z2. The above asymptotic condition
on the shift guarantees that the coordinate system corotates with the binary.

We have yet to choose a conformal background metric γ̄ij and the extrinsic curvature K. The
above equations simplify dramatically for conformally flat spaces γ̄ij = ηij and maximal slicing
K = 0.20 As an alternative, the background can be chosen to be a superposition of Kerr-Schild
geometries.21

Once we have chosen a background solution we are almost ready to solve equations (12.67),
(12.70) and (12.71) for α, ψ and βi. The last issue that we need to address before attempting a
numerical integration are the singularities that lurk in the interior of the black holes. In the context
of the Bowen-York approach we discussed two different methods of eliminating these singularities.
The first approach was the conformal-imaging method, which imposes an isometry and enables us
to excise the black hole interior; the second approach was the puncture method which absorbs the
singularity in analytical terms.

Unfortunately, neither one of these two methods works well in the context of the conformal
thin-sandwich approach. The conformal-imaging approach leads to inconsistencies on the black
hole throats. In a nutshell, the isometry requires both α = 0 and βi = 0 on the throats, which,
according to (12.72), means that the extrinsic curvature Āij can remain finite only if (L̄β)ij = 0.
This requirement leads to boundary conditions on both the shift and its derivatives, making the
system overdetermined.22 While it would be desirable to avoid boundary conditions altogether with

20See Gourgoulhon et al. (2002); Grandclément et al. (2002) and Cook and Pfeiffer (2004).
21See Marronetti and Matzner (2000); Yo et al. (2004); Cook and Pfeiffer (2004).
22See Cook (2002) for a discussion. In Gourgoulhon et al. (2002) and Grandclément et al. (2002), who imple-

mented this approach, the problem is avoided by adding a small and otherwise insignificant artificial term.
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the puncture approach, it seems impossible to construct even single equilibrium black holes with a
combination of the conformal thin-sandwich and puncture methods.23 These considerations lead
us to construct new black-hole boundary conditions that are based explicitly on quasiequilibrium
requirements.

12.3.2 Quasiequilibrium black-hole boundary conditions

Before discussing the quasiequilibrium black hole conditions24 it is useful to review briefly some
of the formalism that we introduced to describe apparent horizons in Section 7.3. In particular,
we considered a closed two-dimensional hypersurface of Σ and called it S. We called its outward
pointing unit normal sa, and found that sa induces a two-dimensional metric,

mab = γab − sasb , (12.74)

on S. We constructed a future-pointing, outgoing null vector ka from

ka =
1√
2

(na + sa) . (12.75)

The geometry of all of these objects is illustrated in Figure 7.3. As before, we define the projection
of the gradient of ka into S as

Θab = m c
a m

d
b ∇ckd. (12.76)

(see equation 7.78). We now have all the tools in hand to formulate the required conditions.
To begin with, we would like the surface S to be an apparent horizon. According to equations

(7.15) and (7.17), this means that the trace of Θab, i.e., the expansion of the ka, has to vanish,

Θ = mabΘab = mab∇akb = 0. (12.77)

In the context of the isolated horizon formalism in Section 7.4 we have also seen that for the black
hole to be in equilibrium, the shear of Θab also has to vanish,

σab = Θ(ab) −
1

2
mab Θ = 0 (12.78)

(see equation 7.84). Finally, we would like to construct a coordinate system that tracks the
horizon, i.e., we want to require that in quasiequilibrium the coordinate location of the apparent
horizon not change as the initial data begins to evolve. Consider a sequence of apparent horizons
S residing in neighboring spatial slices Σ, as we did in Chapter 7.4. For isolated black holes, the
resulting world tube H is smooth and is generated by ka. To obtain a coordinate system that
tracks the horizon, the time vector of the evolution, ta, must reside in the null surface generated
by ka. This requirement implies that ta, on S, must be tangent to H. For that to be the case, ta

must be a linear combination of ka, which generates H, and some spatial vector ha tangent to S,

ta = aka + bha, (12.79)

23At least if the background solution is based on an expression of the form (12.49); see Hannam et al. (2003),
but compare with Hannam (2005).

24In this Section we closely follow Cook and Pfeiffer (2004), but see Jaramillo et al. (2004) for an alternative
approach.
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where a and b are two arbitrary coefficients. Since ha is spatial we have nah
a = 0, and since it is

tangent to S we also have sah
a = 0. Combining equations (12.75) and (12.79), and using the fact

that ka is a null vector, it is then easy to see that we must have

taka = 0. (12.80)

Conditions (12.77), (12.78) and (12.80) represent the geometric conditions that guarantee that
the surface S is an apparent horizon, is in quasiequilibrium, and will appear in quasiequilibrium
in the coordinate system defined by the lapse and shift that we are constructing. Our next task is
to translate these geometric consitions into horizon boundary conditions for the conformal factor
ψ, the lapse α and the shift βi.

We start with condition (12.80). Inserting both ta = αna + βa and equation (12.75) we
immediately find

βisi = α. (12.81)

The left-hand side of equation (12.81) suggests that we should split the shift into components that
are normal and tangential to the surface S,

βi = βi‖ + β⊥s
i, (12.82)

where
βi‖ ≡ mi

jβ
j and β⊥ ≡ βisi. (12.83)

With this notation the condition (12.81) becomes a condition on the normal component of the
shift,

β⊥ = α. (12.84)

Exercise 12.8 Show that condition (12.84) holds for a Schwarzschild black hole in Kerr-Schild coor-
dinates (see Table 2.1).

We next consider the apparent horizon condition (12.77). From equation (7.29) we may write
the expansion as

Θ =
1√
2
mij(Disj −Kij). (12.85)

Since we would like to apply this condition to the conformally decomposed constraint equations,
we also apply a conformal transformation for mij and si. Given the rescaling (12.1) for γij, and
given the relation (12.74), between γij, mij and si, it is natural to choose

mij = ψ4m̄ij and si = ψ2s̄i (12.86)

Note that the normalization γijs
jsi = 1 then implies that the conformally rescaled normal vectors

s̄i are normalized with respect to the conformally related metric, γ̄ij s̄
j s̄i = 1.

Exercise 12.9 Show that

Disj = ψ2
(
D̄is̄j − 2s̄iD̄j lnψ + 2γ̄ij s̄

kD̄k lnψ
)
. (12.87)

Inserting equation (12.87) into the expansion (12.85), and using the abbreviation

J ≡ mijKij, (12.88)
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we find

Θ =
ψ−2

√
2

(
m̄ijD̄is̄j + 4s̄kD̄k lnψ − ψ2J

)
. (12.89)

According to equation (12.77) the expansion Θ has to vanish for S to be an apparent horizon,
which yields the condition

s̄kD̄k lnψ =
1

4

(
ψ2J − m̄ijD̄is̄j

)
. (12.90)

Equation (12.90) imposes a Neumann-type boundary condition on the normal gradient of the
conformal factor ψ.

Before proceeding it is useful to illustrate this formalism by applying it to a Schwarzschild
black hole in isotropic coordinates, for which

γ̄ij = ηij (12.91)

and

ψ = 1 +
M

2r
. (12.92)

We also have Kij = 0, which immediately gives us J = 0. To apply the boundary condition (12.90)
on the horizon at r = M/2 we first have to construct the normals s̄i. They have to be radial, and
they have to be normalized with respect to the conformally related metric, and therefore

s̄i = (1, 0, 0) (12.93)

in spherical polar coordinates. We then have

m̄ijD̄is̄j = −m̄ijΓ̄rij =
2

r
. (12.94)

Evaluating the right-hand side of equation (12.90) gives

s̄kD̄k lnψ = ψ−1∂rψ = −ψ−1 M

2r2
. (12.95)

Inserting the last two equations into equation (12.90) we find

M

2r2
=

1

4

(
1 +

M

2r

)
2

r
, (12.96)

which holds on the horizon at r = M/2. This result is not surprising, of course, but it is reassuring.

Exercise 12.10 Show that condition (12.90) holds for a Schwarzschild black hole in Kerr-Schild
coordinates (see Table 2.1).

We now return to our derivation of the quasiequilibrium boundary conditions and examine
condition (12.78). For simplicity we start with the first term, Θ(ab), and substitute equation (12.75)
for ka. Since in the end we are interested in an equation for the contravariant components of the
shift vector βi, it is also easier to consider the contravariant components of Θab, obtaining

Θ(ab) = macmbd∇(ckd) =
1√
2
macmbd

(
∇(cnd) +∇(csd)

)
. (12.97)
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We now introduce the abbreviation

Hab = macmbd∇(csd) = D(asb), (12.98)

where we have also introduced Di as the covariant derivative operator compatible with mij. In
complete analogy with our construction of the three-dimensional covariant derivative Di from the
four-dimensional covariant derivative ∇a by projecting all indices into Σ (see equation 2.40 and the
following equations), we construct Di by projecting all of indices of the four-dimensional covariant
derivative into S. With the help of Hab, as well as the definition of the extrinsic curvature (2.49),
we may now rewrite equation (12.97) as

Θ(ij) =
1√
2

(
H ij −mi

lm
j
mK

lm
)
, (12.99)

where, without loss of generality, we have also switched to spatial indices. It turns out to be
convenient to write the extrinsic curvature as

Kij = Aij +
1

3
γijK =

1

2α

(
(Lβ)ij − uij

)
+

1

3
γijK, (12.100)

where we have used equations (3.31) and (3.93). We also remind the reader that the longitudinal
operator, i.e., the vector gradient or conformal Killing operator, is defined as

(Lβ)ij = Diβj +Djβi − 2

3
γijDkβ

k (12.101)

(see equation 3.50). Before proceeding we decompose the shift term according to equation (12.82)
and write

1

2α
mi

lm
j
m(Lβ)lm =

1

2α
mi

lm
j
m(Lβ‖)

lm +
β⊥
α
H ij − 1

3α
mijDk(β⊥s

k) , (12.102)

where we have used mijs
j = 0 as well as the definition (12.98). Substituting the expressions

(12.100) and (12.102) into equation (12.99) we now find

√
2 Θ(ij) =

1

2α

(
−mi

lm
j
m(Lβ‖)

lm +
1

3α
mijDk(β⊥s

k) +mi
lm

j
mu

lm

)
−1

3
mijK +H ij

(
1− β⊥

α

)
. (12.103)

Applying a conformal transformation to the first three terms casts this relation as

√
2 Θ(ij) =

ψ−4

2α

(
−m̄i

lm̄
j
m(L̄β‖)

lm +
1

3α
m̄ijDk(β⊥s

k) + m̄i
lm̄

j
mū

lm

)
−1

3
mijK +H ij

(
1− β⊥

α

)
, (12.104)

where we have used the rescaling rule (3.98) derived in Exercise 3.15 for (Lβ‖)
ij. According to the

condition (12.78) we can now compute the shear σij by taking the trace-free part, with respect to
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mij, of Θ(ij). In the process all terms in (12.104) that are proportional to mij drop out, and we
find

σij = − 1√
2

ψ−4

α

((
D̄(iβ

j)
‖ −

1

2
m̄ijD̄cβ

c
‖

)
− 1

2

(
m̄i

lm̄
j
mū

lm − 1

2
m̄ijm̄lmū

lm

))
+

1√
2

(
H ij − 1

2
mijH

)(
1− β⊥

α

)
. (12.105)

So far this derivation has been completely general, and it is now time to specialize to the
situation at hand. To begin with, we can insert the boundary condition (12.84), which immediately
eliminates the last term. For the construction of quasiequilibrium data we also assume ūij = 0,
which eliminates the middle term. For our purposes, the geometrical condition of vanishing shear
(12.78) then reduces to

D̄(iβ
j)
‖ −

1

2
m̄ijD̄cβ

c
‖ = 0. (12.106)

The trained eye will recognize this as the conformal Killing’s equation (A.27) for a two-dimensional
surface S. This means that the shear σab vanishes if the tangential shift βi‖ is a conformal Killing
vector of m̄ij on the black hole horizon S. This condition has a surprisingly transparent physical
interpretation, as we discuss below.25

As it turns out, it is remarkably simple to construct a tangential shift βi‖ so that it is a
conformal Killing vector of m̄ij on S. We first observe that any closed, two-dimensional surface S
is conformally equivalent to the unit 2-sphere. By this we mean that we can construct any metric
m̄ij on S from the flat metric ηij on the unit sphere through a combination of conformal and
coordinate transformations.26 In exercise A.7 of Appendix A we also show that a Killing vector of
a metric gab is automatically a conformal Killing vector of the conformally related metric ḡab. This
means that a Killing vector of the flat metric ηij on the unit sphere is automatically a conformal
Killing vector of m̄ij on S, and hence a solution to the boundary condition (12.106).

We have therefore reduced the problem to finding Killing vectors of the unit sphere. This is
very simple – in spherical coordinates θ and φ, for example, we have ξi = ei(φ) (see equation A.22

in Appendix A). On the unit sphere, all azimuthal vectors associated with any rotation axis
passing through its center are Killing vectors. Viewing the unit sphere as embedded in a flat
three-dimensional space we can express these vectors ξi in Cartesian coordinates as ξi = εijkẑjn̂k,
where ẑi is a unit vector aligned with the axis of rotation and where n̂i is the unit normal on the
sphere. Since the product of a Killing vector ξi with a constant is still a Killing vector, we see
that

βi‖ = Ωspinξ
i (12.107)

is a Killing vector of ηij on the unit sphere, hence a conformal Killing vector of m̄ij on the black
hole horizon S, and thus the desired solution to (12.106).

It is remarkable that condition (12.107) leaves us exactly the freedom that we need to specify
an arbitrary spin on the black hole. The parameter Ωspin determines the angular speed of the black
hole, and ξi the axis of rotation. Given that we implement this boundary condition in the corotat-
ing coordinate system associated with the helical Killing vector ξahel defined by equation (12.63),
we can construct corotating black holes by setting Ωspin = 0. As seen by an inertial observer,

25See Cook and Pfeiffer (2004).
26The metric m̄ij has at most three independent components, which we can account for by a conformal trans-

formation and a transformation of the two coordinates.
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these black holes are rotating at an angular velocity Ωorb. To construct black holes that are not
rotating as seen by an inertial observer it seems reasonable to set the magnitude of Ωspin equal
to Ωorb and choose ξi perpendicular to the orbital plane. We will refer to this approach as the
“leading-order” approximation. Evaluating the resulting black holes’ quasi-local spin JS with the
help of equation (7.74) reveals that generally this approach does not lead to exactly zero spin.
This suggests that we must vary Ωspin until the JS does indeed vanish.27

To summarize, we have now expressed the geometrical quasiequilibrium boundary conditions
(12.77), (12.78) and (12.80) in term of the boundary conditions (12.84) for β⊥, (12.90) for ψ, and
(12.107) for βi‖. Interestingly the geometric conditions do not provide a boundary condition for the

lapse α, which apparently we can choose freely.28 The lapse determines the rate at which proper
time advances compared to coordinate time, and in fact it seems quite natural that we can freely
choose this rate, even on the horizon of a black hole in quasiequilibrium.

We can now construct a black hole binary by solving the equations (12.67), (12.70) and (12.71)
subject to the inner boundary conditions (12.84), (12.90), and (12.107). We impose these boundary
conditions on two coordinate spheres chosen to represent the apparent horizons of the two black
holes. The coordinate separation of these two spheres controls the binary separation, while the
coordinate radius of the two spheres controls the black hole masses.

12.3.3 Identifying Circular orbits

We now have almost all pieces in place to construct quasiequilibrium binary black holes in the
conformal thin-sandwich approach. The one last missing piece is the value of the orbital angular
velocity Ωorb, which enters through the outer boundary for the shift βi in equation (12.73). Finding
the correct Ωorb is equivalent to identifying a circular orbit. In the Bowen-York effective potential
approach of Section 12.2 we identified circular orbits by locating extrema of the binding energy
along curves of constant angular momentum (see Exercises 12.1 and 12.4). Grandclément et al.
(2002) suggest an alternative way of identifying circular orbits, namely by varying Ωorb until the
ADM mass MADM given by equation (3.128) equals the Komar mass MK given by equation (3.179),

MADM = MK. (12.108)

For metrics that are sufficiently well-behaved asymptotically the ADM mass is always well defined,
while the Komar mass is meaningful only for stationary spacetimes. Equating the two masses
therefore singles out quasiequilibrium spacetimes, which, for binaries, identifies circular orbits.

We can also justify the condition (12.108) in terms of the virial relation. In Exercises 3.23
and 3.28 we showed that, to first order, equation (12.108) imposes the virial theorem (3.184) in
Newtonian gravity. Gourgoulhon and Bonazzola (1994) show that equation (12.108) in fact leads
to a relativistic virial theorem, which we would expect to hold for circular orbits in binaries, at
least approximately. In Exercise 12.1 we have seen that finding energy extrema to identify circular
orbits is equivalent to imposing the virial theorem for Newtonian point masses, and in Section
12.4 we will present evidence that a similar result holds for relativistic black hole binaries.29

27See Caudill et al. (2006).
28 Cook (2002) derives a boundary condition for the lapse from an additional geometric condition on the expansion

of the ingoing null vectors. However, Cook and Pfeiffer (2004) find the resulting system of boundary conditions to
be degenerate, leading to an ill-posed elliptic system, and conclude that the boundary value of the lapse can be
chosen freely; cf. Jaramillo et al. (2004); Matera et al. (2008).

29Skoge and Baumgarte (2002) demonstrate this equivalence analytically for a relativistic spherical shell of
collisionless particles.
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Notice that computing the Komar mass (3.179) requires knowledge of a timelike Killing vector,
which in a numerical relativity context is usually expressed in terms of the lapse α and the shift βi.
The conformal thin-sandwich approach allows us to impose the existence of at least an approximate
timelike Killing vector, and provides us with the corresponding Killing lapse and shift. By contrast,
the transverse-traceless approach of Section 12.2 only involves data intrinsic to one time slice Σ
(as opposed to the slice and its neighborhood). It does not provide a true notion of stationary
equilibrium, which requires vanishing time derivatives, it does not allow us to impose the existence
of a time-like Killing vector, and it does not provide a lapse or shift. We therefore cannot compute
the Komar mass from Bowen-York data alone.30

Before proceeding we point out one subtlety. The Komar mass (3.179) contains both lapse and
shift terms. In many situations the latter fall off sufficiently rapidly so that they do not contribute
to the mass – in fact, several authors define the Komar mass from the lapse term alone. In general,
however, the shift term has to be included,31 even though it leads to a complication in the current
context.32 A corotating observer moving along with the helical Killing vector (12.63) is not an
inertial observer. For a true stationary spacetime we can split this helical Killing vector into
separate rotational and timelike Killing vectors. For binaries this split cannot be done globally,
but, assuming asymptotic flatness, the two can be separated at spatial infinity. There the timelike
Killing vector defines an inertial observer, and we see from the boundary condition (12.73) that
the shift approaches the rotational Killing vector

lim
r→∞

βi = βirot ≡ Ωorb

(
∂

∂φ

)i
= (Ωorb × r)i . (12.109)

In general the latter makes a nonvanishing contribution to the Komar mass.

Exercise 12.11 Show that substituting βi
rot into the Komar mass integral (3.179) yields a contribution

Mrot = −2ΩorbJ, (12.110)

where J is the angular momentum (3.189).

Evaluating the Komar mass integral in the corotating frame, for which the shift behaves asymp-
totically as (12.109), yields a value that differs from what we would find in an inertial frame by
Mrot,

M corot
K = M inertial

K − 2ΩorbJ. (12.111)

This raises the question: which one of these values are we supposed to compare with the ADM
mass MADM in equation (12.108)? The expression (3.128) for the ADM mass assumes that it
is evaluated in an inertial frame, since otherwise the fall-off conditions (3.129) would not be
satisfied. Moreover, the Komar mass requires a timelike Killing vector, and outside the “light
cylinder” (on which ξihel is null) the helical Killing vector (12.63) becomes spacelike. This means
that we have to evaluate the Komar mass in the asymptotic inertial frame. Our conformal thin-
sandwich calculation is performed in the corotating frame, but we can account for that in one of
three ways. If all “nonrotational” contributions to the shift fall off sufficiently fast, we can simply

30Given Bowen-York data, a lapse condition can be constructed that imposes some of the conditions for the
existence of an approximate helical Killing vector and the computation of the Komar mass; see Tichy et al. (2003),
Tichy and Brügmann (2004) and footnote 18.

31As exercise 3.27 demonstrates, the shift term carries the entire contribution to the Komar mass in some
coordinate systems.

32See the discussion in Caudill et al. (2006).
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ignore the shift term in the integral (3.179) and compute the Komar mass from the lapse term
alone (as many authors do). If the nonrotational contributions to the shift cannot be ignored, we
can subtract βirot before computing the Komar mass, or, equivalently, we can simply transform the
Komar mass computed in the corotatinal frame to its value in the inertial frame with the help of
equation (12.111).33

12.4 Quasiequilibrium Sequences

As we discussed in Section 12.1, we can model the early (adiabatic) binary inspiral phase as a
sequence of quasiequilibrium configurations. In the previous Sections we have developed techniques
for constructing black hole binaries with certain black hole masses, spins and binary separations.
Before we can stitch these together to construct evolutionary sequences we have to address one
more question: what are the conserved quantities along these sequences?

For binary neutron stars it is quite evident that, in the absence of mass loss or accretion, the
rest mass (e.g. baryon number) of each neutron star is strictly conserved during binary inspiral
(see Section 15.3). For binary black holes, identifying a conserved quantity is a little more subtle.
As long as the individual black holes remain in quasiequilibrium as they evolve, it is reasonable
to assume that their irreducible masses given by equation (12.60) remain constant.34

One approach to constructing an inspiral sequence is therefore to iterate, at a given coordinate
separation of the binary pair, over the individual masses until the desired irreducible masses
have been achieved. The procedure can then be repeated for different binary separations, until a
sequence has been completed. A more elegant approach utilizes the relation35

dMADM = ΩorbdJ , (12.112)

which strictly holds along stationary sequences of uniformly rotating configurations. We have
effectively encountered this relation as it applies to binaries in exercise 12.2 and in the last part of
exercise 12.4; it is the relativistic generalization of equation 12.14. In exercise 12.12 we illustrate
how equation (12.112) can be enforced when connecting numerical models along a quasiequilibrium
sequence.

Exercise 12.12 Let s denote some parameter along a sequence of binary black hole initial data, and
let χ(s) denote an arbitrary length scale along this sequence. Also write the ADM mass, angular
momentum and orbital frequency along the sequence as

MADM(s) = χ(s) e(s) J(s) = χ2(s) j(s) Ωorb(s) = χ−1(s)ω(s), (12.113)

where e(s), j(s) and ω(s) are numerical values of these quantities in nondimensional units. Show that
the identity (12.112) is automatically satisfied as long as χ changes according to

dχ

χ
= −de− ωdj

e− 2ωj
(12.114)

33 For a discussion of the invariance of the integrals defined in Chapter 3.5 for M0, MADM and JADM when they
are evaluated in the corotating versus the inertial frame, see Duez et al. (2003), Appendix C.

34Black hole perturbation theory suggests that the fractional increase in the surface area of each hole in a binary
consisting of equal-mass holes with spins aligned with the orbital angular momentum (and 99.8% of their maximal
values) is at most 1% by the time the binary spirals down to a separation of 6M , where M is the total (ADM)
mass; Alvi (2001).

35See Friedman et al. (2002). See also equation (14.25) and related discussion.
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Figure 12.5: [CAMBRIDGE: replace m with M in label] The binding energy Eb versus separation l
for corotational (left panel) and nonspinning (right panel) equal-mass binary black hole sequences
constructed in the conformal thin-sandwich approach. The solid lines connecting the extrema
of the curves of constant angular momentum , which are labeled by J/µM , represent sequences
constructed with the effective potential method as in Figure 12.3; these lines terminate at the
ISCO. The dashed lines represent sequences constructed from the mass criterion (12.108). These
sequences agree extremely well up to very small separations, where the assumption of quasiequi-
librium breaks down. [From Caudill et al. (2006).]

along the sequence.36

We have already seen an example of such a sequence in Fig. 12.3 for Bowen-York binary data
constructed with the transverse-traceless approach of Section 12.2. In analogy to the point-mass
models that we discussed in Section 12.1 this sequence does not extend to arbitrarily small binary
separations, but instead terminates at the innermost stable circular orbit, or ISCO, marked by
the turning point on the equilibrium energy curve.

In Figure 12.5 we show the equivalent figures for corotational and nonspinning binary black
hole models constructed in the conformal thin-sandwich approach of Section 12.3. For most
of the remainder of this Section we will focus on the results of Cook and Pfeiffer (2004) and
Caudill et al. (2006), who adopt spectral methods to integrate these equations, together with the
quasiequilibrium black hole boundary conditions of Section 12.3.2. They also assume conformal
flatness, γ̄ij = ηij and maximal slicing K = 0, as well as ūij = 0 and ∂tK = 0.37 Within this
framework we can specify a corotational sequence by setting Ωspin = 0 in the solution (12.107) for
the black hole boundary condition on the tangential piece of the shift.38 Specifying an nonspinning
sequence is slightly more involved. As we discussed below equation (12.107), we could attempt
to construct such sequences by setting the magnitude of Ωspin equal to the magnitude of Ωorb in

36See Cook and Pfeiffer (2004).
37See Cook and Pfeiffer (2004) for some results that adopt “Kerr-Schild” slicing rather than maximal slicing.
38Recall that Ωspin is a measure of the spin in the corotating frame.
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Figure 12.6: [CAMBRIDGE: replace Ω0 with Ωorb and m with M in label] The binding energy Eb
versus the orbital angular velocity Ωorb for corotational (left panel) and nonspinning (right panel)
equal-mass binaries. The solid lines mark the results of Cook and Pfeiffer (2004) and Caudill
et al. (2006), computed in the conformal thin-sandwich formalism with the equilibrium black-hole
boundary conditions of Section 12.3.2 for corotating and exactly nonspinning black holes. The
dotted line labeled “LN” in the right panel was obtained similarly, except that the black holes
are nonspinning to leading order only. The solid dotted line labeled “CO: HKV-GGB” in the
left panel marks the results of Grandclément et al. (2002), who use an approximate isometry
boundary condition on the horizon. The solid dotted line labeled “NS: IVP” marks the results
from the Bowen-York effective potential approach, using the conformal imaging technique (Cook,
1994). Finally, the dashed and dashed-dotted lines denote post-Newtonian “effective one-body”
results (Damour et al., 2002). [From Cook and Pfeiffer (2004) and Caudill et al. (2006).]

equation (12.107). Evaluating the quasilocal spin (7.74) shows, however, that these black holes do
not have exactly vanishing spin as seen in the inertial frame, meaning that this sequence is not
a truly nonspinning sequence. We refer to this approach as the “leading-order approximation”.
More accurate results, representing exactly nonspinning black holes, can be obtained by iterating
over the parameter Ωspin until the quasilocal spin (7.74) does indeed vanish to a desired accuracy.

Figures 12.5 include curves of constant angular momentum; the extrema of these lines mark
quasicircular orbits as identified by the effective potential method. The solid line connecting
these extrema forms the corresponding quasiequilibrium inspiral sequence. The dashed lines in
Figures 12.5 mark the same sequence, but with circular orbits identified by the mass criterion
(12.108). The two approaches agree extremely well up to very small binary separations, where the
assumptions of quasiequilibrium break down.

In Figure 12.6 we graph the binding energy of these inspiral sequences as a function of the
orbital angular speed Ωorb, which is a gauge invariant quantity. Also included in these figures are
results from other calculations. For the corotational sequence in the left panel of Figure 12.6 we
include the numerical results of Grandclément et al. (2002), who also adopt the conformal thin-
sandwich decomposition of Section 12.3, but, instead of using the black hole equilibrium boundary
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conditions of Section 12.3.2, adopt an approximate isometry condition.39 It is reassuring that the
numerical results differ only very little. For the nonspinning sequence in the right panel we also
include results for black holes that are nonspinning to “leading-order” only, as well as the results
from the Bowen-York effective potential approach highlighted in Figure 12.3. Post-Newtonian
results are also plotted for comparison.

The turning points along the equilibrium binding energy curves in Figure 12.6 mark their
respective ISCOs, as discussed in Section 12.1. We tabulate the ISCO parameters in Table 12.1
for corotational binaries and in Table 12.2 for nonspinning binaries. In these tables we include
numerical results, post-Newtonian results, as well as the results for a test particle in circular orbit
about a Schwarzschild black hole.

Exercise 12.13 Return to exercise 12.4 to reconsider a test particle of mass mtest in circular orbit
about Schwarzschild black hole of mass M .
(a) Evaluate the results of that exercise to show that at the ISCO (areal radius r = 6M) the test
particle has an orbital angular velocity MΩorb = 1/63/2 ≈ 0.0680, a binding energy Eb/mtest =
−Ẽeq =

√
8/9− 1 ≈ −0.0572 and an angular momentum J/mtest = J̃eq = 2

√
3M ≈ 3.464M .

(b) Extrapolate the above results to estimate corresponding quantities for equal-mass binary black
holes in circular orbit with total irreducible mass m. To do this, interpret the test mass mtest as the
reduced mass, mtest → µ = m/4, and the black hole mass M as the total mass, M → m in the
expressions found for part (a). Then derive the values quoted in the last rows of Tables 12.1 and 12.2.

Corotational binaries mΩorb Eb/m J/m2

Grandclément et al. (2002) 0.103 -0.017 0.839
Caudill et al. (2006) 0.106 -0.0165 0.844

Blanchet (2002); 1PN – standard 0.5224 -0.0405 0.621
Blanchet (2002); 2PN – standard 0.0809 -0.0145 0.882
Blanchet (2002); 3PN – standard 0.0915 -0.0153 0.867

Damour et al. (2002); 1PN – EOB 0.0667 -0.0133 0.907
Damour et al. (2002); 2PN – EOB 0.0715 -0.0138 0.893
Damour et al. (2002); 3PN – EOB 0.0979 -0.0157 0.860
Test particle around Schwarzschild 0.068 -0.0143 0.866

Table 12.1: The orbital angular velocity Ωorb, the equilibrium binding energy Eb, and the equi-
librium angular momentum J at the ISCO of corotational, equal-mass, black hole binaries, as
computed in different calculations. The mass m is the total irreducible mass of the binary.
Grandclément et al. (2002) and Caudill et al. (2006) adopt the conformal thin-sandwich decompo-
sition; different choices in the horizon boundary condition and the minimization procedure result
in changes of at most a few percent. Two sets of post-Newtonian results are included; one based
on a “standard” post-Newtonian expansion (Blanchet (2002)) and another based on an “effective
one-body” (EOB) approach (Damour et al. (2002)). [After Caudill et al. (2006).]

Actually, Tables 12.1 and 12.2 include two different sets of post-Newtonian results. The first
set is a “standard” post-Newtonian expansion as described in Appendix E, except that in the
Appendix we focus on nonspinning objects only. For the nonspinning binaries of Table 12.2, the
ISCO parameters can be obtained directly from the minima of the post-Newtonian expansion of

39See the last paragraph in Section 12.3.1 and footnote 22.
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nonspinning Binaries mΩorb Eb/m J/m2

Caudill et al. (2006) 0.122 -0.0194 0.779
Cook (1994) 0.166 -0.0225 0.744

Baumgarte (2000) 0.18 -0.023 0.74
Blanchet (2002); 1PN – standard 0.5224 -0.0405 0.621
Blanchet (2002); 2PN – standard 0.1371 -0.0199 0.779
Blanchet (2002); 3PN – standard 0.1287 -0.0193 0.786

Damour et al. (2002); 1PN – EOB 0.0692 -0.0144 0.866
Damour et al. (2002); 2PN – EOB 0.0732 -0.0150 0.852
Damour et al. (2002); 3PN – EOB 0.0882 -0.0167 0.820
Test particle around Schwarzschild 0.068 -0.0143 0.866

Table 12.2: ISCO parameters for nonspinning, equal-mass black hole binaries for different calcu-
lations. In addition to calculations referenced in Table 12.1, we also list the Bowen-York effective
potential results of Cook (1994) and Baumgarte (2000), who adopt the conformal imaging and
puncture methods, respectively, to treat the black hole singularities (see Section 12.2.2). [After
Caudill et al. (2006).]

the equilibrium binding energy (E.14). For the corotational binaries of Table 12.1, however, certain
spin contributions must be added to the binding energy before the ISCO can be located.40 The
other set of post-Newtonian results is based on an alternative “effective one-body” treatment,41

which in some cases may accelerate the convergence of the expansion.

It is instructive to graph the equilibrium binding energy Eb versus the equilibrium angular
momentum J as in Figure 12.7. It is quite noticeable that most curves form a cusp. These cusps
are a consequence of equation (12.112), which implies that sequences of constant irreducible mass
must have simultaneous turning points in the ADM mass (hence the binding energy) and the
angular momentum.42 The nonspinning sequence for which the black holes are nonspinning only
to “leading-order”, however, does not feature such a cusp – apparently this approximation is not
sufficiently accurate at small binary separations to produce a simultaneous turning point.

Several other aspects of the above figures and tables are noteworthy. The numerical results
of Grandclément et al. (2002) and Cook and Pfeiffer (2004) for corotational binaries agree very
closely, which is reassuring. Both post-Newtonian expansions seem to converge to the conformal
thin-sandwich data as the order of the expansion is increased. Since these results are based on
completely different approaches, this convergence presumably reflects physical consistency in the
solutions.

The ISCO parameters as obtained from the Bowen-York effective potential approach differ
significantly from all other results. This discrepancy reconfirms our earlier concern that the
transverse-traceless decomposition does not provide direct means to construct quasiequilibrium
metrics, and suggests that the conformal thin-sandwich approach may be the more promising
approach. For binary separations outside the ISCO, however, Bowen-York data agree reasonably
well with other results (see, e.g., Figure 12.7). In fact, Bowen-York puncture data have been used
as initial data in many recent dynamical simulations of binary black hole merger, partly because

40See, e.g., Blanchet (2002, 2006).
41Buonanno and Damour (1999); Damour et al. (2002).
42Provided the binding energy is defined as in equation (12.59); cf. footnote 14.
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Figure 12.7: [CAMBRIDGE: replacem withM in label.] The equilibrium binding energy Eb versus
the total equilibrium angular momentum J for the same corotational (left panel) and nonspinning
(right panel) binaries shown in Figure 12.6. [From Cook and Pfeiffer (2004) and Caudill et al.
(2006).]

they are quite easy to construct, and partly because they form a natural starting-point for the
robust “moving puncture” evolution technique that has been so widely adopted in many of these
simulations (see Chapter 13). Given the increasing speed and dynamic range of these simulations,
it is possible to use quasiequilibrium binaries of ever larger separation as initial data, whereby the
distinctions between different initial data sets are minimized.

One way of improving the above numerical results might be to abandon the assumption of
conformal flatness (γ̄ij = ηij). We already know, for example, that this assumption limits the
maximum allowed spin of a rotating black hole constructed in the conformal thin-sandwich ap-
proach (see the end Section 3.3). By choosing the background metric for binary black holes to
be the superposition of two Kerr-Schild metrics, quasiequilibrium binaries with quasilocal spin
parmaters Si/m

2
i as large as 0.9998 have been constructed.43 Most significant, when evolved,

these rapidly-spinning holes remain rapidly spinning even after the initial relaxation, in contrast
to the most rapidly spinning binaries constructed with conformally-flat metrics (either puncture
or conformal thin-sandwich).

Another means of improvement might be to use post-Newtonian expressions for the background
data in the constraint equations.44 A promising alternative could be the “waveless approximation”
described in Chapter 3.4. This approach allows a choice for the time-derivative of the extrinsic
curvature, whereby the evolution equation for the extrinsic curvature turns into an equation for
the conformally-related metric. Therefore, instead of making an ad hoc choice for the latter, one
can determine the conformal geometry that results from some physical assumption. To date this
approach has been implemented only for binary neutron stars,45 but it could be interesting to
study binary black holes in the future.

43Lovelace et al. (2008).
44See Tichy et al. (2003).
45See Uryū et al. (2006).



Chapter 13

Binary Black Hole Evolution

The dynamical simulation of the head-on collision of two black holes in axisymmetry was an early
success of numerical relativity (see Chapter 10.2). Based on this success one might surmise that
the subsequent simulation of the inspiral and merger of binary black holes initially in circular
orbit represented a straightforward generalization of the head-on case. It turned out, however,
that relaxing the assumption of axisymmetry to treat a binary in circular orbit, and then tracking
the resulting evolution, presented several nontrivial challenges. As a consequence, dynamical sim-
ulations of these binaries were stalled for many years until these challenges were finally overcome.
Today, the inspiral and merger of binary black holes is essentially a solved problem, constituting
one of the major triumphs of numerial relativity.

One obvious complication that arises in numerical simulations when moving from two to three
spatial dimensions is the burden of increased computational resources required to cover the added
dimension. Even though computers have become considerably faster and can handle far more mem-
ory than the machines available when the first head-on black hole simulations were performed, the
resources required to resolve inspiraling black holes in the strong-field, near-zone while simulta-
neously tracking and ultimately extracting gravitational waves in the weak-field, far-zone remain
formidable. Different investigators have adopted different approaches to address this problem of
“dynamic range”, including the use of fixed or adaptive mesh refinement or the construction of
novel coordinate systems that allocate gridpoints where they are most needed. In finite-difference
methods, it is also possible to use higher-order differencing schemes in both space and time, like
fourth-order or higher, to increase the accuracy for a given number of grid points over the more
traditional second-order schemes featured in Chapter 6.2.

Another complication in going from two to three spatial dimensions arises from the form of
the evolution equations. In axisymmetry, it is not difficult to formulate evolution schemes that
solve Einstein’s field equations in a stable fashion when implemented numerically. One such
scheme is presented in Appendix F. At their core, the earliest formulations in axisymmetry were
usually based on the identification of good “radiation variables” (see, e.g., equations F.5 and
F.6) and often employed one or more of the constraint equations to solve for one or more of the
metric variables in lieu of integrating the corresponding evolution equation for the variable(s)
(“constrained evolution”). In three spatial dimensions it has proven less obvious how to construct
“radiation variables”,1 and, as a result, it is less clear how to arrive at a good choice for the form
of the evolution equations. Numerical implementations of the standard 3 + 1 or ADM equations
as presented in Chapter 2 develop instabilities, even for small perturbations of flat space. As we

1But see Bonazzola et al. (2004).
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discussed in Chapter 11, several reformulations of the evolution equations have been developed in
recent years that do provide stable numerical implementations. These newer formulations, which
include the generalized harmonic system (Chapter 11.4) and the BSSN system (Chapter 11.5),
have led to dramatic breakthroughs in our ability to simulate the inspiral and merger of binary
black holes.

Finally, evolving black holes requires handling the singularities in their interiors, which, if left
unattended, could have dire consequences for a numerical simulation. For the head-on collisions in
axisymmetry it proved sufficient to adopt singularity-avoiding coordinates to deal with this issue
(see Chapters 4 and 10.2), but for the longer-term evolutions required for the simulations of binary
black hole inspiral and merger, such coordinate systems could lead to coordinate pathologies. One
alternative approach that has provern successful is the “excision” of the interior of the black hole
in order to remove the singularity from the computational domain. Another successful approach
is the “moving puncture” method, which is based on moving puncture gauge conditions. We will
discuss both these approaches in Section 13.1, after which we will we summarize some successful
simulations of binary inspiral and merger in Section 13.2.

13.1 Handling the Black Hole Singularity

Black hole interiors contain curvature singularities. If encountered during a numerical simulation,
these singularities can cause the calculation to terminate prematurely (i.e “crash”). Special care
therefore needs to be taken to avoid encountering such a singularity.2 In the following we will dis-
cuss three approaches that have been used to avoid singularities: singularity avoiding coordinates,
black hole excision and the moving puncture method.

13.1.1 Singularity Avoiding Coordinates

To state the obvious, singularity avoiding coordinates are spacetime coordinates that avoid singu-
larities. A singularity avoiding time coordinate, for example, is one in which the appearance of a
spacetime singularity is postponed until t = ∞. A popular example of a such singularity avoiding
slicing condition is maximal slicing (see Chapter 4.2 and, in greater detail, Chapter 8.1). Black
hole simulations using maximal slicing and other singularity avoiding coordinate systems have
been very successful in spherical symmetry and axisymmetry (see Chapters 8 and 10). Ultimately,
however, these coordinate systems tend to develop “grid stretching” along black hole throats (see
Chapter 8.1), another cause of the premature demise of a numerical calculation.3 For simulations
of orbiting binaries in three spatial dimensions it is even harder to identify singularity avoiding
coordinates that might lead to a long-term, stable evolution. As a consequence, most successful
simulations have adopted other strategies for avoiding spacetime singularities.

2Unless, of course, the code is specifically designed to explore the properties of spacetime singularities; see, e.g.,
Hübner (1996); Berger (2002).

3We point out another unappealing feature of singularity avoiding coordinate systems. By slowing down the
advance of proper time in areas close to a singularity, large amounts of computational resources are used to
cover increasingly small regions of spacetime. Adopting singularity avoiding coordinates may therefore lead to an
uneconomical use of the computational resources.
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13.1.2 Black Hole Excision

The idea of black hole excision goes back to a suggestion by Unruh.4 As long as cosmic censorship
holds, any spacetime singularity must be surrounded by an event horizon and hence must reside
inside a black hole. By definition, no information can propagate from inside the black hole to
the outside, so that none of the exterior spacetime can possibly be affected by the black hole’s
interior.5 This suggests that it should be sufficient to simulate numerically only the exterior of
any black holes, and to excise from the computational domain any region that lies inside an event
horizon. This approach is referred to as black hole excision.6

While the underlying idea of black hole excision is very elegant and transparent, some of
the details of its numerical implementation are more involved. To begin with, it is usually not
possible to locate an event horizon during a numerical simulation. It is usually possible, however,
to locate apparent horizons, which in general relativity are guaranteed to lie inside event horizons.7

In practice, therefore, it is the region interior to an apparent horizons that is excised from the
computational domain.8

Excision itself can be implemented in different ways. In many applications all gridpoints within
a certain sphere (or ellipsoid) that lies within the apparent horizon are excised, leaving only a small
buffer zone of gridpoints just outside the sphere but inside the apparent horizon on which valid
data can reside.9 Gridpoints within the excised region no longer contain valid data and therefore
cannot be used in equations to determine the values of field quantities in the black hole exterior.
This means that the boundary of the excision region has to be treated in a special way.

Mathematically, no boundary conditions for the evolution equations should be required on the
excision surface, since all characteristics on that surface should be directed inward (see Fig. 6.1
and the surrounding discussion in Chapter 6.1). Numerically, however, the excision surface may
nevertheless require a special treatment. Many finite difference applications, for example, use
centered differencing (see Chapter 6.2), which, when applied to a gridpoint on the surface, requires
valid data on excised gridpoints. This problem can be avoided quite simply, either by using
one-sided difference stencils on the excision surface,10 or by extrapolating valid data to excised
gridpoints from the outside before these points are used in a centered differencing scheme.

When black holes move through a numerical grid, grid points that had previously been excised
may also re-emerge from a black hole, and have to be repopulated with valid data. In many
applications this is done by extrapolating from adjacent exterior points. We will discuss some
successful binary black hole simulations that have adopted black hole excision in Chapter 13.2.1.

13.1.3 The Moving Puncture Method

We have already encountered the puncture method in Chapter 12.2.2 for the construction of black
hole initial data. The key idea of the puncture method is to decompose the metric as a sum or

4Unruh (1984), as quoted in Thornburg (1987).
5See also the discussion in Chapter 7.1.
6Some early numerical implementations include Seidel and Suen (1992); Scheel et al. (1995a); Alcubierre and

Brügmann (2001); Yo et al. (2002); Brügmann et al. (2004); Alcubierre et al. (2005); Pretorius (2005b,a).
7See Chapter 7, and in particular the discussion in Chapter 7.1.
8Recall, however, that in some slicings apparent horizons do not form, even though a black hole is present; see,

e.g., Exercise 8.10.
9In Cartesian coordinates, the resulting excised region represents an approximation to the smooth sphere or

ellipsoid, and is often referred to as a “LEGO” sphere.
10See, e.g., Exercise 6.5.
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product of one term that contains the singularity, but is analytic, and a correction term that must
be obtained numerically, but is regular. In equation (12.50), for example, we wrote the conformal
factor ψ as a sum of the analytical black hole “punctures” 1/α and a correction term u. We
then found that the Hamiltonian constraint (12.52) becomes a regular equation for u that can be
solved everywhere, without any need for special boundary conditions at the black hole or excision.
Clearly, it is tempting to try a similar approach for dynamical simulations containing black holes.

The first attempts to construct such a scheme employed a “fixed” puncture method. For a
single Schwarzschild black hole, for example, we could write the conformal factor as the product

ψ =

(
1 +

M

2r

)
f. (13.1)

Starting with initial data on a slice of constant Schwarzschild time we have f = 1 initially. During
the evolution, we could then leave the analytic singular part fixed, and evolve only the regular
function f . In a binary evolution using this approach,11 the singularities remain at fixed coordinate
locations, given by the “punctures” in the analytical part of ψ. That means that suitable gauge
conditions have to be found that are consistent with this prescription; i.e. the gauge conditions
have to leave the singularities at their prescribed coordinate locations and have to preserve the
nature of their singular behavior, in this case a 1/r divergence. An additional complication arises
from the fact that, under these conditions, an evolution with a lapse that is positive everywhere
cannot lead to a stationary solution, even for a single Schwarzschild black hole.12 As a consequence,
binary black hole simulations using the fixed puncture method have not proven very successful,
since they have not led to long-term, stable evolution.13

The breakthrough came with the so-called “moving” puncture method, first suggested indepen-
dently by Baker et al. (2006) and Campanelli et al. (2006).14 In some sense the moving puncture
approach is even easier than the fixed puncture approach. The singular term in the metric is not
factored out; instead, the metric is evolved in its entirety. The puncture is allowed to move freely
in accord with the gauge conditions, except that care is taken that the singularity never hits an
actual grid point. Usually this can be accomplished quite easily. In situations that feature equa-
torial symmetry, for example, the punctures always remain on the (orbital) plane of symmetry.
Using a cell-centered finite difference scheme15 no grid points are located on this plane, so that the
punctures can never encounter a grid point. The moving puncture method is usually implemented
in the BSSN formalism, or some close adaptation. It is sometimes advantageous, in the context
of this formalism, to evolve a variable related to the inverse of the conformal factor, rather than
the conformal factor itself, since the inverse will vanish at puncture singularities rather than di-
verge. With a suitable choice of gauge conditions, like the 1+log slicing condition (4.51) and the
Gamma-driver condition (4.83), this prescription leads to remarkably stable evolutions.16 Before
we summarize some of the details of the solution, we are compelled to address one obvious ques-
tion: how is it possible that the presence of puncture singularities in the computational domain
does not spoil the numerical calculations?

11Brügmann (1999).
12Hannam et al. (2003); Reimann and Brügmann (2004).
13Alcubierre et al. (2001); Brügmann et al. (2004).
14See Brügmann et al. (2008) and Hannam et al. (2008) for detailed discussions of this method, its numerical

implementation, and geometrical interpretation.
15See, e.g., Fig. 6.2.
16See van Meter et al. (2006) for a comparison of alternative gauge conditions for the evolution of moving

punctures.
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Considerable insight and clarification of this question has been provided by Hannam et al.
(2007, 2008) and Brown (2008). Consider the evolution of a single Schwarzschild black hole. A
puncture evolution of this spacetime could start out with initial data expressing Schwarzschild
geometry in isotropic coordinates at an instant of constant Schwarzschild time. The conformal
factor at this instant is then given by

ψ = 1 +
M

2r
. (13.2)

As we have seen in Chapter 3, these isotropic coordinates do not penetrate the black hole interior,
but instead cover two copies of the black hole exterior. These two copies represent a “wormhole”
solution, i.e. two sheets of asymptotically flat “universes” that are connected by an Einstein-
Rosen bridge at the black hole horizon, as illustrated in Fig. 3.1. The singularity at isotropic
radius r = 0, where the conformal factor diverges as 1/r, corresponds to the asymptotically flat
end of the “other” universe, and is therefore a mere coordinate, and not a curvature, singularity.17

Let us now evolve these initial data with the 1+log slicing condition (4.51),

∂tα− βi∂iα = −2αK (13.3)

and the Gamma-driver condition (4.83). These conditions are conditions on the time derivatives
of the lapse and shift only; before we can start the evolution we therefore have to specify initial
data for these variables. We could, for example, choose α = (1 − M/(2r))/(1 + M/(2r)) and
βi = ∂tβ

i = 0, which we recognize from the familiar static form of the Schwarzschild line element
in isotropic coordinates (equation 1.60). As we discussed in the context of equation (2.162), these
choices represent the Killing lapse and shift; since they also satisfy the slicing conditions (4.51)
and (4.83) with zero time-derivatives, the resulting time evolution would leave all metric quantities
time-independent (see also equation 2.145 and the discussion that follows it). Consider instead the
initial choices α = 1 and βi = ∂tβ

i = 0. It is easy to see that these choices lead to a nontrivial time
evolution; specifically, the term DiDjα no longer cancels out the Ricci tensor αRij in equation
(2.127), leading to a nonzero time-derivative of Kij (see exercise 2.31).

Even though the spacetime geometry, which is still Schwarzschild, remains static, the metric
quantities now vary with time and thereby constitute a dynamical coordinate system. Hannam
et al. (2007) demonstrate that the solution behaves dynamically only for a brief period, after
which it settles down to a new, time-independent solution that is different from the initial data.
In particular, in the new, time-independent solution the conformal factor is characterized by a
1/
√
r singularity at r = 0 instead of the original 1/r singularity. As demonstrated in exercise 13.1,

such a slice terminates on a (limit) surface of finite areal radius rs.

Exercise 13.1 Assume a spherically symmetric spatial metric of the form γij = ψ4ηij and assume
that

ψ →
(
µM

r

)1/2

as r → 0. (13.4)

Show that the surface r = 0 has an areal radius of rs = µM .

Consider, for a moment, evolving the data with a “nonadvective” version of the 1+log condition
(13.3), i.e. drop the shift term βi∂iα from that equation so that ∂tα = −2αK. The late-time
asymptotic solution, which is also time-independent, must satisfy ∂tα = 0, and must then be
maximally sliced with K = 0. This solution must therefore be a member of the family of time-
independent, maximal slicings (4.23) – (4.25), which are parametrized by C. Hannam et al. (2007)

17See the discussion following equation (3.20).
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Figure 13.1: A schematic embedding diagram of a maximally sliced Schwarzschild geometry with
C = 3

√
3M2/4 (for t = constant and θ = π/2; see equations 4.23 – 4.25). In contrast to the

“wormhole” solution shown in Fig. 3.1, this “trumpet” solution has only one asymptotically flat
end, while the other end, corresponding to r → 0, approaches an infinitely long cylinder of areal
radius rs = 3M/2. [After Hannam et al. (2008).]

provide numerical evidence that this late-time solution corresponds to the particular member
C = 3

√
3M2/4, which has a limiting surface at rs = 3M/2. In Appendix H we analyze this

solution in more detail, and, in particular, we show that the conformal factor for this solution
indeed features a 1/

√
r singularity at the isotropic radius r = 0, corresponding to an areal radius

rs = 3M/2 (see equation (H.8)). In Fig. 13.1 we sketch an embedding diagram for this solution,
the appearance of which suggests the name “trumpet” solution for this type of solution. For the
“advective” version of the 1+log condition, only parts of the late-time solution can be constructed
analytically (see Appendix H), but qualitatively the results are very similar. In particular, the
asymptotic solution again features a “trumpet” geometry.18

The key point is that the singularity at isotropic radius r = 0 is again only a mere coordinate
singularity. Since the numerical grid terminates at r = 0 and rs > 0, it does not include the
spacetime singularity at rs = 0. This result helps to explain in part the success of the moving
puncture method. In a nut-shell, it can be described as “excision-without-excision”; instead of
excising the spacetime explicitly as in the excision method, the moving puncture method excises
the innermost part of the black hole interior containing the spacetime singularity with the help of
a particular gauge choice.

Further insight into this behavior was provided by Brown (2008), who also performed moving
puncture simulations of Schwarzschild. Starting again with “wormhole” initial data representing
the Schwarzschild solution at an instant of constant Schwarzschild time, he also evolved the data
with the 1+log slicing condition (4.51) and α = 1 initially, but chose different shift conditions.
Evolving with zero shift, Brown (2008) points out that the spatial slices, which start out connecting
the two asymptotically flat ends of the “wormhole” solution, cannot possibly disconnect from either

18Hannam et al. (2008).
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Figure 13.2: The spatial slice at t = 3M in a moving puncture simulation of a single Schwarzschild
black hole, plotted in a Kruskal-Szekeres diagram. The solid blue line shows the slice that results
from an evolution with zero shift in equation (13.3), while the dots represent the location of
individual grid points when evolved with the Γ-driver condition (4.83). The thick upper red line
represents the spacetime singularity at rs = 0. [After Brown (2008).] [CAMBRIDGE: change the
upper red line to a sawtooth, as in Figs 1.1 or 8.1]. Change fig caption accordingly.]

one of these two asymptotic regions. In fact, for zero shift the solution has to remain symmetric
across the Kruskal-Szekeres coordinate u = 0 at all times, as shown in Fig. 13.2. All spatial slices
remain connected to both asymptotic ends. But since the slicing condition (4.51) is independent
of the shift, the same result must hold for any other shift condition, including the Gamma-driver
condition (4.83). The only difference is that individual spatial coordinate locations, or numerical
grid points, now move on the spatial slices. For the Gamma-driver condition, the grid points,
marked by dots in Fig. 13.2, move “away” from the “other” asymptotic region very quickly,
toward the right-hand side in a Kruskal-Szekeres diagram. Even for a very fine grid resolution,
and after only a very short time, no grid points remain in region III of the diagram. It is in this
sense that a dynamical evolution approaches a “trumpet” solution like the one we discussed above.
Even though the solutions have different asymptotic behavior, the Gamma-driver condition moves
all grid points into a region where the two solutions converge towards each other.19 Moreover, the
grid points drift safely away from the coordinate singularity at large negative u.

Fig. 13.2 also illustrates that the spatial slices again do not encounter the black hole spacetime
singularity. In fact, these slices have properties similar to those of ”singularity avoiding” coordi-
nates, except that the gauge conditions used in moving puncture simulations avoid the coordinate
pathologies (e.g. “grid stretching”) often encountered when using other singularity avoiding coor-
dinates.

19We refer to Hannam et al. (2008) for a more detailed discussion.
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Figure 13.3: Evolution of the lapse function α in the orbital plane during the merger of an
equal-mass, nonspinning binary black hole in the calculation of Pretorius (2005a). The black
regions are the excised domains in the black hole interior. The apparent horizons merge between
the times of 114M and 115M , where M is the total initial ADM mass of the binary, and the
initially distorted remnant subsequently settles down to an axisymmetric stationary Kerr black
hole. [Figures provided by Pretorius, private communication.]

13.2 Binary Black Hole Inspiral and Coalescence

In this Section we will review some of the earliest successful simulations of binary black hole inspiral
and coalescence. In Section 13.2.1 we focus on the first complete simulations, which marked an
important breakthrough in the numerical evolution of strong-field, vacuum spacetimes. These
simulations were performed for equal-mass binaries with zero spin. In Section 13.2.2 we will then
discuss simulations of binaries containing black hole companions with mass ratios different from
unity and with nonzero spin, as well as the calculation of black hole recoil. These results have
important implications for black hole astrophysics and gravitational wave astronomy.

13.2.1 Equal-Mass Binaries

The simulation of binary black hole inspiral, plunge and merger had been a long-standing goal of
numerical relativity. A vacuum problem in pure geometry, with no other complicating sources or
physical interactions, this two-body scenario remained one of the most important unsolved prob-
lems in classical general relativity. In addition, theoretical templates of gravitational wave forms
from binary black holes are of crucial importance for the identification and subsequent interpreta-
tion of such signals in the data of the new generation of gravitational wave interferometers. With
the construction of these detectors, the solution of the binary black hole problem had become
very urgent. Nevertheless, solving the problem, sometimes called the “holy grail” of numerical
relativity, had resisted the efforts of numerous researchers for many years. It is not surprising,
then, that Pretorius’s announcement of his successful simulation of a binary black hole inspiral
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Figure 13.4: The evolution in the orbital plan of an equal-mass, nonspinning binary black hole,
showing the coordinate locations of the apparent horizons (AH) at several key moments during
the inspiral and merger. [From Buonanno et al. (2007)].

and merger at a workshop hosted by the Banff International Research Station in April 2005 was
met with great excitement.

Pretorius (2005a) uses the generalized harmonic formalism described in Chapter 11.3, and
eliminates black hole singularities with an excision method described in Section 13.1.2. In his
initial calculations Pretorius created a black hole binary from nonsingular initial data by letting
a scalar field (see Chapter 5.4) undergo gravitational collapse. By boosting the initial scalar field
configuration, he generated a binary system in an approximate circular orbit. The companions
each then collapsed to black holes prior to merger. While these calculations were not meant to
simulate a realistic astrophysical scenario, they did provide the first calculation that could stably
evolve a binary black hole from inspiral through merger to final ringdown, with the remnant
settling down to a stationary Kerr black hole.

Fig. 13.3 shows contours of the lapse function α in the orbital plane during one of these
simulations. In these calculations, Pretorius adopts a compactified coordinate system in which
the outer boundaries correspond to spatial infinity. He also uses adaptive mesh refinement (AMR,
see Chapter 6.2.5) to achieve sufficient grid resolution close to the black holes. In his original
calculations, the finest resolution is placed in the vicinity of each black hole and is approximately
M/20.20

In later work, Pretorius replaced the scalar field initial data with conformal thin-sandwich,
binary black hole initial data as described in Chapter 12.3.21 This choice significantly reduces the
eccentricity of the resulting orbit and allowed Pretorius to follow the inspiral for several orbits

20Here and below M is the total intial ADM mass of the binary system.
21Specifically, he used the initial data of Cook and Pfeiffer (2004) and Caudill et al. (2006).
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Figure 13.5: The gravitational waveform Re(ψ4) for an equal-mass, nonspinning binary black
hole merger in the calculation of Campanelli et al. (2006). Results are plotted for different grid
resolutions. This convergence test suggests fourth-order convergence, as expected from a fourth-
order finite-difference implementation [From Campanelli et al. (2006)].

prior to merger.22 In Figure 13.4 we plot the orbital evolution of such an equal-mass binary,
together with the location of the apparent horizons at several key instants of time.

Pretorius’ success was quickly followed by another breakthrough that employed a completely
independent approach. Both Campanelli et al. (2006) and Baker et al. (2006) adopted versions
of the BSSN formalism described in Chapter 11.5, together with the moving puncture approach
of Section 13.1.3, and were also able to follow binary black hole coalescence through merger to
ringdown.

The original implementations of Campanelli et al. (2006) and Baker et al. (2006) differ in some
of the details. Baker et al. (2006) use the BSSN formalism and the moving puncture approach very
similar to our descriptions in Chapter 11.5 and Section 13.1.3. As did Pretorius, they also use AMR
to achieve sufficient grid resolution. Campanelli et al. (2006) implement a slight variation of the
BSSN formalism. Instead of evolving the conformal exponent φ in the standard BSSN formulation
(see equation 11.46), they evolve the inverse of the conformal factor, χ = exp(−4φ), which vanishes
at the punctures. Given suitable gauge conditions it is possible, with this choice, to keep all
quantities regular during the evolution. This approach has the advantage that the punctures may
now encounter gridpoints without causing numerical difficulties. Also, Campanelli et al. (2006)
adopt a uniform numerical grid (as opposed to AMR), but introduce “multiple transition fisheye”
spatial coordinates23 as well as fourth-order finite differencing to provide sufficient resolution for
the black holes. In many of the other aspects the two approaches are very similar. In particular,
both Campanelli et al. (2006) and Baker et al. (2006) adopt the puncture initial data described
in Chapter 12.2 – a natural choice for evolution with the moving puncture method – to describe

22See Buonanno et al. (2007).
23See Chapter 14.2.3 for a brief description.
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a quasiequilibrium binary configuration close to the ISCO.

Figures. 13.5 and 13.6 illustrate some of the results of Campanelli et al. (2006) and Baker
et al. (2006). Figure 13.5 shows the gravitational waveform Re(ψ4) (i.e. the real part of the
Newman-Penrose scalar ψ4, see Chapter 9.4.2) of Campanelli et al. (2006). In this particular
calculation the grid extends to an outer boundary of 60M , and Re(ψ4) is extracted at 5M .24 The
calculation is then performed with three different grid resolutions, ∆x = M/16,M/24 and M/36
in the innermost region, where the resolution is the finest. The comparison of results suggests
that the simulation is fourth-order accurate, as expected from a fourth-order finite difference
implementation (see Chapter 6.4).

Figure 13.6 demonstrates mass-energy conservation in the calculations of Baker et al. (2006).
This calculation used AMR, with a grid resolution of δx = M/32 on the finest grid, and with
the outer boundary at 128M . The comparison is performed for gravitational wave extraction at
both 40M and 50M . Except for some fluctuations at early times, caused by a transient pulse in
the gauge evolution that affects the measurement of the ADM mass, the agreement is remarkably
good, and provides one measure of the accuracy of the simulation.

In a follow-up study, Baker et al. (2007) compared their gravitational waveforms with those
obtained from post-Newtonian approximations.25 For such a comparison it is important to start
the inspiral from a large binary separation, where one would expect the two approaches to agree

24To obtain waveforms measured by a distant observer, one must extract them at a much larger separation from
the binary. In this implementation, however, the waveforms are affected by the outer boundaries. Consequently,
for the purposes of the convergence test plotted in this figure, Re(ψ4) is determined at a smaller radius, so that it
remains causally disconnected from the outer boundary until a later time.

25See Appendix E as well as Blanchet (2006).
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Figure 13.7: Comparison of the gravitational waveform h(t) from an equal-mass, nonspinning
black hole binary as obtained in the numerical simulations of Baker et al. (2007) (solid line)
with the corresponding post-Newtonian result to order 2.5PN in the amplitude and order 3.5PN
in the phasing (dashed line; see Blanchet (2006)). Here r is the distance to the source, and
the gravitational wave strain h is based on the dominant ` = 2, m = 2 spin-weighted spherical
harmonics of the radiation, and represents an observation made in the system’s equatorial plane,
where only the h+ polarization contributes to the strain. [From Baker et al. (2007).]

well. Baker et al. (2007) therefore use as initial data a binary with an orbital angular frequency
of approximately ΩM = 0.0255, which may be compared with the values at the ISCO listed
in Table 12.2. This binary completes about 7 orbits, and hence about 14 gravitational wave
cycles, before coalescence. The agreement with post-Newtonian predictions well into the merger
phase is remarkable. Figure 13.7 compares the gravitational waveform generated by the numerical
simulations with the the post-Newtonian prediction to order 2.5PN in the amplitude and to order
3.5PN in the phase. The numerical simulation uses fourth-order finite differencing, AMR, and a
resolution of approximately M/32 on the finest grid. While the agreement is not perfect, it is
consistent with the internal error estimates in either one of the two approaches.26

Given the different algorithms and implementations used in the simulation of binary black
holes, it is of interest to compare how well predictions from these different codes agree. This has
been addressed by Baker et al. (2007), who provide a comparison of the results obtained with
the codes of Pretorius (2005a), Campanelli et al. (2006) and Baker et al. (2006). If the only
differences between these simulations originate in the adopted formulation of Einstein’s equations,
gauge conditions and specifics of the numerical implementation, then clearly all of them should
yield the same results for physical invariants in the limit of infinite resolution. However, the
simulations differ in other aspects, too. One difference lies in the initial data. For the calculations
presented in Buonanno et al. (2007), Pretorius, adopts the corotational, conformal thin-sandwich

26A similar analysis, based on the numerical simulations of Pretorius (2005a), has been presented in Buonanno
et al. (2007).
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Figure 13.8: Comparison of the gravitational waveforms Re(ψ4) obtained by three independent
research groups: Pretorius (Pretorius (2005a); Buonanno et al. (2007)), Goddard Space Flight
Center (GSFCC, e.g., Baker et al. (2006)) and University of Texas at Brownsville (UTB, e.g.,
Campanelli et al. (2006)). [From Baker et al. (2007).]

binary black hole data of Cook and Pfeiffer (2004). The other two groups, on the other hand,
adopt nonspinning puncture initial data. Even though the simulations start with quasiequilibrium
initial data describing a binary at quite similar proper separations and angular velocities, they
carry different total angular momenta.27 Moreover, the different groups use different algorithms for
the extraction of gravitational waves (see Chapter 9.4). Despite these differences, it is remarkable
how well the predictions for the asymptotic gravitational wave signals agree, as shown in Figure
13.8. The agreement is particularly convincing for the waveforms emitted during the merger phase.
At earlier times, shown in the inset, especially when the signal is dominated by noise associated
with the initial data, the agreement is worse, as one would expect.

Figures 13.7 and 13.8 also demonstrate how “simple”, in some sense, the gravitational wave
signal from the merger of a binary black hole system appears. One can easily identify the familiar
“chirp” signal, emitted during the late inspiral phase, during which both the wave amplitude and
frequency increase. The signal terminates, as expected, with quasinormal ringing, as the merger
remnant settles down to stationary equilibrium. The transition from the chirp to the ringdown
part of the signal is rather smooth, and not at all abrupt. This feature is related to the relatively
smooth transition of the binary orbit from inspiral to merger, as described in Chapter 12. While
we have defined and located the ISCO as the last stable circular orbit for the quasiequilibrium
models considered in Chapter 12, the ISCO does not mark a very sudden transition, but rather a
gradual change from inspiral to plunge. This can be seen in Figure 13.4, which displays no sharp
plunge prior to merger.

In fact, the inspiral is approximated remarkably well by the Newtonian quadrupole expressions

27Even for identical angular momenta, the quasiequilibrium data constructed from the conformal thin-sandwich
approach and the puncture data may not represent slices of identical spacetimes; see the discussion in Chapter 12.
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Figure 13.9: The gravitational waveform, extrapolated to spatial infinity, for an equal-mass, non-
spinning, black hole binary. The top panel shows the real part of the dominant ` = 2, m = 2
mode of ψ4 on the linear scale, the bottom panel on a logarithmic scale. The panels on the right
show an enlargement of the data for the merger and ringdown. [From Scheel et al. (2009).]

of Exercise 12.3 until late times.28 A dynamical instability in the binary orbit at the ISCO should
be reflected in a departure of the waveform from this expression. However, a common horizon
forms sufficiently early to absorb much of the radiation generated during such an epoch and mask
any such departure.

Simulations that can track binary black hole inspiral from large separation allow us to estimate
the total energy emitted in gravitational radiation during the entire coalescence event. Baker
et al. (2007) find that approximately 3.5% of the total initial mass-energy M is radiated away
during the late inspiral and merger, starting from a proper horizon separation of about 10M ;
other investigations are in reasonable agreement. The amount of energy radiated during the early
inspiral from infinite separation to the separation of 10M can be estimated from the binding energy
of the initial data at 10M . Using the values reported in Caudill et al. (2006) and Buonanno et al.
(2007), the radiated energy is about 1.2% of M .29 The total amount of energy radiated during
inspiral from infinite separation is therefore between about 4.5 and 5% of the total initial mass-
energy. This value is significantly less than the maximum possible value of 29% allowed by the area
theorem (see Exercise 7.2), but considerably more than the energy radiated during a head-collision
from rest at infinity (� 1%; see Chapter 10.2.)

Building on these initial successes, many other investigators followed up with their own simu-
lations of the inspiral and merger of equal-mass binary black holes. As an example we show results
from a highly refined simulation, based on a carefully groomed, pseudo-spectral implementation

28See Buonanno et al. (2007) for a detailed analysis.
29See Tables 12.1 and 12.2, where we list the binding energies at the ISCO, i.e. at slightly smaller binary

separation.
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of a first-order version of the generalized harmonic formalism, in Figure 13.9.30

In Appendix I we present results in greater detail for two simulations of the inspiral and merger
of nonspinning binary black holes. One simulation describes an equal-mass binary and the other
describes a binary with a mass ratio of 3:1 (see the following Section). These particular simula-
tions employ a finite-difference implementation of the moving puncture method within the BSSN
formalism and employ puncture initial data. In the Appendix we tabulate specific information
about the adopted AMR grid set-up, the finite-difference implementation, the initial data, and
the diagnostics, as well as the emitted gravitational radiation and the black hole recoil. We also
plot the orbital trajectories of the black holes and the emitted gravitational waveforms. The pur-
pose of this Appendix is two-fold: First, from a practical computational perspective, these two
simulations provide handy testbed calculations for researchers seeking to perform similar simula-
tions with their own algorithms and vacuum codes. Second, from a pedagogical perspective, the
summary provided in the Appendix pinpoints where in the course of performing and evaluating a
binary black hole simulation one is required to implement many of the basic concepts and tools
that have been developed in this book. References to the places in the book where these concepts
and tools are introduced are provided throughout Appendix I.

13.2.2 Asymmetric Binaries, Spin and Black Hole Recoil

In the last Section we focused on equal-mass, nonspinning binaries. While this is a very natural
case to study first, it clearly is not a generic scenario: binary black holes in nature are likely
to have unequal masses and nonzero spins. It therefore is of great interest to understand how
the findings of the previous Section change for mass ratios different from unity and how they are
affected by black hole spin.

Allowing for unequal masses and black hole spin will certainly alter the gravitational signal
emitted during the inspiral and merger. It is therefore crucial to understand these effects for
the detection of gravitational waves from binaries. In fact, the accurate extraction of binary
parameters from an observed gravitational wave signal requires a large catalog of templates of
theoretical waveforms compiled for binaries with different mass ratios and spin parameters.

However, the detection and interpretation of gravitational wave signals is not the only astro-
physical motivation for the study of asymmetric binaries. As it turns out, one important conse-
quence – black hole recoil – is suppressed in the symmetric binary scenarios of Section 13.2.1, but
plays an important role in several different astrophysical contexts, as we will sketch below.

Black hole recoil can be understood qualitatively as follows. Gravitational radiation generally
carries both energy and momentum. In symmetric binaries, the total linear momentum radiated
by the binary must be zero: the contributions to the radiated linear momentum from the two black
holes cancel. This cancelation is not the case in an asymmetric binary, which therefore radiates a
nonzero net linear momentum. Given this linear momentum loss, the center of mass of the system
acquires a linear momentum in the opposite direction. In a frame in which the binary’s center of
mass was originally at rest prior to merger, the remnant will thus end up with a nonzero “kick”
velocity.

Just how large this recoil or kick velocity Vkick is has important astrophysical and cosmological
implications. For example, supermassive black holes with masses in the range 106M�−109M� are
believed to reside at the centers of many, if not most, bulge galaxies, including the Milky Way.

30See Scheel et al. (2009), as well as Lindblom et al. (2006), for a first-order version of the generalized harmonic
formalism.
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One plausible scenario for their formation is through a combination of mergers with other black
holes and gas accretion. The mass and age of the initial “seed” black hole is unknown, but it could
be in the range 60M� − 600M� if it is the collapsed remnant of a first-generation Population III
star,31 or much higher than 103M� if it is the remant of a collapsed supermassive star.32 Binary
black holes can form during the merger of their host galaxies. This process is believed to be take
place in the context of the cold dark matter (ΛCDM) model of structure formation in the early
universe, where dark matter halos merge hierachically and black holes are assumed to settle, merge
and accrete in their gaseous centers.

Clearly, for the remnant of such mergers to remain within any host, the kick speed Vkick has
to be less than the escape velocity of that host. In giant elliptical galaxies and spiral galaxies,
the central escape velocities Vesc are roughly between 500 km/s and 2000 km/s.33 If kick speeds
routinely exceeded these escape speeds, this would clearly call into question whether supermassive
black holes can form via hierarchical merger,34 and might favor instead growth via pure accretion,
or some other mechanism. On the other hand, even a modest kick speed Vkick would be sufficient
to explain the apparent absence of massive black holes in dwarf galaxies and globular clusters, for
which the central escape speed is significantly smaller than for giant galaxies.35

A typical kick speed just below the escape speed should result in a finite probability of finding
remnant supermassive black holes displaced from the center of their host galaxies. Eventually,
dynamical friction (gravitational scattering off other stars) will cause the orbit of the black hole
to decay back to the galaxy center, as it transfers kinetic energy to the other stars in the galactic
nucleus.

The ejection of merger remnants from globular clusters reduces the likelihood of further mergers
and thus decreases the probability of observing binary black hole mergers in such clusters. For
the same reason, black hole merger remnants have difficulty remaining in high redshift halos with
relatively shallow potential wells.

Another important consequence of black hole mergers is its effect on the spin evolution of a
supermassive black hole. The growth rate of a black hole by gas accretion is a function of its
efficiency of conversion of accreted rest-mass into electromagnetic radiation, and this efficiency
depends sensitively on the spin parameter a/M of the black hole. Black holes with smaller spin
parameters have lower efficiency and thus grow more quickly for a given luminosity. It is thus a
crucial question whether or not the combination of mergers and gas accretion at the Eddington
limiting luminosity36 is sufficiently rapid to build a supermassive black hole to power QSO SDSS
1148+5251, the quasar with the highest known redshift (z = 6.4) at the time of the writing
of this book. This quasar is believed to host a 109M� black hole, which therefore implies that
a seed black hole must be able to grow to this size within 0.9 Gyr after the Big Bang in the
standard ΛCDM cosmology. The existence of this black hole may constrain the spin evolution of
its accreting progenitors and the viability of the merger-accretion scenario for supermassive black

31Madau and Rees (2001).
32See Rees (1984) and Shapiro (2004b) for discussions of supermassive star collapse and alternative scenarios for

forming supermassive black hole seeds. See Chapter 14.2 for simulations of massive star collapse to black holes.
33See, e.g., Figure 2 of Merritt et al. (2004) for the central escape speeds of various types of galaxies and star

clusters.
34We note that the kick speed is independent of the total mass of the binary, a result that is consistent with the

fact that, when expressed in gravitational units, speed is dimensionless.
35See Volonteri (2007) and references therein for calculations of the effect of recoil on the formation of supermas-

sive black holes.
36The Eddington limit LEdd is the critical luminosity at which the outward force of radiation pressure equals the

inward pull of gravity in an accreting plasma. See, e.g., Shapiro and Teukolsky (1983), Section 13.7 for a derivation.
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hole growth.37

We note that each time binary black holes of comparable mass merge (a “major merger”), the
remnant acquires an appreciable spin, arising largely from the orbital angular momentum of the
binary near the ISCO. For example, the merger of two equal-mass, nonspinning black holes results
in a remnant with spin parameter a/M ≈ 0.7 (see Table I.4.). By contrast, the merger of a massive
black hole with multiple small-mass companions (“minor mergers”) that inspiral in isotropically-
oriented orbits will spin down the massive black hole as it grows.38 Gaseous disk accretion will
drive up the spin of the black hole; spin equilibrium will be achieved for a value of a/M that
depends on precise details of the accretion process. For example, ignoring radiation loss, accretion
from a standard relativistic “thin disk” will drive the spin up to its maximal value, a/M = 1,39

while accounting for photon emission shifts the equilibrium value back down to a/M = 0.998.40

Simulations of relativistic MHD accretion onto Kerr black holes, however, suggest that the disk
may not be so thin and the equilibrium spin value may be significantly lower, a/m ∼ 0.9.41 The
spin of a supermassive black hole at any one time may thus be determined by the mechanism that
has dominated its most recent growth.42

Finally, as we will see below, the merger of spinning black holes of comparable mass may cause
the spin axis of the remnant to flip. It has been speculated that this phenomenon could explain
the observation of X-shaped radio jets, in which the orientation of the emitted jets seems to have
changed abruptly in the past.

Unequal Masses

Historically, black hole recoil was first considered for unequal-mass binaries with nonspinning
companions. In such a binary the less massive star or black hole resides at a larger separation
from the center of mass than the more massive companion, and hence orbits with a larger orbital
speed. The two objects therefore emit gravitational radiation at different rates, and, in a crude
analogy to electromagnetism, the radiation from the faster object is more highly “beamed” in
the forward direction than the radiation from the slower object. As a consequence the linear
momentum emitted from the two companions no longer cancel, hence the center of mass acquires
some linear momentum in the process.

In the absence of spin, the situation is symmetric across the orbital plane, which implies that
the radiation reaction force must lie in this plane. Over the course of one orbit the direction of
the force also completes a full circle – similar to a spinning lawn sprinkler that ejects water in a
rotating beam. If the orbit were strictly circular, the motion of the center of mass would therefore
also describe a circle, making the net effect vanish. Instead, however, the binary orbit inspirals
slowly, so that the binary emits slightly more linear momentum at the end of one orbit than at
the beginning. As a consequence, the center of motion does not follow a perfect circle, but instead
describes an outward spiral – which can be pictured by imagining a spinning lawn sprinkler that
emits water at an increasing rate. The process ends when the binary merges and ceases to emit

37See Shapiro (2005); Volonteri and Rees (2006) for discussion and references.
38a/M ∼ M−7/3; Hughes and Blandford (2003); Gammie et al. (2004). Spindown occurs because the orbital

angular momenta of counter-rotating companions at their ISCOs are larger in magnitude than those of the corotating
companions.

39Bardeen (1970).
40Thorne (1974).
41De Villiers et al. (2003); Gammie et al. (2004).
42See Berti and Volonteri (2008) and references therein for studies of cosmological black hole spin evolution by

mergers and accretion, with observational implications.
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linear momentum. At that point the center of mass will follow a rectilinear trajectory, having
acquired a kick speed Vkick in a random direction in the orbital plane.

The first quantitative analysis of this process was performed by Fitchett (1983), who evaluated
the lowest-order multipole moments for a Newtonian point-mass binary to obtain the emitted
linear momentum. He finds that the kick speed is approximately43

Vkick ≈ 1480 km/s
f(q)

fmax

(
2M

rterm

)4

(13.5)

where q = m1/m2 ≤ 1 is the mass ratio, M = m1 + m2 is the total mass, and rterm is the binary
separation at which the linear momentum emission terminates.44 The function f(q) is given by

f(q) = q2 1− q

(1 + q)5
(13.6)

and assumes a maximum of fmax ' 0.0179 at q = (3 −
√

5)/2 ' 0.38. The kick speed vanishes
both for equal-mass binaries (q = 1) and in the test-particle limit, q = 0, as one would expect.
Assuming that rterm may come close to the gravitational radius 2M , the above expression predicts
large kick speeds that easily exceed 1,000 km/s. However, later analytical estimates, based on
perturbation theory or post-Newtonian calculations, revised the maximum kick speed to smaller
values of at most a few hundred km/s.45

With the availability of numerical codes that can simulate the inspiral and coalescence of binary
black holes, it is possible to compute the recoil kick speed without approximation. The first such
attempt was carried out by Herrmann et al. (2007), who used very crude initial data. The first
accurate calculation was presented by Baker et al. (2006), who found a kick speed of 105 ± 10
km/s for a mass ratio of q = 0.67.46

A more comprehensive and very accurate study has been carried out by González et al. (2007).
The computational methods used in these simulations are similar to those of Campanelli et al.
(2006) and Baker et al. (2006) described above; in particular they use the moving puncture method
to model the black holes (see Section 13.1.3), the BSSN formulation of Einstein’s equations (Chap-
ter 11.5), and an AMR grid structure.47 González et al. (2007) construct puncture initial data
(see Chapter 12.2) describing unequal mass binaries, fixing binary parameters as obtained in post-
Newtonian calculations. These initial data contain some small amount of spurious gravitational
radiation, which propagates off the numerical grid via an initial pulse. Once this pulse has passed,
integration of equation (9.132), yields the kick momentum Pi. In the calculations of González
et al. (2007), the Weyl scalar ψ4 is extracted at rext = 50M .

In Figure 13.10 we show the x and y components of the kick velocity Vkick for a binary of
mass ratio q = 0.33, calculated from the components of the momentum Pi by dividing by the
final remnant black hole mass. The z component vanishes identically, since it would describe
motion perpendicular to the orbital plane. As we would expect from our discussion above, the

43Favata et al. (2004).
44cf. exercise 13.3 below.
45See, e.g. Kidder (1995); Favata et al. (2004); Blanchet et al. (2005); Damour and Gopakumar (2006); Sopuerta

et al. (2007).
46While Baker et al. (2006) was published in a journal before Herrmann et al. (2007), the latter appeared on the

xxx.arXiv.org preprint server approximately two month before the former.
47Details of this numerical integration, together with many code tests and benchmarks, can be found in Brügmann

et al. (2008).
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Figure 13.10: Components of the kick velocity as a function of time in the simulations of González
et al. (2007) for a nonspinning binary of mass ratio q = 0.33. The graphs shows results for three
different resolutions, the finest of which are h1 = m1/45, h2 = m1/51, and h3 = m1/58, where m1

is the smaller black hole’s irreducible mass. The convergence test in the lower panels demonstrates
second-order convergence. As expected, the kick velocity oscillates during the inspiral, and then
remains constant once the emission of linear momentum ceases. [From González et al. (2007).]

kick velocity initially oscillates with an increasing amplitude, until the remnant experiences a final
kick during the black hole merger. Shortly after that the emission of linear momentum ceases,
leaving the remnant to coast with a net kick speed Vkick in a random direction in the orbital plane.

Figure 13.11 shows the final kick speed Vkick for a number of different mass ratios. The maxi-
mum value of Vkick = 175± 11 km/s is obtained for an irreducible mass ratio of q = 0.36± 0.03.48

Quite remarkably, this mass ratio is consistent with that of the maximum value of Fitchett’s
expression (13.5). In an extension of the work of Buonanno et al. (2007), Berti et al. (2007)
synthesized numerical calculations of the inspiral, merger and ringdown of unequal mass bina-
ries. In particular, they find that the total energy ∆EGW emitted during the merger phase is
approximately

∆EGW/M = 0.032661

[
4q

(1 + q)2

]2

+ 0.004458

[
4q

(1 + q)2

]4

(13.7)

where M is the total initial ADM mass of the binary. Note that for equal-mass binaries with q = 1
we recover a value close to the 3.5 % that we stated in Section 13.2.1. Berti et al. (2007) also find
that the angular momentum of the remnant black hole is well approximated by

Jfin/M
2
fin = 3.272

q

(1 + q)2
− 2.075

q2

(1 + q)4
, (13.8)

where Mfin denotes the final ADM mass of the remnant black hole.

48See also the simulation for q = 1/3 described in detail in Appendix I.
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Figure 13.11: The kick velocity as a function of the symmetric mass-ratio parameter η = q/(1+q)2,
where q is the ratio of irreducible masses. The line connecting the open circles, together with the
dashed line marking a 6 % error, denote the results of González et al. (2007). Also plotted are
the earlier numerical results of Baker et al. (2006); Campanelli (2005); Herrmann et al. (2007), as
well as the analytical results of Blanchet et al. (2005); Damour and Gopakumar (2006); Sopuerta
et al. (2007). [From González et al. (2007).]

Exercise 13.2 Evaluate equations (13.7) and (13.8) for q = 1 and q = 3 and compare with the values
recorded in Table I.4 for the puncture binary black hole simulations summarized in in Appendix 14.

Black Hole Spin

As we discussed above, the linear momentum emitted during one orbital period in the inspiral
phase nearly cancels out for nonspinning black holes, leaving only a relatively small cumulative
effect. Allowing for black hole spin, however, can enhance the effect. A post-Newtonian analysis
shows that, to leading order, the spin-orbit contribution to the emitted linear momentum is49

ṖSO = − 8

15

µ2M

r5

(
4ṙ v ×∆− 2v2 n̂×∆− (n̂× v) (3ṙ n̂ ·∆ + 2 v ·∆)

)
. (13.9)

Here and throughout the rest of this Chapter boldfaced symbols represent three-dimensional,
spatial vectors. As before, M = m1 + m1 is the total mass, and µ = m1m2/M is the reduced
mass. We also define x = x1 − x2 as the relative position vector, r = |x| as the coordinate
distance, n̂ = x/r as a unit vector pointing from one binary companion to the other, and v = ẋ
as the relative velocity, where the dot represents a derivative with respect to time. Finally,
∆ = M(S2/m2 − S1/m1) is a measure of the black hole spins.

Note that equation (13.9) provides an expression for the “instantaneous” emission of linear
momentum. The final kick speed is again a cumulative quantity that results from the change

49See equation (3.31b) in Kidder (1995); spin-spin effects enter only at higher post-Newtonian order.
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in linear momentum integrated throughout the binary inspiral and merger. However, the rate
equation (13.9) does have an immediate consequence for the direction of the resulting kick. To see
this, first consider black hole spins S1 and S2 that are aligned with the orbital angular momentum,
and that are therefore perpendicular on v and n̂, both of which lie in the orbital plane. For such
spins, the last two terms n̂ ·∆ and v ·∆ in equation (13.9) vanish, and the spin contribution to
the kick originates from the first two terms. The resulting kick is therefore in the orbital plane, just
like the contribution from unequal masses, even though not necessarily in the same direction. We
may call this contribution V⊥, with the ⊥ symbol denoting a direction perpendicular to the orbital
angular momentum. Then consider spins that are perpendicular to the orbital angular momentum
and hence lie in the orbital plane. For such spins all four terms in (13.9) yield contributions that
are perpendicular on the orbital plane. We will call this contribution V‖, with the ‖ symbol
denoting a direction parallel to the orbital angular momentum.

To describe a general kick velocity we need to pick three independent unit vectors. We choose
the first unit vector, e1, to be aligned with the direction of the kick velocity Vm that we would
obtain in the absence of any black hole spins, i.e. the (unequal) mass contribution to the kick
velocity. We choose the second unit vector e2 to lie in the orbital plane as well, but orthogonal to
e1, and, finally, the third unit vector ez to be orthogonal to the orbital plane. We may then write

Vkick = V me1 + V ⊥(cos ξe1 + sin ξe2) + V ‖ez. (13.10)

Here the angle ξ measures the angle between the mass and orbital plane spin contributions to the
kick. The coeffiecients V m, V ⊥ and V ‖ are the respective magnitudes of these kicks, which have
to be determined numerically. However, we can already anticipate some of the properties of these
coefficients. The coefficient of the mass contribution, V m, should depend only on the mass ratio
q; it should vanish for q = 1 and q = 0 and should presumably be similar to equation (13.5). At
least to leading order, the spin contribution V ⊥ can depend only on components of the spins along
the orbital angular momentum, S

‖
i . Similarly, V ‖ should depend only on components of the spin

in the orbital plane, S⊥i .
Soon after accurate binary black hole simulations became feasible, a number of investigators

leaped to explore the effect of black hole spin on black hole recoil.50 Most of the initial calculations
focused on black hole spins that are aligned or anti-aligned with the orbital angular momentum.
The resulting kicks are several hundred km/s in magnitude, easily exceeding the maximum kick
of approximately 175 km/s found for nonspinning black holes. Baker et al. (2007) found that in
this case, when the black hole spins are orthogonal to the orbital plane, the final, cumulative kick
speed can be estimated from a fitting formula that combines the contributions from both the mass
and spin asymmetries,51

Vkick = |Vm + V⊥| ≈ V0
32q2

(1 + q)5

(
(1− q)2 + 2(1− q)K cos ξ +K2

)1/2
. (13.11)

Here the parameter V0 determines the overall scaling of the kick speed, and the quantity K
is defined as K = k(qS1/m

2
1 − S2/m

2
2). In the latter expression k is a dimensionless number

representing the relative importance of the kick contributions from the spin and mass asymmetries,
m1 and m2 are the irreducible black hole masses, and S1 and S2 are their spins. By choosing these
parameters to be V0 = 276 km/s, ξ = 0.58 rad and k = 0.85, Baker et al. (2007) show that
equation (13.11) reproduces all the numerical results to within about 10 %.

50See, e.g, Herrmann et al. (2007); Koppitz et al. (2007); Campanelli et al. (2007a) for some early studies.
51See also Favata et al. (2004); Koppitz et al. (2007).
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Exercise 13.3 (a) Adopt equation (13.11) to estimate the maximum kick speed for nonspinning black
holes.
(b) Show that equation (13.11) reduces to equation (13.5) for nonspinning black holes, and use this
identification to determine the terminal radius rterm in equation (13.5).

Campanelli et al. (2007a) realized that an even more dramatic effect can be achieved when the
black hole spins are not aligned with the orbital angular momentum. As we have seen above, the
kick velocity may then no longer lie in the orbital plane, but instead may pick up a component
orthogonal to this plane that can be much larger than the component in the plane.

To synthesize the results of different simulations of the effect of black hole spin on the recoil we
return to equation (13.10). This expression predicts the kick velocities rather well if the coefficients
in equation (13.10) are chosen as follows.52 Set the magnitude of the mass contribution V m to be

V m = V m
0

f(q)

fmax

(
1 +B

q

(1 + q)2

)
, (13.12)

where f(q) is given by equation (13.6), B = −0.93, and V m
0 = 214 km/s. Note that the second

term in this expression does not appear in equation (13.5) or (13.11), which also explains why the
overall coefficient differs. Now set the two spin contributions to be

V ⊥ = V ⊥0
g(q)

gmax

(
S
‖
2

m2
2

− q
S
‖
1

m2
1

)
(13.13)

and

V ‖ = V
‖
0

g(q)

gmax

cos(Θ−Θ0)

(
S⊥2
m2

2

− q
S⊥1
m2

1

)
. (13.14)

Here we have defined

g(q) =
f(q)

1− q
=

q2

(1 + q)5
, (13.15)

which assumes a maximum of gmax = 2233/55 ' 0.0346 at q = 2/3. The quantity Θ measures
the angle between the orbital plane component of the vector ∆ and the infall direction at merger.
Finally, set the coefficients appearing above to be V ⊥0 = 252 km/s and V

‖
0 = 2, 073 km/s. Note

that the coefficients V m, V ⊥ and V ‖ have all the properties that we anticipated in the discussion
below equation (13.10).

The size of the coefficient V ‖ suggests that binaries can pick up a much larger kick orthogonal
to the orbital plane than in the orbital plane, if the individual black hole spins have a significant
component in the plane. As an example, Figure 13.12 shows the trajectories of the black hole
centers for an equal-mass binary.53 This simulation starts with a binary in an approximately
circular orbit. Both black holes have a spin of magnitude S/m2 = 0.8, and both of the spin vectors
initially point away from the companion along the line connecting the centers. As equation (13.10)
suggests, this merger should lead to a kick orthogonal to the orbital plane, which can be seen
in Figure 13.12. Given the symmetry of these particular initial data, the plane of the orbit is
displaced along the z-axis during the inspiral and merger without being tilted. Ultimately, the
remnant receives a kick of 2,650 km/s in the negative z direction.

This scenario has been explored further by Campanelli et al. (2007b), who evolve six different
sets of initial data. All binaries have equal-mass black holes, and all have black hole spins of

52Campanelli et al. (2007b).
53González et al. (2007).
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Figure 13.12: Coordinate trajectories of the black hole centers (punctures) for an equal-mass, spin-
ning black hole binary. The initial spins are both perpendicular to the orbital angular momentum;
each spin vector points away from the companion along the line joining the centers. Following
merger, the remnant receives a kick in the negative z-axis, perpendicular to the orbital plane.
[From González et al. (2007).]

magnitude S/m2 = 0.5 that lie in the orbital plane and are anti-aligned with each other. The
different sets of initial data differ only in the direction of these black hole spins. It turns out
that in many respects these particular initial data lead to a surprisingly similar evolution. The
total radiated energy and angular momentum, for example, are all identical to within 3%. The
projection of the black holes’ trajectory into the orbital x− y plane is also hardly affected by the
black hole spins; this is demonstrated in the left panel of Figure 13.13. What is affected, however,
is the z location of the orbital plane. During the inspiral this plane containing the two punctures
oscillates along the z-axis, i.e. orthogonal to the orbital plane. The two punctures always have
identical z-coordinates throughout the inspiral, meaning that the orbital plane oscillates without
tilting. This behavior can be understood in terms of the symmetry of the initial data: the two anti-
aligned black hole spins “cancel” each other out and cannot affect the orbital angular momentum,
which therefore has to keep its original orientation. The location of the orbital plane along the
z-axis as a function of time for these different sets of initial data is shown in the right panel of
Figure 13.13. Following merger, the emission of linear momentum again ceases, and the remnant
recoils with the linear momentum it has at the time of merger. Campanelli et al. (2007b) find
that the maximum kick that binary black holes can receive during merger is approximately 4,000
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Figure 13.13: The left panel shows the projection into the x − y (orbital) plane of the punture
trajectories for six different sets of initial data (with only one puncture shown per binary). All
binaries have equal masses and black hole spins of magnitude S/m2 = 0.5 that reside in the orbital
plane and are anti-aligned with each other; however, the direction of the spins within the orbital
plane are different for each set of initial data. In this case the spin hardly affects the trajectory of
the black holes within the x− y plane. The right panel shows the z-location of the orbital plane
as a function of time. During the inspiral, the orbital plane oscillates along the z-axis, but does
not tilt. Following merger, the remnant recoils along the z-axis. [From Campanelli et al. (2007b).]

km/s – significantly larger than the values for nonspinning, unequal-mass binaries.
Clearly these findings raise some very interesting astrophysical questions. Kick speeds of several

thousand km/s easily exceed the escape speeds from the centers of even giant elliptical galaxies.
However, we also have strong observational evidence that supermassive black holes reside at the
centers of these galaxies, implying that these black holes have not undergone mergers resulting in
such large kicks. Early analysis of these questions suggests that the likelihood of the black hole
spins being aligned in such a way that merger leads to ejection is rather small.54

So far we have focused our discussion on the effect of black hole spin on the recoil of the
binary remnant. Clearly, however, spin affects the inspiral and merger in other ways as well.
For example, black hole spins that are aligned with the orbital angular momentum increase the
binary’s total angular momentum. If this total angular momentum exceeds the maximum angular
momentum of a Kerr black hole, then the binary cannot merge until a sufficient amount of angular
momentum has been radiated away. Quite generally, we expect binaries with black hole spins
aligned to the orbital angular momentum to merge more slowly than binaries with spins that
are anti-aligned. This effect, sometimes referred to as “orbital hang-up”, has been explored with
numerical simulations.55

Another very important effect is spin flip. In the discussion above, and in Figuress. 13.12 and
13.13, we have focussed on binaries for which the two black hole spins are in the orbital plane and
anti-aligned with each other. For these binaries we have found that the orbital plane gets shifted
without being tilted, which we explained in terms of the two black hole spins canceling each other
out. Clearly this situation changes if the two black hole spins are not anti-aligned. In this case a

54See Schnittman and Buonanno (2007); Bogdanovic et al. (2007).
55See, e.g., Campanelli et al. (2006b).
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Figure 13.14: Puncture trajectories together with black hole spin directions, shown at time in-
tervals of 4M . The initial orbital plane is in the x − y (horizontal) plane, and the initial black
hole spins reside in this plane, both pointing in the positive y-direction (to the right). During the
course of the inspiral the spins rotate by approximately 90o within the orbital plane, and also pick
up a nonzero z component orthogonal to the orbital plane. Simultaneously the orbital plane tilts,
leaving a remnant with an angular momentum that has nonzero components in both the y and z
directions. Note that the z-scale is 1/10th the x and y-scale. [From Campanelli et al. (2007).]

spin-orbit interaction affects both the black hole spins and the orbital angular momentum during
the inspiral and may change their orientation.

As an example, we show results of a simulation by Campanelli et al. (2007) in Figure 13.14.
Here the initial black hole spins, both of magnitude S/m2 = 0.5013, again lie in the orbital plane,
but they are now aligned with each other. At the initial time, they both point in the positive
y direction, perpendicular on the x-axis that initially connects the two black hole punctures.
During the inspiral, the spins rotate by approximately 90o within the orbital plane and also pick
up a nonzero z component orthogonal to the orbital plane.56 Simultaneously the orbital plane
tilts, leaving a remnant with an angular momentum that has nonzero components in both the
y and z directions. This is not too surprising, of course, since the total angular momentum of
the initial data also had nonzero components in these two directions – the y components from
the black hole spins, and the z component from the orbital angular momentum. Some of this
angular momentum is radiated away during the inspiral, but part of it remains with the merger
remnant. The individual black holes therefore experience a spin flip: originally, both of their spins
were aligned with the y-axis, but after merger the remnant has a significant component in the
z-direction.

These spin-flips may explain the so-called X-shaped radio jets. We show some examples of
observations of such objects in Fig. 13.15. While the details of jet emission are still uncertain,
it is believed that jets are emitted along the rotation axes of accreting Kerr black holes. While

56The masses and spins of the individual black holes can be determined with the help of the isolated or dynamical
horizon formalism introduced in Chapter 7.4; the spins, in particular, are given by (7.74), where φa is an approximate
Killing vector on the horizon. Some subtleties in the determination of the direction of these spins are discussed in
Campanelli et al. (2007).
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Figure 13.15: [CAMBRIDGE: obtain higher quality version of this figure from Science if needed.]
Examples of X-shaped radio jets. The VLA radio observations of 3C52 are from Leahy and
Williams (1984), of 3C223.1 and 3C403 from Dennett-Thorpe et al. (1999), and of NGC326 from
Murgia et al. (2001). [From Merritt and Ekers (2002).]

most jets point along well-defined directions, some jets appear as if the direction of the emission
has changed very abruptly some time in the past: the more distant part of the jet points in one
direction, while the closer part of the jet, emitted more recently, points along another direction.
Together, these two axes form an X-shaped figure. The numerical simulations of binary black
hole mergers described above provide a very plausibe explanation for this apparent spin flip of the
spinning black hole, namely its merger with another black hole.



Chapter 14

Rotating Stars

Rotating stars in general relativity are of long-standing theoretical interest. With the discovery
of radio pulsars in 19671 and their identification as magnetized, rotating neutron stars, rotating
relativistic stars have also become objects of intense observational scrutiny. Radio pulsars have be-
come particularly useful for relativity, since they provide excellent cosmic clocks. The original idea
of Baade and Zwicky (1934) that neutron stars could be formed during supernovae events, coupled
with the discovery of radio pulsars in some supernova remnants like the Crab, firmly linked rotat-
ing neutron stars with stellar collapse and supernovae explosions. Following the detection of radio
pulsars, X-ray pulsars were discovered in 1971.2 X-ray pulsars proved the existence of rotating
neutron stars that are accreting gas supplied by a companion star in a binary system. The discov-
ery of the first binary pulsar by Hulse and Taylor3 in 1974 proved that rotating, relativistic stars
can reside in binary systems, making neutron stars even more interesting to relativists. General
relativity is required to describe the gravitational field of neutron stars, since their compaction,
M/R, where M is the mass and R is the characteristic radius of the star, is large (∼ 0.1− 0.2).4

Numerical relativity is important for treating many dynamical processes involving neutron stars
accurately. It provides a valuable tool for probing neutron star formation from stellar core collapse
in a supernova and for tracking the dynamical evolution and assessing the final fate of neutron
stars subject to instabilities. It also furnishes gravitational radiation waveforms generated by these
events, as well as by binary inspirals and mergers. Numerical relativity is absolutely essential for
following the catastrophic collapse of an unstable star to a black hole.

There are other types of rotating, relativistic stars besides neutron stars that are of astrophys-
ical interest. These stars also require general relativity for an accurate description and numerical
relativity for a reliable analysis of their dynamical evolution and final fate. For example, rotat-
ing supermassive stars, although they have not been observed as yet, might form in the early
universe and slowly evolve to the point of onset of collapse to black holes. Such stars might be
the progenitors of supermassive black holes observed in the centers of most galaxies. Rotating
white dwarfs are abundant in nature. While even massive white dwarfs in equilibrium are only

1Hewish et al. (1968). For their roles in the discovery of radio pulsars (by J. Bell), A. Hewish and M. Ryle
shared the Nobel Prize in Physics in 1974.

2Schreier et al. (1972); Tananbaum et al. (1972). For his role in the discovery and interpretation of cosmic X-ray
sources, R. Giacconi shared the Nobel Prize in Physics in 2002.

3Hulse and Taylor (1975). For their discovery of this binary, and for showing that its orbit decays at the rate
predicted by general relativity via the emission of gravitational waves, R. Hulse and J. Taylor were awarded the
Nobel Prize in Physics in 1993.

4For a detailed discussion of the physics of neutron stars, see, e.g., the texts by Shapiro and Teukolsky (1983),
Glendenning (1996) and Haensel et al. (2007), as well as references therein.
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marginally relativistic, they will undergo collapse once they accrete too much mass and exceed the
Chandrasekhar limit.5 Numerical relativity simulations are necessary to follow such collapse and
determine the final outcome. Rotating boson stars, constructed from complex scalar fields, are
also relativistic in nature and numerical relativity is again essential for analyzing their dynamical
behavior.

Simulating rotating, relativistic stars using numerical relativity is a new enterprise. Its recent
development is due partly to the construction of new formulations of numerical relativity that are
able to integrate the multidimensional Einstein field equations in a stable fashion (see Chapter 11),
and partly to the advent of parallel computer hardware with sufficient size and power to handle
large-scale, multidimensional problems.

In this chapter we first will discuss the numerical construction of rotating, relativistic fluid
stars in stationary equilibrium. Such models, interesting in their own right, comprise the initial
data for many evolution calculations. We will then discuss some representative simulations of fluid
stars in numerical relativity that probe the stability of these configurations. These simulations are
cabable of tracking the rapid dynamical and, in some cases, the slow secular evolution of rotating
fluid stars, both in axisymmetry (2+1) and in three spatial dimensions (3+1).

14.1 Initial Data: Equilibrium Models

Up until the 1970’s, models of rotating stars in general relativity were restricted to slow rota-
tion. Slowly rotating relativistic stars can be constructed by perturbing nonrotating, spherically
symmetric models.6 Such a treatment involves the integration of ordinary differential equations,
which is straightforward. Since the 1970’s, rapidly rotating relativistic stars have been constructed
numerically by many authors.7 We will focus on the method of Komatsu et al. (1989a,b, here-
after KEH), which allows for the construction of both uniformly and differentially rotating stellar
configurations.

14.1.1 Field Equations

We consider rotating equilibrium models that are stationary and axisymmetric. The metric can
then be written, following KEH, in the form

ds2 = −eγ+ρdt2 + e2σ(dr2 + r2dθ2) + eγ−ρr2 sin2 θ(dφ− ωdt)2 , (14.1)

where the metric potentials ρ, γ, ω, and σ are functions of r and θ only. We shall take the
matter source to be described by a stress-energy tensor T ab, which, for the moment, we shall leave
unspecified, to allow for generalization to alternative matter sources.8 The stellar model satisfies
the Einstein field equations Gab = 8πTab. These can be arranged to yield elliptic equations to
determine ρ, γ and ω:

∇2[ρeγ/2] = Sρ(r, µ) , (14.2)

5The limit is 1.4M�, the maximum mass of a nonrotating star supported by cold, degenerate electrons. For his
derivation of this limit in 1931, Chandrasekhar shared the Nobel prize in 1983.

6Hartle (1967); Hartle and Thorne (1968).
7 See, e.g., Wilson (1972a); Bonazzola and Schneider (1974); Butterworth and Ipser (1975, 1976); Friedman

et al. (1986), Komatsu et al. (1989a,b), Cook et al. (1992, 1994b,a), and Salgado et al. (1994a,b). For a comparison
of methods, see Stergioulas and Friedman (1995); Nozawa et al. (1998).

8Shapiro and Teukolsky (1993b,a).
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1
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µ

r2
∂µ

)
[γeγ/2] = Sγ(r, µ) , (14.3)

(
∇2 +

2

r
∂r −

2µ

r2
∂µ

)
[ωe(γ−2ρ)/2] = Sω(r, µ) , (14.4)

where ∇2 is the flat-space scalar Laplacian in spherical polar coordinates, µ = cos θ, and Sρ, Sγ
and Sω are effective source terms that include the nonlinear field and matter terms. The effective
source terms are given in Appendix G. The fourth field equation for σ is slightly more complicated
and is also listed in Appendix G.

The three elliptical field equations (14.2)-(14.4) can be solved by an integral Green’s function
approach, as shown by KEH. Among the attractive features of this approach is that, for large r,
the asymptotic flatness conditions ρ ∝ 1/r, γ ∝ 1/r2 and ω ∝ 1/r3 are imposed automatically.
The integral equations for these functions are given in Appendix G. Auxiliarly relations associated
with the matter are discussed below.

14.1.2 Fluid Stars

For perfect fluid stars the stress-energy tensor is given by equation (5.4),

T ab = ρ0hu
aub + Pgab . (14.5)

The coordinate components of the four-velocity of the matter can be written as

ua = ut[1, 0, 0,Ω] , ut =
e−(ρ+γ)/2

(1− v2)1/2
, (14.6)

where Ω is the angular velocity of the matter as measured at infinity, and v is the proper velocity
of the matter with respect to a normal observer, often referred to as a “zero angular momentum
observer” or ZAMO9 in the literature dealing with rotating equilibria,

v = (Ω− ω)r sin θ e−ρ . (14.7)

Exercise 14.1 Derive equation (14.7).
Hint: Compute γv ≡ (1− v2)−1/2 from γv = −uana.

The condition ∇aT
a
b = 0 yields the equation of hydrostatic equilibrium, which can be written

in differential form as

dP − ρ0h[d lnut − utuφdΩ] = 0 . (14.8)

Exercise 14.2 Derive equation (14.8) .

The final relation required to specify an equilibrium configuration is the rotation law. For
barotropic equations of state where P and h depend only on ρ0, the integrability condition on
equation (14.8) requires either that the rotation be uniform, with dΩ = 0, or that

utuφ = F (Ω) (14.9)

9Bardeen (1973).
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for some function F of Ω. In the later case the configuration is characterized by differential
rotation. A simple choice adopted by KEH is

F (Ω) = A2(Ωc − Ω) , (14.10)

where Ωc is the angular velocity at the center of the configuration and A is a positive constant
with dimensions of length. Combining equations (14.9) and (14.10) yields

A2(Ωc − Ω) =
(Ω− ω)r2sin2 θe2(β−ν)

1− (Ω− ω)2r2sin2 θe2(β−ν)
, (14.11)

where, following convention, we have introduced

ν ≡ γ + ρ

2
and β ≡ γ − ρ

2
. (14.12)

Equation (14.11) shows that the angular velocity on the rotation axis (θ = 0) is equal to Ωc. As
A→∞, we have Ω → Ωc, hence for large A the rotation law approaches rigid rotation. Exercise
14.3 further illustrates how A parameterizes the characteristic length scale over which Ω changes.

Exercise 14.3 Show that in the Newtonian limit, rotation law (14.11) reduces to

Ω/Ωc = 1/
(
1 +$2/A2

)
, (14.13)

where $ = rsin θ is the usual cylindrical radial coordinate.

Using the thermodynamic relation dh = dP/ρ0 together with equation (14.9), allows us to
integrate the equation of hydrostatic evolution (14.8) to obtain

ln
h

ut
= −

∫
dΩF (Ω) + constant . (14.14)

Adopting the rotation law (14.11) then gives

ln
h

ut
=

1

2
A2(Ω− Ωc)

2 + constant . (14.15)

For a polytropic equation of state (EOS) P = Kρ
(1+1/n)
0 , as in equation (1.86),10 equations (14.6)

and (14.15) yield

ln[1 + (1 + n)Kρ
1/n
0 ] +

1

2
ln(1− v2) + ν − 1

2
A2(Ω− Ωc)

2 = constant . (14.16)

Note that when using a polytropic EOS, it is always possible to scale out the constant K.
We already noted this in Chapter 1.3 (see equation 1.87), but here we extend the analysis to
nonspherical, rotating polytropes. In gravitational units Kn/2 has the units of length, which leads
to the following set of nondimensional quantities, denoted by a bar:

r̄ ≡ K−n/2r , t̄ ≡ K−n/2t , ω̄ ≡ Kn/2ω , Ω̄ ≡ Kn/2Ω ,

ρ̄0 ≡ Knρ0 , P̄ ≡ KnP , M̄ ≡ K−n/2M , J̄ ≡ K−nJ , (14.17)

10Note that KEH adopt a different definition of a polytropic EOS: P = Kρ∗(1+1/n), where ρ∗ = ρ0(1 + ε). Other
authors (e.g. Cook et al. (1992, 1994b,a)), use equation (5.18). As a result, equation (14.16) is modified for KEH.
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and so forth. One can thus set K = 1 in numerical integrations and either use the above relations
to scale the results to more physical values of K, or express answers in terms of nondimensional
ratios (e.g. R/M , M2ρ0, MΩ, J/M2, etc.).11

The iterative algorithm of KEH to solve the coupled equations involves a further rescaling with
respect to the equatorial radius r̄e = K−n/2re. This rescaling simplifies the numerical implemen-
tation, since the unknown location of the stellar surface in the equatorial direction can now be
set to be unity. We can then parameterize the stellar rotation rate by setting the polar radius
r̄p/r̄e to a value equal or less than unity: for r̄p/r̄e = 1 the star is spherical and nonrotating,
and decreasing this ratio (for oblate configurations) will increase the angular velocity Ω̄. Once all
quantities have been expressed in terms of r̄e, this quantity appears as an eigenvalue in equation
(14.16), together with Ωc and the constant on the right hand side. A self-consistent solution of
Einstein’s field equations coupled to the matter equation (14.16) then involves determining these
three eigenvalues. This can be accomplished by evaluating equation (14.16), given a “guess” for
the gravitational fields, at three different locations in the star, namely at the pole, on the equator,
and at the stellar center, and then iterating until convergence. We will describe a similar algorithm
for the construction of binary neutron star initial data in more detail in Chapter 15.2.

Diagnostics

Once the coupled system of equilibrium equations is solved self-consistently, a useful set of physical
diagnostics can be computed for each configuration. For equilibrium configurations, the ADM
mass must be equal to the Komar mass (see Chapter 3.5). We may therefore define the total
mass-energy M = MADM of these spacetimes as

M = MK = −
∫

(2T ab − δabT
c
c)ξ

b
(t)d

3Σa =

∫
(−2T tt + T cc)

√
γαd3x (14.18)

(see exercise 3.31). Here d3Σa is defined below equation (3.124), and ξb(t) is the time Killing vector.

The total rest mass M0 is given by equation (3.127),

M0 =

∫
ρ0u

ad3Σa =

∫
ρ0
√
γαutd3x . (14.19)

The total proper mass of the system Mp is defined as the rest-mass energy M0 plus internal energy
U of the star, i.e., the total energy stored in the configuration excluding gravitational potential
and rotational energy,

Mp = M0 + U , (14.20)

where

U =

∫
ρ0εu

ad3Σa =

∫
ρ0ε
√
γαutd3x . (14.21)

The total angular momentum of the system J is given by

J =

∫
T abξ

b
(φ)d

3Σa =

∫
T tφ

√
γαd3x , (14.22)

where ξb(φ) is the angular Killing vector (see exercise 3.31). The total rotational kinetic energy of
the system T is defined by

T =
1

2

∫
ΩdJ =

1

2

∫
ΩT tφ

√
γαd3x . (14.23)

11See exercises 14.4, 14.5 and 14.6 for examples.
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Finally, we can compute the gravitational potential energy of the star W as

W = M −Mp − T . (14.24)

All of the above integral diagnostics are gauge invariant quantities that reduce to their Newtonian
counterparts in the weak field limit.

Maximum Masses, Spins and Stability

Numerical models of rotating stars obtained by solving the equilibrium equations have been con-
structed by many authors.12 Equilibrium sequences constructed for a given barotropic EOS, along
which either the rest mass or angular momentum is held constant, are particularly useful. Con-
stant rest-mass sequences often can be used to represent quasistationary evolutionary sequences,
along which some parameter, like the angular velocity, varies slowly, on a secular timescale. Along
a uniformly rotating, equilibrium sequence of constant M0, changes in M and J are related by13

dM = ΩdJ . (14.25)

This relation provides a useful check on the numerical construction of such a sequence. Equilib-
rium sequences of constant J are required in order to apply the turning-point criterion of Fried-
man, Ipser and Sorkin14 to test for quasi-radial stability of a uniformly rotating configuration.
This criterion states that along uniformly rotating sequences of constant J, members of which can
be parametrized by their central mass-energy density ρ∗c = ρ0c(1 + εc), those configurations for
which ∂M/∂ρ∗c > 0 are secularly stable against quasi-radial perturbations, while those for which
∂M/∂ρ∗c < 0 are secularly unstable. The turning point criterion applied along such sequences can
only identify the point of secular, but not dynamical, instability, since one is comparing neighbor-
ing, uniformly rotating configurations with the same angular momentum. Maintaining uniform
rotation during perturbations tacitly assumes high viscosity, which acts on a secular timescale. In
a dynamical perturbation, the star will preserve circulation, as well as angular momentum, but
not uniform rotation. While a secular instability evolves on a dissipative (e.g. viscous) timescale, a
dynamical instability evolves on a collapse (free-fall) timescale, τff ∼ 1/

√
ρ∗, which is much shorter.

It is thus possible that a secularly unstable star may be dynamically stable: for sufficiently small
viscosity, the perturbed star may change to a differentially rotating, dynamically stable configura-
tion. Ultimately, the presence of viscosity may bring the star back into rigid rotation, driving the
star to an unstable state. Friedman, Ipser and Sorkin showed that along a sequence of uniformly
rotating stars, a secular instability always occurs before a dynamical instability, implying that all
secularly stable stars are also dynamically stable.

For spherical star sequences, the points of onset of secular and dynamical instability coincide,
since for a nonrotating star a radial perturbation conserves both circulation and uniform rotation,
and is located at the turning point on the M vs. ρ∗c equilibrium curve. This result suggests that
for uniformly rotating stars for which the rotational kinetic energy T is typically a small fraction
of the gravitational binding energy |W |, the onset of dynamical instability is close to the onset of
secular instability. Establishing the actual point of onset of dynamical instability for rotating stars

12See, e.g., footnote 7 for detailed model calculations in general relativity. For overviews and additional references
concerning rotating equilibria and stability, see, e.g., Tassoul (1978) for Newtonian configurations and Shapiro and
Teukolsky (1983) and Stergioulas (2003) for post-Newtonian and general relativistic configurations.

13See Ostriker and Gunn (1969) for a proof in the Newtonian case and Hartle (1970) for the relativistic case.
14Friedman et al. (1988).
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nonrotating rotating
n M̄ M̄0 R̄ ρ̄∗c M̄ M̄0 R̄e e ρ̄∗c Ω̄ J̄ T/|W |

0.5 0.125 0.151 0.395 1.29 0.153 0.182 0.536 0.784 1.04 0.976 0.0172 0.147
1.0 0.164 0.180 0.763 0.420 0.188 0.207 1.09 0.773 0.345 0.378 0.0202 0.0835
1.5 0.264 0.276 1.97 0.0718 0.290 0.304 2.88 0.760 0.0610 0.110 0.0387 0.0475
2.0 0.515 0.523 6.94 5.80(-3) 0.549 0.558 10.3 0.752 5.05(-3) 0.0224 0.120 0.0273
2.5 1.24 1.25 41.0 1.26(-4) 1.29 1.30 61.3 0.749 1.13(-4) 2.37(-3) 0.684 0.0157
2.9 3.23 3.23 620 1.54(-7) 3.32 3.32 947 0.749 1.38(-7) 6.36(-5) 7.82 0.0101

Table 14.1: Maximum mass models for nonrotating and uniformly rotating polytropes. For all
stars we list the the polytropic index n, the total mass-energy M̄ , the rest mass M̄0 and the
central energy density ρ̄∗c . For nonrotating stars we also list the areal radius R̄, while for rotating
stars we give the equatorial areal radius R̄e, the eccentricity e, the angular velocity measured
at infinity Ω̄, the total angular momentum J̄ and the ratio of the rotational kinetic energy to
the gravitational binding energy, T/|W |. All quantities are expressed in nondimensional units as
defined in equation (14.17) (with G = c = 1). Here the notation 5.80(−3), for example, means
5.80× 10−3. [After Cook et al. (1994a).]

is more complicated. Formalisms have been developed15 to identify points of dynamical instability
to axisymmetric perturbations along sequences of rotating stars. In such formalisms, however,
a complicated functional for a set of trial functions has to be evaluated. Probably because of
the complexity of this method, explicit calculations have never been performed. In practice, to
identify the point of onset of a dynamical instability along an equilibrium sequence of uniformaly
or differentially rotating stars, and then to track the resulting evolution and determine the final
fate of an unstable configuration, a full numerical simulation employing the equilibrium model as
initial data is required. That is the role of numerical relativity (see Section 14.2).

Nonrotating polytropes with n = 3 or Γ = 1 + 1/n = 4/3 are marginally stable to radial
perturbations in Newtonian gravitation, but dynamically unstable in general relativity. The
critical Γ for radial stability for nonrotating stars is raised above 4/3 in general relativity,16

Γcrit = 4/3 + 1.125(M/R). Stars with Γ > Γcrit are stable, while those with Γ < Γcrit are un-
stable. Post-Newtonian analysis shows that unstable stars with Γ near 4/3 can be stabilized by
rotation, which lowers the critical value of Γ. Alternatively, there is a critical compaction (M/R)crit

below which a rotating star with n = 3 is radially stable and above which it is unstable. The crit-
ical compaction depends on T/|W |, the ratio of rotational kinetic to gravitational binding energy.
Determining the critical compaction for uniformly rotating stars with n ≈ 3 requires an analysis
correct to second post-Newtonian order.17 Uniformly rotating stars at the mass-shedding limit
(defined below) with n near 3 are useful to model rapidly rotating configurations supported either
by the pressure of relativistic degenerate fermions (e.g. massive white dwarfs or cores of massive,
evolved stars) or by thermal radiation pressure (e.g. very massive and supermassive stars).18

The maximum mass of a relativistic star, like a neutron star, is of great astrophysical interest.
Configurations exceeding the maximum mass limit are likely to collapse to form black holes. For
spherical (static) stars constructed from the same barotropic EOS, the maximum mass is located at

15Chandrasekhar and Friedman (1972a,b,c); Schutz (1972).
16Chandrasekhar (1964a,b); Feynmann, unpublished, as quoted in Fowler (1964).
17Zeldovich and Novikov (1971); Baumgarte and Shapiro (1999a).
18See Baumgarte and Shapiro (1999a); Shibata (2004) for numerical models.
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the turning point along the M vs. ρ∗c equilibrium curve and is thus marginally stable to quasi-radial
perturbations. Rotation can support stars with higher mass than the maximum static limit. Thus,
uniform rotation can support these supramassive stars, but Cook et al. (1992, 1994b,a, hereafter
CST) show that supramassive stars have masses which are typically at most <∼ 20% larger than the
static limit for the same EOS. In Table 14.1 we compare maximum mass models for nonrotating
and uniformly rotating polytropes.19 Beyond a critical spin rate, the gravitational attraction
is insufficient to keep matter in uniform rotation from flying off the surface. At the so-called
mass-shedding limit, matter at the equator has no outward support from pressure but is instead
supported exclusively by centrifugal forces and therefore follows a circular geodesic. CST find
that for a given EOS, the maximum Ω configuration (i.e. the configuration at the mass-shedding
limit) does not coincide exactly with the maximum mass model, although they are quite close
numerically.

Exercise 14.4 Consider modeling the EOS of a neutron star by a degenerate, nonrelativistic, neutron
gas. Such a gas is described by a polytropic EOS with n = 3/2 and

K =
32/3π4/3

5
~2

m
8/3
n

, (14.26)

where mn is the neutron rest mass.20

(a) Show that, in geometrized units, K = 7.327 km4/3. Note that Kn/2 has units of length,
consistent with the scaling relations (14.17).

(b) Consult Table 14.1 and use equation (14.17) to find the maximum mass of nonrotating and
uniformly rotating stars governed by this EOS. Given that many neutron stars are observed to have a
mass close to 1.4M�, is this EOS realistic?

Exercise 14.5 The polytropic index n parameterizes the stiffness of the polytropic EOS. Smaller
values of n (and hence larger values of Γ = 1 + 1/n) describe stiffer EOSs, while larger values of n
(smaller Γ) describe softer EOSs. Stars governed by soft EOS are centrally condensed, i.e., most of
the star’s mass is concentrated in a small, high-density core surrounded by an extended, low-density
envelope. Stiff EOSs, on the other hand, lead to stars that have a more uniform density profile.

(a) Compute the compaction M/R for the nonrotating maximum mass models listed in Table 14.1.
Use your results to justify using a stiff polytropic EOS with n ' 1 to model typical neutron stars with
masses M ≈ 1.4M� and radii R ≈ 15km.

(b) Compute the fractional difference between M and M0 for the nonrotating models of Table 14.1.
Explain its dependence on n in terms of the results for M/R in part (a).

(c) Compute the fractional increase in the rest mass M0 between the nonrotating and uniformly
rotating maximum mass models listed in Table 14.1. Explain its dependence on n in terms of the
central concentration of these stars.

Exercise 14.6 PSR J1748-2446ad, with a spin frequency of f = 716 Hz, is the most rapidly spinning
pulsar known to date.21

(a) Assume that the mass of this pulsar is at least 1.4M� to find a lower limit on the dimensionless
product MΩ for this pulsar.

(b) Now survey Table 14.1, assuming that the angular velocities Ω of the maximum mass models
listed there are very close to the maximum spin models, to find which values of n can support a star
like PSR J1748-2446ad.

19See, e.g., Cook et al. (1994a) for uniformly rotating models, including maximum-mass models, constructed for
14 realistic nuclear matter EOSs.

20See Shapiro and Teukolsky (1983), Section 2.3, for a derivation.
21See Hessels et al. (2006).
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By contrast with uniform rotation, differential rotation, can support hypermassive stars, i.e.
equilibrium stars which exceed both the nonrotating static and uniformly rotating supramas-
sive star mass limits. As an example, consider the rotation law given by equation (14.10) with
Â ≡ A/Re, where Re is the equatorial coordinate radius, and apply it to an n = 1 polytrope.22

Figure 14.1 shows the maximum M0 vs. ρ∗c relation along sequences of constant Â. It is clear from
the figure that even modest differential rotation can support equilibrium stars with masses >∼ 50%
larger than the static and supramassive limits.23 Hypermassive neutron stars can be formed in
nature, by, e.g., merging binary neutron stars or by stellar core collapse followed by accretion
fall-back.

Exact criteria do not exist for determining the quasi-radial stability of differentially rotating
configurations, either to dynamical or secular perturbations. Such stability must be determined
by numerical simulations. In Section 14.2 we discuss such simulations, which reveal, for example,
that the hypermassive configuration marked by a dot in Figure 14.1 is dynamically stable. On the
other hand, the presence of viscosity or magnetic fields will redistribute the angular momentum
distribution in a differentially rotating star on a secular timescale, presumably driving its core
toward uniform rotation while depositing the excess angular momentum in the outermost layers.
But uniform rotation alone cannot support such a core in equilibrium, if it is sufficiently mas-
sive. As a result, most, if not all, hypermassive stars are transient objects: configurations that
are dynamically stable initially will evolve on a secular timescale and may ultimately undergo
catastrophic collapse. Relativistic simulations that demonstrate this behavior are described in
Section 14.2.

In addition to quasi-radial instabilities, rotating stars are also subject to nonaxisymmetric
instabilities. An exact treatment of these instabilities exists only for incompressible equilibrium
fluids in Newtonian gravity.24 For these configurations, global rotational instabilities arise from
nonradial toroidal modes eimϕ (m = ±1,±2, . . .) when β ≡ T/|W | exceeds a certain critical value.
Here ϕ is the azimuthal coordinate. In the following we will focus on the m = ±2 bar mode, since
it is the fastest growing mode when the rotation is sufficiently rapid.25

There exists two different mechanisms and corresponding timescales for bar-mode instabilities.
Uniformly rotating, incompressible stars in Newtonian theory are secularly unstable to bar-mode
formation when β ≥ βs ≥ 0.1375. However, this instability can only grow in the presence of
some dissipative mechanism, like viscosity or gravitational radiation reaction, and the growth
time is determined by the dissipation timescale. Interestingly, for either viscosity or gravitational
radiation, the point of onset of the bar-mode instability coincides for Newtonian stars. By contrast,
a dynamical instability to bar mode formation requires large spin rates and sets in when β ≥ βd ≥
0.2738. This instability is independent of any dissipation mechanism, and the growth time is
determined by the hydrodynamical (collapse) timescale of the system.

In the case of compressible Newtonian stars, the secular bar-mode instability for both uniform
and differential rotation has been analyzed numerically within linear perturbation theory by means
of a variational principle and trial functions, and by other approximate means.26 For uniformly

22Baumgarte et al. (2000).
23For most other polytropic indices, as well as for realistic nuclear EOSs, the increases in maximum mass are

typically somewhat smaller; see Lyford et al. (2003); Morrison et al. (2004).
24See, e.g., Chandrasekhar (1969); Tassoul (1978); Shapiro and Teukolsky (1983).
25For a discussion of the r-mode instability, which may be important for slowly rotating neutron stars, see

Stergioulas (2003) for review and references.
26Lynden-Bell and Ostriker (1967); Ostriker and Bodenheimer (1973); Friedman and Schutz (1975); Bardeen

et al. (1977); Friedman and Schutz (1978a,b); Ipser and Lindblom (1989).
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Figure 14.1: Maximum rest-mass configurations versus maximum mass-energy density for differ-
entially rotating n = 1 sequences of constant Â−1. Values of β = T/|W | for the models are
indicated. The mass–density curve for static TOV equilibrium stars is shown for comparison. The
supramassive limit for uniformaly rotating stars corresponds to the curve Â−1 = 0. Masses are
given in nondimensional units on the left-hand side (K = 1) and in solar masses on the right-hand
side; the later are calculated by assigning the maximum rest-mass for nonrotating stars to 2 M�.
The dot marks one particular hypermassive configuration whose stability properties we will study
below. [From Baumgarte et al. (2000).]

rotating polytropes the m = 2 bar-mode instability is again found to set in at βs ' 0.14.27

However, this mode is reached only when the polytropic index of the star satisfies n ≤ 0.808.28

Stars with larger n (i.e., soft EOSs) are too centrally condensed to support high enough spin
in uniform rotation without undergoing mass-shedding at the equator. This constraint does not
apply to differentially rotating stars, which can support significantly more rotational energy in
equilibrium, even when the degree of differential rotation is only moderate. The critical value for
the onset of the secular m = 2 bar-mode in Newtonian theory is again βs ' 0.14 for a wide range
of angular momentum distributions and barotropic equations of state29 although for very strongly
differentially rotating stars the critical value can be as small as βs < 0.1.30

Similar approximate formalisms have also been applied to analyze the secular bar-mode insta-

27See, e.g., Managan (1985); Imamura et al. (1985); Ipser and Lindblom (1990, 1991); Lai et al. (1993a).
28James (1964).
29 See, e.g., Ostriker and Bodenheimer (1973); Bardeen et al. (1977); Tassoul (1978).
30Imamura et al. (1995).
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bility in post-Newtonian theory31 and in full general relativity.32 For relativistic stars, the critical
value of βs depends on the compaction M/R of the star, the rotation law and the dissipative
mechanism. The gravitational-radiation driven instability sets in for smaller rotation rates than
in Newtonian theory, i.e., it is triggered for values of βs < 0.14 as the compaction increases. By
contrast, viscosity drives the instability to higher rotation rates βs > 0.14 as the configurations
become more compact.

Determining the onset of the dynamical bar-mode instability, as well as the subsequent evolu-
tion of an unstable star, generally requires a numerical simulation of the hydrodynamical equations.
Simulations performed in Newtonian theory33 have shown that βd depends only very weakly on the
stiffness of the EOS. Once a bar has developed, the formation of spiral arms plays an important
role in redistributing the angular momentum and forming a core-halo structure. It has been shown
that, similar to the onset of secular instability, βd can be smaller for stars with a higher degree of
differential rotation.34

Until recently, almost nothing has been known about the dynamical bar-mode instability in
relativistic gravitation. The reason was that stable numerical codes capable of performing reliable
hydrodynamic simulations in three spatial dimensions plus time in full general relativity are a
recent development. In Section 14.2 we shall highlight results from a few simulations which
employ such codes to probe the dynamical stability of relativistic rotating stars for axisymmetric
and nonaxisymmetric modes.

There are numerous evolutionary paths which may lead to the formation of rapidly rotating,
relativistic stars, like neutron stars, with large values of β.

Exercise 14.7 Show that β ∼ 1/R during collapse, assuming conservation of J .

Exercise 14.7 suggests that during supernova collapse, as the core contracts from a radius of
∼ 1000 km to ∼ 10 km, β increases by about two orders of magnitude. Thus, even moderately
rapidly rotating progenitor stars may yield rapidly rotating neutron stars that may reach the onset
of dynamical instability.35 These configurations will be differentially rotating at birth, even if they
were uniformaly rotating prior to collapse, assuming that the collapse preserves angular momentum
on cylindrical shells. Similar arguments hold for accretion induced collapse of white dwarfs to
neutron stars and for the merger of binary white dwarfs to neutron stars. In fact, X-ray and
radio observations of supernova remnants have identified several young, isolated, rapidly rotating
pulsars, suggesting that these stars may have been born with periods of several milliseconds.36

These neutron stars could be the collapsed remnants of rapidly rotating progenitors. By the time
they are observed as pulsars, they are presumably rotating unformly, given that they are such
good clocks.

Rapidly rotating neutron stars naturally arise in the merger of binary neutron stars. As we
will discuss in Chapter 16, simulations reveal that such merger remnants could be hypermassive
neutron stars. Hypermassive stars can also form during core collapse in massive stars. These
configurations are transient objects that will likely undergo delayed collapse, producing a delayed

31Cutler and Lindblom (1992); Shapiro and Zane (1998).
32Bonazzola et al. (1996); Stergioulas and Friedman (1998).
33See, e.g., Tohline et al. (1985); Smith et al. (1996); Pickett et al. (1996); New et al. (2000) and references

therein.
34Tohline and Hachisu (1990); Pickett et al. (1996); Shibata et al. (2003).
35Rampp et al. (1998).
36Marshall et al. (1998); Kaspi et al. (1998).
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burst of gravitational waves and, possibly, gamma-rays. Their fate may thus be important for the
detection and identification of gravitational wave and gamma-ray burst sources.

14.1.3 Collisionless Clusters

The field equations (14.2)–(14.4) and (G.8) can also be used to construct rotating, axisymmetric
equilibrium configurations of collisionless matter.37 The stress-energy tensor for the matter in this
case is determined by the phase-space distribution function f , which in turn is governed by the
relativistic Vlasov equation38 The stress-energy tensor may be written in the form

T âb̂ =

∫
fpâpb̂

d3p̂

pt̂
, (14.27)

where pâ are the orthonormal components of the particle 4-momentum (see equations 5.201, 5.213
and 5.215). To solve the field equations we need to evaluate the components of the stress-energy
tensor in the ZAMO frame (see Appendix G). The simplest phase-space distribution functions that
can generate nonspherical, axisymmetric equilibria are functions solely of the conserved particle
energy E and conserved angular momentum Jz about the symmetry axis. Because E and Jz are
integrals of the motion, choosing a distribution function of the form f = f(E, Jz) guarantees that
we have a solution of the Vlasov equation, provided the metric is determined self-consistently. No
further dynamical equations need to be solved for the matter. By contrast, for equilibrium fluid
systems, such as rotating stars, we need to integrate the equation of hydrostatic equilibrium, as
discussed above.

For axisymmetric systems described by f = f(E, Jz), the quantities E and Jz are the two
constants of motion associated with the Killing vectors ξa(t) = (∂/∂t)a and ξa(φ) = (∂/∂φ)a:

E ≡ −gabpaξb(t) = eνpt̂ + ωeβr sin θpφ̂ , (14.28)

Jz ≡ gabp
aξb(φ) = eβr sin θ pφ̂ . (14.29)

In evaluating the integrals (14.27) to obtain the matter source terms appearing in the field equa-
tions, we can write

pt̂ = [(pr̂)2 + (pθ̂)2 + (pφ̂)2 +m2]1/2 = [(p⊥)2 + (pφ̂)2 +m2]1/2 , (14.30)

where
(p⊥)2 = (pr̂)2 + (pθ̂)2 . (14.31)

The particle momentum distribution is isotropic in a plane containing the symmetry axis, perpen-
dicular to the φ-direction. In other words,

pr̂ = p⊥ cosψ, pθ̂ = p⊥ sinψ , (14.32)

and
d3p̂ = dpr̂dpθ̂dpφ̂ = p⊥dp⊥dpφ̂dψ , (14.33)

and f is now independent of the angle ψ in the symmetry plane. A detailed prescription for
performing the necessary quadratures (14.27) for the source terms can be found in Shapiro and
Teukolsky (1993b,a).

37Shapiro and Teukolsky (1993b,a).
38See Chapter 5.3.
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By suitable choice of the distribution in Jz, one can construct models that are either prolate or
oblate. A depletion in the Jz-distribution produces a prolate configuration, while an enhancement
produces an oblate one. The easiest way to implement this procedure is to write

f(E, Jz) = g(E)h(Jz) (14.34)

and vary h appropriately. When h is constant, we get spherical models with isotropic velocity
distributions. If h depends only on the magnitude of Jz, the models are nonspherical with no
net angular momentum. As h is varied, one can build entire sequences of equilibria with varying
degrees of rotation. Bound systems of finite extent require that g(E) = 0 for E > Emax, where
Emax < m0 is the maximum particle energy and m0 the particle rest mass. The construction of
rotating clusters using this prescription has already been implemented in Chapter 10.4, where we
focussed on toroidal clusters and their collapse to black holes.

14.2 Evolution: Instabilities and Collapse

As suggested above, numerical relativity has proven to be an invaluable tool in probing the sta-
bility of relativistic rotating equilibria, particularly where no theorems exist to identify unstable
configurations easily or unambiguously. Numerical relativity can also follow the evolution of un-
stable configurations and ascertain their final fate. We shall now illustrate these applications of
numerical relativity by summarizing a few representative simulations.

14.2.1 Quasi-Radial Stability and Collapse

Uniformaly Rotating Stars with Stiff EOSs

Consider the point of onset of quasi-radial dynamical stability along a sequence of uniformly
rotating, fluid stars at the mass-shedding limit.39 Adopt a polytropic EOS with index n = 1,
Γ = 2, so as to crudely mimick a stiff nuclear EOS appropriate for a neutron star. Such a
sequence is shown by the solid curve in Figure 14.2, together with a TOV sequence of nonrotating,
spherical stars denoted by the dotted curve for comparison. We are particularly interested in the
supramassive configurations residing along the solid curve.

The stability theorem of Friedman, Ipser and Sorkin can be applied to show that the onset of
secular instability for these uniformly rotating models resides very close to the central rest-mass
density ρ0,c = ρcrit at which M assumes its maximum value along the sequence.40 According to our
discussion in Section 14.1, stars with ρ0,c > ρcrit are likely candidates for dynamical instability, but
there are no theorems to prove this expectation. The open circles on the curve identify 5 specific
configurations chosen as initial data for hydrodynamical evolution. In some of the simulations, the
star is subjected to an initial perturbation by depleting the initial pressure everywhere a small,
fixed, fractional amount below its equilibrium value to help induce an instability. In such cases,
the Hamiltonian and momentum constraint equations are re-solved to restore valid initial data.
The response of each star to such a perturbation then establishes where along the sequence a
dynamical instability sets in.

39Shibata et al. (2000a).
40See Figure 4 of Cook et al. (1994b).
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Figure 14.2: Total mass as a function of central rest-mass density for uniformly rotating polytropes
with Γ = 2 and polytropic parameter K = 200/π. The solid line shows the exact sequence at the
mass-shedding limit; the dotted line gives the TOV sequence of nonrotating, spherical stars. The
open circles indicate configurations at the mass-shedding limit constructed from the conformal
flatness approximation, which were used for the simulation. The supramassive configurations
chosen as initial data for dynamical evolution calculations are labeled by (A) - (E). [From Shibata
et al. (2000a).]

The simulations are performed with a relativistic hydrodynamics code in 3 + 1 dimensions.41

The field solver is based on second-order, finite-differencing of the BSSN equations, which were
presented in Chapter 11.5. The adiabatic hydrodynamic equations are integrated by a Wilson
scheme as described in Chapter 5.2.1, with the advection terms differenced by the second-order
algorithm of van Leer (1977) and the use of artificial viscosity to handle shocks. The adiabatic
index during the evolution is chosent to be Γ = 2, the same value that relates the pressure
and rest-mass density in the equilibrium polytrope. An “approximate” maximal time slicing
condition ( Ki

i ≈ 0) is employed to determine the lapse function α and an “approximate” minimum
distortion (AMD) spatial gauge condition (D̃i(∂tγ̃

ij) ≈ 0) is used to determine the shift vector
βj.42 Reflection symmetry about the equator at z = 0 and π− rotation symmetry about the z-axis
is assumed. The integrations are performed on a fixed, uniform grid, typically with 153× 77× 77
zones in the x − y − z directions, respectively. With this grid the semi-major axes of the stars,
along the x and y axes, are covered by 40 grid points while the semi-minor (rotation) axis along
z is covered by 23 or 24 grid points.

The main results of the simulation are shown in Figure 14.3, which show the evolution of

41See Shibata (1999a) for details. We will discuss applications that employ more advanced codes later in this
chapter and in other chapters.

42see Chapter 4; an extra contribution is added to the shift to increase the resolution near the origin when a
black hole forms, as discussed at the end of Chapter 4.5.
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Figure 14.3: The central lapse α and rest-mass density ρ0,c as functions of time during the evolution
of stars (A)–(E). Here time t is expressed in units of P , the initial rotation period of the star.
The solid lines denote the results without an initial pressure perturbation, while dotted lines show
results for a fractional pressure decrease of 1% everywhere. [From Shibata et al. (2000a).]

ρ0,c and αc for each star. When ρ0,c < ρcrit [i.e., stars A, B and C], the rotating stars oscillate
independent of the initial pressure perturbation. Hence these stars are stable against gravitational
collapse. Small amplitude oscillations at the fundamental quasi-radial period arise for these stars
even in the absence of initial pressure perturbations. These oscillations are caused by small
deviations of the initial data from true equilibrium states, due partly to numerical truncation
error and partly to approximations used in solving the equilibrium equations.43 In the absence of
a pressure perturbation (∆P = 0), star D does not collapse, but it does undergo a much larger
amplitude oscillation than those of stars A-C. More significantly, when subjected to a perturbation
∆P/P = 1%, it does collapses to a black hole, unlike stars A-C. The results for star E are similar
to, but more pronounced, than those for star D. By studying these results and refining the initial
models and the resolution, we conclude that the point of onset of dynamical instability along
mass-shedding sequences nearly coincides with the onset of secular instability.

We also learn from these simulations that the unstable stars collapse to rotating black holes
within about one rotation period. The appearance of a black hole is determined by finding an
apparent horizon. All the rest-mass and angular momentum, and almost all of the total mass-
energy (apart from a small amount of gravitational radiation), wind up in the black holes. The
spin parameters J/M2 ∼ 0.6 < 1 of all the stars are thus nearly conserved, and the resulting Kerr
black holes have only moderate spin rates. In no case is there any formation of a massive disk or

43The conformal flatness approximation for the spatial metric, γij = e4φδij , was adopted to construct these
models. This simplification typically provides an excellent approximation to exact axisymmetric equilibrium models,
as shown by Cook et al. (1996) and suggested by the proximity of the models in Figure 14.2 to the exact equilibrium
curve.
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any ejecta around the newly formed Kerr holes, even though the progenitors are rapidly rotating.
The qualitative reason for this outcome is clear: because they are slowly spinning, the spacetime
outside each of the black holes is not far from Schwarzschild. The innermost stable circular orbit
(ISCO) around each black hole is roughly rISCO ∼ 5M in our adopted spatial gauge, which is
comparable to isotropic coordinates in a spherical spacetime. However, the stellar equatorial
radius Re of the equilibrium star is less than 5M , hence at the outset the star already resides
inside the radius which becomes the ISCO of the final black hole. This same argument suggests
that the formation of a disk around a black hole requires equilibrium progentors constructed either
with softer EOSs (higher n) if they are uniformly rotating, or with differential rotation, so that
the initial equatorial radii will be larger. This suspicion is borne out by other simulations, which
we shall summarize below.

During the collapse to a black hole, nonaxisymmetric perturbations do not have enough time
to grow appreciably. But again this is not surprising, given that the progenitor is so compact,
whereby the star can contract by at most a factor of three before a black hole forms. Hence T/|W |,
which approximately scales with R−1

e , can increase only by about a factor of three over its initial
value of (T/|W |)init ∼ 0.09, and only barely reach the critical value of dynamical instability for
bar formation, (T/|W |)dyn ∼ 0.27. We expect that these results hold for any uniformly rotating
star constructed from a moderately stiff EOS, for which the corresponding critical configurations
are similarly compact. For progenitors constructed with softer EOSs, or with differential rotation,
the initial radii will be larger and T/|W | may be amplified to larger values by the end of collapse.
We shall return to the issue of bar instabilities in Section 14.2.2.

Uniformly Rotating n = 3 Polytropes

To study the fate of radially unstable, rotating stars constructed from softer EOSs, consider the
adiabatic evolution of an n = 3 polytrope that is marginally unstable to quasi-radial collapse and
rotating uniformly at the mass-shedding limit.44 Such a configuration can be used to model a
spinning supermassive star, or the stellar core of an evolved massive Population I star, or even a
massive, “first generation”, zero-metallicity Population III star, all at the onset of collapse.45 The
marginally unstable critical configuration is characterized by the nondimensional ratios Re/M ≈
640, Rp/M ≈ 420, J/M2 ≈ 0.97 and T/|W | ≈ 0.97, independently of its mass,46 and is very
centrally condensed. Tracking the collapse of such a configuration is computationally challenging,
since the equatorial radius will decrease by a factor of nearly 103 by the time a black hole forms,
requiring a code with considerable dynamic range. The challenge can be met by (1) restricting the
integrations to axisymmetry47 and (2) moving the outer boundary inward at various stages during
the collapse in order to rezone the spatial domain with finer grid spacing (“poor man’s AMR”).48

44Shibata and Shapiro (2002).
45Very massive (M >∼ 103M�) and supermassive stars supported by thermal radiation pressure can be modeled

by n ≈ 3 polytropes. The cores of young, high-mass Population I stars (M >∼ 20M�) are supported by degenerate
relativistic electrons, for which the EOS satisfies Γ = 4/3. These cores can also be modeled by n = 3 polytropes.
For an overview of the astrophysical and cosmological significance of this calculation, see Liu et al. (2007), and
references therein.

46Baumgarte and Shapiro (1999a).
47A PN simulation in 3+1 dimensions by Saijo et al. (2002) indicates that nonaxisymmetric instabilities are not

excited.
48This trick is possible because for n ≈ 3 and T/|W | small, the collapse proceeds homologously in the central

regions during the early, Newtonian stages; see Shapiro and Teukolsky (1979); Goldreich and Weber (1980); Saijo
et al. (2002).
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Implementing both of these techniques improves the resolution of the strong-field, central regions
where the black hole forms. Because the critical configuration is independent of M , a single
calculation may be scaled to stars of arbitrary mass.

The simulation is carried out with the same basic 3+1 code used for the previous problems, but
now adapted to axisymmetry. The Einstein field equations are solved in Cartesian coordinates
with a grid of size (N, 3, N) in (x, y, z), covering a computational domain 0 ≤ x, z ≤ L and
−∆y ≤ y ≤ ∆y. Here the grid size N is a constant (� 1), L the location of the outer boundary,
which is moved inwards at discrete moments during the simulation, and ∆y is the grid spacing
in the y-direction, with an axisymmetric boundary condition imposed at y = ±∆y; the spin axis
is along z. This way of “axisymmetrizing” a 3 + 1 Cartesian code is referred to as the “cartoon
method” in numerical relativity.49 One can solve the relativistic hydrodynamics equations in
axisymmetry with the same “cartoon” recipe. Instead, somewhat improved accuracy is achieved
in this simulation if the equations are recast directly in cylindrical coordinates, using the same
Cartesian variables in the expressions and the same grid points. Maximal time slicing and the
AMD shift condition are adopted as gauge conditions. The appearance and growth of a black hole
is again determined by finding an apparent horizon.

Violations of the constraints and conservation of mass and angular momentum are monitored
as numerical accuracy checks during the simulation. Total angular momentum J and total baryon
rest-mass M0 should be strictly conserved in axisymmetry. The gravitational mass M is not
conserved, due to the emission of gravitational radiation, but the decrease in M is very small.

The collapse proceeds homologously early on and results in the appearance of an apparent
horizon at the center at t/M ∼ 30630. The final black hole contains about 90% of the total
rest mass of the system and has a spin paramter J/M2 ∼ 0.75. The remaining gas forms a
rotating disk about the black hole. In fact, these black hole and disk parameters can be calculated
analytically to reasonable approximation from the initial stellar density and angular momentum
distributions50 using the fact that in axisymmetry, the specific angular momentum spectrum, i.e.,
the integrated rest mass of all fluid elements with specific angular momentum j less than a fiducial
value, is strictly conserved in the absence of viscosity.51 The fact that a substantial disk forms
containing about 10% of the initial rest mass may have important implications for the “collapsar”
model of long-duration gamma-ray bursts52 which posits that the central engines of such sources
are rotating black holes surrounded by gaseous, magnetized disks that arise from the collapse
of massive stars. To be confident that the evolution has reached stationary equilibrium, it is
necessary to evolve the implosion well past the appearance of an apparent horizon. Accomplishing
this requires the implementation of some technique that avoids the build up of numerical errors
due to the presence of the black hole singularity. In Section 14.2.3 we will discuss simulations that
adopt one such technique, namely “black hole excision”, to repeat and extend this astrophysically
important collapse calculation.

The mass fraction that forms an ambient disk about the rotating black hole is a sensitive
function of the polytropic index of a marginally unstable progenitor star rotating uniformly at
the mass-shedding limit. As the polytropic index decreases below n ≈ 3, the mass of the disk

49Alcubierre et al. (2001). See Bardeen and Piran (1983); Evans (1986); Ruiz et al. (2008) for proceedures for
regularizing the field equations to deal with the coordinate singularities that arise at the origin or along the axis
when working in spherical symmetry or axisymmetry.

50Shapiro and Shibata (2002).
51Stark and Piran (1987).
52MacFadyen and Woosley (1999); MacFadyen et al. (2001).
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Figure 14.4: Snapshots of contours of the density ρ∗ of the hypermassive star marked with a dot
in Fig. 14.1. We show contours of the initial data and after about 3 central rotation periods,
both in the equatorial plane (left, including the velocity field vi = ui/ut), and in a meridional
plane containing the z-axis of rotation (right). The star has a rest mass about 60% larger than
the maximum nonrotating rest mass. The simulation shows that this model is dynamically stable
[From Baumgarte et al. (2000).]

decreases rapidly. This result has been demonstrated both numerically53 and analytically.54 For
2/3 < n < 2, the disk mass fraction is very small (< 10−3).

Differentially Rotating Hypermassive Stars

Consider next the stability of a differentially rotating, hypermassive stars. Adopt the hypermassive
equilibrium configuration marked by the dot in Figure 14.1 as initial data for the same 3 + 1 code
used to evolve the supramassive stars whose radially stability we studied above. This hypermassive
model has Â−1 = 1, Re/M ∼ 5 and β ∼ 0.23. The result of the simulation55 is summarized in
Figure 14.4. Little change is observed in the density variable ρ∗ ≡ ρ0u

t(−g)1/2 and velocity profiles
of the configuration over several central rotation periods. This simulation thus proves that at least
some hypermassive stars are dynamically stable, both to radial and nonradial modes. But their
secular stability is another issue, which we will return to in Sections 14.2.4 and 14.2.5.

53Shibata (2004).
54Shapiro (2004a).
55Baumgarte et al. (2000).
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14.2.2 Bar-mode Instability

Next consider the dynamical stability of differentially rotating, highly relativistic stars against
bar-mode formation. Numerical simulations to study this instability have been performed in full
3+1 general relativity, again with the same BSSN, relativistic hydrodynamics code discussed in the
previous section.56 Compact, radially stable, equilibrium stars with M/R >∼ 0.1 were constructed
as initial data; here M is the total ADM mass and R the equatorial circumferential radius. A
polytropic EOS with n = 1 and a differential angular velocity profile specified by equation (14.11)
were employed, and the evolutions were performed adiabatically with adiabatic index Γ = 2.

To investigate the dynamical stability against bar-mode deformation, a nonaxisymmetric den-
sity perturbation was imposed of the form

ρnew
0 = ρ0

(
1 + δb

x2 − y2

R2
e

)
, (14.35)

where ρ0 denotes the original axisymmetric density distribution, and where δb was chosen to be
0.1 or 0.3. The four-velocity components ui were left unperturbed. The constraint equations
were then re-solved to guarantee that, although the perturbed configuration is no longer in strict
hydrostatic equilibrium, the Einstein equations are obeyed at t = 0. The growth of a bar mode
can be followed by monitoring the stellar distortion parameter

η ≡ 2
xrms − yrms

xrms + yrms

, (14.36)

where xirms denotes the mean square axial length

xirms =
[ 1

M0

∫
(xi)2ρ∗d

3x
]1/2

. (14.37)

For dynamically unstable stars, η grows exponentially until reaching a saturation point, while for
stable stars, it remains approximately constant for many rotational periods.

Simulations were performed using a fixed uniform grid with typical size 153×77×77 in x−y−z
and assuming π-rotation symmetry around the z-axis, as well as a reflection symmetry about the
equatorial (z = 0) plane. Test simulations with different grid resolutions were also performed to
check that the results do not change significantly. By imposing π-rotation symmetry, one-armed
spiral (m = 1) modes are ignored; these may be dominant for rotating stars in which Ω is a very
steep function of axial radius $.57

The simulations show that when plotted in a M̄0 versus ρ̄∗max diagram, a region of stable
stars can be clearly distinguished from a region of unstable stars, with the onset of the bar-mode
instability almost independent of the degree of differential rotation (see Figure 14.5).

The simulations also show that the parameter β = T/W remains a good diagnostic of the onset
point of instability in the relativistic domain as it did for Newtonian stars. The critical value for
the instability onset depends only weakly on the degree of differential rotation for the models
surveyed. In particular, the critical value of β = βd is ∼ 0.24− 0.25, only slightly smaller than the
well-known Newtonian value of about 0.27 for incompressible Maclaurin spheroids. The critical
value βd decreases slightly for stars with a higher degree of differential rotation. When combined
with other simulations that adopt the first post-Newtonian approximation of general relativity but

56Shibata et al. (2000b).
57Pickett et al. (1996); Centrella et al. (2001); Saijo et al. (2003); Ou and Tohline (2006); Baiotti et al. (2007).
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Figure 14.5: Models of differentially rotating stars in a M̄0 versus ρ̄∗max diagram. Circles denote
stars with Â ≡ A/Re = 1, squares with Â = 0.8. Solid (open) circles or squares represent stars
that are unstable (stable). Marginally stable stars are denoted with a cross. The region for the
stable stars is clearly separated from that for the unstable stars by the thick dashed-dotted line.
This line is followed fairly closely by the dashed and dotted lines, which have been constructed
for differentially rotating stars of (Â, β) = (1, 0.245) and (0.8, 0.24). The long-dashed and solid
lines in the lower right-hand corner are for nonrotating spherical stars and rigidly rotating stars
at the mass shedding limit. Scales for the top horizontal and right vertical axes are shown for
polytropic constant K = 100(G3M2

�/c
4), for which the maximum rest mass for spherical stars is

about 1.8M�. [From Shibata et al. (2000b).]

are otherwise identical,58 one finds that βd decreases with compaction as well. Thus relativistic
gravitation enhances the dynamical bar-mode instability, i.e., the onset of the instability sets in
for somewhat smaller values of β in relativistic gravitation than in Newtonian gravitation. To
check the reliability of these simulations, the conservation of the relativistic circulation, defined
by equation (5.59), was monitored, in addition to rest-mass, total mass-energy, linear and angular
momentum. Conservation of circulation indicates that the simulations are not seriously affected
by any spurious numerical viscosity.

For selected models, the growth and saturation of bar-mode perturbations were followed up
to late times. Stars with sufficiently large β > βd develop bars first and then form spiral arms,
leading to some mass ejection; see Figure 14.6.

Stars with smaller values of β ∼ βd also develop bars, but do not form spiral arms and eject
only very little mass. In both cases, unstable stars appear to form differentially rotating, triaxial
ellipsoids once the bar-mode perturbation saturates; see Figure 14.7.

Typically, these flattened ellipsoids appear to have β >∼ 0.2, so that they are secularly unstable

58Saijo et al. (2001).
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Figure 14.6: Snapshots of contours for the density ρ∗ and the velocity field vi in the equatorial
plane (left) and in the meridional plane (right) for a bar-unstable model with R/M ≈ 7.1 and
β ≈ 0.26. The contour lines are drawn for ρ∗/ρ∗ max = 10−0.3j for j = 0, 1, 2, · · · , 10 where ρ̄∗ max

is 0.126, 0.172 and 0.264 at the three different times. The lengths of arrows are normalized to 0.3c
(left) and 0.1c (right). The time is shown in units of the initial central period P ≈ 15M . [From
Shibata et al. (2000b).]

to gravitational waves and viscosity. We expect that this secular instability will allow the stars
to maintain a bar-like shape for many dynamical timescales, leading to quasi-periodic emission of
gravitational waves. These expectations are born out by simulations of merging binary neutron
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Figure 14.7: Snapshots of contours for the density ρ∗ and the velocity field vi in the equatorial
plane (left) and in the meridional plane (right) for a bar-unstable model with R/M ≈ 7.2 and
β ≈ 0.25. The contour lines are drawn for ρ∗/ρ∗ max = 10−0.3j for j = 0, 1, 2, · · · , 10 where ρ̄∗ max

is 0.128, 0.152 and 0.176 at the three different times. The lengths of arrows are normalized to 0.3c
(left) and 0.1c (right). The time is shown in units of the initial central period P ≈ 15M . [From
Shibata et al. (2000b).]

stars, which in some cases result in bar-like, hypermassive remnants that emit quasi-periodic
gravitational waves prior to undergoing delayed collapse to black holes. We will return to this
issue in Chapter 16.



14.2. EVOLUTION: INSTABILITIES AND COLLAPSE 429

As mentioned, relaxing the constraint of π-rotation symmetry can weaken the m = 2 mode
via nonlinear coupling to the m = 1 mode. This effect was studied by Baiotti et al. (2007) with a
3+1 general relativistic hydrodynamics HRSC code with a BSSN-like field solver. They found that
such an effect can limit the persistence of bar-formation, and in some cases can even suppress the
instability, when β ∼ βd, but has little influence when β � βd. They also found, not surprisingly,
that the nature of the initial perturbation had little effect on the growth time of the bar mode
instability, but could influence its duration when mode mixing is allowed.

14.2.3 Black Hole Excision and Stellar Collapse

The formation of a black hole during stellar collapse poses a serious challenge: the black hole
singularity must be avoided to allow the exterior evolution to continue far into the future. In
Chapter 13.1 we discussed several strategies for dealing with this issue in the context of binary
black hole simulations in vacuum spacetimes. Here we will focus on one of the techniques, black
hole excision, which has also proven very successfull in stellar collapse simulations.

As discussed in Chapter 13.1.2, black hole excision exploits the fact that the singularity reside
inside an event horizon, in a region that is casually disconnected from the rest of the universe
(see Chapter 7.1). Since no physical information can propagate from inside of the event horizon
to the outside, we should be able to evolve the exterior independently of the interior spacetime.
This entitles us to “excise” the black hole interior, or that part of the interior containing the
singularity, from the computational domain and evolve the remaining region alone, without any
adverse consequences.

Although it is guaranteed that no physical signal can propagate from inside the horizon to out-
side, unphysical signals often can propagate in evolution codes. Gauge modes can move acausally
for many gauge conditions. Although they carry no physical content, such modes may destabilize
the code. Thus, the choice of gauge is crucial to obtaining good excision evolutions. In addition,
constraint-violating modes can, for some formulations of the field equations, propagate acausally,
creating inaccuracies and instabilities. Thus, the choice of formulation is also crucial to obtaining
good excision evolutions.

The feasibility of black hole excision was first demonstrated in spherically symmetric 1+1
dimensional evolutions of a single black hole in the presence of a self-gravitating scalar field.59

Excision was also implemented successfully to study the spherically symmetric collapse of colli-
sionless matter to a black hole in Brans-Dicke theory.60 Since that time, excision has been used
successfully to evolve single and binary black holes in axisymmetry and full 3+1 dimensions.61

The first implementation of black hole excision in a 3+1 relativistic hydrodynamics code was ac-
complished by Duez et al. (2004).62 Their code evolves the gravitational field equations both in
axisymmetry and full 3 + 1 via the BSSN formulation. In their original version,63 the hydrody-
namic equations are evolved via a Wilson code, using the Van Leer algorithm for the advection
and artificial viscosity to handle shocks. Their subsequent version64 evolves the fluid equations
with a more sophisticated HRSC scheme along the lines discussed in Chapter 5; it also incorpo-
rates relativistic MHD. Duez et al. (2004) insert additional “constraint damping” terms into the

59Seidel and Suen (1992).
60Scheel et al. (1995a,b).
61see Baumgarte and Shapiro (2003c) and Chapter 13 for discussion and references.
62See also Baiotti et al. (2005).
63Duez et al. (2003).
64Duez et al. (2005b).
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BSSN field equations to help satisfy the constraints numerically and achieve improved accuracy, a
technique we discussed in Chapter 11.5.65 This addition consists of modifying equations (11.50),
(11.51) and (11.52) according to

∂tφ = · · ·+ cH1∆TαH (14.38)

∂tγ̄ij = · · ·+ cH2∆Tαγ̄ijH (14.39)

∂tÃij = · · · − cH3∆TαÃijH , (14.40)

where ∆T is the timestep, cH1 = 0.1, cH2 = 0.5, and cH3 = 1 are dimensionless coefficients found
empirically, and where H is given by the Hamiltonian constraint condition (11.48). In a similar
spirit, the three BSSN “auxiliary constraint” conditions

0 = Gi ≡ Γ̄i + γ̄ij ,j (14.41)

0 = D ≡ det(γ̄ij)− 1 (14.42)

0 = T ≡ tr(Ãij) . (14.43)

are incorporated into the right-hand sides of the evolution equation (11.55) for ∂tΓ̄
i, equation (11.51)

for ∂tγ̄ij and equation (11.53) for ∂tÃij, respectively.66

The lapse and shift conditions are chosen so that, as the system settles into equilibrium, it
appears stationary in the adopted coordinates. The lapse function is designed to be nonzero at
the apparent horizon in order to maintain “horizon penetration”, i.e. time evolution that proceeds
smoothly across the horizon, without the steep build-up of gravitational waves and fluid that
arises when the lapse and the advance of proper time plummet to zero there. Horizon penetration
allows the location of an excision region inside the horizon; the evolution equations do not have
to be solved inside the excision region. Duez et al. (2004) report great success with the hyperbolic
“driver” conditions67

∂2
t β

i = b1(α∂tΓ̄
i − b2∂tβ

i) , (14.44)

with b1 = 0.75 and b2 = 0.27M−1 and

∂tα = αA
∂tA = −a1

(
α∂tK + a2

[
∂tα + e−4φα(K −Kdrive)

])
. (14.45)

In equation (14.45), the presence of α in front of A prevents the lapse from dropping to zero. With
this feature, the lapse levels off at finite positive values everywhere on and outside the excision
zone The term Kdrive is the value to which the mean curvature K is “driven” at late times. Several
choices for Kdrive are useful. The simplest, and usually adequate choice, is zero. This drives K
to zero (maximal slicing) and usually causes a very slow downward drift in the lapse near the
horizon. For many astrophysical applications, where one only needs to evolve for several hundred
M , this drift is usually unimportant. However, the effect can be removed and horzion penetration
maintained by a better choice of Kdrive. One possibility is Kinit, the value of K at the time excision
is introduced. Another choice is KKS, a function which mimicks the Kerr-Schild form for K for a
Kerr black hole. 68

65Detweiler (1987); Frittelli (1997); Alcubierre et al. (2000); Yoneda and Shinkai (2001, 2002); Kelly et al. (2001);
Yo et al. (2002).

66See also Alcubierre et al. (2000); Yo et al. (2002).
67Alcubierre et al. (2001); cf. the hyperbolic conditions discussed in Chapter 4.3 and 4.5.
68See Duez et al. (2004), equation (19)
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The results of the simulations are insensitive to the precise boundary conditions applied at
the edge of the excision zone, as they should be. For example, in their excision code, Duez et al.
(2004) simply copy the time derivatives of field quantities onto the excision boundary from the
time derivatives at outer adjacent points. They use spherical excision regions inside the apparent
horizon throughout, although this is not essential.

Tracking the collapse of rapidly rotating stars is one of the most important applications of
black excision. As an example, consider the following issue: if the star collapses to a stationary
black hole in vacuum, the “no-hair” theorem requires that it settle down to a Kerr black hole. In
the Kerr spacetime, the singularity is covered by an event horizon only if J/M2 ≤ 1; otherwise
the singularity is naked. Rotating stars, on the other hand, are not so restricted, and sufficiently
rapidly rotating stars will have J/M2 > 1. If the cosmic censorship hypothesis is true, then the
collapse of the whole system must somehow be averted. How is this guaranteed? One way is if the
star loses angular momentum as it collapses, either by gravitational wave emission69 or by shedding
matter with high specific angular momentum, so that the final black hole has J/M2 < 1. A naked
singularity can also be averted if the collapse of a J/M2 > 1 star is always halted by centrifugal
forces, so there will be no black hole and no singularity at all. It is easy to argue qualitatively70

that a centrifugal barrier will arise to protect cosmic censorship in this way. Assuming no mass
or angular momentum are shed during the collapse, the radius Rb at which the centrifugal force
balances the gravitational force will be

M

R2
b

∼ J2

M2R3
b

, (14.46)

so that
Rb

M
∼
(
J

M2

)2

. (14.47)

Hence, if J/M2 < 1 (i.e., the star is subKerr), the star will already be inside a black hole before
rotation can halt the collapse. For J/M2 > 1 (i.e., the star is supraKerr), the collapse will be
halted at a radius larger than M , and no black hole forms.

Simulating gravitational collapse of rotating objects and rigorously checking whether or not
it complies with the Kerr limit for black hole spin has been done for representative cases of fluid
stars71 and collisionless clusters.72 For some cases, the simulations did not (and sometimes could
not) study in detail the final fate of the configuration or the outgoing gravitational radiation flux
when a black hole forms. In hydrodynamic collapse, this is often the situation when the EOS
is soft and the initial star is extended in size (� M) and centrally condensed, or when there
is significant rotation to hold back the outer layers. Eventually, grid stretching, the collapse of
the lapse, or some other complications in the vicinity of the black hole arises to terminate the
integration before the outer layers have completed their evolution. Excision, which is designed to
overcome this complication, enables one to address the issue of subKerr vs. supraKerr collapse
and identify the final state. Such an algorithm is useful not simply for determining whether or not
a black hole forms, but also for determining how much rest mass and gravitational energy escapes
collapse if it does.

69But recall that in axisymmetry, no angular momentum is carried off by gravitational waves during collapse;
see, e.g., Lightman et al. (1975), Problem 18.9.

70Nakamura (2002).
71Nakamura and Sato (1981); Stark and Piran (1985); Shibata (2000).
72Abrahams et al. (1994); see the discussion in Chapter 10.4.
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To explore this cabability with their excision algorithm, Duez et al. (2004) employed the
routine of CST to construct three differentially rotating n = 1 polytropes of the same rest-mass
but varying spin to obtain both subKerr and supraKerr models for initial data. Following pressue
depletion to trigger their collapse, they tracked the adiabatic evolution of these configurations in
axisymmetry on grids of 3002 to 4002 zones. Two of their models, stars A and B, are subKerr
(J/M2 = 0.57 and 0.91, respectively) and collapse to Kerr black holes without disks. In the case
of star B, a nearly spherical apparent horizon forms at t/M = 28.4 at a coordinate radius of
rAH/M = 0.62. Excision is introduced inside rex/M = 0.08 at t = 29M , at which time 22% of
the rest mass is outside the excision zone, and 15% is outside the apparent horizon. All of the
matter falls into the hole within 20M after excision is introduced, but the evolution is continued
for an additional 20M after this. No instabilities arise and the system evolves to a stationary
state. A third model, star C, is supraKerr (J/M2 = 1.2). Following an initial implosion, the core
of this star hits a centrifugal barrier, rebounds, and drives a shock into the infalling outer region.
The star then expands into a torus and undergoes damped oscillations, settling down to a new
stationary, nonsingular equilibrium state (a hot, rotating star), with nearly the same mass and
angular momentum as the original star.

For the above class of initial data leading to collapse, not only is cosmic censorhip obeyed, but
the spin parameter J/M2 of the progenitor seems to provide a unique indicator of the final fate:
if the spin is less than the Kerr limit, a black hole forms, otherwise there is no black hole but
a new, nonsingular, equilibrium state. The situation is more complicated in general. Consider,
for example, the fate of marginally unstable, rigidly rotating polytropes with n slightly above
3. Such stars crudely model the cores of massive stars in which thermal instabilities (e.g. iron
photodissociation, or pair annihilation) are present to drive the adiabatic index slightly below
4/3 at the endpoint of stellar evolution. Consequently, tracking their collapse and determining
their final fate is important astrophysically. Simulations of adiabatic collapse in axisymmetry by
Shibata (2004) show that J/M2 again proves to be a good predictor of the final outcome. But
now a black hole may form even for 1 <∼ J/M2 <∼ 2.5; only for J/M2 >∼ 2.5 does a centrifugal
barrier prevent the direct formation of a black hole. For cases in which J/M2 exceeds unity but a
black hole forms, the effective value of the spin parameter in the central region of the progenitor
is smaller than unity. The outcome is then a rapidly rotating black hole surrounded by a massive,
hot, equilibrium disk.

Uniformly Rotating n = 3 Polytropes Revisited

As we remarked in Section 14.2.1, the simulation of the collapse of a marginally unstable n ≈ 3
rotating polytrope from the point of onset of radial instability to final stationary equilibrium is
computationally challenging, even when restricting the analysis to axisymmetry. The reason, as
we discussed, is dynamic range. In addition, even after the issue of dynamic range is resolved by
a suitable spatial grid algorithm, black hole excision must be utilized in order that the simulation
be able to reach the final, stationary, dynamical equilibrium state. In the presence of viscosity
or magnetic fields, gas accretion from the disk onto the black hole will continue on a secular
(i.e. viscous, or magnetic) timescale even after dynamical equilibrium is achieved. Reaching this
dynamical equilibrium state, and then following the quasi-steady accretion and secular growth of
the black hole, clearly requires black hole excision.

The axisymmetric simulation of the adiabatic collapse of a marginally unstable n = 3 polytrope
rotating uniformly at the mass-shedding limit performed by Shibata and Shapiro (2002) and
discussed in Section 14.2.1 was repeated by Liu et al. (2007), who used black hole excision toward
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Figure 14.8: Snapshots of meridional rest-mass density contours and velocity vectors at selected
times for n = 3 collapse. The initial model is rotating uniformly near the mass-shedding limit at
the onset of gravitational instability to collapse. The density contour curves are drawn as follows:
(a) Pre-excision top row, at t = 0, ρ0 = 10−i−0.1ρ0c(0) with j = 0, 1, · · · , 10, where ρ0c(0) is the
initial central density; at t = 25260M , ρ0 = ρscal10−0.3j (j = 0–12), where ρscal = 11ρ0c(0) and
at t = 28284M , ρscal = 1000ρ0c(0). (b) Post-excision bottom row, ρ0 = 100ρ0c(0)10−0.3j (j = 0–
10). The thick solid (red) curve denotes the apparent horizon. For post-excision evolution, time is
measured from the beginning of excision (tex = 28284M). Note that the coordinate scale decreases
as time increases to show the central region in detail. [After Liu et al. (2007).]

the end of the simulation to reach a final stationary equilibrium state. This simulation employed
the basic BSSN, HRSC code of Duez et al. (2005b), using up to 14002 grid points and adopting
the same rezoning technique as Shibata and Shapiro (2002) to handle the early Newtonian phase
of the collapse. However, a transformation from the original set of coordinates (x̄, ȳ, z̄), with
r̄ = (x̄2+ȳ2+ z̄2)1/2 and uniform grid spacing ∆x̄i, to new, radially “squeezed” coordinates (x, y, z)
with r = (x2 + y2 + z2)1/2 and nonuniform grid spacing, was performed at late times to improve
further the resolution near the black hole:73 ∆r ≈ (dr/dr̄)∆r̄, where dr/dr̄ was constructed to
equal ≈ 1/8 near the hole, rising continuously to unity far away.74 Most importantly, black hole
excision was introduced soon after the appearance of an apparent horizon, and the simulation
continued for an additional interval of time after this. The results are summarized in Figures 14.8,
14.9 and 14.10.

The pre-excision evolution from the onset of collapse to the appearance of an apparent horizon

73This simple version of FMR is known as “multiple-transition fisheye” coordinates; see Campanelli et al. (2006a).
74The resulting radial grid spacing becomes ∆r ≈ 0.025M for r <∼ 4M and rises to ∆r ≈ 0.2M for r >∼ 22M ; the

outer boundary is near 60M .
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Figure 14.9: Blow-up of the meridional rest-mass density contours and velocity vectors at the end
of the simulation, following excision and Cowling evolution. The density contours are drawn at
for ρ0 = 100ρ0c(0)10−0.3j (j = 0–10). The thick solid (red) curve denotes the apparent horizon,
and the dark region denotes the excision zone. [After Liu et al. (2007).]

takes a total coordinate time t/M ≈ 28, 284 and requires 32, 520 Courant time steps. The post-
excision evolution lasts only ∆t/M ≈ 2, 220, but requires about 18, 000 additional timesteps, due to
the smaller grid spacing at late times. At ∆t/M ≈ 219 after the onset of the excision, gravitational
field evolution is “turned off” and the metric is frozen while the hydrodynamic evolution of the
residual matter continues until the end of the simulation. Holding the metric (i.e. gravitational
field) fixed as the matter evolves is referred to as the “Cowling approximation”. It is justified
whenever the gravitational field settles into a quasi-stationary state, which is the case here. In the
adopted gauge, the apparent horizon first appears at rAH/M ≈ 0.46 and grows to rAH/M ≈ 1.6
by the end of the post-excision evolution. The excision radius is initially set to rex/M ≈ 0.77 and
is increased to rex/M ≈ 1.1 by ∆t/M ≈ 100 after the start of excision, after which it is held fixed.
The outer boundary is moved inward to L/M ≈ 58 at late times. About 1% of the rest mass and
5% of the angular momentum is lost to regridding.

Figure 14.8 shows the formation of a hot, thick disk about the black hole at late times. Fig-
ure 14.9 zooms into the region near the black hole at the end of the simulation and shows the
relative scale of the excision zone, apparant horizon. and inner disk. Figure 14.10 plots the time
evolution of several key parameters characterizing the hole. The irreducible mass Mirr is calculated
from equation (7.2), using the area of the apparent horizon, which should coincide with the event
horizon at late times. The black hole angular momentum is calculated from

Jh = J − Jmatter(r > rAH) (14.48)
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Figure 14.10: Post-excision evolution of the horizon mass Mh, spin parameter Jh/M
2
h , and the

irreducible mass Mirr of the central black hole, and the rest mass of the disk, Mdisk, outside the
apparent horizon. Time is measured from the beginning of excision (tex = 28284M) [From Liu
et al. (2007).]

where the angular momentum of the matter outside the horizon is given by

Jmatter(r > rAH) =

∫
r>rAH

Sϕ
√
γd3x , (14.49)

in accord with equation (14.22). Then, to estimate the black hole mass Mh, we can use equa-
tion (7.3). This relation is only approximate for this spacetime, which consists of a rotating black
hole and an ambient disk, and is exact only for a vacuum Kerr spacetime. From this we estimate
the black hole spin parameter, Jh/M

2
h . The figure shows that the loss of rest-mass in the disk

due to flow into the black hole reduces to a trickle by ∆t/M >∼ 150 after the start of excision.
As a result the mass and spin of the black hole settle down to their final stationary values, an
indication that the adoption of the Cowling approximation to evolve the matter from this time
forward is justified.75 The final values are consistent with the earlier estimates of Shibata and
Shapiro (2002): the final black hole contains about 95% of the total rest-mass of the system and
has a spin parameter Jh/M

2
h ≈ 0.70. This ideal-gas simulation correctly finds that accretion of

75To adopt the Cowling approximation in a dynamical simulation, it is necessary that the spacetime be manifestly
stationary in the adopted coordinates, so that time derivatives of the field variables vanish. The gauge choices of
Liu et al. (2007) meet this criterion.
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rest-mass by the black hole eventually becomes quite small (Ṁ0
<∼ 10−6 in geometrized units76 due

to the absence of a dissipative agent in the disk, like viscosity or magnetic fields, that can transport
the angular momentum of the orbiting gas outwards. We shall return to this same problem in
Section 14.2.5 where we consider the role of magnetic fields on the collapse and its aftermath.

An alternative determination of the mass and spin of a black hole, including one surrounded by
fields and matter and possibly still undergoing growth, is provided by the “isolated-horizon” and
“dynamical- horizon” framework discussed in Section 7.4. The approach assumes the existence
of an axisymmetric Killing vector field residing on a marginally trapped surface like an apparent
horizon. When there is some energy flux across the horizon, the isolated-horizon formalism must
be replaced by the dynamical-horizon formalism.77 Baiotti et al. (2005) have simulated the collapse
of rotating, polytropic neutron stars to Kerr black holes to explore this framework and compare
it to other measures of black hole masses and spins. They employ a HRSC general-relativistic
code for the hydrodynamics, a BSSN-like scheme to integrate the gravitational field equations, a
black hole excision algorithm and a dynamical-horizon routine.78 The advantage of the dynamical-
horizon approach is that it provides a measurement that can be computed locally, both in time and
space, without having to determine the entire global spacetime. They also point out a limitation:
the horizon itself, and its distortions, must be axisymmetric, although this is often not a major
drawback in practical applications. Comparing different methods for measuring black hole mass
and spin for cases leading to vacuum Kerr formation they conclude that the dynamical-horizon
approach is simple to implement and can produce estimates that are accurate and more robust
than those of other methods.

14.2.4 Viscous Evolution

We have discussed the construction of equilibrium models for differentially rotating, hypermassive
stars in Section 14.1.2 and pointed out in Section 14.2.1 how relativistic simulations in full 3 + 1
demonstrate that models exist that are stable on dynamical timescales. But viscosity and magnetic
fields tend to drive differentially rotating objects toward uniform rotation on secular timescales,
and such processes can have important consequences for hypermassive stars formed in nature.
Consider, for example, the formation of a hypermassive neutron star following the inspiral and
merger of a binary neutron star. The removal of the added centrifugal support provided by
differential rotation can lead to the delayed collapse of the remnant to a black hole, accompanied by
a delayed burst of gravitational radiation.79 Both magnetic fields and viscosity alter the structure
of differentially rotating stars on secular timescales, and tracking their lengthy secular evolution up
to and beyond the onset of collapse presents a strenuous challenge for any numerical hydrodynamics
code. Similarly, tracking the secular accretion of viscous or magnetized gas from a disk onto a
central black hole is computationally taxing for a hydrodynamics code. Fortunately, numerical
relativity has matured sufficiently that it is now up to the task in all of these cases. We will
summarize in this section some representative simulations of dynamical spacetimes that treat
viscosity in full general relativity; in the next section we will describe simulations that treat

76The unit adopted for the rate of rest-mass accretion, [mass/time], with [mass] ≡M and [time] ≡ GM/c3 ≡M ,
is unity in geometrized units.

77Note that for a given angular momentum Jh, equation (7.75) for the dynamical-horizon mass has the same form
as equation (7.3) used by Liu et al. (2007) to estimate Mh. In the dynamical-horizon formalism, equation (7.74) is
used to compute Jh.

78Their dynamical-horizon analysis is performed with the numerical algorithm of Dreyer et al. (2003).
79Baumgarte et al. (2000).
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magnetic fields.

Duez et al. (2004) incorporated shear viscosity in their relativistic 2 + 1 and 3 + 1 Wilson-Van
Leer hydrodynamics codes to solve the Navier-Stokes equations in general relativity for a viscous
gas. They used their code to track the secular (viscous) evolution of differentially rotating stars,
including hypermassive stars. They adopted equation (5.65) for the viscous stress-energy tensor,
setting the bulk viscosity ζ to zero and the shear viscosity η according to η = νPP , where νP
is a constant parameter that can be varied from one simulation to the next. This form for the
viscosity is sometimes chosen for modeling turbulence in fluids.80 For sufficiently small coefficients
νP , secular effects will take many rotation periods to affect the velocity profile and structure of a
differentially rotating star significantly. Accordingly, Duez et al. (2004) chose the coefficient large
enough to make a numerical evolution feasible. At the same time, they were careful to keep it
sufficiently small to guarantee that the viscous timescale τvis ∼ R2/ν, where ν = η/ρ0, remains
much longer than the dynamical timescale τdyn ≈ (R3/M)1/2 to mimick the physical behavior of
any realistic fluid. Maintaining such an inequality usually guarantees that for a dynamically stable
configuration, secular evolution proceeds in a quasistationary manner.

Duez et al. (2004) demonstrated that the secular evolution exhibits scaling behavior. Specifi-
cally, consider the quasistationary evolution of the same star, once with viscous timescale τvis = τ1
and once with τvis = τ2. Provided both τ1 and τ2 obey the inequality τvis � τdyn then the con-
figuration of the star with viscosity τ1 at time t is the same as the configuration of the star with
viscosity τ2 at time (τ2/τ1)t. The results of any one secular simulation with a given choice of νP
and τvis can then be scaled to any other, choice without having to rerun the simulation.

Fluids with viscosity do not evolve isentropically; viscosity generates heat, as shown by equa-
tion (5.70). The gas may then cool, in principle, via neutrinos in the case of neutron stars. To
survey the possible range of outcomes, Duez et al. treat cooling in two extreme opposite limits. In
the no-cooling limit, which physically corresponds to τcool � τvis, all radiative cooling is ignored.
In the rapid-cooling limit, where τcool � τvis, the viscous heating term is removed from the en-
ergy equation equation (5.69) on the assumption that all thermal energy generated by viscosity is
radiated away immediately.

The simulations of hypermassive stars adopt n = 1 equilibrium polytropes for initial data,
using the differential rotation law given by equations (14.9) and (14.10) with Â = 1. The value
of νP is chosen so that the viscous timescale satisfies τvis ≈ 3Prot ∼ 10τdyn, where Prot is the
initial central rotation period. Even with viscosity of this magnitude, the stars need to be evolved
for 100–200Prot to complete their secular evolution and determine their final fate. The reason
is that in most cases, viscosity generates a low-density envelope around the central core. Since
the viscosity law has η ∝ P , the viscosity in the low-density region is small. Hence the effective
viscous timescale increases with time and it takes longer for the stars to reach a final state.

Snapshots during the evolution in axisymmetry of a representative configuration in the “no-
cooling” case are shown in Fig 14.11. Here the initial configuration is a dynamically stable hy-
permassive star that is close to the model indicated by the solid dot in Figure 14.1. It has a
mass M0 = 1.47M0,sup, where M0,sup is the (supramassive) mass limit for uniformly rotating n = 1
polytropes (see Table 14.1). The spin parameter is J/M2 = 1.0 and the central rotation period
is Prot = 38M . As the evolution proceeds, viscosity brakes differential rotation and transfers
angular momentum to the outer layers. The core then contracts and the outer layers expand in
a quasistationary manner. As the core becomes more and more rigidly-rotating, it approaches
instability because the star is hypermassive and cannot support a massive rigidly-rotating core.

80This viscosity law is also used in some accretion disk models; see, e.g., Balbus and Hawley (1998).
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At time t ≈ 27Prot ≈ 11τvis, the star becomes dynamically unstable and collapses. An apparent
horizon appears at time t ≈ 28.8Prot. Without black hole excision, the code begins to grow inac-
curate about 10M after the horizon appears because of grid stretching. About 30% of rest mass
remains outside the apparent horizon at this point. Using the excision technique described in
Section 14.2.3, the evolution is extended for another 55M , by which time the system settles down
to a quasistationary, rotating black hole surrounded by a massive, hot ambient disk. The mass of
the black hole at this point is Mh ≈ 0.82M , while the rest mass and angular momentum of the
ambient disk are M0,disk ≈ 0.23 M0 and Jdisk ≈ 0.65J . From conservation of angular momentum
the angular momentum of the black hole is inferred to be Jh ≈ 0.35J , giving a spin parameter
Jh/M

2
h ≈ 0.52(J/M2) ≈ 0.52. Viscosity continues to drive slow, quasi-steady accretion of material

in the hot disk into the black hole.

Figure 14.11: Meridional rest-mass density contours and velocity field at various times for a
hypermassive star driven to catastrophic collapse by secular (viscous) redistribution of angular
momentum. The simulation was performed by assuming that the system is axisymmetric and
experiences no cooling. The levels of the contours (from inward to outward) are ρ0/ρ0,max =
10−0.15(2j+0.6), where j = 0, 1, ... 12. In the lower right panel (t = 28.8Prot), the thick curve
denotes the apparent horizon. [From Duez et al. (2004).]
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Figure 14.12: Scaling behavior exhibited by the evolution of the maximum rest-mass density of a
hypermassive star for different strengths of viscosity, assuming rapid cooling. Upper panel: the
curves coincide when plotted against the scaled time during secular evolution prior to dynamical
collapse at td(νP ). Lower panel: during dynamical collapse, it is possible to shift the time axes [t→
t− td(νP )] so that the curves again coincide, which indicates that viscosity plays an insignificant
role during the dynamical collapse phase. [From Duez et al. (2004).]

The simulations summarized in the plots were performed in axisymmetry, using a grid of
128 × 128 zones and an outer boundary at 14M . To check the reliability of the calculation,
various diagnostics, like conservation of total mass and angular momentum, and the constraints,
are monitored throughout the simulation. They all seemed to be well maintained throughout the
simulation.81 The circulation C on circular rings on the equatorial plane is also monitored. In
the presence of viscosity, the flow is nonisentropic and circulation is not conserved, even in the
absence of shocks (see equation 5.64). However, the diagnostics show that the simulation properly
acounts for the change in circulation due to viscosity.

In the “rapid-cooling” case, the behavior is qualitatively similar, but since there is no net
viscous heating, the whole process occurs more quickly than in the “no-cooling” case. The collapse,
in particular, now occurs at t ≈ 13.5Prot. A plot demonstrating that secular evolution exhibits
scaling with viscosity, while dynamical collapse proceeds independent of the strength of viscosity,
is shown in Figure 14.12. For rapid cooling, the total mass-energy is not conserved because the
thermal energy generated by the viscous heating is removed, as described above. However, when

81Gravitational radiation carries off some of the mass-energy, but the fractional amount is small. Angular
momentum is automatically conserved in axisymmetry in a conservative code, but not in one based on the Wilson-
van Leer scheme.
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the mass-energy carried away by thermal radiation, Mcool, is accounted for via equation (5.70),
the total mass-energy M = MADM +Mcool is well-conserved.

14.2.5 MHD Evolution

In any highly conducting astrophysical plasma, a frozen-in magnetic field can be amplified ap-
preciably by gas compression or shear (e.g., differential rotation). Even when an initial seed
magnetic field is weak, the field can grow to influence the system dynamics significantly.82 Nu-
merical codes have been constructed recently to treat such situations in relativistic dynamical
spacetimes.83 These codes solve the Einstein-Maxwell-MHD system of coupled equation along the
lines discussed in Section 5.2.4. The two independent codes of Duez et al. (2005b) and Shibata
and Sekiguchi (2005) have been used in tandem to tackle some of the same problems, and the two
groups report good agreement. Both of these codes evolve the spacetime metric using the BSSN
formulation and employ an HRSC scheme to integrate the general relativistic magnetohydrody-
namics (GRMHD) equations. Multiple tests have been performed with these codes, including
MHD wave propagation and shocks, magnetized Bondi accretion, MHD waves induced by linear
gravitational waves, and magnetized accretion onto a neutron star.84

Hypermassive Neutron Stars

One of the early applications of the GRMHD codes has been to investigate the evolution of a
hypermassive neutron star (HMNS). As we have already discussed, differentially rotating stars ap-
proach rigid rotation via transport of angular momentum on secular time scales. HMNSs, however,
cannot settle down to rigidly rotating equilibria since their masses exceed the maximum allowed
by uniform rotation. Thus, delayed collapse to a black hole, and possibly mass loss, can follow
transport of angular momentum from the inner to the outer regions. In the previous section we
have described relativistic calculations of HMNS collapse that have focused on angular momentum
transport by viscosity; in Chapter 16 we will describe calculations of angular momentum loss due
to gravitational radiation.85 Here we focus on simulations of black hole formation triggered by
seed magnetic fields in HMNSs.

There are at least two distinct effects which amplify the magnetic field in a shearing plasma like
an HMNS: magnetic winding and the magnetorotational instability (MRI).86 Magnetic winding
will occur in a rotating star wherever Bj∂jΩ 6= 0 and is a simple consequence of the “frozen-
in” condition for a magnetic field in MHD. The MRI instability is a local shearing mode that
is triggered wherever ∂$Ω < 0, where $ is the cylindrical radius. When fully developed it will
induce turbulence in the gas. Both effects combine to amplify a magnetic field, redistribute angular

82See, e.g., Shapiro (2000) for a simple, but exact, Newtonian demonstration showing how an arbitrarily small
magnetic seed field in a differentially rotating fluid can be amplified by winding on an Alfvén timescale to cause
the magnetic braking of all differential motion.

83Duez et al. (2005b); Shibata and Sekiguchi (2005); Antón et al. (2006).
84For early computations involving GRMHD in dynamical spacetimes, see, e.g., Wilson (1975), who adopts

the conformal flatness approximation to general relativity (see Chapter 16.2), and Sloan and Smarr (1985) and
Baumgarte and Shapiro (2003b,a), who work in full general relativity, and references therein. For computations
involving GRMHD in stationary (e.g. fixed Kerr metric) spacetimes, with emphasis on accretion, see, e.g., Yokosawa
(1993); Koide et al. (1999, 2000); Komissarov (2004); De Villiers and Hawley (2003); Gammie et al. (2003); Anninos
et al. (2005) and references therein.

85Shibata et al. (2003).
86Velikhov (1959); Chandrasekhar (1960, 1961); Balbus and Hawley (1991, 1998).
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momentum and brake differential motion. The MRI poses a challenge for a numerical simulation in
that the wavelength of the fastest-growing MRI mode must be well resolved on the computational
grid in order for the instability to be observed. Since this wavelength is proportional to the
magnetic field strength, it becomes very difficult to resolve for small seed fields. However, we shall
describe simulations below which succeed in resolving the MRI.

Duez et al. and Shibata used their two independent codes to collaborate on the study of
the effects of magnetic fields on HMNSs.87 In one of their simulations they employed as initial
data essentially the same hypermassive n = 1 polytrope used in the study of viscous evolution
described in Section 14.2.4, with a mass of M0 = 1.46M0,sup and angular momentum J/M2 = 1.0.
The matter has the same initial differential rotation profile and is evolved as a Γ = 2 ideal gas,
as before. Before it is evolved, however, the configuration is threaded by a weak, purely poloidal
magnetic field. Cases are then treated in which the maximum value of the ratio of the magnetic
energy density to gas pressure, C ≡ max(b2/P ), is chosen between 10−3 and 10−2. Such small initial
magnetic fields introduce negligible violations of the Hamiltonian and momentum constraints, and
leave the configurations in near dynamical equilibrium. When scaled to an actual HMNS that may
arise from a binary neutron star merger, the value of the adopted initial maximum magnetic field
strength is about 1016(2.8M�/M) G. Though numerically small, such a field is probably too strong
to model a typical HMNS, but is similar to the fields believed to form in ‘magnetars’.88 Regardless,
it becomes increasingly difficult to evolve fields that are appreciably smaller, due to the necessity
to resolve the MRI.

The calculations were performed in axisymmetry on a uniform grid of size (N,N), adopting
cylindrical coordinates for the MHD. To check the convergence of numerical results, the simulations
were repeated with four different grid resolutions: N=250, 300, 400 and 500. Figure 14.13 shows
the evolution of the central density ρ0c, central lapse αc, and the maximum values of |Bx|(≡ |B$|)
and |By|(≡ $|Bϕ|) as functions of t/Pc. Here Pc ≈ 39M = 0.54(M/2.8M�) ms denotes the
central rotation period at t = 0. The central density increases monotonically with time up to the
formation of a black hole. Evolutions with various grid resolutions demonstrate that the results
begin to converge when N >∼ 400. On the other hand, results seem far from convergent for N <∼ 300.
For example, for low resolutions the maximum values of |Bx| prior to saturation are much smaller
than those with higher resolutions, and the growth rate of |Bx| is underestimated. Hence, the
effect of MRI, which is responsible for the exponential growth of |Bx| on a dynamical timescale, is
not computed accurately for low resolutions. This is because the wavelength of the fastest growing
MRI mode is not well-resolved for low resolutions (see below).

For the chosen initial seed magnetic field, the early evolution is dominated by magnetic winding
of the poloidal field, which generates a toroidal field By. When the poloidal seed field is weak and
does not influence the flow, the induction equation (5.140) shows that By grows approximately
linearly:

By(t;$, z) ≈ t$Bi(0;$, z)∂iΩ(0;$, z) . (14.50)

Exercise 14.8 Adopt cylindrical coordinates in axisymmetry to verify equation (14.50). Assume that
the star is rotating with an angular velocity Ω($, z) and remains nearly stationary as the field amplifies.

Indeed, the early growth rate agrees with the predicted one, as shown in Figure 14.13. When
the energy stored in the toroidal field becomes comparable to the energy in differential rotation,
|By| grows more slowly and the degree of differential rotation is reduced. Eventually |By| reaches

87Duez et al. (2006a,b); Shibata et al. (2006).
88Duncan and Thompson (1992).
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Figure 14.13: Evolution of the central rest-mass density, central lapse, and maximum values of |Bx|
and |By| (the behavior of |Bz|max is similar to the behavior of |Bx|max and is therefore not shown).
|Bx|max and |By|max are plotted in units of

√
ρmax,0 where ρmax,0 is the maximum rest-mass density

at t = 0. The solid, long-dashed, dashed, and dotted curves denote the results with N=250, 300,
400, and 500 respectively. The dot-dashed line in the last panel represents the predicted linear
growth of By at early times. [From Duez et al. (2006a).]

a maximum and starts to decrease. This should happen on the Alfvén time scale tA, where the
Alfvén speed is vA =

√
b2/(ρ0h+ b2). For the model considered here, the minimum value of tA in

the star is tA = 15.8Pc. So it is not surprising that the figure shows the maximum value of |By|
to begin decreasing when t >∼ 20Pc,

The MRI is evident at times t >∼ 6Pc as shown in Fig. 14.13, where the maximum value of |Bx|
suddenly increases rapidly. The wavelength for the fastest growing mode is λMRI ≈ 2πvA/Ω and
the e-folding time of the growth is τMRI = 2 (∂Ω/∂ ln$)−1.89 For the adopted initial magnetic
field strength and rotation profile, this gives λMRI ∼ R/10 and τMRI ∼ 1Pc. The figure shows the
growth of MRI when N >∼ 400. For this resolution the grid spacing is ∆ <∼ λMRI/10, the required
scale to study the effect of MRI accurately. The central density begins to grow more slowly once
|Bx| saturates, presumably due to MRI-induced turbulence redistributing some of the angular
momentum to slow down the contraction of the core.

The evolution sequence shown in Fig. 14.14 reveals how magnetic braking due to winding and
MRI turbulence combine to trigger gravitational collapse to a black hole. An apparent horizon
forms at t ≈ 66Pc ≈ 36(M/2.8M�) ms. As we will discuss in Chapter 16, simulations of binary
neutron star mergers show that for a sufficiently stiff EOS and typical observed binary masses,
hypermassive star formation is a very possible outcome. Such remnants become triaxial and

89The estimates are based on a local, linear Newtonian analysis as in Balbus and Hawley (1991, 1998).
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Figure 14.14: The upper 4 panels show snapshots of the rest-mass density contours and velocity
vectors on the meridional plane. The lower panels show the field lines (lines of constant Aφ) for
the poloidal magnetic field at the same times as the upper panels. The density contours are drawn
for ρ∗/ρ∗max,0 = 10−0.3i−0.09 (i = 0–12). The field lines are drawn for Aφ = Aφ,min + (Aφ,max −
Aφ,min)i/20 (i = 1–19), where Aφ,max and Aφ,min are the maximum and minimum value of Aφ
respectively at the given time. The thick solid curves in the lower left corners denote the apparent
horizon. [From Duez et al. (2006a).]

strong emitters of gravitational waves in these simulations. The dissipation time scale of angular
momentum due to gravitational radiation is ∼ 100 ms. Therefore, a hypermassive remnant with
an initially large magnetic field (B >∼ 1016G) will be subject to delayed collapse due to MHD
effects (magnetic braking and MRI) rather than by the emission of gravitational waves. For seed
magnetic fields which are much weaker than the cases summarized here, gravitational radiation
may be the trigger of collapse. However, it is possible that the MRI may dominate the evolution
even in this situation, since the e-folding time of MRI is independent of the initial field strength.
A more careful study of this scenario has to be carried out. However, since any dissipative agent
(viscosity, magnetic fields, gravitational radiation) serves to redistribute and/or carry off angular
momentum, the final fate of a hypermassive star – collapse to a black hole, accompanied by a
gravitational wave burst – is assured.

To follow the evolution after the formation of the apparent horizon, black hole excision is
implemented. The evolution of the irreducible mass of the black hole and the total rest mass
outside the apparent horizon are shown in Fig. 14.15.

Soon after formation, the black hole grows rapidly, swallowing the surrounding matter. How-
ever, the accretion rate Ṁ0 gradually decreases and the black hole settles down to a quasiequi-
librium state. At the end of the simulation, Ṁ0 decreases to a steady value of about 0.01M0/Pc.
The black hole angular momentum is computed from equations (14.48) and (14.49), and the mass
of the black hole Mh is then estimated from equation (7.3). The estimated value of the black hole
spin parameter is then Jh/M

2
h ∼ 0.8.

The value of Ṁ0 indicates that the accretion time scale is approximately 10 − 20Pc ≈ 5 −
10 ms(M/2.8M�). Also, the specific internal thermal energy in the ambient gaseous torus near
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Figure 14.15: Evolution of the irreducible mass and the total rest-mass outside the apparent
horizon. [From Duez et al. (2006a).]

the surface is substantial because of shock heating, indicating that the torus can be a strong
emitter of neutrinos. The final system formed after such a delayed collapse of a magnetized
HMNS – a rotating black hole + hot accretion torus + collimated magnetic field – has all the
attributes proposed for a gamma-ray burst central engine.90 Given the timescales and energetics
associated with such a delayed collapse, this scenario was suggested by Duez et al. (2006a) as a
particularly good candidate for a short, hard gamma-ray burst source.91 They have followed up
this suggestion by performing further simulations with a more realistic nuclear EOS, and these
appear to strenghten the argument.92

It is interesting to compare the evolution and final fate of a magnetized hypermassive star with
dynamically stable, differentially rotating, magnetized stars that are not hypermassive. Consider
two distinct categories of differentially rotating, nonhypermassive configurations: (1) “normal
stars”, which have rest masses below the maximum achievable with uniform rotation, and angular
momentum below the maximum for uniform rotation at the same rest mass, and (2) “ultraspinning
stars”, which have angular momentum exceeding the maximum for uniform rotation at the same
rest mass. Suppose they are again threaded by a weak, initially poloidal magnetic field with
C = max(b2/P ) = 2.5 × 10−3. Simulations in axisymmetry93 show that a normal star evolves to
a uniformly rotating equilibrium configuration. By contrast, an ultraspinning star cannot settle

90See, e.g., Piran (1999, 2005); Aloy et al. (2005).
91For discussion and references to the observational literature, see Berger (2006).
92Shibata et al. (2006); Stephens et al. (2008).
93Duez et al. (2006b).
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into a uniformly rotating equilibrium state. Instead, it evolves to an equilibrium configuration
consisting of a nearly uniformly rotating central core, surrounded by a differentially rotating torus
characterized by an angular velocity that is constant along magnetic field lines (Bj∂jΩ → 0).
Hence, although the final state exhibits differential rotation, it ceases to wind the magnetic field.
In addition, the final state appears to be stable against the MRI. It will be interesting to explore
whether the fates of these configurations are altered when the constraint of axisymmetry is relaxed
and high resolution simulations in full 3 + 1 are performed.

Magnetorotational Collapse of n = 3 Polytropes

The astrophysical and cosmological importance of massive star collapse motivates fully relativistic
simulations of the magnetorotational collapse of n = 3 polytropes. Recall that such polytropes
are useful to model very massive and supermassive stars, including “first generation” Population
III stars, as well as the degenerate cores of massive Population I stars. It is likely that all stars
are rotating and contain magnetic fields, so it is important to extend the calculations described
in Sections 14.2.1 and 14.2.3 to include small seed magnetic fields in the initial configurations and
explore the consequences. Liu et al. (2007) performed such simulations in axisymmetry and we
will briefly summarize their findings below.

The HRSC GRMHD code of Liu et al. (2007) is closely adapted from the code of Duez et al.
(2005b) described previously. The basic setup of the simulation, including the adjustable grid
algorithm and the gauge conditions, are those used for magnetic-free n = 3 simulation summa-
rized in Section 14.2.3. Now, however, a small poloidal magnetic field is inserted into the initial
configuration (see Figure 14.16). Once again the initial configuration is uniformly rotating near
the mass-shedding limit and at the onset of radial instability to collapse. The ratio of magnetic to
rotational kinetic energy is chosen to be small (10% for the case shown here) to study whether the
amplification of a small seed magnetic field can have large consequences. The simulation reveals
that such magnetic fields do not affect the initial collapse significantly. The core collapses to
a black hole, after which black hole excision is employed to continue the evolution long enough
for the hole to reach a quasistationary state. As in the magnetic-free case, the black hole mass
is Mh = 0.95M and its spin parameter is Jh/M

2
h = 0.7, with the remaining matter forming a

disk or torus around the black hole. Once quasistationarity is reached, the spacetime metric is
again frozen (“Cowling approximation”) and the evolution of the torus continued. Interestingly,
the subsequent evolution of the torus does depend on the strength of the magnetic field. In the
absence of strong magnetic fields, the torus settles down, following ejection of a small amount of
matter due to shock heating. When magnetic fields are present, the field lines gradually collimate
along the hole’s rotation axis. MHD shocks and the magnetorotational instability (MRI) combine
to generate MHD turbulence in the the torus and stochastic accretion onto the central black hole
(see Figure 14.16 again). When the magnetic field in the initial configuration is at least 10% of the
rotational energy, a wind is generated in the torus, and the torus undergoes radial oscillations that
drive episodic accretion onto the hole. At late times, the accretion rate has an amplitude of order
Ṁ <∼ 10−4 in geometrized units, significantly higher than the amplitude found in the magnetic-free
case.

Both a collimated magnetic field and a massive, accretion torus surrounding a central black
hole are essential ingredients for launching ultrarelativistic jets.94 The black hole-torus system
observed in these relativistic simulations comprises a plausible central engine for producing jets

94De Villiers et al. (2005).
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Figure 14.16: Snapshots of meridional rest-mass density contours (black), velocity vectors and
magnetic field lines (green) for the initial and endpoint configurations for n = 3 magnetorotational
collapse. The initial model is identical to the configuration in Figure 14.8 except that it is threaded
by a poloidal magnetic field. Field lines coincide with contours of vector potential Aϕ and are drawn
for Aϕ = Aϕ,max(j/20) with j = 1, 2, · · · , 19 where Aϕ,max is the maximum value of Aϕ. In the final,
post-excision model (tex = 29150M), the density levels are drawn for ρ0 = 100ρ0c(0)10−0.3j (j = 0–
10). The thick (red) line near the lower left corner denotes the apparent horizon. [After Liu et al.
(2007).]

and long-duration, soft-spectrum (“long-soft”) gamma-ray bursts. The simulation represents the
starting point of a viable “collapsar” scenario for generating such bursts.95

The collapse of a very massive star could result in the simultaneous detection of a gamma-ray
burst and gravitational waves. In addition to a gravitational wave burst arising from the initial
collapse, the radial oscillations of the disk produce long-wavelength, quasi-periodic gravitational
waves. The oscillation period of about 500M corresponds to an observed gravitational wave
frequency f ∼ 1/[500M(1+z)] ∼ 0.04(104M�/M)/(1+z) Hz for a source at redshift z. For a very
massive star with M >∼ 104M�, the signal is in the LISA frequency band. To estimate its amplitude
h, Liu et al. (2007) apply the quadrupole formula to an oscillating disk of mass Mdisk ∼ 0.05M to
obtain

h ∼ 4× 10−23

(
M

104M�

)(
48Gpc

DL

)
, (14.51)

where DL = 48 Gpc is the luminosity distance of a source at redshift z = 5 in the concordance
ΛCDM cosmology model, where H0 = 71 km s−1 Mpc−1, ΩM = 0.27 and ΩΛ = 0.73.96 If the
quasi-periodic signal can be tracked for n cycles, where n is expected to be a few, the effective
wave strength will be increased by a factor of

√
n. Such a gravitational wave signal may be strong

enough to be detectable by LISA.97

95MacFadyen and Woosley (1999); MacFadyen et al. (2001).
96Spergel et al. (2007).
97See LISA’s projected sensitivity curve in Figure 9.6.
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Magnetorotational Core Collapse to Neutron Stars

In previous sections we described stellar collapse to black holes using an n = 3 polytropic profile to
construct the initial model and an adiabatic Γ = 4/3 EOS to follow the evolution. Recall that this
EOS is a good approximation for a very massive Population III star or a supermassive star, where
the pressure is dominated by thermal radiation. For a Population I star, which has smaller mass,
the pressure of the pre-collapse core is dominated by the relativistic degenerate electron pressure,
which is also well-approximated by an n = 3 polytrope initially and a Γ = 4/3 EOS during the
early phases of collapse. But during the final phases, the EOS stiffens when the density exceeds
nuclear density ρnuc ≈ 2× 1014 g cm−3. Only if the mass of the collapsing core exceeds a critical
value Mcrit will a black hole horizon appear before the star reaches nuclear density. Otherwise, the
stiffening of the EOS can significantly effect the collapse, causing the core to bounce and possibly
producing a neutron star remnant rather than a black hole.

Exercise 14.9 Estimate Mcrit by considering the collapse of a uniform density sphere. A horizon
appears when the areal radius of the sphere reaches R ∼ 2M . At this time, the density is ρ0 ∼
3M/(4πR3) ≈ 1.7× 1016(M�/M)2. Set ρ0 = ρnuc to find Mcrit.
(Ans. ∼ 10M�)

For a supermassive star, the mass, which collapses homologously, is much larger than Mcrit.
For a Pop III star of mass M = 300M�, the mass of the collapsing core is 180M�,98 which is still
much larger than Mcrit. Hence the Γ = 4/3 EOS is also a reasonable approximation during the
entire collapse phase for such stars.99 For Pop I stars, on the other hand, the core mass is less than
2M� and a more realistic EOS is required during the late stages. In addition, neutrino emission
and transport are also dynamically important.

To crudely simulate the collapse of a magnetized, rotating stellar core of a Pop I star to a
neutron star in general relativity, Shibata et al. (2006) adopt a hybrid EOS the consists of the
sum of a cold component and a thermal component:100

P (ρ0, ε) = PP(ρ0) + Pth(ρ0, ε). (14.52)

The “cold” component, PP(ρ0), is chosen according to the prescription

PP(ρ0) =

{
K1(ρ0)

Γ1 , ρ0 ≤ ρnuc,
K2(ρ0)

Γ2 , ρ0 ≥ ρnuc,
(14.53)

where K1, K2, Γ1 and Γ2 are constants. Setting K2 = K1(ρnuc)
Γ1−Γ2 makes PP continuous at

ρ0 = ρnuc. Typical choices are Γ1 ≈ 4/3 and Γ2 = 2.5− 2.7. Setting K1 = 5× 1014 (cgs), ensures
that the cold component represents relativistic degenerate electron pressure for ρ0 < ρnuc. This
simplified cold EOS is designed to mimic a more complicated, cold, stiff nuclear EOS. The specific
internal energy density, εP, associated with the cold component of the pressure PP is obtained
by integrating the first law of thermodynamics using equation (14.53). The thermal part of the
pressure Pth plays an important role when shocks occur, but is absent otherwise. It is given by

98Fryer et al. (2001).
99Neutrino generation and transport also play a role in the collapse of massive stars, but are probably not

dynamically important for the most massive Pop III progenitors or for supermassive stars because of their low
temperatures and densities.

100This form follows from the work of Obergaulinger et al. (2006), who simulate magnetorotational core collapse
in Newtonian gravitation.
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the familiar ideal gas law
Pth = (Γth − 1)ρ0εth , (14.54)

where εth = ε− εP is defined as the thermal specific internal energy. The value of Γth determines
the efficiency of converting kinetic energy to thermal energy at shocks; the rule Γth = Γ1 is adopted
to conservatively account for shock heating.

Shibata et al. (2006) use their two GRMHD codes described earlier in this section to perform
simulations of core collapse in axisymmetry with a grid of 2500 × 2500 zones. The grid is large,
and adjusted during the collapse as in the n = 3 simulations described previously, in order to cover
the full dynamic range of the imploding core and to resolve the fastest growing MRI wavelength.
Not surprisingly, they find that significant differential rotation results even when the rotation
of the progenitor is initially uniform. Consequently, a seed magnetic field is amplified both by
magnetic winding and the MRI. Even if the ratio of magnetic energy to rotational kinetic energy
is quite small at the time of proto-neutron star (PNS) formation, the ratio increases to 0.1− 0.2
by magnetic winding. Following PNS formation, MHD outflows lead to losses of rest mass, energy,
and angular momentum from the system. The earliest outflow is produced primarily by the
increasing magnetic stress caused by magnetic winding. The MRI amplifies the poloidal field and
increases the magnetic stress, causing further angular momentum transport and helping to drive
the outflow. After the magnetic field saturates, a nearly stationary, collimated magnetic field
forms near the rotation axis and a Blandford-Payne type outflow101 develops along the field lines.
These outflows remove angular momentum from the PNS and, as a result, the rotation period
quickly increases for a strongly magnetized PNS until the degree of differential rotation decreases.
The simulations thus suggest that rapidly rotating, magnetized PNSs may not give rise to rapidly
rotating neutron stars.

These simulations should be regarded as preliminary, prototype calculations that illustrate
how magnetorotional collapse can now be tackled in numerical relativity. A number of simplifying
assumptions have been incorporated in these simulations, including the adoption of equatorial and
axisymmetry, a crude hybrid EOS, and the neglect of all neutrino transport and emission. These
restrictions will have to be relaxed and the calculations repeated with greater sophistication in
the future. But the tools are in place and rapid progress is now possible.

101Blandford and Payne (1982).



Chapter 15

Binary Neutron Star Initial Data

We now turn to binary neutron star systems. In this Chapter we will discuss strategies for
constructing initial data that describe two neutron stars in quasiequilibrium and quasicircular
orbit; in Chapter 16 we will review some simulations of their dynamical evolution, including their
coalescence and merger.

As we have already discussed in Section 12.1, relativistic binaries cannot possibly be in exact
equilibrium, since the emission of gravitational radiation leads to a slow inspiral. For sufficiently
large separations, however, the timescale for this inspiral is much longer than the orbital period,
so that we can approximate the inspiral as a sequence of binary configurations in circular orbit.
We refer to these binaries as being in “quasiequilibrium”, and to their orbit as “quasicircular”.

In Section 12.3 we saw how binary black hole circular orbits are generated by a helical Killing
vector ξahel (see equation 12.63 and Figure 12.4), and how this helical Killing vector can be used
to construct solutions to the constraint equations that describe gravitational fields that are in
approximate equilibrium. We will follow a very similar approach in this Chapter to construct
quasiequilibrium binary neutron stars in quasicircular orbit. The added complication here is that
we also have to find a matter distribution that is in equilibrium with the gravitational field.

15.1 Stationary Fluid Solutions

To construct quasiequilibrium binary neutron stars we need to find quasistationary solutions to the
relativistic equations of hydrodynamics. For starters, we need to find a rest-mass density ρ0 and a
fluid four-velocity ua that, given an equation of state, satisfy the conservation of energy-momentum
(5.6),

∇bT
ab = 0, (15.1)

and the conservation of rest-mass (5.7),

∇a(ρ0u
a) = 0. (15.2)

Given a one-parameter (e.g. cold nuclear) equation of state (EOS) we can express the specific
internal energy density ε and the pressure P , both of which appear in the stress-energy tensor T ab

defined by equation (5.4), entirely in terms of ρ0.
A solution to equations (15.1) and (15.2) automatically satisfies the relativistic equations of

hydrodynamics, but need not be in equilibrium. Enforcing equilibrium requires an additional
condition. What we mean by stationary equilibrium is that an observer corotating with the
binary would not notice any change in the binary’s structure with time. In other words, the

449
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binary configuration at any time could be generated from its configuration at any other time by
a simple coordinate transformation consisting of a rotation around the axis of rotation. This
rotation is generated by a helical Killing vector ξahel (see equation 12.63) that, like a cork-screw,
is tangent to the binary’s orbit through spacetime. Such a helical Killing vector is illustrated in
Figure 12.4.

As explored in Appendix A, the Lie derivative LXT of a tensor field T along a vector field Xa

measures the difference between the actual change in the tensor field T and the change that would
arise under a coordinate transformation generated by the vector field Xa. To insure, then, that
the fluid quantities ρ0 and ua describe an equilibrium configuration, we require these quantities to
be Lie-dragged along the helical Killing vector ξahel,

Lξhel
ρ0 = 0 Lξhel

ua = 0. (15.3)

It is clear that the above equations still cannot determine the solution uniquely yet, since the
individual stars in the binary may or may not be spinning. In the case of binary black holes we
determined the spin of the individual black holes through the horizon boundary condition (12.107);
here we will determine the spin of the individual neutron stars by making an assumption about the
fluid velocity. We will see that the equations simplify for two special, but astrophysically relevant,
cases: corotational and irrotational binaries.

The equations become especially simple for corotational binaries, whereby the spin angular
velocity of each star is equal to the orbital angular velocity of the binary (when measured in
the inertial frame of a distant observer). In such systems each star always shows the same side
to its companion. A familiar example is the Moon, which corotates with the Earth. Since the
equations simplify dramatically for corotational binaries, this case has usually been studied first.
Unfortunately, this case is not physically realistic for neutron stars. Maintaining synchronization
(corotation) during the inspiral requires a viscosity that acts on a timescale that is short compared
to the inspiral time. It turns out that such a large viscosity is very unphysical for binary neutron
stars.1 Instead, the assumption of an irrotational fluid flow is more realistic for neutron star
binaries, as we shall now explain. Isolated neutron stars, like radio pulsars, are observed to
have spin. However, their spin frequencies, with notable exceptions, are small compared to the
high orbital frequencies (∼ Khz) characterizing neutron star binaries at the small separations
they reach prior to merger. These orbital frequencies approach the high frequencies that isolated
neutron stars would have at break-up due to centrifugal forces (i.e. the mass-shedding limit). It
is thus reasonable to expect that typical neutron stars have much smaller frequencies when they
form a binary. Viscous interactions cannot spin up such a star significantly during the inspiral.
Tidal and gravitational radiation reaction forces conserve circulation; in fact, circulation is strictly
conserved for isentropic flow (this is the Kelvin-Helmholtz theorem, proven for relativistic flow in
Chapter 5.2.1). We therefore expect binary neutron stars to maintain their low spin frequencies
during inspiral. Therefore, at small separations, the fluid motion in neutron star binaries can be
well approximated as irrotational.

Most studies of binary neutron stars assume the opposite extremes of corotational or irrota-
tional fluid flow,2 and in the following we also will focus on these two limiting cases. We will show
how the Euler equation (15.1) reduces to an algebraic equation in both cases, and will see how
the continuity equation (15.2) is satisfied identically for corotational binaries, and can be recast

1See Kochanek (1992a); Bildsten and Cutler (1992).
2See Marronetti and Shapiro (2003) for an exception.
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as an elliptic equation for irrotational binaries. However, before going through this formal deriva-
tion in general relativity, it is instructive to derive the corresponding equations in a Newtonian
framework.

15.1.1 Newtonian Equations of Stationary Equilibrium

The spatial components of equation (15.1) yield the Euler equations 5.14, which in the Newtonian
limit reduce to

∂tvi + vjDjvi = − 1

ρ0

DiP −Diφ . (15.4)

Here φ is the Newtonian gravitational potential and is a solution to Poisson’s equation,

D2φ = 4πρ0 . (15.5)

In the Newtonian limit, the continuity equation (15.2) becomes

∂tρ0 +Di(ρ0v
i) = 0. (15.6)

The first law of thermodynamics is given by equation (5.16) for adiabatic changes and remains
the same in the Newtonian limit. This law relates P (ρ0) to ε(ρ0) in a one-parameter EOS.

Before proceeding, we use the thermodynamic relation (5.63) for isentropic configurations,

1

ρ0

DiP = Dih , (15.7)

to rewrite the Euler equation (15.4) as

∂tvi + vjDjvi = −Dih−Diφ. (15.8)

Here h is the specific enthalpy defined by equation (5.5),

h = 1 + ε+ P/ρ0. (15.9)

In a Newtonian context, the enthalpy is usually defined without the first term, which accounts for
the contribution of the rest mass-energy,

h = 1 + hNewt. (15.10)

In general we will use the relativistic convention, but when considering Newtonian limits it is
sometimes useful to use hNewt.

In anticipation of our derivation of the corresponding relativistic equations we follow an ap-
proach that is somewhat unconventional in a Newtonian context, and express the time derivatives
of vi and ρ0 in equations (15.8) and (15.6) in terms of a Lie derivative along the helical Killing
vector ξahel (see equation 12.63). We adopt this approach as preparation for our relativistic analysis
in Section 15.1.2, which is greatly simplified by the formalism introduced here. We start by writing
ξahel as

ξahel = ta + ka. (15.11)

Here ta is a timelike vector that points “up” in a spacetime diagram, while ka is purely spatial
and describes rotations around the axis of rotation. We can write ka as

ka = Ω

(
∂

∂φ

)a
, (15.12)



452 CHAPTER 15. BINARY NEUTRON STAR INITIAL DATA

or, in Cartesian coordinates, as

ki = εijkΩjxk, (15.13)

where Ωi is aligned with the axis of rotation and measures the orbital angular velocity Ω. Together,
ta and ka form the “cork-screw” shape of the helical Killing vector ξahel.

We can now express the Lie derivative of vi as

Lξhel
vi = ∂tvi + Lkvi = ∂tvi + kjDjvi − vjDik

j , (15.14)

and that of ρ0 as

Lξhel
ρ0 = ∂tρ0 + Lkρ0 = ∂tρ0 + kiDiρ0. (15.15)

We also write the fluid velocity as

vi = ki + V i, (15.16)

where V i now measures the fluid velocity relative to ki. For a corotating fluid, for example, we
must have V i = 0.

Exercise 15.1 Show that the Euler equation (15.8) can be written as

Lξhelvi −
1
2
Div

2 +Di(vjV
j) + V j(Djvi −Divj) = −Dih−Diφ, (15.17)

and the continuity equation (15.6) as

Lξhelρ0 + V iDiρ0 + ρ0Div
i = 0. (15.18)

Equations (15.17) and (15.18) are still completely general, since we have not specialized yet to
stationary solutions. However, at this point it is very easy to do so, since can simply set the Lie
derivatives of vi and ρ0 along ξahel to zero, in which case equation (15.17) reduces to

− 1

2
Div

2 +Di(vjV
j) + V j(Djvi −Divj) = −Dih−Diφ. (15.19)

Since we also have Dik
i = 0 (which follows from equation 15.13), we can write equation (15.18)

in the compact form

Di(ρ0V
i) = 0. (15.20)

It is now clear that these equations simplify for two special types of fluid flow: corotational flow,
where V i = 0, and irrotational flow, where Djvi − Divj = 0 (i.e. curl v = 0). We will discuss
these two cases separately.

Corotational binaries

For corotational, or synchronized, binaries we set V i = 0, and hence

vi = ki (corotational flow) (15.21)

in equations (15.19) and (15.20). The continuity equation (15.20) is satisfied identically, and does
not provide any information. The Euler equations (15.19) reduce to

− 1

2
Dik

2 = −Dih−Diφ, (15.22)
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which we can integrate once to find the integrated Euler equation,

h+ φ− 1

2
k2 = C. (15.23)

Here C is a constant of integration. Squaring equation (15.13) to obtain

k2 = Ω2$2, (15.24)

where $ measures the distance from the axis of rotation, we can write equation (15.23) as

hNewt + φ− 1

2
Ω2$2 = CNewt, (15.25)

where we have introduced CNewt = C− 1. This is a remarkable result: assuming corotational fluid
flow (15.21) we have reduced the equations of hydrodynamics, which in general are a reasonably
complicated set of coupled partial differential equations, to a single algebraic equation for the
enthalpy h. Given a one-parameter EOS we can express the enthalpy in terms of the density
ρ0. Any density distribution that satisfies equation (15.25) and is Lie dragged along va = ka

automatically satisfies the Euler equation (15.4) and the continuity equation (15.6), and is therefore
a stationary solution to the Newtonian equations of hydrodynamics.

Incidently, we could have found equation (15.25) directly by evaluating equation (15.8) in a
corotating frame. In the corotating frame the velocity must vanish; that means that the continuity
equation (15.6) is satisfied identically if ∂tρ0 = 0 in that frame. The left hand side of (15.8) also
vanishes with ∂tvi = 0. Since the corotating frame is not inertial, we have to include a fictitious
centrifugal force in the Euler equation (15.8). We can account for this term by replacing the
Newtonian potential φ with the effective potential

φeff = φ− 1

2
Ω2$2. (15.26)

Substituting this relation into equation (15.8) yields equation (15.25) as before.
In summary, we can construct Newtonian models of corotational binaries by solving the (alge-

braic) integrated Euler equation (15.25) for the enthalpy h together with Poisson’s equation (15.5)
for the Newtonian potential φ. In these equations the orbital angular velocity Ω and the constant
of integration C appear as eigenvalues that must be determined along with solving the equations.
We will provide an example of how this can be done with the help of an iterative algorithm in
Section 15.2 below.

Irrotational binaries

For irrotational binaries the curl of the velocity field vi has to vanish,

εijkD
jvk = 0. (15.27)

We can enforce this by choosing vi to be the gradient of a velocity potential Φ,

vi = DiΦ (irrotational flow). (15.28)

The Euler equations (15.19) now become

− 1

2
Di(DjΦD

jΦ) +Di(V
jDjΦ) = −Dih−Diφ, (15.29)
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which we can again integrate once to find the integrated Euler equation

− 1

2
DjΦD

jΦ + V jDjΦ + h+ φ = C , (15.30)

where C is again a contant of integration. We now eliminate V j with the help of equation (15.16)
to find

1

2
DjΦD

jΦ− klDlΦ + hNewt + φ = CNewt (15.31)

For a given velocity field, expressed in terms of Φ, we can intepret this result as an algebraic
equation for the enthalpy h, as we did before for corotating flow.

In contrast to the corotating case, the continuity equation (15.20) is not satisfied identically
for irrotational flow. Substituting equation (15.28) we find that equation (15.20) now becomes an
elliptic equation for the velocity potential Φ,

DiD
iΦ =

(
ki −DiΦ

)
Di ln ρ0. (15.32)

Since the fluid velocity is only defined in the stellar interior, this equation holds in the stellar
interior only, and we need to supply a boundary condition on the stellar surface. At the surface
the density vanishes, so regularity of the right-hand side of equation (15.32) demands that(

ki −DiΦ
)
Diρ0

∣∣
surface

= 0. (15.33)

Since Diρ0 is normal to the surface, this relation represents a Neumann boundary condition for Φ.

Exercise 15.2 Show that the boundary condition (15.33) can also be derived from demanding that,
in the corotating frame, the fluid velocity must be tangent to the stellar surface.

One challenging conceptional issue is already evident: we need to solve equation (15.32) subject
to the boundary condition (15.33), but a priori we don’t know where the stellar surface, and hence
the boundary, is located. One common approach to solving this problem is to introduce “surface-
fitting” coordinates, in which the stellar surface always corresponds to a fixed coordinate surface.3

In summary, then, we can construct Newtonian models of irrotational binary neutron stars by
solving the integrated Euler equation (15.31) for the enthalpy h, the continuity equation (15.32),
subject to the boundary conditions (15.33), for the velocity potential Φ, and Poisson’s equation
(15.5) for the Newtonian potential φ. As in the corotational case, the orbital angular velocity Ω
and the constant of integration C appear as eigenvalues, and have to be solved for together with
the equations.

15.1.2 Relativistic Equations of Stationary Equilibrium

We now follow a very similar approach to derive the corresponding equations for relativistic fluids,
starting with the conservation of energy-momentum (15.1) and the continuity equation (15.2). We
first note that we can rewrite (15.1) as

ub∇b(hua) +∇ah = 0. (15.34)

for isentropic configurations (see equation 5.63). This result is now the relativistic equivalent of
the Newtonian Euler equations (15.8).

3See Uryū and Eriguchi (1999) for a numerical implemention.
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As in the Newtonian case we proceed by expressing the derivative operators in equations (15.2)
and (15.34) in terms of a Lie derivative along ξahel. Towards that end, we write the fluid four-velocity
ua as4

ua = ut(ξahel + V a). (15.35)

Here we assume that ξahel is timelike inside the stars, and we normalize ξahel so that its time
component is unity, ξthel = 1. We also choose V a to be purely spatial, naV

a = 0, so that it plays a
role that is very similar to that of its Newtonian counterpart in equation (15.16). In a coordinate
system that is comoving with ξahel, i.e. a corotating coordinate system, the spatial components of
the fluid velocity reduce to utV a. For a corotating fluid we again have V a = 0. For convenience
of notation we will also define the spatial projection of hua as

ûi = γ a
i hua. (15.36)

We now ask the reader to proof two useful identities in Exercise 15.3.

Exercise 15.3 Derive the two relations

γ a
i ξb

hel∇b(hua) = γ a
i Lξhel(hua) + hDi

(
1
ut

)
+ ûbDiV

b − hubn
bV aKia (15.37)

and
γ a

i V b∇b(hua) = V cDcûi + hubn
bV aKai . (15.38)

Hint: choose a coordinate basis as in Section 2.7 so that ni = 0 and use equation (2.62).

We can now relate the spatial projection of the covariant derivative along ua in equation (15.34)
to the Lie derivative along ξahel and spatial derivatives by adding equations (15.37) and (15.38),

γ a
i u

b∇b(hua) = ut
(
γ a
i ξ

b
hel∇b(hua) + γ a

i V
b∇b(hua)

)
= ut

(
γ a
i Lξhel

(hua) + hDi

(
1

ut

)
+ ûbDiV

b + V cDcûi

)
. (15.39)

Combining this result with equation (15.34) we find

γ a
i Lξhel

(hua) +Di

(
h

ut
+ ûjV

j

)
+ V j(Djûi −Diûj) = 0. (15.40)

With the help of equation (2.63) we can also express equation (15.2) as

α
(
Lξhel

(ρ0u
t) + ρ0u

t∇aξ
a
hel

)
+Di(αu

tρ0V
i) = 0. (15.41)

Since we have not yet used the fact that ξahel is a Killing vector, equations (15.40) and (15.41)
are still completely general. As in the Newtonian derivation we can now specialize to equilibrium
configurations be invoking that ξahel be a helical Killing vector.5 In this case the Lie derivatives
along ξahel, as well as the divergence ∇aξ

a
hel, must vanish, so that equations (15.40) and (15.41)

reduce to

Di

(
h

ut
+ ûjV

j

)
+ V j(Djûi −Diûj) = 0 (15.42)

4In this Section we follow the notation and approach of Shibata (1998).
5Recall that for relativistic binaries, we seek a quasiequilibrium state, for which ξa

hel is really only an approximate
Killing vector; see the discussion leading up to equation (12.63).
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and
Di(αu

tρ0V
i) = 0. (15.43)

Exercise 15.4 Show that that in the Newtonian limit equations (15.42) and (15.43) reduce to the
Newtonian equations (15.19) and (15.20).
Hint: use exercise 2.28 and equation (5.22) to find the Newtonian limits of α and αut.

As in the Newtonian case, equations (15.42) and (15.43) simplify further for either corotational
or irrotational fluid flow. We will discuss these two cases separately in the following two Sections.

15.2 Corotational Binaries

We can construct corotational binaries by requiring that the fluid flow vanish in the frame coro-
tating with the binary,

V a = 0. (15.44)

With this choice, the continuity equation (15.43) is satisfied identically, as in the our Newtonian
analysis, and the Euler equations (15.42) reduce to

Di

(
h

ut

)
= 0. (15.45)

We can again integrate these equations immediately to obtain the integrated Euler equation6

h

ut
= C, (15.46)

where C is a constant of integration. In fact, this result proves relation (5.58).
From the normalization uau

a = −1 we also have

αut =
(
1 + γijuiuj

)1/2
(15.47)

(see equation 5.11). In a typical application, the spatial metric will be rescaled conformally,
γij = ψ4γ̄ij. Given a choice for the conformal background metric γ̄ij, and given values for the lapse
α, the conformal factor ψ, and the shift βi, we can use equations (15.35) and (15.11) (adopting
the form (15.13) when working in Cartesian coordinates) to obtain ut. Substituting this result
into equation (15.46) yields an algebraic expression for h.

Exercise 15.5 Show that, for a conformally flat spatial metric, the enthalpy h satisfies

h
{
α2 − ψ4

(
(Ωy − βx)2 + (Ωx+ βy)2 + (βz)2

)}1/2
= C (15.48)

if the axis of rotation is aligned with the z-axis. Verify that this expression reduces to equation (15.25)
in the Newtonian limit.
Hint: use exercise 2.28.

In typical applications equation (15.48) – or an equivalent equation if the background is not
conformally flat – is solved in conjunction with the conformal thin-sandwich equations (3.109) –

6In some of the literature this expression is incorrectly refered to as the Bernoulli equation; compare equa-
tions (5.57) and (5.58) and the related discussion in Chapter 5.
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(3.112) listed in Box 3.3. The latter provide a set of equations for the conformal factor ψ, the
lapse α, and the shift βi in terms of matter sources that depend on h. Furthermore, we can use
equation (15.48) to compute h algebraically in terms of ψ, α, and βi. As before, the constants Ω
and C appear as eigenvalues in this equation, and have to be determined in the course of solving
for the field and matter variables.

It is worth noting why it is the conformal thin-sandwich formalism of Section 3.3, rather
than the conformal transverse-traceless approach of Section 3.2, that is relevant in this context.
A quick glance at equation (15.48) reveals that we require a lapse α and a shift βi to solve the
quasiequilibrium problem. The conformal thin-sandwich formalism provides these functions, while
the conformal transverse-traceless formalism does not. More fundamentally, we wish to construct
fluid configurations that are in quasiequilibrium, so that Lie derivatives along a timelike Killing
vector vanish. To impose this condition, we need to constrain the behavior of the spacetime in a
neighborhood of a spatial slice Σ and not merely on Σ. The conformal thin-sandwich formalism is
an approach that allows us to impose quasiequilibrium in just this fashion.

A number of different numerical algorithms have been implemented to construct simultaneous
solutions to the integrated Euler equation (15.48) and the field equations (3.109) – (3.112).7 We
will describe one such scheme, namely that of Baumgarte et al. (1997, 1998a), which is based on a
similar scheme for constructing rotating stars developed by Hachisu (1986). We will also focus on
the Newtonian problem, which is simpler than the relativistic case, and yet captures all the key
ingredients of the numerical scheme. Instead of the relativistic integrated Euler equation (15.48)
we will therefore solve its Newtonian counterpart (15.25), and instead of the field equations (3.109)
– (3.112) we will solve Poisson’s equation (15.5).

We start by choosing an equation of state. For simplicity, we adopt a Γ-law equation of state

P = (Γ− 1)ρ0ε (15.49)

(see equation 5.17). For isentropic fluids, this equation of state is equivalent to a polytropic
equation of state of the form

P = KρΓ
0 , Γ = 1 + 1/n, (15.50)

where n is the polytropic index and K is the gas constant (see exercise 5.5). Choosing a polytropic
equation of state allows for several simplifications in our scheme, but very similar algorithms can
be used for any other equation of state, even if it exists only in tabulated form.

The Newtonian enthalpy hNewt that appears in equation (15.25) can then be written as

hNewt = ε+
P

ρ0

= (n+ 1)
P

ρ0

. (15.51)

If we also assume that the binary rotates about the z-axis, the integrated Euler equation (15.25)
takes the form

(n+ 1)
P

ρ0

+ φ− 1

2
Ω2(x2 + y2) = CNewt. (15.52)

For polytropes it is convenient to introduce the dimensionless density parameter

q ≡ P

ρ0

, (15.53)

7See, e.g., Baumgarte et al. (1998a); Marronetti et al. (1998); Gourgoulhon et al. (2001); Taniguchi and Gour-
goulhon (2002).
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in terms of which we have
ρ0 = K−nqn, P = K−nqn+1. (15.54)

Since physical units enter the problem only through the constant K, we can introduce dimension-
less coordinates x̄ = K−n/2x and similar for y and z, as in equation (14.17). The angular velocity
scales as Ω̄ = Kn/2Ω and the Laplace operator as8 D̄2 = KnD2. In terms of these quantities,
equation (15.52) becomes

(n+ 1) q + φ− 1

2
Ω̄2(x̄2 + ȳ2) = CNewt , (15.55)

and Poisson’s equation becomes
D̄2φ = 4πqn. (15.56)

We simplify the problem further by treating equal-mass binaries. These binaries form a two-
parameter family of solutions that can be parametrized, for example, by the maximum density
of each star and their separation. Instead of using the absolute separation of the binary stars,
we will specify their relative separation as follows: Assume that the binary lies along the x−axis,
i.e., the x-axis connects the points of maximum density in the two stars. Let x = 0 reside at the
center of mass, midway between the stars. Denote the coordinate along x at the nearest point to
the origin on the surface of one star by xA and at the farthest point by xB. Also label the point
of maximum matter density in the star by xC . We can then parametrize the binary separation in
terms of the relative separation s = xA/xB = x̄A/x̄B. An infinite separation corresponds to s = 1,
while a contact binary has a separation s = 0.9

In fact, it proves convenient to rescale not only x̄A with respect to x̄B (to define the relative
separation s), but all coordinates as well. Denoting these rescaled coordinates with a caret, we
define x̂ = x̄/x̄B and similarly for ȳ and z̄. The Laplace operator now rescales as D̂2 = x̄2

BD̄
2, and

we also have Ω̂ = x̄BΩ̄. Poisson’s equation now takes on the form

D̂2φ = 4πx̄2
Bq

n. (15.57)

Equation (15.57) motivates the scaling relation

φ = x̄2
Bφ̂ (15.58)

for the Newtonian potential, whereby equation (15.57) reduces to

D̂2φ̂ = 4πqn. (15.59)

The integrated Euler equation (15.55) then takes the form

(n+ 1) q + x̄2
Bφ̂−

1

2
Ω̂2(x̂2 + ŷ2) = CNewt. (15.60)

We now have to find simultaneous solutions to equations (15.59) and (15.60) for q and φ̂, together
with the eigenvalues Ω̂, CNewt and x̄B. This can be accomplished by the following iteration scheme:

Choose the polytropic index, then select a particular binary model by specifying the maximum
density, qmax, and the relative binary separation s.

8Here we depart from our previous notation convention: the bar denotes the nondimensional operator, and not
the conformally-related operator as defined elsewhere in the book.

9This parametrization is not unlike that for a family of isolated, uniformly rotating stars, members of which can
be parametrized by their maximum density and the ratio between their polar and equatorial radii. It is therefore
possible to construct binary neutron stars with an iterative algorithm similar to one used for isolated rotating stars;
see Chapter 14.1.2.



15.2. COROTATIONAL BINARIES 459

1. As a first step in the iteration, provide an initial guess for the density profile q. For example,
this can be a spherical density profile with maximum density qmax and properly rescaled so
that it is confined between x̂A and x̂B.

2. Next, solve Poisson’s equation (15.59), which requires solving an elliptic equation. This can
be accomplished, for example, by employing the algorithms described in Section 6.2.2 for
finite-difference methods, or in Section 6.3.4 for spectral methods. Solving equation (15.59)
provides the rescaled Newtonian potential φ̂.

3. Then, determine the eigenvalues Ω̂, CNewt and x̄B by evaluating the integrated Euler equation
(15.60) at the three points x̂A = s, x̂B = 1 and x̂C . To find x̂C , locate the (current) point
of maximum density along the x-axis. At all of these three points we known the value of q:
at x̂A and x̂B we must have q = 0, since both points lie on the stellar surface, and at x̂C we
must have q = qmax. Evaluating (15.60) at these three points yields the three equations

x̄2
Bφ̂−

1

2
Ω̂2x̂2

A = CNewt

x̄2
Bφ̂−

1

2
Ω̂2x̂2

B = CNewt

(n+ 1) qmax + x̄2
Bφ̂−

1

2
Ω̂2x̂2

C = CNewt.

(15.61)

This set of equations can be solved iteratively for the eigenvalues Ω̂, CNewt and x̄B.

4. With the values of the eigenvalues Ω̂, CNewt and x̄B find the new density distribution q by
solving equation (15.60) in the stellar interior.

5. Given the new density distribution q, now evaluate the residual of Poisson’s equation (15.59).
If this residual is larger than some pre-determined tolerance, then the iteration continues,
beginning with step 2 above. Otherwise the solution has been obtained to within the desired
accurcay, and the iteration terminates.

The above iterative scheme describes the method to solve the Newtonian problem, but a very
similar algorithm can be used to solve the corresponding relativistic problem. The equations are
more complicated, of course, and instead of solving one equation for the Newtonian potential we
now have to solve the five equations (3.109) – (3.112) for α, ψ and βi, but all of these changes can
be accommodated by the above iteration scheme. One complication arises from the scaling of the
gravitational fields, which are less obvious in the relativistic case. However, for the purposes of
this iteration, we can rescale α and ψ in such a way that in the Newtonian limit we recover the
scaling relation (15.58).

Solving the above equations then allows us to construct relativistic, quasiequilibrium binary
neutron star models. Figure 15.1 shows a typical neutron star binary at a small separation.
Subjected to a small tidal distortion, the profile of each star assumes a characteristic prolate
shape.

As a first application, we can now generalize Oppenheimer-Volkoff sequences (see Section
1.3). In an Oppenheimer-Volkoff sequence we fix the equation of state and construct spherically
symmetric, static neutron stars with different central densities. Along such a sequence, the con-
figuration with the maximum total mass-energy M(= MADM) is also the configuration with the
maximum rest-mass M0 and locates the maximum central density beyond which stars in isolation
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Figure 15.1: Rest-mass density contours in the equatorial plane for a neutron star binary orbiting
close to the ISCO. These stars satisfy a polytropic equation of state with n = 1, and each star
has a rest mass of M̄0 = 0.169, corresponding to a compaction in isolation of (M/R)∞ = 0.175.
(The maximum-mass configuration in isolation has M̄0 = 0.180 and (M/R)∞ = 0.215.) The
lines correspond to contours of constant rest-mass density in decreasing factors of 0.556. [From
Baumgarte et al. (1998a).]

are radially unstable. Generalizing such sequences to binaries, we can fix the separation s and
construct sequences of binaries with identical companions, parametrized by the maximum den-
sity inside each star.10 Clearly, for infinite separation (s = 1) this sequence should reduce to an
Oppenheimer-Volkoff sequence for each companion, at least up to numerical error.11

In Figure 15.2 we show some results for n = 1 polytropic binaries constructed by finite dif-
ferencing on a very coarse, three-dimensional grid. These particular models were computed on
a uniform grid of (64)3 gridpoints, with the outer boundary placed at such a distance that the
stellar interior along the x-axis is always covered by 17 gridpoints. The dashed line represents the
Oppenheimer-Volkoff sequence, while the solid lines, represent binaries of successively decreasing
binary separation s, moving from the bottom to top curve. The finite-difference error in the bi-
nary calculations systematically underestimates the mass, which explains why these curves do not
converge to the Oppenheimer-Volkoff result as one would expect. We nevertheless notice that the
curves for smaller binary separations lie above those for larger binary separation in the graph.
This result implies that the maximum allowed mass increases with decreasing binary separation
and reflects the fact that tidal forces serve to stabilize neutron stars against radial instability.12

Figure 15.2 also has an important consequence for evolutionary sequences. For sufficiently
large binary separations, at which the binary evolves very slowly, we can construct a quasiequilib-
rium inspiral sequence by gluing together quasiequilibrium models at different binary separations.

10We allow for the possibility that the maximum density does not reside at the coordinate “center” of the star.
11Recall that Oppenheimer-Volkoff solutions satisfy ordinary differential equations, which can be solved to es-

sentially arbitrary precision.
12See Baumgarte et al. (1998b) for a stability analysis of corotating, relativistic binary stars.
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Figure 15.2: [CAMBRIDGE: replace ρ̄c with ρ̄∗c on x-axis.] Rest mass M̄0 versus central density ρ̄∗c
along sequences of equal-mass, corotational binary companions obeying an n = 1 polytropic EOS.
Successive curves are for binary separations ranging from s = 0.3 (bottom solid line), through 0.2
and 0.1, and extending to 0.0 (top line). The dashed line is the Oppenheimer-Volkoff limiting curve
for isolated static stars (s = 1). Due to finite difference errors, the numerical values systematically
underestimate the mass, hence some of the curves creep below the Oppenheimer-Volkoff curve.
The insert is a blow-up of the region around the maximum masses. [From Baumgarte et al. (1997).]

For binary neutron stars the rest-mass M0 (e.g. the baryon number) must be constant along
such an evolutionary sequence.13 In Figure 15.2, such an evolutionary sequence must start at
very large separation with configurations lying close to some point on the stable branch of the
Oppenheimer-Volkoff sequence. As the binary emits gravitational radiation, looses energy and an-
gular momentum and spirals inward, it must evolve along a horizontal line of constant rest mass
M0 in Figure 15.2. This implies that the maximum density decreases as the binary separation
decreases and the stars are tidally elongated.

Whether the maximum density in binary neutron stars increases or decreases with decreasing
binary separation was once the subject of an interesting controversy.14 Originally, a “star-crushing”
effect was reported by Wilson and Mathews (1995),15 whereby the maximum density in binary
neutron stars increases as the two stars approach each other, ultimately triggering a radial insta-
bility and a “binary-induced” collapse to two individual black holes prior to binary merger. This
effect runs counter to Newtonian intuition and calculations, which argue that a tidal elongation in
a quasiequilibrium fluid binary star should reduce the density inside a star.16 As a consequence,

13Compare the discussion in Section 12.4 for binary black holes.
14See Kennefick (2000) for an account of the sociological aspects of this controversy.
15See also Wilson et al. (1996).
16See Rasio and Shapiro (1999) for a review and references.
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Figure 15.3: The relative change in the maximum density ∆ρ∗max/ρ
∗∞
max as a function of the separa-

tion d̄ between the locations of the maximum densities in an equal-mass, n = 1 polytropic binary
with companions of rest-mass M̄0 = 0.18 (close to the maximum allowed mass for static stars).
The solid line marks the changes in the density for corotational binaries, and the dashed line for ir-
rotational binaries. The dotted lines marks ∆ρ∗max = 0. This graph shows that the central density
decreases with decreasing binaries for both corotational and irrotational binaries. Similar results
hold for binaries of different masses and polytropic indices, and also for unequal-mass binaries.
[After Taniguchi and Gourgoulhon (2002).]

the “star-crushing” effect was met with great scepticism in the community.

Our argument above, based on Figure 15.2, also suggests that the central density should
decrease, and not increase, with decreasing binary separation. However, this argument only holds
for corotational binaries. At small binary separations corotational binaries have to spin very fast
to keep up with the orbit. This spin by itself leads to a flattening of the star and hence may lead
to a reduction in the central density, even in isolated stars. Moreover, corotation is not maintained
during binary inspiral for realistic neutron stars, as we discussed in Section 15.1. The more relevant
question is therefore how the central density behaves in irrotational binaries. Anticipting findings
from Section 15.3 we show in Figure 15.3 results for irrotational quasiequilibrium binaries, as well
as more accurate results for corotational, binaries. This plot demonstrates that, while the effect
is indeed much smaller for irrotational binaries than for corotational binaries, the central density
decreases with decreasing binary separation in both cases.

Ultimately, the original controversy was resolved when a mistake was found in the calculations
of Wilson and Mathews (1995); Wilson et al. (1996) (see Flanagan (1999)). Correcting this mistake
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Figure 15.4: The binding energy and angular momentum as functions of orbital angular velocity
for several different values of the rest mass M̄0. The curves are labeled by the compaction (M/R)∞
that the stars would have at infinite binary separation, starting with 0.05 and increasing in steps
of 0.0025 up to 0.2. The maximum compaction of a stable, isolated, nonrotating n = 1 polytrope
is 0.217. The upper label gives the orbital frequency for stars with a rest mass of 1.5 M�. [From
Baumgarte et al. (1998a).]

reduced the size of the reported effect dramatically.17 More significantly, no sign of a “crushing
instability” has been observed in any other post-Newtonian or fully relativistic simulation of
neutron star inspiral and merger18 as we will discuss in Chapter 16, although no theorem has been
proven to completely rule out the possibility.19

As we discussed in Section 12.1, the innermost stable circular orbit (ISCO) marks a transition
from a slow, quasistationary inspiral to a rapid plunge and merger. While this transition may
not be particularly abrupt, crossing the the ISCO will mark a transition in the emitted gravi-
tational waveform away from a quasiperiodic chirp signal (see Chapter 16). Locating the ISCO
and the orbital frequency to which it corresponds are therefore important goals when constructing
quasiequilibrium sequences of binary neutron stars.

We can identify the ISCO by locating the minimum of the total ADM energy MADM along an
evolutionary sequence of constant rest mass M0 (see Section 12.1). As discussed in Chapter 12 in
conjunction with equation (12.112),

dMADM = ΩdJ, (15.62)

a minimum in the energy should coincide with a minimum in the angular momentum. In Figure

17See Mathews and Wilson (2000).
18Such an effect can occur in binaries consisting of collisionless clusters; Shapiro (1998); Duez et al. (1999).
19See, e.g., Favata (2006).
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M̄0 M̄∞ (M/R)∞ M0ΩISCO (Jtot/M
2
tot)ISCO M̄ISCO

0.130 0.122 0.12 0.0139 1.136 0.1213
0.146 0.136 0.14 0.0175 1.075 0.1350
0.160 0.148 0.16 0.0217 1.028 0.1464
0.171 0.157 0.18 0.0253 0.994 0.1550

Table 15.1: The orbital angular velocity Ω, angular momentum J and ADM mass M̄ISCO at the
ISCO, for corotating, equal-mass, binary neutron stars with polytropic index n = 1. We tabulate
the rest mass M̄0, the ADM mass M̄∞ and the compaction (M/R)∞ each star would have in
isolation (where R is the areal radius), as well as the angular velocity M0Ω, angular momentum
Jtot/M

2
tot (where “tot” means total ADM value) and ADM mass M̄ISCO ≡Mtot/2 at the ISCO. For

this EOS the maximum rest mass in isolation is M̄max
0 = 0.180. [After Taniguchi and Gourgoulhon

(2002).]

15.4 we show some numerical results obtained on a coarse grid for the fractional binding energy
(MADM −M∞

ADM)/M0 and the angular momentum J̄ for sequences of constant rest mass M̄0. In
the definition of the binding energy, M∞

ADM denotes the ADM mass that this star would have at
infinite binary separation. We plot these quantities versus the orbital frequency instead of binary
separation, because the former is a gauge-invariant quantity while the latter is not.20 Figure 15.4
suggests that the minima in the binding energy (and hence the ADM mass) do indeed coincide
with those of the angular momentum, and thereby identify the ISCO.

In Table 15.1 we list the angular velocity M0Ω, the total angular momentum Jtot/M
2
tot (where

Mtot is the total ADM mass of the binary system), and the individual ADM mass MISCO ≡Mtot/2
at the ISCO for different values of the stellar rest mass M0 for equal-mass, n = 1 polytropes.
As it turns out, only stars with sufficiently stiff equations of state (n <∼ 1.0) encounter an ISCO
before they touch, which is in qualitative agreement with Newtonian results.21 Stars with softer
equations of state are more centrally condensed and have more extended envelopes, so that they
come into contact and merge before reaching an ISCO.

As we discussed in Section 15.1 above, the assumption of corotation is very unrealistic, since
it requires an unrealistically large viscosity. To obtain results that are of greater astrophysical
relevance than those found in this Section, we therefore must consider irrotational binaries, which
we do in the following Section.

15.3 Irrotational Binaries

We can find a set of equations that governs irrotational binaries in close analogy to our Newtonian
treatment in Section 15.1.1.22 In general relativity, the vorticity tensor ωab can be defined as

ωab ≡ P c
a P

d
b (∇d(huc)−∇c(hud)) , (15.63)

20Also, the observed gravitational wave spectrum is dominated by mass quadrupole emission at frequency fGW =
Ω/π.

21See, e.g., Rasio and Shapiro (1999) for a review and references.
22The first relativistic formalism for irrotational binaries in quasiequilibrium was presented in Bonazzola et al.

(1997). Subsequently, other approaches were developed by Asada (1998), Teukolsky (1998) and Shibata (1998).
Gourgoulhon (1998) demonstrated that all of these formulations are equivalent. The derivation here follows that
of Shibata (1998).
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where P c
a = g b

a + uau
b is the projection operator with respect to the fluids’s four-velocity ua

(equation 5.67). For irrotational binaries the vorticity must vanish,

ωab = 0, (15.64)

which is equivalent to the Newtonian condition (15.27). For this to be the case, the quantity hua
must be the gradient of a velocity (scalar) potential Φ,

hua = ∇aΦ (15.65)

(cf. (15.28)).

Exercise 15.6 Show that with equation (15.65) the continuity equation (15.2) reduces to

∇a

(ρ0

h
∇aΦ

)
= 0, (15.66)

while the Euler equation (15.34) is satisfied identically.

Exercise 15.7 (a) Use the Euler equation (15.34) to show that ωab can be written

ωab = ∇b(hua)−∇a(hub) . (15.67)

(b) Evaluate equation (5.59) to show that for irrotational flow in an isentropic fluid the circulation
satisfies C = 0.

With the definition (15.36), the spatial projection of equation (15.65) becomes

ûi = DiΦ. (15.68)

In the Euler equation (15.42) this result now eliminates the second term, so that we can integrate
the first term once to find

h

ut
+ ûiV

i = C, (15.69)

where C is again a constant of integration.
It is now convenient to introduce a rotational shift vector

Ba = βa + ka, (15.70)

where ka is given by equation (15.11) as ka = ξahel−ta. From equation (2.98) we have ta = αna+βa,
so that we can write Ba as

Ba = ξahel − αna. (15.71)

We now solve equation (15.35) for V a, substitute equation (15.71) for ξahel, take the spatial pro-
jection (to eliminate the αna term), substitute equation (15.68) for ui, and obtain finally

V i =
1

uth
DiΦ−Bi. (15.72)

As we did for corotational binaries, we now use the normalization uau
a = −1 to express ut in

terms of the spatial components of the four-velocity. Substituting equation (15.68) into (15.47)
yields

αut =
(
1 + h−2DiΦD

iΦ
)−1/2

. (15.73)
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We next combine equations (15.69), (15.72) and (15.73) to find

αut =
1

αh

(
C +BiDiΦ

)
. (15.74)

We digress to note an interesting result derived in exercise 15.8.

Exercise 15.8 Use Lξhel(hua) = 0 to show that

LξhelΦ = ξa∇aΦ = −C ′ (15.75)

where C ′ is a constant.

Naively, we might have expected that the Lie derivative of Φ along the Killing vector ξhel

vanishes. However, Φ is only a potential and not a measurable (physical) quantity. Only the
gradient of Φ, ∇aΦ = hua, is measurable, and therefore only for the gradient can we impose the
Lie derivative along ξhel to vanish.23 As we have found in exercise 15.8, this introduces a constant
of integration when we evaluate the Lie derivative of Φ itself. We can now use the result (15.75)
to provide an alternative derivation of equation (15.74) (see exercise 15.9).

Exercise 15.9 Replace na in hαut = −hnau
a = −na∇aΦ with the help of equation (15.71) to rederive

equation (15.74).

We can finally combine equations (15.73) and (15.74) to find

h2 =
1

α2
(C +BiDiΦ)2 −DiΦD

iΦ. (15.76)

As in the Newtonian derivation, the integrated Euler equation (15.69) furnishes an algebraic
expression for the enthalpy h. We could have left this equation in the form (15.69), but since h
also appears in V i we have taken a few more steps to isolate h in equation (15.76).

We still need an equation for the velocity potential Φ, which we can find from the continuity
equation (15.43) Inserting (15.72) into (15.43) we obtain

Di(αρ0h
−1DiΦ)−Di(αu

tρ0B
i) = 0. (15.77)

To eliminate ut we can now insert equation (15.74) and find, just like in the Newtonian case, an
elliptic equation for the velocity potential Φ,

DiD
iΦ−Di

(
C +BjDjΦ

α2
Bi

)
=

(
C +BjDjΦ

α2
Bi −DiΦ

)
Di ln

αρ0

h
. (15.78)

Equations (15.76) and (15.78) now provide two equations for the two fluid variables h and Φ. Equa-
tion (15.78) is an elliptic equation and hence needs to be supplemented with boundary conditions
for Φ on the stellar surface. Since ρ0 vanishes there, regularity requires(

C +BjDjΦ

α2
Bi −DiΦ

)
Diρ0

∣∣∣∣
surface

= 0. (15.79)

23See also Teukolsky (1998), who shows formally that Lξhelhua = 0 = Lξhel d̃Φ = d̃LξhelΦ (see exercise A.3),
which implies equation (15.75).
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This is again a Neumann boundary condition. Just like its Newtonian equivalent (15.33) this
condition enforces the fluid flow to be tangent to the surface.

Exercise 15.10 Show that in the Newtonian limit equations (15.76), (15.78) and (15.79) reduce to
the Newtonian equations (15.31), (15.32) and (15.33).

In most applications to date, the matter equations (15.76) and (15.78) have been solved together
with the conformal thin-sandwich equations (3.109) – (3.112) for the lapse α, the shift βi and the
conformal factor ψ. Constructing irrotational binaries is much more involved than constructing
corotational binaries. By contrast with corotational binaries, where only one algebraic equation
(15.46) has to be solved for the enthalpy, we now have to solve the enthalpy equation (15.76)
together with the elliptic equation (15.78) for the velocity potential Φ, subject to the boundary
condition (15.79) on the surface of the star. The latter adds another complication, since the
location of the surface is not known a priori.

Bonazzola et al. (1999a) and Gourgoulhon et al. (2001) solved this problem with the help of a
multi-domain, spectral method that covers the entire computational domain with several patches
of coordinate systems. In particular, the interiors of the stars are covered with spherical-type
coordinate systems, which are constructed so that the surface of the star lies at a constant value
of the radial coordinate. Such coordinate systems are called “surface-fitting” coordinates, and
are very well suited for imposing the boundary condition (15.79). A similar algorithm, based
on Newtonian simulations of irrotational neutron star binaries,24 has been used by Uryū et al.
(2000).25

As a brief, technical detour, we point out why it is natural for these calculations in spherical
polar coordinate systems to use two computational domains, each one centered on one of the
binary companions. Consider an equation of the form

D̄2φ = RHS, (15.80)

where RHS symbolizes some potentially nonlinear source terms on the right-hand side. We can
choose to solve this equation by splitting it into the two equations

D̄2φ1 = RHS1,
D̄2φ2 = RHS2,

(15.81)

where φ = φ1 +φ2 and RHS = RHS1 + RHS2, and where each equation is now associated with one
of the two stars. The two equations in (15.81) can then be solved on two separate computational
domains, each one centered on one star. Clearly, the separation of the source terms RHS into
the two parts RHS1 and RHS2 is far from unique. One guiding principle is to move those parts
of RHS that are large in the neighborhood of star 1 into RHS1, and similarly for the other star.
Another principle is that each of the source terms should asymptotically coincide with those for
the corresponding isolated star when the binary separation is large.

We show a typical binary configuration and its internal velocity field in Figure 15.5. As we
did for corotational binaries, we can determine the maximum allowed mass of neutron stars in
irrotational binaries by first finding the mass as a function of central density for fixed separation,
and then varying the separation. In Figure 15.6 we show results of Uryū et al. (2000), which
demonstrate that, as in corotational binaries, the maximum mass increases with decreasing sepa-
ration. However, by comparing with Figure 15.2, we note that the increase in maximum mass is

24Uryū and Eriguchi (1999).
25See also Uryū and Eriguchi (2000).
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Figure 15.5: [CAMBRIDGE: remove header above figure] The internal velocity field with respect
to the corotating frame in the orbital plane for identical stars of rest-mass M0 = 1.625M� at a
coordinate separation of 41 km. The binary stars are irrotational and constructed from an n = 1
polytropic EOS with K = 1.8 × 10−2Jm3kg−2. The thick lines mark the stellar surfaces. [From
Gourgoulhon et al. (2001).]

smaller for irrotational binaries than for corotational binaries.26 This result is not surprising, since
neutron stars in corotational binaries are spinning with respect to the inertial frame at rest with
respect to the binary center. This spin by itself increases the maximum mass of neutron stars.27 It
is also evident from Figures 15.6 and 15.2 that, while the density along evolutionary sequences of
irrotational binaries of constant rest mass M̄0 decreases with decreasing separation, the decrease
is less than that for corotational binaries, which we had already anticipated in Figure 15.3.

As we have seen in Section 15.2, evolutionary sequences of corotational binaries typically end
either at the ISCO or at contact. Irrotational sequences, on the other hand, typically end when
a cusp forms on the stellar surface, prior to reaching the ISCO or contact.28 Such a cusp forms
when the stellar surface reaches an inner Lagrange point, so that matter can start flowing from
one star to its companion.

A potential disadvantage of using spectral methods for constructing these binaries is that the
appearance of such a cusp on the stellar surface leads to Gibbs phenomena and hence decreasing
accuracy. Typically, sequences constructed with spectral methods must therefore terminate shortly
before the appearance of a cusp. To identify cusp formation, many authors29 introduce a “mass-

26This result is especially evident, taking into account the coarse resolution used by Baumgarte et al. (1998a),
which underestimate the masses in Figure 15.2.

27See, e.g., Cook et al. (1994b) as well as Chapter 14.
28See Bonazzola et al. (1999a); Uryū and Eriguchi (2000); Uryū et al. (2000).
29See, e.g., Gourgoulhon et al. (2001).
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Figure 15.6: [CAMBRIDGE: change ρmax to ρ̄0,max, M0 to M̄0, and remove κ altogether, as well
as “(a)”.] The rest mass M̄0 as a function of maximum density ρ̄0 for separations d̄ = 1.3125,
1.375, 1.5, 1.625, 1.75, 1.875 and 2 (thick lines running from top to bottom) of irrotational, binary
neutron stars constructed from an n = 1 polytropic EOS. The dashed line is the Oppenheimer-
Volkoff result. [From Uryū et al. (2000).]

shedding indicator” χ, defined as the ratio between the radial derivative of the specific enthalpy
h on the neutron star surface in the direction of the companion to the derivative in the polar
direction,

χ ≡
∂r(lnh)|eq
∂r(lnh)|pole

. (15.82)

This indicator is identically one for a spherical star and falls to zero at the appearance of a
cusp. We can then tabulate χ as a function of binary separation, or orbital angular velocity, and
extrapolate to χ = 0 to identify the onset of cusp formation.

Uryū et al. (2000) find that equal-mass, irrotational binaries reach an ISCO before a cusp
appears only for very stiff equations of state (n <∼ 2/3), while binaries with softer equations of state
form a cusp first. In Table 15.2 we list some parameters for irrotational, equal-mass n = 1 binaries
at cusp formation. Comparing with the corresponding ISCO parameters of corotational binaries
in Table 15.1, we note that the cusp and ISCO occur at quite similar frequencies. The corotational
binaries have more angular momentum, because the individual stars carry a spin in addition to
the orbital angular momentum of the binary. We also find that the binding energy (M̄ −M̄∞)/M̄0

of corotational binaries is slightly larger than for irrotational binaries. This is because the ADM
mass M̄ of the former include the additional spin kinetic energies of the individual stars.30 For
additional numerical results, including models for different equations of state and unequal-mass
binaries, we refer the reader to the recent literature.31

In all of the above calculations the matter equations (15.76), (15.78) and (15.79) have been
solved together with the conformal thin-sandwich formalism of Section 3.3 for the gravitational
fields, as summarized in Box 3.3. However, it is not clear that this formalism is the best possible
approach for constructing quasiequilibrium binaries. In particular, this approach makes an ad-hoc

30See also the discussion in Duez et al. (2002).
31See, e.g., Taniguchi and Gourgoulhon (2002, 2003).
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M̄0 M̄∞ (M/R)∞ M0ΩCUSP (Jtot/M
2
tot)CUSP M̄CUSP

0.130 0.122 0.12 0.0142 0.997 0.1211
0.146 0.136 0.14 0.0181 0.947 0.1347
0.160 0.148 0.16 0.0222 0.910 0.1460
0.171 0.157 0.18 0.0265 0.881 0.1546

Table 15.2: The orbital angular velocity Ω, angular momentum J and the ADM mass M̄ at
cusp formation, for irrotational, equal-mass, binary neutron stars with polytropic index n = 1.
We tabulate the individual rest mass M̄0, the ADM mass M̄∞ and the compaction (M/R)∞
each star would have in isolation (where R is the areal radius), as well as the angular velocity
M0Ω, the angular momentum Jtot/M

2
tot (where “tot” means total ADM value) and the ADM

mass M̄CUSP = Mtot/2 at cusp formation. For this EOS, the maximum rest-mass in isolation is
M̄max

0 = 0.180. [After Taniguchi and Gourgoulhon (2002).]

choice for the conformally-related background metric γ̄ij, which may or may not lead to the best
approximation of quasiequilibrium. Several authors have therefore suggested alternative methods
that may produce more accurate models of compact binaries in quasiequilibrium.32

One of these alternative approaches is the “waveless” approximation of Shibata et al. (2004)
that we discussed briefly in Section 3.4. Uryū et al. (2006) implemented this scheme for binary
neutron stars. As expected, for stars with small compaction they obtain results that are very
similar to those found with the conformal thin-sandwich approach assuming conformal flatness.
For stars with a larger compaction, however, their results show some deviation from both the
conformally flat models as well as third post-Newtonian (3PN) point-mass calculations. For stars
with a compaction (M/R)∞ = 0.17, at a binary separation at which the coordinate distance from
the orbital center to the geometric center of each star is 1.75R∞, the conformally-related metric,
for example, deviates from a flat metric by about 1 %. The deviations in the binding energy
are comparable. To establish whether or not these models are closer to quasiequilibrium than
the conformally flat models presumably requires a fully dynamical hydrodynamic simulation. We
describe such simulations for binary neutron stars in Chapter 16.

15.4 Quasiadiabatic inspiral sequences

In the previous Sections we have discussed how we can construct individual models of binary
neutron stars in circular orbit at arbitrary binary separations. We have also mentioned that we
can “stitch” together models of constant rest mass M0 to build evolutionary inspiral sequences.
In this Section we will describe how such a “quasiadiabatic” approach can be used to calculate
the gravitational wave signal from the late inspiral phase, prior to plunge and merger.33

32See, e.g., Blackburn and Detweiler (1992); Andrade et al. (2004); Shibata et al. (2004); Friedman and Uryū
(2006) and references therein.

33Similar ideas have been suggested as possible solutions to the “intermediate compact binary problem” that
may arise if (point-mass) post-Newtonian techniques, which are favored for the modeling of the adiabatic inspiral
phase, break down at too large a binary separation for fully dynamical numerical relativity simulations to track the
entire remaining inspiral. Bridging the resulting gap between post-Newtonian and numerical relativity methods
might then require some “quasiadiabatic” technique similar to the one sketched in this Section to treat the full
inspiral phase (see Brady et al. (1998) and Duez et al. (2002).)
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Figure 15.7: The final hundreds of cycles of the inspiral gravitational waveform measured along
the axis of rotation by a distant observer as a function of retarded time and cycle number for an
irrotational binary neutron star system. The numbers give the strain h for a binary of total rest
mass M0 = 2× 1.5M� at a distance rs = 100 Mpc. [From Duez et al. (2002).]

We start by approximating the binary orbit outside the ISCO as circular, and by treating
the orbital decay as a small correction. For each binary separation we can then find the matter
distribution using the quasiequilibrium methods of the previous Sections. Next we need to find the
gravitational wave signal and luminosity at a given binary separation. As a crude approximation
we could simply use the quadrupole formula, equation (9.37), but we can do better than that. We
can substitute the quasiequilibrium matter profiles that we obtained above as source terms in the
Einstein field equations, and then evolve these equations. In effect, we are performing a relativistic
hydrodynamics simulation without having to resolve the hydrodynamic equations, given that the
matter is in near equilibrium. This approach is sometimes referred to as “hydro-without-hydro”.34

Evolving the gravitational fields for the given binary matter distribution, we can then read off
the gravitational waveform and luminosity, and hence the rate at which the binary loses energy at
a given separation r. Combining this luminosity dMADM/dt = −LGW with the derivative of the
ADM mass with respect to separation r along a quasiequilibrium sequence of fixed rest-mass then
yields the inspiral rate

dr

dt
=
dMADM/dt

dMADM/dr
. (15.83)

Integrating equation (15.83) then yields the separation as a function of time, r(t). For example,
equation (12.17) quotes the result for point-mass, Newtonian binaries radiating in the quadrupole
approximation. Given that we already know that gravitational waveform as a function of r, we
can then construct the entire gravitational wave train as a function of t.

Exercise 15.11 Use the results of Exercise 12.3, together with equation (9.27), to calculate the
quasiadiabatic inspiral gravitational wave train for a Newtonian binary. In particular, determine as
functions of time the amplitude A(t) and the phase Φ(t) of the wave amplitude along the binary axis

34See Baumgarte et al. (1999).



472 CHAPTER 15. BINARY NEUTRON STAR INITIAL DATA

of rotation in the quadrupole approximation,

rsh+ = rshx = A(t) cosΦ(t) , (15.84)

where rs is the distance to the source.

Duez et al. (2002) implemented a crude but illustrative version of such a scheme for both
corotational and irrotational relativistic binary inspiral.35 In Figure 15.7 we show the resulting
quasiadiabatic gravitational wave train for irrotational binary inspiral.

For a given separation, the gravitational wave luminosity dMADM/dt is very similar for coro-
tational and irrotational models.36 However, the ADM energy MADM of corotational models
includes the spin kinetic energy of the individual stars, and as a consequence MADM decreases
less for corotational binaries than for irrotational binaries as the binary separation decreases. For
corotational binaries |dMADM/dr| is therefore smaller than for irrotational binaries, so that, ac-
cording to (15.83), the inspiral of corotational binaries proceeds faster than that of irrotational
binaries.

Finally, we can construct the entire gravitational wave train by matching the quasiadiabatic
gravitational wave train to the waveform arising from plunge and merger phases.37 Calculating the
waveform emitted during the highly dynamical plunge and merger phases is the focus of Chapter
16.

35See also Duez et al. (2001); Shibata and Uryū (2001).
36This result is not surprising, since the gravitational wave emission is dominated by the matter mass density,

which is fairly similar for corotational and irrotational binaries, while the matter current density is less important.
37Figure 6 in Duez et al. (2002) exhibits such a match.



Chapter 16

Binary Neutron Star Evolution

Binary neutron stars have always been of great interest to relativists and astrophysicists. Binary
neutron stars are known to exist. Approximately a half-dozen have been identified to date in
our own galaxy, and, for some of these, general relativistic effects in the binary orbit have been
measured to high precision.1 The discovery of the first binary pulsar, PRS 1913+16, by Hulse
and Taylor (1975), led to the observational confirmation of Einstein’s quadrupole formula for
gravitational wave emission in the slow-motion, weak-field regime of general relativity. The inspiral
and coalescence of binary neutron stars is one of the most promising scenarios for the generation
of gravitational waves detectable by laser interferometers. With the construction of the first of
these interferometers completed, and planned upgrades already scheduled, it is of growing urgency
that theorists be able to predict the gravitational waveform emitted during the merger of the two
stars. The low-frequency inspiral waveform is emitted early on, before tidal distortions of the
stars become important, and it can be calculated fairly accurately by performing high-order post-
Newtonian expansions of the equations of motion for two point masses.2 The high-frequency
coalescence waveform is emitted at the end, during the epoch of tidal distortion, disruption and
merger, and it requires the combined machinery of relativistic hydrodynamics (or MHD) and
numerical relativity. These tools are necessary to determine not only the waveforms in the strong-
field regime but also the final fate of the merged remnant. One of the key issues is determining when
a merged remnant collapses to a black hole immediately after coalescence (“prompt collapse”) or
instead forms a transient, dynamically stable, differentially rotating, hypermassive star that only
later undergoes collapse due to dissipative secular effects (“delayed collapse”). These different
outcomes will leave distinguishing imprints on the late-epoch gravitational waveform.

Gravitational wave generation may be only one of several observable consequences of binary
neutron star merger. Gamma-ray bursts (GRBs) may be another, as there are many theoretical
models for which the coalescence of binary neutron stars provides the energy source for a GRB.3

Binary neutron stars, as well as black hole-neutron star binaries, are currently invoked to explain
one class of GRBs, namely the short, hard GRBs that are characterized by their short duration
and hard radiation spectrum. Currently favored are scenarios in which the merger leads to the
formation of a rapidly rotating black hole surrounded by a torus of debris, and where the energy
of the burst originates from either νν̄ annihilation or from the rotational energy of the black
hole.4 In addition, decompressed nuclear matter ejected during binary neutron star coalescence

1Taylor and Weisberg (1989); Stairs et al. (1998).
2See Chapter 9.4 for discussion and references; see also Chapter 12.1 for an overview of binary inspiral.
3Paczynski (1986); Eichler et al. (1989); Narayan et al. (1992); Ruffert and Janka (1998).
4see Piran (2005) for review and references.
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may provide an explanation for the observed abundance of r-process nuclei.5

Relativistic binary systems, like binary black holes, neutron stars and black hole-neutron stars,
pose a fundamental challenge to theorists. Indeed, the two-body problem has been one of the most
outstanding problems in classical general relativity. Tackling this problem in its many incarnations
represents one of the most important applications of numerical relativity, and providing solutions
constitutes one of numerical relativity’s greatest triumphs.6

16.1 Peliminary Studies

The earliest computational work on binary neutron stars consisted of simulations of head-on
collisions of identical stars.7 The restriction to head-on collisions enables the calculation to be
performed in axisymmetry (i.e. 2+1 dimensions), which requires far less computational resources
than simulations in full 3+1 dimensions. However, astrophysical scenarios that lead to binary
neutron star collisions most likely involve inspiral in a quasicircular orbit, since gravitational
radiation will circularize a bound, eccentric binary orbit well before stellar contact.8

Newtonian studies of instabilities in binary systems in close circular orbit, and the nonlinear
evolution of unstable binaries all the way to complete coalescence, have been the subject of many
early investigations. The classical work by Chandrasekhar9 for equilibrium binaries composed of
incompressible fluids has been extended to compressible fluids.10 These analytic studies identify
the existence of dynamical and secular instabilities in sufficiently close systems. They even give
rise to an approximate set of hydrodynamical evolution equations, incorporating viscosity and
gravitational radiation reaction, that can be integrated to model binary inspiral and the corre-
sponding gravitational radiation waveforms.11 Although these simplified analytic studies can give
appreciable physical insight into tidal effects and global fluid instabilities, fully numerical calcula-
tions are essential for establishing rigorous stability limits for close binaries and for following the
nonlinear evolution of unstable systems all the way to complete coalescence, even in Newtonian
theory. Given the absence of any underlying spatial symmetry in the problem, these calculations
must be done in 3 + 1 dimensions.

Newtonian simulations of coalescing neutron stars have been performed by numerous investiga-
tors employing a variety of numerical methods and emphasizing different aspects of the problem.
Nakamura and collaborators12 were the first to perform hydrodynamic simulations of binary neu-
tron star (sometimes abbreviated NSNS) coalescence from circular orbits. They used an Eulerian
finite-difference code for the hydrodynamics and focussed on gravitational wave generation. Ra-
sio and Shapiro13 employed the Lagrangian SPH method (see Chapter 5.2). They focused on

5Symbalisty and Schramm (1982); Eichler et al. (1989); Rosswog et al. (1998).
6For early overviews and references, see, e.g., Rasio and Shapiro (1999); Font (2000); Baumgarte and Shapiro

(2003c).
7For Newtonian simulations, see Gilden and Shapiro (1984); for relativistic simulations, see Wilson (1979);

Abrahams and Evans (1992); Jin and Suen (2007), and references therein.
8Peters (1964); see Chapter 12.1.
9Chandrasekhar (1969).

10Lai et al. (1993a, 1994a,c); Taniguchi and Nakamura (2000a,b).
11Lai et al. (1994c); Lai and Shapiro (1995b), and references therein. In the triaxial ellipsoid treatment adopted

here, the hydrodynamical equations in 3 + 1 reduce to ordinary differential equations. The treatment is exact for
incompressible fluids orbiting in tidal gravitational fields. See also Carter and Luminet (1983, 1985); Luminet and
Carter (1986); Kochanek (1992a,b); Kosovichev and Novikov (1992).

12See Nakamura and Oohara (1991) and references therein
13Rasio and Shapiro (1992, 1994, 1995).
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determining the stability properties of initial binary models in strict hydrostatic equilibrium and
calculating the emission of gravitational waves from the coalescence of unstable binaries. Many
of their results were confirmed by New & Tohline,14 who used completely different numerical
methods but also focused on stability questions, and by Zhuge et al.,15 who also used SPH. The
later group also explored the dependence of the gravitational wave signals on the initial neutron
star spins. Davies et al.16, who used SPH, and Ruffert et al.17 who employed a high-resolution
shock-capturing (HRSC) hydrodynamics scheme, incorporated a simple treatment of the nuclear
physics in their hydrodynamic calculations, motivated by models of gamma-ray bursts and the
ejection of r-process nuclei.

16.2 The Conformal Flatness Approximation

One of the first approaches used to simulating binary neutron star coalescence in general relativity
is the conformal flatness approximation, pioneered by Wilson and Mathews.18 In this approach,
one assumes that the dynamical degrees of freedom of the gravitational field, i.e. the gravitational
radiation, play a negligible role in determining the dynamical behavior or structure of the neutron
stars. Simplifying the spacetime to reduce radiative influences, one sets the initial spatial metric
to be conformally flat, γij = ψ4ηij, so that the spacetime metric takes the form

ds2 = −α2dt2 + ψ4ηij(dx
i + βidt)(dxj + βjdt) . (16.1)

One further assumes that the spatial metric remains conformally flat at all times, an approximation
that greatly simplifies the resulting field equations. For example, in the ADM scheme, the traceless
part of equation (2.135) then has to vanish, which, according to equations (3.92) and (3.93), yields

Aij =
1

2α
(Lβ)ij. (16.2)

Here Aij is the traceless part of the extrinsic curvature, and the vector gradient L is defined in
(3.50). We will discuss the validity of this approximation below.

The resulting equations can be derived in complete analogy to our treatment of the conformal
thin-sandwich decomposition in Chapter 3.3. In particular, we can substitute equation (16.2)
into the momentum constraint (2.134) to yield an equation for the shift vector βi. The conformal
factor ψ can be found from the Hamiltonian constraint (2.133), and, adopting maximal slicing with
K = 0 = ∂tK (see Chapter 4.2), we can also obtain and equation for the lapse function α. With
the conformal rescaling relation (3.35) for Aij, these equations then reduce to the thin-sandwich
equations (3.116) - (3.118) with R̄ = 0 and flat-space differential operators,19

∆flatψ = −1

8
ψ−7ĀijĀ

ij − 2πψ5ρ (16.3)

(∆flat
L β)i = 2ĀijD̄j(αψ

−6) + 16παψ4ji (16.4)

∆flat(αψ) = αψ

(
7

8
ψ−8ĀijĀ

ij + 2πψ4(ρ+ 2S)

)
. (16.5)

14New and Tohline (1997).
15Zhuge et al. (1994, 1996).
16Davies et al. (1994); Rosswog et al. (1999).
17Ruffert et al. (1996); Ruffert and Janka (1998).
18Wilson and Mathews (1989, 1995). See also Isenberg (1978); Wilson et al. (1996).
19See exercise 3.17 for an expansion of the differential operators into partial derivatives.
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This coupled system now completely determines the metric (16.1).
All unknowns in the metric (16.1) are determined by elliptic equations, and in this sense all

dynamical degrees of freedom have been removed from the gravitational fields. In this approach,
one solves an initial value problem at each instant of time, as opposed to dynamically evolving
the gravitational fields. While one may be concerned about the accuracy of this approximation
(see below), it greatly simplifies the field equations and allowed Wilson and Mathews (1995)
to perform some of the first relativistic simulations of binary neutron stars. In this approach,
the time step is limited by the matter sound speed and not the light speed, since there are no
dynamical field equations. Hence the timestep can be much larger than in fully self-consistent
algorithms. In their simulations, Wilson and Mathews (1995) solved equations (3.116) - (3.118)
for the metric (16.1) simultaneously with Wilson’s formulation of the relativistic equations of
hydrodynamics, equations (5.12) - (5.14). In their approach, at each timestep one first evolves
the matter variables, and then solves the field equations for the metric, with the new matter
distribution used to compute the source terms. If desired, the gravitational wave emission can then
be estimated a postieri using the quadrupole formula or some other low-order expansion scheme.
Alternatively, the matter profile computed via the conformal flatness approximation can be used
to calculate the source terms in the full dynamical field equations to determine the gravitational
radiation as a perturbation. The later approach has already been discussed in Chapter 15.4.

A useful computational check of a code that adopts the conformal flatness approximation
is provided by the fact that the conformally flat evolution equations maintain strict stationary
equilibrium for initial data satisfying the conformal thin-sandwich equations for the metric coupled
to the stationary equilibrium equations for the matter. This is the initial data we obtained for
relativistic binaries in circular equilibrium in Chapter 15.1.1.

Exercise 16.1 Consider a corotating, circular equilibrium binary constructed as in Chapter 15.1.1
using the conformal thin-sandwich approximation coupled to the integrated Euler equation (15.46).
Confirm that these initial data are strictly conserved in the the conformal flatness approximation.
Specifically, show that the conformal thin-sandwich initial value solution provides a stationary solu-
tion to the hydrodynamic matter evolution equations (5.12), (5.13) and (5.14), coupled to the metric
equations (16.3) - (16.5). Use the fact that for corotating binaries, the fluid velocity satisfies vj = 0 in
the corotating frame.
Hint: It also may be helpful to use the relativistic Gibbs-Duhem relation dh = dP/ρ0.

Of course, in full general relativity, binaries constructed from such initial data are only in
quasiequilibrium, as they undergo inspiral due to the emission of gravitational radiation. To mimic
inspiral in the conformal flatness approximation, a post-Newtonian graviational radiation-reaction
potential20 is sometimes added in the Euler equation.

Validity of the Conformal Flatness Approximation

In Chapter 3 we found that conformal flatness greatly simplifies the initial value equations. Here
we have seen that it greatly simplifies the evolution treatment as well. It is important, however,
to appreciate that the two treatments are very different in nature. For the construction of initial
data, the assumption of conformal flatness still leads to exact solutions to Einstein’s constraint
equations, and therefore does not represent an approximation in this sense.21 The true dynamical

20See equation (1.50) and Chapter 9.1.1, as well as, e.g., Burke (1971) or Misner et al. (1973), Chapter 36.8, for
a discussion of the radiation-reaction potential.

21Conformally-flat initial data, even though they constitute exact solutions to Einstein’s constraint equations,
may not represent configurations that are astrophysically realistic. It is in this sense they are sometimes referred



16.2. THE CONFORMAL FLATNESS APPROXIMATION 477

evolution of such initial data, however, will generally lead to a spatial geometry that does not
remain conformally flat. Assuming conformal flatness during a dynamical simulation therefore
yields solutions that, in general, are only approximate spacetime solutions to Einstein’s equations.

The conformal flatness approximation has been used frequently to model relativistic systems
in which gravitational radiation plays a minimal role in the structure and evolution of a system on
the timescales of interest. This is certainly the case for spherical spacetimes (e.g., as in spherical
stellar collapse) for which the formalism is exact. It is also applicable, albeit approximately, to
quasiequilibrium binary systems in circular orbit over a few orbital periods.

In Chapter 3 we found that the dynamical degrees of freedom of the gravitational fields can
be identified with parts of the conformally-related spatial metric and the transverse-traceless part
of the extrinsic curvature. This suggests that the assumptioins of conformal flatness and the
vanishing of ĀTTij may indeed “minimize the gravitational radiation content” of a spatial slice
Σ. This argument cannot be strictly true, however; it does not even hold for single rotating
black holes. Rotating Kerr black holes, which are stationary and do not emit any gravitational
radiation, are not conformally flat.22 Similarly, conformally-flat models of rotating black holes
that are constructed in the Bowen-York formalism do contain gravitational radiation.23

For rapidly rotating, isolated neutron stars in stationary equilibrium, the restriction to con-
formal flatness introduces an error of at most a few percent, and the error is this large only for
the most relativistic and rapidly rotating configurations.24 Similarly, small differences exist be-
tween conformally-flat binary neutron star models and binary models constructed under different
assumptions.25 These small deviations are not surprising, since differences between a conformally-
flat metric and the “correct” metric already appear at second post-Newtonian order,26 and thus
are on the order of a few percent for neutron stars. To gauge the importance such an error, it
should be compared with other approximations and errors made in the calculations, including
finite resolution error, the treatment of outer boundaries, uncertainties in the equation of state,
and the effect of neglecting other physical processes like neutrino transport or magnetic fields in
the simulation.

To calibrate the conformal flatness approximation it is useful to compare how well it performs
in comparison to fully relativistic calculations. Shibata and Sekiguchi (2004) have performed ax-
isymmetric simulations of rotating stellar core collapse to a neutron star in full general relativity,
using the BSSN scheme to integrate the gravitational field equations. They find that the evolution
of the central density during the collapse, bounce and formation of the protoneutron star agrees
well with the evolution found by Dimmelmeier et al. (2002a,b), who use the conformal flatness
approximation to simulate the same problem. Both groups employ a HRSC scheme to integrate
the relativistic fluid equations for the matter. Both groups computed gravitational waves using
the quadrupole approximation, although they adopted slightly different forms for the quadrupole
formula. Their waveforms are in good qualitative agreement, but exhibit some quantitative differ-
ences.27 The differences in their adopted quadrupole formulae are likely responsible for most of the

to as approximations.
22At least slices of constant Boyer-Linquist time are not conformally flat, nor are axisymmetric foliations that

smoothly reduce to slices of constant Schwarzschild time in the Schwarzschild limit; Garat and Price (2000).
23Brandt and Seidel (1995a,b, 1996); Gleiser et al. (1998); Jansen et al. (2003).
24Cook et al. (1996).
25Usui et al. (2000); Usui and Eriguchi (2002).
26Rieth and Schäfer (1996).
27Shibata and Sekiguchi (2004) had to use the quadrupole approximation to compute waveforms since the wave

amplitudes were too small (< 105) to be extracted accurately from the metric data with their uniform spatial grid
of 2500 × 25000 zones. The formula for the quadrupole moment is not defined uniquely in strong-field general
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discrepancy, suggesting that the conformal flatness approximation is quite adequate for handling
many features of stellar collapse to neutron stars.

Exercise 16.2 (a) Show from the quadrupole formula that the gravitational wave amplitude of the +
mode in axisymmetric spacetimes may be obtained from

h+ =
Ïxx(tret)− Ïzz(tret)

r
sin2 θ , (16.6)

where the symmetry axis is along z, Iij is the quadrupole moment, r is the distance to the observer, θ
is the polar angle of the observer and tret is retarded time. (What can you say about the × mode in
axisymmetry in the quadrupole approximation?)
(b) Define the quadrupole moment as in Shibata and Sekiguchi (2004):

Iij ≡
∫
ρ∗x

ixjd3x , (16.7)

where ρ∗ ≡ γ1/2D = αutγ1/2ρ0.
Use the continuity equation (5.12) to show that the first time derivative of Iij can be obtained from

İij =
∫
ρ∗(vivj + xivj)d3x . (16.8)

Hence argue that to compute Ïij in equation (16.6), only one numerical time derivative of the data is
required provided equation (16.8) is used, which is much more reliable than using equation (16.7) and
taking two numerical derivatives.28

This suggesion is strengthened considerably by the relativistic simulations of rotating stellar
core collapse in both 3+1 and 2+1 (axisymmetry) by Ott et al. (2006), who also incorporated more
detailed microphysics in their modeling.29 They compared fully general relativistic evolution using
a BSSN scheme with a treatment adopting conformal flatness, and focussed on gravitational wave
emission from the rotating collapse, core bounce and the early post-bounce phases. The waveforms
computed by extracting the metric data directly in the fully relativistic simulation closely match
those computed from the quadrupole formula in the simulation that adopts conformal flatness.
This suggests that the conformal flatness approximation is sufficiently accurate to handle the
core-collapse supernova problem, at least when the outcome is a neutron star.

As we emphasized above, the conformal flatness approximation is, in general, inconsistent with
Einstein’s evolution equations. Miller and Suen (2003) have attempted to calibrate this error for
the inspiral of binary neutron stars. To do so, they compute the Bach tensor Bij (see equation
3.15), which vanishes if and only if the spatial metric γij is conformally flat.30 To construct a
diagnostic that measures departure from conformal flatness they compute the matrix norm |Bij|,31
and normalize this quantity to the magnitude of the covariant derivative of the 3-Ricci tensor,
B ≡ |Bmn|/(DiRjkD

iRjk)1/2. They then integrate this quantity across a star and obtain a rest-
mass weighted average of B, denoted by 〈B〉. Miller and Suen (2003) evaluate the diagnostic B for

relativity; different forms of the integrand all have the same Newtonian limit. The formula adopted by Shibata
and Sekiguchi (2004) was calibrated against fully relativistic waveforms calculated for highly oscillating and rapidly
rotating neutron stars of high compaction. The quadrupole formula wave amplitudes were found to be reliable to
within 10% error, with waveform phase errors considerably smaller.

28This trick was first pointed out by Finn and Evans (1990).
29Ott et al. (2006) employ a finite-temperature equation of state (EOS) and an approximate treatment of delep-

tonization during collapse.
30See the related discussion in Chapter 3.1.2; note that Miller and Suen (2003) use a conformal rescaling that is

different from that in equation (3.15).
31The matrix norm of the tensor Bij is defined as the square root of the largest eigenvalue of BijB

j
k.
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a binary system of identical, corotating neutron stars, modeled initially as relativistic polytropes
with index n = 1 and evolved adiabatically with adiabatic index Γ = 2. They normalize their
polytropic equation of state so that the maximum ADM mass of a spherical, static star is 1.79M�,
whereby the maximum rest-mass M0 is 1.97M�. They treat binaries with stellar rest-masses
of 1.49M�, approximately 75% of the maximum mass; in isolation, static stars with this rest-
mass have an ADM mass of about 1.4M�. They begin their simulations with quasiequilibrium
binaries constructed in the conformal thin-sandwich formalism, assuming conformal flatness so that
〈B〉 vanishes initially. They treat close binaries orbiting at several different initial separations,
including an initial separation close to the ISCO. In all cases 〈B〉 increases from zero to a maximum
value in a fraction of an orbital period, and then begins to decay. The maximum value is larger
for tighter binaries, but is never more than a few percent, in agreement with our rough estimate
above. Even for the tightest orbit, where the spatial geodesic separation between the density
maxima in the two stars is l/M0 = 23.44 and the orbital frequency is ΩM0 = 0.01547, the value
never rises above 5% before it begins to decay. This finding helps quantify the degree to which the
conformal flatness approximation provides a reasonable model for the spacetime of a relativistic
binary neutron star, at least during the inspiral phase.

Numerical Results

The pioneering simulations of binary inspiral by Wilson and his collaborators introducing the
conformal flatness approximation have been followed by several other treatments of increasing
sophistication.32 One of the earliest was by Oechslin et al. (2002), who employed a Lagrangian
SPH hydrodynamics code with a multigrid elliptic solver to handle the metric equations, and
adopted corotating initial configurations. While these configurations are believed to be unphysical
for neutron stars,33 these simulations confirmed earlier SPH simulations in Post-Newtonian (PN)
gravitation34 that suggested that relativistic effects suppress mass loss during merger.

Faber et al. (2004) subsequently performed SPH simulations in the conformal flatness approx-
imation using a spectral elliptic solver in spherical coordinates35 for the metric equations. They
considered the adiabatic evolution and merger of equal-mass relativistic binary polytropes with
n = 1 and Γ = 2. For initial data they employed the quasiequilibrium, irrotational binary models
of Taniguchi and Gourgoulhon (2002), which are constructed using the conformal thin-sandwich
formalism. Faber et al. (2004) consider binaries whose members each have rest mass M0 = 0.146
in units where the polytropic gas parameter K = 1 (i.e M̄0 = 0.146). At infinite separation,
such a star has a total mass-energy (i.e. ADM mass) equal to M = 0.136 and a compaction
M/R = 0.14. (For comparison, the maximum-mass configuration for a static n = 1 polytrope
has Mmax

0 = 0.180 and Mmax = 0.164.) The binary profiles form a cusp slightly within an orbital
radius r0/Mch = 19.9, inside of which quasiequilibrium, irrotational, circular-orbit solutions do

not exist for this EOS. Here Mch ≡ µ3/5M
2/5
t = M/21/5 is the “chirp mass” at large separation,

32The original version of Wilson and Mathews (1995) contained a mathematical error, pointed out by Flanagan
(1999), which is now believed to be mainly responsible for the spurious finding of a “crushing” instability that
triggers the collapse of the neutron stars prior to merger; see our discussion in Chapter 15.2. Numerous earlier
analyses, including the Post-Newtonian dynamical simulations of Shibata et al. (1998), had cast considerable doubt
on the existence of a “crushing” instability.

33Viscous stresses are thought to be too weak to maintain tidal synchronization in binary neutron stars; Bildsten
and Cutler (1992); Kochanek (1992a); see Chapter 15.1.

34Faber and Rasio (2002).
35The LORENE numerical libraries, developed by Grandclément et al. (2001) and publically available online at

http://www.lorene.obspm.fr were used in these simulations.
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Figure 16.1: The evolution of an equal-mass, irrotational binary neutron star system in the con-
formal flatness approximation, as viewed in the orbital plane. The simulation begins just outside
the orbital separation where a cusp develops and continues through the merger and formation of
a remnant. Density contours shown here are logarithmically spaced, two per decade, ranging from
M2

chρ∗ = 10−6.5 to 10−1. A significant tidal lag angle develops at t/Mch = 500, followed by an
“off-center” collision. This process leads to the formation of a vortex sheet and a small amount of
matter ejection by t/Mch = 850. [From Faber et al. (2004).]

where Mt is the total (ADM) mass-energy of the system at large separation and µ ≡ M1M2/Mt

is the reduced (ADM) mass.
Typical runs employ approximately 105 SPH particles to solve the hydrodynamic equations

and three spheroidal computational domains around each star to evaluate the field equations. As
a test, Faber et al. (2004) demonstrate that the binaries remain dynamically stable and maintain
circular equilibrium for all separations up to cusp formation. By inserting an approximate PN
radiation-reaction potential term in the Euler equation, they trigger a small inward spiral mo-
tion and follow the complete coalescence of a binary from just outside the cusp radius through
merger, remnant formation and ringdown. They find that mass loss is highly suppressed, but
that the massive remnant is dynamically stable against gravitational collapse because of its strong
differential rotation. In other words, the remnant settles into an equilibrium hypermassive neu-
tron star like those discussed in Chapter 14. Snapshots of the merger scenario are depicted in
Figures 16.1 and 16.2. The rotation profile of the hypermassive merger remnant is plotted in
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Figure 16.2: The advanced evolution of the merger depicted in Figure 16.1; labels are the same
as in that figure. A dense remnant forms in the center of the system, surrounded by a thin
halo. Some ellipticity is seen shortly after the merger, but the system quickly relaxes toward a
spheroidal, hypermassive equilibrium configuration, with maximum density in the center of the
system. [From Faber et al. (2004).]

Figure 16.3. The gravitational radiation waveforms, calculated from the quadrupole formula, are
shown in Figure 16.4.

Exercise 16.3 Assume that each neutron star in the binary system shown in Figures 16.1 to 16.4 has
a rest mass of M0 = 1.5M�. Compute the ADM mass, chirp mass Mch and stellar radius R at large
separation. Convert the length, time, and angular velocity scales plotted in the figures to physical
units. Evaluate the maximum amplitude of the waveform shown in Figure 16.4 if the binary were
located in the Virgo cluster (d ≈ 20 Mpc, where 1 Mpc = 3.09× 1024 cm).

One of the most extensive sets of binary neutron star merger calculations based on the con-
formal flatness approximation to Einstein’s field equations is that of Oechslin et al. (2007). Like
Faber et al. (2004), they employ a relativistic SPH code for the hydrodynamics, but unlike Faber
et al. (2004), they include artificial viscosity to handle shocks (see Chapter 5.2.1). They solve
the metric equations with the help of a multigrid solver and employ approximately 120,000 SPH
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Figure 16.3: Angular velocity of the hypermassive merger remnant in Figure 16.2 at t/Mch = 1220,
shown as a function of cylindrical radius, rcyl ≡

√
x2 + y2. The remnant exhibits strong differential

rotation, with the highest angular velocity in the center, decreasing monotonically with radius. It
is this differential rotation that supports the hypermassive remnant against collapse. [From Faber
et al. (2004).]

particles in their simulations. Most significantly, they consider the effect of varying the nuclear
EOS, the neutron star masses and the neutron star spins.36 Oechslin et al. (2007) supplement
their treatment by adding a small, nonconformally flat gravitational radiation back-reaction con-
tribution to the metric,37 which is only important during the inspiral phase before the plunge.38

They ignore neutrino transport by arguing that any back-reaction of the neutrino emission on the
matter is negligible on the 10ms (dynamical) timescales of interest here. They consider several
models for the finite-temperature nuclear EOS, including the “hard” EOS of Shen et al. (1998b,a),
which gives a cold, static, maximum neutron star mass of about 2.2M�, and the “soft” EOS of

36Oechslin et al. (2007) impose the irrotational spin condition, as well as their other choices for the initial spin,
only approximately. However, when they compare their initial models to corresponding models obtained via the
conformal thin-sandwich scheme, they find deviations in global quantities like the total angular momentum J and
orbital angular velocity Ω to be small, of order 1%.

37They adopt the 3.5 PN prescription of Faye and Schäfer (2003).
38The merger and postmerger phases are found to depend very weakly on the inspiral dynamics.
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Figure 16.4: The GW signal in the h+ and h× polarizations for the merger depicted in Figures 16.1
and 16.2 as seen by an observer situated along the vertical axis. The amplitude is scaled with the
distance of the observer, d/Mch. A chirp signal is followed by a modulated ringdown spike. The
modulation is caused by the alignment between quadrupole deformations in the inner regions of
the remnant core and and those at larger radius. [From Faber et al. (2004).]

Lattimer and Swesty (1991), for which the maximum mass is about 1.8M�. The simulations show
that the dynamics and the final outcome of the merger depend sensitively on the EOS and the
binary parameters. For example, Oechslin et al. (2007) find that with the soft EOS the remnant
collapses to a black hole either immediately or within a few dynamical timescales after merger,
while for all other EOSs, the remnant does not collapse but instead forms a hypermassive equilib-
rium configuration. The mass of the low-density torus that forms around the black hole is larger
for unequal-mass systems (reaching 0.3M� for a mass ratio of 0.55), large initial neutron stars
and for neutron star spin states that result in a larger total angular momentum. The character-
istic temperatures achieved in the torus are 3− 10 MeV, depending on the degree of shear at the
collision interface; the shear, in turn, depends on the initial spins. Only about 10−3 to 10−2 of the
total rest-mass escapes from the system.

From these simulations, Oechslin and Janka (2006) suggest that binary neutron-star mergers
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may be the origin of short-hard gamma-ray bursts (GRBs). Previous simulations39 indicated that
insufficient energy is liberated during the highly dynamical phase of the merger event to account
for the observed energies. Moreover, the possibility that a GRB is triggered during the neutrino
emitting, pre-collapse lifetime of the hypermassive remnant is also doubtful, because the high
mass loss rates in the neutrino-driven wind will likely quench the propagation of gamma-rays (the
“baryon loading” problem). Instead, Oechslin and Janka (2006) propose that the bursts could be
powered by neutrino-antineutrino annihilation in the hot gas in the torus surrounding the black
hole remnant. In particular, the measured GRB energies and durations lead to estimates for the
accreted mass and accretion rate that are compatible with their theoretical estimates derived from
their simulation data. Their model is not very different from the scenario proposed by Shibata
et al. (2006), based on their general relativistic MHD simulations of the evolution and collapse of
a magnetized hypermassive star and the black hole-magnetized torus configuration that results.40

While the origin of GRBs is far from resolved, the key point is that numerical relativity is now
sufficiently mature to be able to address the issue.

16.3 Fully Relativistic Simulations

Several groups have launched efforts over the years to solve the full set of Einstein’s field equations
self-consistently with the equations of relativistic hydrodynamics to model the merger of binary
neutron stars.41 Many of the most advanced and detailed simulations to date have been performed
by Shibata and his collaborators.42 These simulations represent a major achievement of numerical
relativity and demonstrate the degree to which fully relativistic calculations of binary neutron
stars have advanced. We will summarize some of the highlights of these calculations below.

Equal-Mass Binaries

The first truly successful simulations of binary neutron star mergers in full general relativity were
those of Shibata and Uryū (2000), which used a computational scheme developed and tested earlier
by Shibata (1999a). The original scheme employed the BSSN formulation of Einstein’s equations
to evolve the field equations (see Chapter 11.5) and the Wilson form of the equations of relativistic
hydrodynamics, equations (5.12), (5.14), and (5.19). The stars are constructed using an n = 1
polytropic EOS; the matter is assumed to evolve adiabatically according to a a Γ-law EOS with
Γ = 2. The transport terms in the hydrodynamics equations are handled by a second order van
Leer algorithm.43 Artificial viscosity is used to capture shocks, as in equation (5.24). Shibata
and Uryū (2000) employ “approximate maximal slicing” (Chapter 4.2) to specify the lapse α and
“approximate minimal distortion” (Chapter 4.5) to determine the shift βi. They also add a radial
component to the shift vector to avoid grid stretching in collapse situations (see the discussion at
the very end of Chapter 4.5). Most of their simulations in this study used a fixed uniform grid
with 233× 233× 117 grid points in the x− y − z directions, respectively, and assumed reflection
symmetry across the equatorial (orbital) plane at z = 0.

39Ruffert et al. (1996).
40See Chapter 14.2.5.
41e.g., Oohara and Nakamura (1999); Baumgarte et al. (1999); Font et al. (2000, 2002).
42Shibata (1999a); Shibata and Uryū (2000, 2002); Shibata et al. (2003, 2005); Shibata (2005); Shibata and

Taniguchi (2006).
43van Leer (1977).
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Model ρ̄max M̄0 M̄ J/M2 remnant
I1 0.0726 0.261 0.242 0.98 neutron star
I2 0.120 0.294 0.270 0.93 black hole
I3 0.178 0.332 0.301 0.88 black hole

Table 16.1: Summary of the initial data for the coalescence simulations of irrotational binary
neutron stars obeying an n = 1 polytropic EOS. Here M̄0, M̄ and J are the total rest mass, ADM
mass and angular momentum of the binary. In these dimensionless units, the maximum allowed
rest mass of an isolated, nonrotating star is M̄max

0 = 0.180. [Table adapted from Shibata and Uryū
(2000).]

As initial data, Shibata and Uryū (2000) prepared equal-mass polytropic (n = 1) models of
binary neutron stars in quasiequilibrium with both corotational (see Chapter 15.2) and irrotational
(see Chapter 15.3) velocity profiles. For both velocity profiles they generated three different models
with individual stellar masses ranging from about 70% to 100% of the maximum allowed mass
of nonrotating stars in isolation. For corotational models, they adopted contact models (zA = 0
in the parametrization of Chapter 15.2) as initial data, which are fairly close to the ISCO. As
we discussed in Chapter 15.3, irrotational sequences terminate at cusp formation, which is still
outside of the ISCO. Shibata and Uryū (2000) therefore adopted the cusp model as initial data, and
induced collapse by artificially reducing the angular momentum by about 2.5%. Since irrotational
velocity profiles are probably more realistic, we will discuss their models (I1), (I2) and (I3) for
irrotational binaries. The initial data for these three models are summarized in Table 16.1.44

The simulation for model I1 is for a binary of total rest mass M̄0 = 0.261.45 The angular
momentum of the initial data is J/M2 = 0.98, where M is the total ADM mass, and is hence
smaller than the Kerr limit J/M2 = 1. We show snapshots of density contours in Figure 16.5.

In contrast to the coalescence of corotational binaries, no significant spiral arms form during
the merger of irrotational stars, and hardly any matter is ejected. Nevertheless, the remnant
settles down to an equilibrium neutron star and does not collapse to a black hole, at least not
on a dynamical timescale, even though its rest mass exceeds the maximum allowed rest mass
of a spherical, nonrotating star by about 45%. There is only a small amount of shock heating,
which rules out thermal pressure as the origin of the extra support against collapse. As noted,
the angular momentum J/M2 is smaller than the Kerr limit and therefore cannot prevent black
hole formation. Uniform rotation can increase the maximum allowed rest mass for Γ = 2 (n = 1)
polytropes only by about 20%.46 However, the remnant core is differentially rotating as opposed to
uniformly rotating, as shown in Figure 16.6. The remnant is thus a “hypermassive neutron star”
of the type discussed in Chapter 14.1.2. The formation of hypermassive neutron stars following
binary neutron mergers were foreshadowed by Newtonian simulations47; relativistic equilibrium
models for such stars were then constructed numerically and tested for dynamical stability by
performing simulations in general relativity.48 But the calculations of Shibata and Uryū (2000)
were the first simulations in full general relativity to demonstrate that hypermassive stars can

44More information can be found in Table 1 of Shibata and Uryū (2000).
45We have converted the units of Shibata and Uryū (2000) into the same dimensionless (‘barred’) units adopted

earlier in this book , corresponding to setting the polytropic gas constant K = 1.
46Cook et al. (1994b); see Table 14.1.
47see, e.g., Rasio and Shapiro (1999).
48Baumgarte et al. (2000); see Chapter 14.2.
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Figure 16.5: [CAMBRIDGE: Replace Mg with M . Then eliminate last sentence in this caption.]
Snapshots of density contours for ρ∗ = γ1/2ρ0W (see equation 5.12) and the velocity field (vx, vy)
in the equatorial plane for the coalescence of an irrotational binary of total rest mass M̄0 = 0.261
(Model I1 in Table 16.1). Time is measured in terms of the initial orbital period P . The contour
lines denote densities ρ∗/ρ∗ max = 10−0.3j with ρ∗ max = 0.255 and j = 0, 1, 2, . . . , 10. The quantity
Mg = M is the total initial ADM mass. [From Shibata and Uryū (2000).]

actually form during binary neutron star mergers.

Both models I2 and I3, for which the total rest mass exceeds the maximum allowed spherical
mass by 63% and 85%, respectively, form a black hole promptly upon merger. In Figure 16.7
we show snapshots of the density contours and velocity profiles for the more massive model I3.
In the last frame the thick solid line denotes the location of an apparent horizon, indicating the
formation of a black hole. By means of these simulations, Shibata and Uryū (2000) conclude
that hypermassive remnants will form whenever the rest mass of each star is less than about
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Figure 16.6: The angular velocity Ω along the x-axis (solid line) and the y-axis (dotted line) at
t = 1.81P for model I1. [CAMBRIDGE: Replace Mg with M .] [From Shibata and Uryū (2000).]

70-80% of the maximum allowed mass of the spherical star, otherwise a black hole will form. As
demonstrated by simulations discussed in Chapter 14.2, hypermassive stars prove to be unstable
on secular timescales: dissipative mechanisms such as shear viscosity or magnetic fields tend to
bring the stars into more uniform rotation, resulting in a “delayed collapse” to a black hole.

Shibata and Uryū (2000) find fairly similar results for corotational binary models. Probably
the most significant difference is that corotational binaries have more angular momentum prior
to merger, which leads to the formation of spiral arms during the coalescence. The spiral arms
contain a few percent of the total mass, and may ultimately form a disk around the central object.
For corotational binaries that promptly form black holes, a disk of mass ∼ 0.05 − 0.1M0 forms,
where M0 is the total rest-mass of the system. For irrotational binaries, the disk mass is much
smaller, less than 0.01M0.

In these early simulations one of the largest limitations on the accuracy involved is the outer
boundaries. Because of limited computational resources, these boundaries had to be imposed well
within one gravitational radiation wavelength from the binary (at about λGW/3). This means
that the waves were not being extracted in the radiation zone, which necessarily introduces error
unless a special near-zone wave extraction algorithm is implemented. After gaining access to a
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Figure 16.7: [CAMBRIDGE: replace Mg with M .] Same as Figure 16.5, but for a binary of total
rest mass M̄0 = 0.332 (Model I3 in Table 16.1). Contour lines denote densities ρ∗/ρ∗ max = 10−0.3j

with ρ∗ max = 0.866 and j = 0, 1, 2, . . . , 10. The dashed line in the last snapshot is the circle at
r = 3M , which encloses over 99% of the total rest mass. The thick solid line at r/M ≈ 1 denotes
the location of the apparent horizon. [From Shibata and Uryū (2000).]

more powerful supercomputer, Shibata and Uryū (2002) decided to repeat their calculations on
computational grids that extend further, to about a gravitational wavelength. Their improved
calculation, performed on uniform grids with typical size 505 × 505 × 253, gave results in good
qualitative agreement with their earlier ones, although the onset of black hole formation shifts
to slightly smaller masses. Most strongly affected by this improvement are the gravitational
waveforms. In Figure 16.8, we show examples from these improved simulations for models that are
similar to model (I1), leading to a hypermassive neutron star remnant, and model (I2), leading to
a black hole. The quantities are plotted for an observer along the z−axis and are defined according
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Figure 16.8: Gravitational wave amplitudes h+ and h× as functions of retarded time for the n = 1
irrotational binary neutron star models E and H of Shibata & Uryū (2002). Model E (left panel)
corresponds to a slightly smaller mass then I1 and results in a differentially rotating hypermassive
neutron star, while model H (right panel) is similar to model I2 and results in a black hole. [From
Shibata and Uryū (2002).]

to

h̄+ ≡
zobs

2MADM,0 (M/R)∞
(γ̃xx − γ̃yy) , h̄× ≡

zobs

2MADM,0 (M/R)∞
(γ̃xy) . (16.9)

Here zobs is the location of the observer. The quantities h̄+ and h̄× calculated here are expected
to provide a reasonable approximation to the asymptotic gravitational waves, since the adopted
gauge condition is approximately transverse-traceless in the wave zone.49 Note that the wave
amplitude attains its maximum along the z−axis, along which it is composed only of |m| = 2
modes.

Exercise 16.4 Show that at the point of contact of two equal-mass, spherical, Newtonian stars in a
circular binary, the quadrupole formula gives the amplitude of gravitational waves along the z−axis to
be

hGW =
2M(M/R)∞

zobs
. (16.10)

This result explains the adopted normalization in equation (16.9).

The difference between the formation of a hypermassive remnant versus a black hole immedi-
ately upon merger is reflected in their waveforms, as seen in Figure 16.8. Quasiperiodic oscillations
are observed to persist for a long duration for the hypermassive remnant, while such oscillations
last only for a short timescale in the case of a prompt black hole formation.

49In the wave zone, the conformally related spatial metric used in equation (16.9) and the physical spatial metric
are nearly equal.
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Unequal-Mass Binaries

Following up these simulations, Shibata et al. (2003) next considered the merger of binary neutron
stars of unequal mass. Here again they adopted a simple Γ-law EOS with Γ = 2 to explore the effect
of varying the mass ratio q between 0.85 and 1. This is an appropriate range to consider, since
the mass ratio for all the observed galactic binary neutron stars for which each mass is determined
accurately resides in the this range.50 The numerical implementation has been improved in these
simulations, beginning with the hydrodynamics, which is performed by means of a HRSC scheme.
Also, the configurations are followed beginning from the late inspiral phase through the merger
phase; this “early start” allows the transition from inspiral to plunge to be triggered more properly
by gravitational radiation reaction, rather than by an artificial initial angular momentum depletion.
A hyperbolic shift equation similar in spirit to the one given by equation (14.44) is used to replace
the time-consuming elliptic AMD gauge condition. A typical spatial grid size of 633× 633× 317
zones is employed in these simulations.

A number of interesting results emerge from this study. If the total rest mass of the system
exceeds approximately 1.7 times the maximum allowed rest mass of a spherical neutron star, a
black hole forms promptly upon merger, independent of the mass ratio. Otherwise a hypermassive
neutron star forms. The disk mass around the black holes increases with decreasing rest-mass
ratios and with increasing neutron star compactness. The merger process and the gravitational
waveforms are sensitive to the rest-mass ratios, even in the restricted range q = 0.85 − 1. For
example, the maximum amplitude is smaller for models with smaller mass ratios. This behavior is
due to the enhanced role of tidal effects for smaller mass ratios, causing tidal disruption at larger
orbital separation.51 Also, emission in modes of odd values of m, which is absent in the case of
equal-mass binaries due to π-rotation symmetry, is not negligible for the merger of unequal-mass
binaries, although the amplitude of this radiation never exceeds 5% of the l = 2, m = 2 mode.

Binaries With Realistic EOSs

Having succeeded in simulating binary neutron star mergers for simple polytropes and Γ-law EOSs,
Shibata et al. (2005) proceeded to explore mergers with more realistic EOSs. They construced
a convenient “hybrid” hot nuclear EOS consisting of two parts, P = Pcold + Pth. For the cold
nuclear matter contribution Pcold they used both the SLy52 and FPS53 nuclear EOSs, for which
the maximum allowed ADM mass of an isolated spherical neutron star is 2.04M� and 1.80M�,
respectively.54 For the thermal contribution Pth, they adopted the law Pth = (Γth− 1)ρ0εth, where
ρ0 is the rest-mass densitiy, and εth = ε − εcold is the specific thermal energy density. To match
the stiff behavior of the cold contribution, they chose Γth = 2, but also experimented with other
values.

Exercise 16.5 Assuming that the stars are completely cold when they begin their plunge towards each
other, what physical effect causes them to acquire nonzero thermal energy? Estimate the resulting
characteristic gas temperature in the gas.

50Stairs (2004).
51This effect was reported earlier in Newtonian and post-Newtonian studies; see Rasio and Shapiro (1994); Faber

and Rasio (2000, 2002).
52Douchin and Haensel (2001).
53Pandharipande and Ravenhall (1989).
54For comparison, a Γ-law EOS of the form P = KρΓ

0 with Γ = 2 has a maximum ADM mass of 1.72(K/1.6 ×
105)1/2M�, where K is given in cgs units. However, the radii of neutron stars with this Γ-law EOS are considerably
larger than the radii given by the adopted realistic EOSs; see Shibata et al. (2005), Figure 2b.



16.3. FULLY RELATIVISTIC SIMULATIONS 491

Simulations were performed for binary systems with total ADM mass in the range between
2.4M� and 2.8M� and with rest-mass ratios q is the range 0.9 <∼ q <∼ 1. Uniform grids with as many
as 633 × 633 × 317 zones were employed. They found that when the total ADM mass exceeds a
threshold Mthr, a black hole forms promptly after merger, independent of mass ratio. Otherwise a
differentially rotating hypermassive neutron star remnant forms. The value of Mthr is found to be
approximately 2.7M� for SLy and 2.5M� for FPS, which is larger than the maximum spherical or
uniformly rotating mass in each case.

For binaries with total masses exceeding Mthr, over 99% of the rest-mass forms a black hole
promptly on merger. The spin of the black hole falls in the range J/M2 ≈ 0.7 − 0.8, not very
different from the spins typically arising from the collapse of rapidly spinning stars.55 The quasi-
normal mode ringdown radiation of the hole will then be at a frequency f ≈ 6.5 − 7(2.8M�/M)
kHz, which, unfortunately, exceeds the frequency range of optimal sensitivity of all current laser
interferometers.56

For M < Mthr the binary results in a hypermassive remnant. In contrast to the remnants
governed by a pure Γ = 2 EOS, the hypermassive remnants formed here are characterized by a
large ellipticity, a consequence of their high spin and high effective adiabatic index.57 A typical
relativistic ellipsoidal remnant is shown in Figure 16.9.58

The remnant shown here results from the merger of an irrotational binary consisting of identical
neutron stars, each of which has an ADM mass of 1.3M� in isolation. The matter is governed by
the SLy hybrid EOS. The simulation begins from a quasiequilibrium circular orbit just beyond the
ISCO; the initial orbital period is about 2 ms and the merger occurs after about one orbit. As a
result of its spin and high ellipticity, the hypermassive remnant is a strong emitter of quasiperiodic
gravitational waves. The waveforms for the simulation depicted in Figure 16.9 are shown in
Figure 16.10. Their characteristic frequency is about 3 kHz and their amplitude is roughly 1.5×
10−22 (assuming a distance of 50 Mpc). These features hold constant over many rotation periods
since the emission damping time, about 50 ms, is very long.

Exercise 16.6 Consider gravitational radiation emission in the quadrupole approximation from a
uniformly rotating, homogeneous, Newtonian ellipsoid.
(a) Show that the energy and angular momentum loss rates are given by(

dE

dt

)
GW

= Ω
(
dJ

dt

)
GW

= −32
5

Ω6(I11 − I22)2 , (16.11)

where Iii = Ma2
i /5 are the components of the star’s quadrupole moment along the principle axes in

its equatorial plane, ai are the semi-major axes in the equatorial plane, M is the mass, and Ω is the
angular velocity, which points in the polar direction.
(b) Show that the waveform amplitudes of the two polarization states are

h+ =
2
D

Ω2(I11 − I22)cosΦ(1 + cos2θ), (16.12)

h× =
2
D

Ω2(I11 − I22)sinΦcosθ, (16.13)

where D is the distance to the source, θ is the angle between the rotation axis of the star and line of
sight from the earth, and Φ ≡ 2

∫ t Ωdt is twice the orbital phase.

55See Chapter 14.2.
56See Chapter 9.3.
57Rapidly rotating, nonaxisymmetric quasiequilibria do not exist unless the adiabatic index is sufficiently high.

In Newtonian theory, a uniform rotating Jacobi-like ellipsoid exists only if Γ >∼ 2.25 and T/|W | >∼ 0.14; James
(1964); Tassoul (1978).

58Such triaxial ellipsoids were first seen in the Newtonian coalescence calculations of Rasio and Shapiro (1994).
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Figure 16.9: Contours of rest-mass density ρ in the equatorial plane of an ellipsoidal hypermassive
remnant at time t = 10.138 ms. The simulation begins at t = 0 and merger occurs at t ∼ 2 ms.
The solid curves are drawn for contours defined by ρ = 2 × 1014 × i g/cm3 (i = 2 ∼ 10) and for
2× 1014 × 10−0.5i g/cm3 (i = 1 ∼ 7). The dotted curve denotes the contour near nuclear density,
ρ = 2 × 1014 g/cm3. Vectors indicate the local velocity field (vx, vy), where the scale is shown in
the upper right-hand corner. [From Shibata (2005).]

Gravitational radiation emitted by the nonaxisymmetric hypermassive remnant carries off an-
gular momentum. Since angular momentum is crucial in holding up the hypermassive remnant
against collapse, its dissipation by wave emission will eventually lead to a “delayed” collapse to a
rotating black hole. Unfortunately, the simulations performed here were forced to terminate long
before the collapse. The presence and amplification of a seed magnetic field can accelerate the pro-
cess, as demonstrated by simulations presented in Chapter 14.2.5. Which mechanism dominates
the dissipation of angular momentum probably depends on the initial field strength, the degree of
differential rotation, the EOS, the importance of other dissipative agents, like neutrino emission,
and other factors that only now can be explored. But the final fate – delayed collapse – is almost
certain.

Shibata (2005) has pointed out that the quasiperiodic radiation from an ellipsoidal remnant
may be sufficiently strong for detection by advanced laser interferometers, even though the fre-
quency is near the high-end of their current dectability limit. The reason is that a long-term
integration over the many cycles of the wavetrain may increase the effective peak amplitude above
the noise level of detectors like Advanced LIGO. Also, identifying the chirp signal from the binary
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Figure 16.10: Waveforms for the binary merger that produced the ellipsoidal hypermassive neutron
star remnant depicted in Figure 16.9. The observer is located along the rotational axis of the binary
at a distance of 50 Mpc and tret is retarded time. [From Shibata (2005).]

during the inspiral phase prior to merger should improve the search for a quasiperiodic signal from
a remnant following delayed collapse. Detecting a delayed quasiperiodic signal will then provide
a lower limit to Mthr, and will therefore constrain the neutron star EOS. In fact, only a single
detection of such a signal is necessary to furnish a useful constraint. Since the theoretical values
for Mthr found from these binary merger simulations are quite close to the total masses of the
observed binary neutron stars with accurate mass determinations, binary neutron star mergers
leading to hypermassive remnants should occur frequently.

Shibata and Taniguchi (2006) have extended some of these calculations in two areas. First,
they use a stiff cold nuclear EOS by Akmal et al. (1998) (APR) in place of FPS. This choice was
motivated by reports of the discovery of a heavy neutron star (pulsar) with a mass of 2.1±0.2M�

59

Such measurement would establish a lower limit on the maximum ADM mass of a spherical neutron
star, and it is consistent with the APR maximum mass (2.18M�), but not the FPS value. Their
other motivation was to apply black hole excision in cases of prompt black hole formation to
evolve longer and thereby better determine the final state of the black hole system. In particular,
they wanted to determine the final mass of the quasistationary disk surrounding the black hole.
The disk is an important ingredient in black hole models of the central engine of short-hard GRB

59PSR J0751+1807; Nice et al. (2005). But note that more recent timing observations have led to a substantially
lower mass for this pulsar, 1.26± 0.14M�; Nice et al. (2008).
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Figure 16.11: Baryon rest mass of the disk around the black hole as a function of the mass ratio QM

in the case of prompt black hole formation. The disk mass is evaluated 0.5 ms after the appearance
of an apparent horizon. The open circles and squares denote the results with 633 × 633 × 317
zones for the APR and SLy EOSs, respectively; the filled circles and squares denote the results
with 377 × 377 × 189 zones. The results for the APR and SLy EOSs are obtained for a total
initial binary ADM mass of M ≈ 2.96M� and 2.76M�, respectively. [From Shibata and Taniguchi
(2006).]

sources, as we have noted in Chapter 14.2.5. Finally, they wanted to simulate a wider range of
mass ratios, 0.65 <∼ q <∼ 1.

Collecting their results, Shibata and Taniguchi (2006) conclude that the the value of Mthr

depends on the adopted cold nuclear EOS, but can be approximated by 1.3 − 1.35Msph, where
Msph is the maximum mass of a spherical neutron star constructed with the same EOS. Since
uniform rotation can account for mass increases of at most about 20%, differential rotation is
again required to support hypermassive neutron star remnants.60 Shibata and Taniguchi (2006)
also find that in the case of prompt black hole formation the disk mass increases sharply with
decreasing q for a fixed ADM mass and EOS, as shown in Figure 16.11.61

60The value of Mthr/Msph is thus smaller for stars constructed from realistic nuclear EOSs than for polytropes.
This result is consistent with the finding of Morrison et al. (2004) that, while the maximum mass of a differentially
rotating, hypermassive star is typically 50 % larger than the maximum mass of a nonrotating star constructed from
the same realistic nuclear EOS, the increase is less than that for a polytrope.

61Shibata and Taniguchi (2006) therefore suggest that a merger with a smaller q may be a better candidate for
producing a short-hard gamma-ray burst central engine.
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Figure 16.12: Plausible routes for the formation of a short-hard gamma-ray burst (SGRB) central
engine following the merger of a binary neutron star. Here “HMNS” stands for hypermassive
neutron star remnant and QM represents the mass ratio of the initial stars. For HMNS remnants,
“GW versus B-field J-transport” denotes the outward transport of angular momentum dominated
by gravitational wave emission versus magnetic torques. [From Shibata and Taniguchi (2006).]

By contrast, in the case of hypermassive remnant formation, followed by delayed collapse
to a black hole, the disk mass is likely to exceed 0.01M�, independent of the mass ratio. If
the dissipation of angular momentum responsible for inducing the collapse is due solely to the
emission of gravitational waves from the ellipsoidal remnant, the disk mass can only be estimated,
and amounts to 0.01 − 0.03M�.62 If, however, the dissipation is accelerated by the amplification
of a seed magnetic field in the remnant, the evolution of the system following collapse can be
followed using black hole excision until a quasistationary state is reached. At this point the disk
mass is found to be roughly 0.1M� (see Figure 16.11).

Several scenarios now suggest themselves by which the merger of a binary neutron star can
trigger a short-hard GRB. Some plausible routes are summarized in Figure 16.12. Another scenario
for forming the central engine of a short-hard GRB is the merger of a black hole-neutron star
binary, which we will discuss in Chapter 17. While all of these scenarios still await detailed
analyses, it seems clear that numerical relativity is now capable of supplying the computational
firepower necessary to construct viable theoretical models. Perhaps one of the most important
roles of numerical relativity will prove to be laying the theoretical groundwork for the simultaneous
detection and identification of a gravitational wave signal and gamma-ray burst from the same

62The duration of this nonaxisymmetric secular dissipation process, which typically lasts 50ms, is too long
to be tracked reliably using a fully relativistic 3 + 1 hydrodynamic code like the one of Shibata and Taniguchi
(2006). However, it has been possible to follow this dissipation epoch for incompressible (Miller 1974; Detweiler
and Lindblom 1977) and compressible (Ipser and Managan 1984; Lai and Shapiro 1995a) triaxial ellipsoids in
Newtonian gravitation. These treatments allow for differential rotation (vorticity) and viscosity and incorporate
a gravitational radiation-reaction potential. It is found that in the absence of viscosity, radiation-reaction forces
typically drive a Jacobi-like ellipsoid to a nonradiating triaxial state (a Dedekind ellipsoid), for which Ω = 0 in
the inertial frame (a “stationary football”). Other possibilites exist, however, depending on the vorticity and
(conserved) circulation of the configuration. For every scenario, the emitted quasiperiodic waves exhibit a unique
signature that may be detectable by a gravitational wave laser interferometer; see Lai and Shapiro (1995a) and
references therein.



496 CHAPTER 16. BINARY NEUTRON STAR EVOLUTION

cosmic source.63

Magnetized Binary Neutron Star Mergers

Since neutron stars are threaded by magnetic fields, it is important to assess the effect of such fields
on binary mergers. The exterior fields of the two neutron stars will interact during the inspiral
phase, and in principle this could affect the dynamics and gravitational waveforms. However,
calculations show64 that an exterior dipole field has a negligible influence provided the surface
field strength is below 1016G. Typical neutron stars are expected to have fields much smaller than
this, and only for extreme “magnetars” do the inferred strengths begin to approach this limit.
Any appreciable dynamical effect from magnetic fields must thus originate from interior magnetic
fields and can occur only during and/or after the merger phase.

The effects of an interior field on binary neutron star merger have been investigated by Liu et al.
(2008), who adopted the same basic HRSC GRMHD scheme of Duez et al. (2005b) described earlier
in the book and used to evolve rotating, magnetized stars in Chapter 14.2.5. Liu et al. (2008) evolve
binaries constructed via the conformal thin-sandwich approach for n = 1 irrotational polytropes.
Adopting equatorial symmetry, they employ spatial grids with as many as 400× 400× 200 zones
in x − y − z directions (with the binary rotation axis along z) and use a simple FMR scheme65

to enhance the resolution and dynamic range. As a check, they first repeated the simulatons of
Shibata et al. (2003) for several unmagnetized cases, using the same initial data as in Shibata
et al. (2003), and found good agreement. For cases in which the mergers result in a prompt
collapse to a black hole, Liu et al. (2008) employ moving puncture gauge conditions (Chapter 4.3)
to extend the simulations in time to better determine the final mass of any debris that remains
in an ambient disk about the remnant hole. They find that the disk mass is less than 2% of the
total rest mass in all the cases studied. Liu et al. (2008) then add a poloidal magnetic field with a
volume-averaged strength of about 1016G to the initial configurations and explore the subsequent
evolution; Figure 16.13 shows the initial magnetic field profile. Such a field is small enough to
be dynamically unimportant initially, but large enough to reveal any effects of a field once the
stars merge. For low-mass cases in which the remnant is a hypermassive neutron star, Liu et al.
(2008) find small, but measurable differences in both the amplitude and phase of the gravitational
waveforms following the merger when compared to the unmagnetized cases. For these cases they
again find no appreciable disk. For high-mass cases in which the remnant is a rotating black hole,
they find that the hole is surrounded by a disk, and that the disk mass and the gravitational
waveforms are about the same as in the corresponding unmagnetized cases.

The simulation of a magnetized, unequal-mass binary with a total rest mass equal to 1.76 times
the Oppenheimer-Volkoff limit is shown in Figure 16.14. The merger leads to prompt collapse to
a black hole surrounded by a disk containing about 2% of the initial rest mass at the end of the
simulation, as in the unmagnetized case.

A comparison of gravitational waveforms is plotted in Figure 16.15 for the merger of binaries
with three different pairs of neutron star companions. Each binary is evolved both with and
without interior magnetic fields. The quantities plotted are the l = 2,m = 2, s = −2 spin-
weighted spherical harmonics of the Weyl tensor ψ4, which may be related to the wave amplitudes

63Also, simulations coupled with broadband gravitational wave observations at frequencies between 500 and 1000
Hz may constrain the neutron star EOS and measure its radius to an accuracy of δR ∼ 1 km at 100 Mpc; Read
et al. (2009).

64Ioka and Taniguchi (2000).
65“Multiple-transition fisheye” coordinates; see Chapter 14.2.3
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Figure 16.13: Magnetic field lines in a widely separated, spherical neutron star companion as
viewed in the meridional plane. The star is an n = 1 polytrope with a rest mass M̄0 = 0.146
(the maximum being 0.180 for this EOS). Dotted (black) concentric circles are rest-mass density
contours drawn for ρ0/ρ

max
0 = 0.9, 0.7, 0.5, 0.3, 0.1 and 0.001. Solid (green) lines show representative

magnetic field lines; the field is purely poloidal. Coordinates are in units of the stellar radius R.
[From Liu et al. (2008).]

h+ and h× using equations 9.126 and 9.133. In particular, Re (ψ22
4 ) = ḧ22

+ . The upper panel
corresponds to a merger leading to a hypermassive remnant. The difference in waveforms between
the magnetized and unmagnetized mergers is more pronounced for this case than for the other two,
which involve prompt collapse to black holes. The simulation involving a hypermassive remnant
was terminated after the remnant reached a quasistationary state, but before “delayed collapse”
occurs.

Following binary merger and relaxation to a quasistationary state, the magnetic field in a
hypermassive remnant can grow substantially by winding and instabilities like MRI. As a conse-
quence, magnetic fields can drastically affect the long-term, secular evolution of a hypermassive
remnant. As demonstrated in Chapter 14.2.5, such magnetic field amplification and turbulence
can trigger delayed collapse to a black hole and subsequently drive gas accretion from the ambient
disk onto the hole. The preliminary simulations summarized here suggest that, for coalescing bi-
nary neutron stars with astrophysically realistic magnetic field strengths, it is during this secular
evolution phase in hypermassive remants that magnetic fields may play their most important role.



498 CHAPTER 16. BINARY NEUTRON STAR EVOLUTION

Figure 16.14: Snapshots of the rest-mass density and velocity field in the equatorial plane during
the merger of a magnetized, neutron star binary. The initial binary is irrotational with n = 1
polytropic companions of unequal-mass (the ratio of rest masses is q = 0.855). The binary has a
total ADM mass M̄ = 0.290, a rest mass M̄0 = 0.317 and an angular momentum J/M2 = 0.933.
Density contours are drawn for ρ0/ρ

max
0 (0)=0.9, 0.8, . . . , 0.1, 0.01, 0.001, and 0.0001. The initial

magnetic field profile in each star is depicted in Figure 16.13. The 3-velocity vectors are normalized
as indicated above each frame. The black circle locates the apparent horizon. [From Liu et al.
(2008).]
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Figure 16.15: A comparison of gravitational waveforms for neutron star mergers in three different
binary systems; each system is treated with and without magnetic fields. Binary system (a) has
low, equal-mass companions and a total ADM mass M̄ = 0.269 and rest mass M̄0 = 0.292; it
produces a hypermassive remnant. Binary system (b) has high, equal-mass companions and a
total ADM mass M̄ = 0.292 and rest mass M̄0 = 0.320; it leads to prompt collapse to a black
hole. Binary system (c) has high, unequal-mass companions and a total ADM mass M̄ = 0.290
and rest mass M̄0 = 0.317; it also leads to prompt collapse to a black hole. The merger of system
(c) is highlighted in Fig 16.14. The solid (dotted) lines show the waveforms for unmagnetized
(magnetized) binaries. [After Liu et al. (2008).]
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Chapter 17

Binary Black Hole-Neutron Stars:
Initial Data and Evolution

Binary black hole-neutron stars have received significantly less attention than binary black holes
or binary neutron stars. No black hole-neutron star binary has been identified to date. However,
stellar populations synthesis models suggest that such systems represent a significant fraction of
all compact binary mergers ultimately visible in gravitational waves by the LIGO detector.1 In
addition, the study of black hole-neutron star mergers is important in light of the localizations
of short-hard gamma ray bursts.2 These GRB sources are found in galactic regions of low star-
formation devoid of supernovae associations, ruling out massive stars as progenitors: massive stars
have very short lifetimes and would need to be replenished more rapidly than is possible in low
star-formation regions to account for these bursts. A more plausible progenitor for a short-hard
GRB is a compact binary containing a neutron star, i.e. either a binary neutron star or binary
black hole-neutron star.3 The short-hard burst timescales and energetics are consistent with GRB
models based on the coalescence of such compact binaries, and the evolution timescale of over 1
Gyr between formation and merger is consistent with the low star-formation rate.4

Black hole-neutron star binaries can merge in two distinct ways. The neutron star may either
be tidally disrupted by the black hole companion before being consumed, or it may be swallowed by
the black hole more or less intact. Which one of these two scenarios is realized depends on whether
the tidal disruption occurs sufficiently far outside the ISCO, which, in turn, depends largely on the
binary mass ratio5 q ≡MBH/MNS and the neutron star compaction C ≡MNS/RNS. To understand
the qualitative dependence we can invoke a very simple Newtonian argument. Consider a particle
of mass m on the surface of the neutron star. The inward gravitational force Fgrav exerted by the
neutron star on this mass is

Fgrav =
mMNS

R2
NS

. (17.1)

The outward tidal force on m caused by the presence of the black hole companion is approximately

Ftid ≈
mMBHRNS

r3
, (17.2)

1Kalogera et al. (2007).
2See, e.g., Berger (2006) and references therein for the physical parameters measured or inferred from Swift and

HETE-2 gamma-ray satellite observations.
3Paczynski (1986); Narayan et al. (1992).
4Belczynski et al. (2002); but note that other GRB models have been proposed.
5Note that some authors define the mass ratio q as the inverse of our convention.
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where r is the binary separation. We can now estimate the tidal separation rtid at which the star
is tidally disrupted by equating these two forces, which yields

rtid
MBH

' q−2/3 RNS

MNS

' q−2/3C−1 . (17.3)

For a sufficiently massive black hole (and thus large q) rtid is smaller than the ISCO of the black
hole, so that the neutron star plunges through the ISCO without being disrupted. For a typical
neutron star of compaction C ≈ 0.15, the critical mass ratio at which tidal disruption occurs at
the ISCO is qcrit ≈ 4 (see equation 17.20 below).

Exercise 17.1 (a) Consider a binary black hole-white dwarf. Use equation (17.3) to estimate the
critical mass of the black hole above which a typical white dwarf can be swallowed by the hole without
disruption. Take MWD = M� and RWD = 10−2R�.
(b) Repeat the above calculation for a binary consisting of a black hole and a main sequence star like
the sun.

Neutron stars with stellar-mass black hole companions are likely to be formed through normal
stellar binary evolution at a rate that depends on the distribution of binary mass ratios, common-
envelope dynamics, the magnitude of imparted supernovae kicks, and other effects, many of which
remain uncertain.6 For sufficiently tight binaries, merger will occur within a Hubble time and the
orbit will circularize by the time the binary enters the LIGO gravitational wave detector band.
As we can see from the estimate (17.3), the neutron star will be tidally disrupted before being
swallowed if the black hole mass is sufficiently small.

Binaries consisting of neutron stars orbiting very massive black holes form quite differently
from those orbiting stellar-mass black holes. As we have already noted, there is strong evidence
from astrometric observations that massive, compact, “dark” objects reside in the cores of every
bulge galaxy, including the Milky Way. These objects are believed to be supermassive black
holes with masses in the range 106 − 109M�. Such objects are also believed to be the engines
that power quasars and active galactic nuclei.7 Conservative, multi-body gravitational encounters
(small-angle, Coulomb scattering) between stars in the dense cores of galaxies can inject stars,
including neutron stars and stellar-mass black holes, into orbits that move close to the central
supermassive black hole. If they pass sufficiently close, these stars may be captured by the hole
and subsequently spiral inward due to the emission of gravitational wave emission.8 The estimate
(17.3) shows that neutron stars captured in this way will be consumed by supermassive black
holes before undergoing tidal disruption. In fact, the internal structure of the neutron star has
very little effect on the orbital evolution of these extreme-mass-ratio inspiral binaries (“EMRIs”).
They are, however, subject to a host of relativistic effects, including periastron and Lense-Thirring
precession, and these strong-field effects will leave an imprint on the gravitational wave signals.
For central black holes in the mass range 105 <∼ M/M� <∼ 107 the emitted waves will peak in the
low frequency band, near ∼ 10−3Hz, close to the lower limit anticipated for the LISA gravitational
wave interferometer.9 Rough estimates suggest that LISA might be able to detect EMRIs out to
a redshift z ∼ 1 and that as many as 103 EMRIs might be observed during its lifetime. The
measured waveforms will be able to chart the spacetime of the black hole, trace its multipolar

6See, e.g., Kalogera et al. (2007) and references therein for a discussion.
7Rees (1998).
8Shapiro (1985); Sigurdsson (2003); Merritt and Poon (2004); Hopman and Alexander (2005).
9See Chapter 9.2.2
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structure and confirm that it obeys the Kerr solution.10 The orbital dynamics and the expected
gravitational waveforms of EMRIs can be treated by black hole perturbation techniques in the
stationary Kerr field of the central hole.11

However, in this chapter we shall be primarily interested in tight stellar-mass BHNS binaries.
These systems ultimately inspiral in quasistationary, nearly circular orbits as the neutron stars
approach the horizon. The neutron stars are subject to appreciable tidal distortion and, in some
cases, disruption prior to merger. The strong-field spacetime is dynamical, nonstationary and
nonperturbative. For these systems the full machinery of numerical relativity is necessary to
follow the evolution.

As in the case of a binary neutron star merger, a black hole-neutron merger, if observed,
could potentially provide insight into the physics of matter at nuclear densities. For example,
the onset of mass transfer from the neutron star to the black hole depends on the neutron star
radius, given the stellar masses. The stability and nature of the mass transfer provides information
about the stiffness of the EOS.12 Whereas for binary neutron stars the characteristic frequencies of
gravitational wave emission during the merger and formation of a remnant (either a black hole or
hypermassive neutron star) fall beyond the peak sensitivity of an advanced LIGO detector (100−
500Hz), the characteristic frequencies of the onset of neutron star mass transfer and tidal disruption
occur at a lower values, closer to LIGO’s most sensitive band. Should a gravitational wave signal
from a merger be observed in coincidence with a short-duration GRB, one can determine its
distance, luminosity and characteristic beaming angle.13

Black hole-neutron star merger calculations have in common with binary neutron star calcula-
tions the challenge of solving relativistic hydrodynamics in a strong, dynamical, gravitational field.
They have in common with binary black hole calculations the additional complications associated
with the presence of a spacetime singularity inside the black hole from the onset of the simulation.
The combination of these two effects helps explain why progress on simulating black hole-neutron
star mergers has come later than the progress achieved on the other two problems. But the situ-
ation is advancing rapidly, as the techniques that proved successful in simulating binary neutron
stars and black holes binaries have been adapted successfully to handle black hole-neutron star
binaries.

17.1 Initial Data

As we found for the other binary systems considered in this book, constructing initial data serves
two independent purposes. Clearly, we need such solutions as initial data for dynamical simu-
lations, as discussed in Section 17.2 below. In addition we can construct sequences of constant
mass, parametrized by the binary separation, to mimic evolutionary sequences, and to locate the
ISCO or the onset of tidal disruption. The approximate scaling of the tidal separation rtid with
the mass ratio and the neutron star compaction is given by (17.3), but clearly a fully relativistic
calculation is required to obtain a more reliable result.

Constructing initial data that model black hole-neutron star binaries basically requires three
ingredients: a solution for the gravitational fields, a solution for the relativistic fluid profiles inside
the neutron star, and a suitable description of the black hole. Fortunately, we can assemble these

10Collins and Hughes (2004).
11See, e.g., Babak et al. (2007) and references therein.
12Faber et al. (2006).
13See Kobayashi and Mészáros (2003) for a discussion.
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ingredients from previous sections in this book: we have developed decompositions of Einstein’s
initial value equations in Chapter 3, derived the equations governing relativistic, stationary fluid
solutions in Chapter 15, and modeled binaries containing black holes in Chapter 12. As in the case
of binary black hole initial data, black hole-neutron star initial data have also been constructed
using both the conformal transverse-traceless decomposition of Einstein’s constraint equations
(Chapter 3.2) and the conformal thin-sandwich decomposition (Chapter 3.3). We shall begin with
the latter approach in Section 17.1.1, and will then briefly review the former in Section 17.1.2.

17.1.1 The conformal thin-sandwich approach

A systematic study of quasiequilibrium, black hole-neutron star binary initial data has been carried
out by the group at the University of Illinois.14 Their hierarchical treatment, which is based on
the conformal thin-sandwich approach, started with several simplifying assumptions, including
extreme mass ratios and corotating neutron stars, and then relaxed these assumptions one at a
time. Here we will focus on their models of irrotational binaries, by which we mean irrotational
neutron stars orbiting nonspinning black holes, with companions of comparable mass. They have
also generated initial data by this method to describe binaries of comparable mass containing
irrotational neutron stars and spinning black holes. They have used these initial data sets to evolve
representative binary configurations,15, and these simulations will be discussed in Section 17.2.2.

The gravitational field equations

In Chapter 3.3 we introduced the conformal thin-sandwich decomposition of Einstein’s constraint
equations and saw how it is well suited for the construction of equilibrium initial data (see Box 3.3
for a summary). To describe an equilibrium binary we assume the existence of an approximate,
helical Killing vector. We may then set to zero the time derivative of both the conformally related
metric and the mean curvature, i.e., ūij = ∂tγ̄ij = 0 and ∂tK = 0. If we further adopt maximal
slicing K = 0 and conformal flatness γ̄ij = ηij, the equations reduce to the Hamiltonian constraint

D̄2ψ = −1

8
ψ−7ĀijĀ

ij − 2πψ5ρ, (17.4)

the momentum constraint

(∆̄Lβ)i = 2ĀijD̄j(αψ
−6) + 16παψ4ji, (17.5)

and the condition ∂tK = 0, which, from equation (2.138), yields

D̄2(αψ) = αψ

(
7

8
ψ−8ĀijĀ

ij + 2πψ4(ρ+ 2S)

)
. (17.6)

Here D̄2 = ∇2 is the flat Laplace operator, ∆̄L the flat vector Laplacian defined in equa-
tion (3.51),16 and Āij is given by

Āij =
ψ6

2α
(L̄β)ij, (17.7)

where the vector gradient L̄ is defined in equation (3.50). For given matter sources and boundary
conditions these equations can be solved as in Chapters 12 and 15.

14See Baumgarte et al. (2004); Taniguchi et al. (2005, 2006, 2007, 2008); see also Grandclément (2006) for a
similar approach.

15See, e.g., Etienne et al. (2008, 2009), and references to earlier work.
16See exercise 3.8 for an example.



17.1. INITIAL DATA 505

Relativistic equations of stationary equilibrium

We can determine the matter sources appearing in equations (17.4) – (17.6) by solving the rel-
ativistic hydrodynamic equations in stationary equilibrium, which we derived in Chapter 15. In
particular, we need to find stationary solutions of the Euler equation (15.34) and the continuity
equation (5.7).

For a corotational star, which is static as viewed in a corotating coordinate system, the conti-
nuity equation is satisfied identically, and the Euler equation can be integrated once to yield the
algebraic equation (15.46),

h

ut
= C. (17.8)

Here h is the fluid’s enthalpy, ut is the time-component of the fluid’s four-velocity, and C is a
constant of integration that has to be determined as part of the iteration. Using the normaliza-
tion of the four-velocity uau

a = −1, we can express ut in terms of its spatial components (see
equation 15.47), and, hence, in terms of the binary’s orbital angular velocity Ω. The solution for
h, which can expressed in terms of the matter source profiles once we specify an equation of state,
depends on these gravitational fields through this normalization condition. The field and fluid
equations therefore have to be solved simultaneously, as outlined in Chapter 15.2.

For more realistic irrotational stars,17 we can express the four-velocity in terms of a gradient
of a velocity potential Φ as in equation (15.65),

hua = ∇aΦ. (17.9)

Defining Bi as the shift vector in the corotating coordinate system (15.70), we can again integrate
the Euler equation to find an algebraic equation for the enthalpy h

h2 =
1

α2
(C +BiDiΦ)2 −DiΦD

iΦ, (17.10)

where C is again a constant of integration (see equation (15.76)). The continuity equation,
however, is no longer satisfied identically, and now results in an elliptic equation for the velocity
potential Φ,

DiD
iΦ−Di

(
C +BjDjΦ

α2
Bi

)
=

(
C +BjDjΦ

α2
Bi −DiΦ

)
Di ln

αρ0

h
(17.11)

(see equation (15.78)). As in the case of corotational stars, these fluid equations have to be solved
simultaneously with the constraint equations (17.4) – (17.6). Before we can do that, though, we
have to impose appropriate boundary conditions on the gravitational field variables.

Quasi-equilibrium black-hole boundary conditions

Assuming asymptotic flatness, we may impose the asymptotic fall-off conditions (12.73) at infinity,
or at a large separation from the binary. To avoid the black hole singularity, we excise the black
hole interior, usually taken to be a coordinate sphere, and impose black hole equilibrium boundary
conditions on the surface of this excised region. We derived these boundary conditions in Chapter
12.3.1 from the notions of apparent and isolated horizons (see Chapters 7.3 and 7.4).

17See Faber et al. (2006), who show why binary black hole-neutron stars are likely to be irrotational, or footnote 27
for a brief summary.
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To formulate these boundary conditions it proved convenient to split the shift vector βi into
parts that are normal and tangential to the excision surface, β⊥ and βi‖ (see equation (12.82)).

The normal component must then satisfy condition (12.84)

β⊥ = α, (17.12)

while the tangential components βi‖ must form a conformal Killing vector of the the induced metric

on the excision surface (see equation (12.106)), which can be constructed from

βi‖ = Ωspinξ
i (17.13)

(see equation (12.107)). Here ξi = εijkẑjn̂k is the Killing vector of a unit sphere, where ẑi is a unit
vector aligned with the axis of rotation, n̂i the unit normal on the sphere’s surface, and Ωspin is
a yet undetermined parameter associated with the black hole’s spin. We furthermore found that
the conformal factor ψ has to satisfy the Neumann boundary condition (12.90), while the lapse α
can be chosen arbitrarily.

We can now construct an iterative algorithm to solve the above equations self-consistently. In
Chapter 15.2 we outlined such an algorithm for an equal-mass, corotating neutron star binary,
and we have discussed the construction of irrotational binaries in Chapter 15.3. Here the situation
is more complicated, because we have replaced one of the two neutron stars with a black hole,
and we can no longer assume the two masses to be equal. Allowing for these differences therefore
entails several additional nested iterations. One of these new iterations adjusts the location of the
binary’s axis of rotation – assumed to intersect the coordinate axis connecting the centers of the
black hole and the neutron star – until the binary’s total linear momentum vanishes. Another
iteration adjusts the coordinate radius of the excised sphere until the black hole’s irreducible
mass (7.2) equals its desired value. This still leaves undetermined the spin parameter Ωspin in
the boundary condition (17.13). A corotating black hole would be nonspinning in a corotating
coordinate system, which corresponds to Ωspin = 0. More interesting are nonspinning black holes.
We might attempt to construct such binaries by setting Ωspin equal to the orbital angular speed,
which we called the “leading-order spin approximation” in Chapter 12.4. As we discussed there,
however, it is more accurate to iterate over Ωspin until the black hole’s quasi-local spin (7.74)
vanishes. To treat spinning black holes, we iterate over Ωspin until the black hole spin equals the
desired value.

Numerical results

Taniguchi et al. (2008) solve the above equations with the spectral methods of the LORENE18

package to construct irrotational black hole-neutron star binaries. As we discussed in the context
of binary neutron stars in Chapter 15.3, it is again useful to split all gravitational field variables
into parts that are associated with one or the other companion star (see equation 15.81). The
resulting two equations can then be solved on two separate computational domains, one centered
on the black hole, and one on the neutron star. Only the equation associated with the black hole
needs to be excised, if all source terms affected by those excised quantities are moved into the
black hole equation.19

18See http://www.lorene/obspm.fr/.
19See the discussion following equation (15.81); also see Appendix A in Taniguchi et al. (2007) for a detailed

treatment.
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Figure 17.1: Contours of the conformal factor ψ in the equatorial plane for an irrotational binary
black hole-neutron star close to tidal break-up. This binary has a mass ratio of q = 3, and
the neutron star, governed by a polytropic equation of state with polytropic index n = 1, has
a compaction of MNS/R0 = 0.1452, where MNS is the ADM mass that the star would have in
isolation, and R0 its areal radius. The circle on the left marks the black hole’s apparent horizon.
The interior of this coordinate circle is excised from the computational grid. The other thick line
on the right marks the neutron star’s deformed surface. The cross “×” indicates the position of
the rotation axis. [From Taniguchi et al. (2008).]

Taniguchi et al. (2008) adopt a polytropic equation of state (5.18) with Γ = 2 (i.e. polytropic
index n = 1) to describe the neutron star matter. They consider mass ratios 1 ≤ q ≤ 10,
where q ≡ MBH/MNS is the ratio of the irreducible mass of the black hole to the ADM mass
of a spherical, isolated neutron star. The neutron stars in isolation would have a compaction in
the range 0.1088 ≤ MNS/R0 ≤ 0.1780, where R0 is its areal radius. The most compact neutron
star model has a rest mass that corresponds to 94% of the maximum allowed rest mass for a
nonrotating, Γ = 2 polytrope in isolation. A typical configuration, close to the formation of a cusp
in the neutron star’s surface that marks the onset of tidal disruption,20 is shown in Figure 17.1.

We can mimic inspiral sequences by constructing constant-mass sequences of black hole-neutron
stars, parametrized by the binary separation. In this case, the conserved masses are the rest mass
M0 of the neutron star and the irreducible mass Mirr of the black hole. For these sequences we
can measure the total angular momentum J , as well as the binding energy Eb, defined as

Eb ≡MADM −M0. (17.14)

20The spectral methods used in these calculations break down when the stellar surface forms a cusp – see our
discussion in Chapter 15.3. The authors therefore introduce a “mass-shedding indicator” χ in equation (15.82) and
use extrapolation to locate the onset of tidal disruption.
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Figure 17.2: Binding energy Eb versus the total angular momentum J for a polytropic n = 1
binary with mass ratio q = 5. The “old results in Paper I” refer to results obtained with the
“leading-order spin approximation” for the parameter Ωspin in the black hole boundary conditions.
The quantity M̄NS denotes the dimensionless (baryon) rest-mass of the neutron star and is larger
for higher compactions; the maximum isolated mass corresponds to M̄NS = 0.18 [From Taniguchi
et al. (2008).]

Here M0 is the total ADM mass of the system at infinite binary separation, i.e. the sum of the
black hole’s irreducible mass and the neutron star’s ADM mass in isolation,

M0 = MBH +MNS. (17.15)

In Fig. 17.2 we show the binding energy as a function of angular momentum for binaries of mass
ratio q = 5. The graph includes results for several different neutron star compactions, the post-
Newtonian point-mass result (which is independent of neutron star compaction; see Appendix
E), as well as a “leading-order” spin result that we return to below. We first observe that the
numerical results agree with the the post-Newtonian result to very high precision for low neutron
star compactions; for larger compactions, which imply stronger gravitational fields, the deviation
increases slightly.

A simultaneous turning-point in the binding energy Eb and the angular momentum J marks
the onset of an orbital instability; we therefore identify the corresponding orbit with the ISCO.
When we plot Eb versus J , as in Fig. 17.2, such a simultaneous turning point results in a cusp.
The post-Newtonian curve, for example, displays such a cusp very clearly. For the numerical
results, however, only those with the larger compaction feature a cusp. This is because the
numerical results terminate just before the onset of tidal disruption. For small neutron star
compactions, the tidal separation is larger than the ISCO separation, so that the corresponding
curves never reach an ISCO. We anticipated this finding qualitatively from equation (17.3), which
demonstrates that, for a given binary mass ratio, a smaller compaction C = MNS/R0 leads to
a larger tidal separation rtid/MBH. If the tidal separation is larger than the ISCO separation,
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Figure 17.3: The tidal break-up limit. The lines represent the estimate (17.17) with A = 0.27
for different neutron star compactions, while the other symbols show the corresponding numerical
results. The quantity M̄NS denotes the dimensionless (baryon) rest-mass of the neutron star and
is larger for higher compactions; the maximum isolated mass corresponds to M̄NS = 0.18 [From
Taniguchi et al. (2008).]

i.e. if the compaction is sufficiently small, the neutron star breaks apart before encountering an
ISCO. The post-Newtonian curve cannot capture this behavior, since it ignores the neutron star’s
internal structure.

Finally, we note that the “leading-order spin approximation”, which amounts to setting Ωspin to
the orbital angular speed in the boundary condition (17.13), evidently introduces some numerical
error. This curve shows a larger deviation from the post-Newtonian result than the corresponding
curve for which the black hole’s quasi-local spin is set to zero, and the minimum in the bind-
ing energy no longer coincides with a minimum in the angular momentum – exactly as for the
nonspinning black hole binaries of Chapter 12.4.

It is of interest to see how well the estimate (17.3) predicts the actual numerical results. Instead
of expressing the later in terms of the binary separation, which is a gauge-dependent quantity,
it is more natural to parameterize the separation in terms of the orbital angular speed Ω. In
equation (17.3) we can eliminate rtid with the help of Kepler’s law

Ω2 ' MBH +MNS

r3
(17.16)

(where equality holds for Newtonian point masses). Combining equations (17.3) and (17.16) we
find

ΩtidMNS = A
(
MNS

RNS

)3/2(
1 + q

q

)1/2

, (17.17)

where A is a yet-to-be-determined constant of order unity.
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In Fig. 17.3 we show a comparison between the estimate (17.17) and the actual numerical
results for a number of different neutron star compactions MNS/RNS. Choosing A = 0.27 in the
estimate (17.17) captures the numerical tidal break-up results rather well, although we caution
that these results cover only a very small part of parameter space – and, in particular, only n = 1
polytropes. Using equation (17.17) to estimate the characteristic gravitational wave frequency
fGW = Ω/π at tidal break-up yields

fGW ' 730Hz

(
MNS

1.4M�

)1/2(
RNS

15km

)−3/2(
(1 + q)/q

4/3

)1/2

. (17.18)

As mentioned earlier, this frequency resides within the LIGO band.
Having identified A = 0.27 in equation (17.17), we can now refine equation (17.3) to obtain

rtid
MBH

' 2.4 q−2/3 RNS

MNS

. (17.19)

Assuming a typical neutron star compaction of MNS/RNS ' 0.15 we can now estimate the crit-
ical mass ratio at which tidal separation occurs at the ISCO by setting the left-hand side of
equation (17.19) equal to rISCO/MBH ' 6, which yields

qcrit ' 4. (17.20)

Evidently, neutron stars are tidally disrupted only in binaries with black holes of comparable
mass. The tidal disruption of the neutron star and the subsequent formation of a gaseous disk
may be necessary ingredients for a GRB model based on the merger of a black hole-neutron star
binary. As these estimates suggest, and as we discuss in greater detail in Section 17.2, it is difficult
to form such a disk for irrotational, polytropic binaries. For rapidly rotating black holes, however,
the ISCO occurs at a smaller binary separation, enhancing the possibility of tidal break-up and
the formation of a disk.

17.1.2 The conformal transverse-traceless approach

Shibata and Uryū (2006, 2007) adopt an alternative approach to construct black hole-neutron star
binaries. Instead of using the conformal thin-sandwich decomposition of the Einstein’s constraint
equations, as in the previous Section, they employ the conformal transverse-traceless decomposi-
tion to construct the extrinsic curvature.

Following Chapter 3.2, we can split Āij into a transverse-traceless piece and a longitudinal
piece. We may assume the former to vanish, and write the latter as the vector gradient of a vector
W i,

ĀijL = (L̄W )ij (17.21)

(see equation 3.50). Assuming maximal slicing K = 0, the momentum constraint then reduces to

(∆̄LW )i = D̄jĀ
ij = 8πψ10i (17.22)

(see equation 3.53). Given the linear nature of this equation, we can write its solution as the
sum of a particular and a homogeneous solution. We may choose the latter, which satisfies the
homogeneous equation D̄jĀ

ij = 0, to describe the black hole, in which case the former accounts
for the neutron star only.
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As in Chapter 12.2, where we constructed binary black holes in exactly the same way, we may
adopt conformal flatness γ̄ij = ηij and take the boosted Bowen-York black hole solution (3.80) as
the homogeneous solution

ĀijBH =
3

2r2

(
P inj + P jni − (ηij − ninj)nkP

k
)
. (17.23)

The coordinate distance r from the black hole’s center and the normal vector ni are defined in
the context of equation (3.80) (see also Chapter 12.2.1), and for circular orbits, the momentum
P i of this solution has to point in a direction perpendicular on the axis connecting the black hole
and the center of the neutron star (see Chapter 12.2.3). This analytical homogeneous solution to
equation (17.22) then accounts for the black hole of the black hole-neutron star binary.

Given a matter source i, we can now solve equation (17.22) with appropriate asymptotic fall-
off boundary conditions to find the neutron star contribution ĀijNS. This can be done by solving
equation (17.22) for W i, using one of the decompositions of W i described in Appendix B, and then
computing ĀijNS from equation (17.21). Adding this result to the black hole contribution yields

Āij = ĀijBH + ĀijNS. (17.24)

We can now insert this extrinsic curvature into the Hamiltonian constraint (17.4), which, given
the matter source ρ, we can solve via the “puncture” method (12.50) described in Chapter 12.2.2.
This completes the construction of the initial data, assuming we know the matter sources ρ and
i.

Of course, we do not know these matter sources a priori. Instead, we need to determine them
self-consistently with the gravitational field variables, so that they describe the neutron star in
quasiequilibrium circular orbit about its black hole companion. This determination entails solving
the fluid equations above, either equation (17.8) for corotating stars, or equations (17.10) and
(17.11) for irrotational stars. Since the notion of an equilibrium fluid flow involves a condition on
the fluid four-velocity ua, i.e. a four-dimensional object, it is clear that we need information about
the spacetime not only on the initial slice, but in a neighborhood of this slice. This observation is
one of the reasons why the conformal thin-sandwich decomposition, which automatically introduces
the lapse and shift that are needed in the above fluid equations, is more commonly used for the
construction of quasiequilibrium fluid initial data (see also the discussion in Chapter 15.2).

The conformal transverse-traceless decomposition, by contrast, only provides the metric and
extrinsic curvature of the initial slice, meaning that we now need to construct a lapse and shift
independently. This cannot be just any lapse and shift, of course – instead they must describe
the coordinate system in which the binary appears momentarily stationary, as assumed in the
derivation of the fluid equations. In other words, we require the four-velocity of the resulting
coordinate-observer to be aligned with the approximate helical Killing vector describing the binary
orbit. We can construct such an approximate “Killing” lapse and shift by solving equations (17.5)
and (17.6) of the conformal thin-sandwich decomposition.21 Unlike we did in the previous Section,
however, we do not express Āij in these equations in terms of the shift as in equation (17.7), but
instead use the transverse-traceless expression (17.24). The latter is based on equation (17.21)
instead of equation (17.7), and does not result from, and therefore does not automatically embody,
the assumption of a helical Killing vector. In this case, the solutions of equations (17.5) and
(17.6) do not require excision: all terms in equation (17.5) are regular, and the singular terms in

21cf. Tichy et al. (2003).
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equation (17.6) can be treated analytically by writing

αψ = 1 +
C

r
+ v (17.25)

in complete analogy to the puncture approach (12.50) for the conformal factor.22 The resulting
equation for the new variable v is then regular, and the constant C can be determined by imposing
a virial relation, namely by equating the Komar mass (3.179) with the ADM mass (3.145) as in
equation (12.108).

Given the lapse and shift, we can finally solve the fluid equations, which in turn provide the
matter sources ρ and i in equations (17.4) and (17.22). A self-consistent solution can then be
found by solving all of the above equations iteratively until convergence has been achieved. These
solutions have been used as initial data for dynamical simulations,23 which we will describe in
Section 17.2.2 below.

17.2 Dynamical Simulations

17.2.1 The Conformal Flatness Approximation

The merger of a black hole-neutron star binary, focussing on the tidal disruption of the neutron
star, has been investigated in a number of Newtonian24 and semi-relativistic simulations.25 Some of
the first dynamical simulations of merging binaries that attempted to evolve the black hole-neutron
star spacetime self-consistently in a general relativistic framework were performed in the conformal
flatness approximation by Faber et al. (2006,?). We have already discussed in Chapter 16.2 the
application of this approximation to track binary neutron star mergers. However, the conformal
flatness approximation is not well suited to handle an arbitrary black hole-neutron star spacetime
since it contains a moving, vacuum black hole containing an interior singularity. The metric
field equations in the conformal approximation are not evolution equations but spatial elliptic
equations, identical to the conformal thin-sandwich equations (17.4) – (17.6) used to solve the
initial value problem. Consequently they do not involve time and cannot be used to determine the
motion of the black hole or track the changing position of its interior spacetime singularity. Nor
can these field equations encounter the singularity without blowing up. The one limit in which
the conformal approximation can be applied to the binary black hole-neutron star problem is the
case in which the black hole mass is considerably larger than the mass of the neutron star. In this
situation, the black hole remains nearly fixed in space and the spacetime near the black hole is
dominated by the massive hole. This limit enables one to determine the metric by avoiding the
black hole singularity while still accounting for the strong-field contributions from both the black
hole and neutron star matter.

Consider the Hamiltonian equation (17.4) used to solve for the conformal factor ψ. Embed the
neutron star in a computational spatial grid whose characteristic size d satisfies MNS � d�MBH.
Exploiting this inequality makes it possible to construct a computational grid that encompasses the
neutron star matter but avoids the black hole horizon. Decompose ψ according to ψ = ψBH +ψNS

22See also Hannam et al. (2003); Tichy et al. (2003); Hannam and Cook (2005); Hannam (2005).
23See Shibata and Uryū (2006, 2007); Shibata and Taniguchi (2007); Yamamoto et al. (2008).
24See, e.g., Lee and Kluźniak (1999); Janka et al. (1999); Rosswog (2005).
25See, e.g., Rantsiou et al. (2007), who studied merging black hole-neutron star systems with high mass ratios

q ∼ 10 by evolving neutron stars in a fixed Kerr background metric, treating the self-gravity of the matter by a
Newtonian potential in the hydrodynamic equations.
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where ψBH = 1 + MBH/2r may be taken to be the exact solution for a stationary, isolated,
nonspinning Schwarzschild black hole in isotropic coordinates as a function of the radius from
the black hole. Since ∇2ψBH = 0, equation (17.4) results in a nonlinear elliptic equation for
∇2ψNS. This equation can be solved on the computational grid by considering all the source
terms inside the grid interior, and imposing suitable asymptotic conditions on ψNS at the outer
boundary of the grid, where ψNS falls off to zero. The resulting metric solution for ψ then accounts
self-consistently for the field that arises from the combined nonlinear contributions of the black
hole and the neutron star matter sources inside the grid. The (small) contribution from ψNS in
the region outside the computational grid can be obtained analytically by a suitable multipole
expansion involving multipole moments of the interior source. As long as the metric outside the
computational grid is dominated by the black hole, the solution remains roughly valid even if
some of the matter flows out into this region. The solutions to the lapse and shift equations are
obtained by similar considerations.

The approach described above was developed by Faber et al. (2006) to handle binaries with
large black hole-to-neutron star mass ratios in conformal gravitation. They used a spheroidal
spectral routine based on the LORENE code to solve the field equations and a relativistic SPH code
to evolve the hydrodynamics.26 Subsequently, Faber et al. (2006) switched to an FFT convolution-
based scheme to solve the field equations, whereby they linearized the nonlinear terms in the
Hamiltonian about a previous guess for ψNS and iterated until convergence. The SPH approach
for the hydrodynamics has the advantage that, given the metric field, SPH does not require a grid
on which to evolve the matter, hence the matter can be followed everywhere, even in the region
in exterior to the computational grid constructed to solve the field equations.

For initial data Faber et al. (2006) consider both corotational and irrotational neutron star
companions, modeled as polytropes.27 One of the goals of Faber et al. (2006) is to delineate
regimes of stable vs. unstable mass transfer and to identify the point of onset of tidal disruption
for different neutron star compactions, EOS stiffness, and binary mass ratios. Their simulations
reveal that whenever mass transfer begins while the neutron star orbit is still outside the ISCO the
transfer is more unstable than predicted by earlier analytic formalisms. The reason is that mass
transfer causes the orbital separation to increase and the neutron star radius to expand, both on
a dynamical timescale. Models of mass transfer that assume the orbit remains quasicircular are
thus not applicable. The unstable mass loss drives the evolution of the binary orbit and leads to
the disruption of the neutron star in a few orbital periods. Most of the mass is accreted promptly
by the black hole. Some matter is shed outward, becomes gravitationally unbound and is ejected
from the system. The remaining matter forms an accretion disk around the black hole.

As a representative example, Faber et al. (2006) consider the evolution of an irrotational binary
in which the mass ratio is q = MBH/MNS = 10, the neutron star compaction is MNS/RNS = 0.09
and the polytropic index is n = 1. The initial separation is chosen to be r/MBH = 5.5, just outside
the ISCO at rISCO/MBH ≈ 5 in the adopted (isotropic) coordinates. The initial data for this
simulation is a relativistic, irrotational BHNS model calculated in the conformal thin-sandwich
formalism by Taniguchi et al. (2005).28 According to equation (17.19) the tidal break-up radius

26See Chapter 16.2, where similar tools were used for the treatment of binary neutron star mergers in the
conformal approximation.

27Neutron star binaries are likely to be irrotational since the magnitude of the viscosity required to synchronize
the stars is unphysically large (Bildsten and Cutler, 1992; Kochanek, 1992a). By the same reasoning, typical black
hole-neutron star binaries are also likely to be irrotational, since the required viscosity to synchronize a neutron
star increases as the primary mass increases.

28see Chapter 17.1 for discussion.
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Figure 17.4: Snapshots of the disruption of a neutron star at selected times, projected into the
orbital plane of the black hole-neutron star binary, as computed assuming conformally flat grav-
itation. The neutron star is an n = 1 polytrope with a compaction at infinite separation of
MNS/RNS = 0.09; the binary mass ratio is MBH/MNS = 10. The neutron star, represented by
approximately 60,000 SPH particles, disrupts near the ISCO (dashed curve) to produce a mass-
transfer stream that eventually wraps around the black hole horizon (solid curve) to form a torus.
The initial orbital period is P/MBH = 105. [After Faber et al. (2006).]

is at rtid/MBH ≈ 5.8. Not surprisingly, the simulation shows that tidal disruption occurs. Rapid
angular momentum transfer during the the disruption ejects a significant fraction of the matter
back outside the ISCO, part of which forms an accretion disk.

The simulation is depicted in Figures 17.4 and 17.5. The rapid redistribution of angular
momentum during the tidal disruption of the neutron star near the ISCO causes an outwardly
directed spiral arm to form, sending some of the matter outside the ISCO. By the end of the
simulation, the black hole accretes ∼ 75% of the total neutron star rest-mass, while ∼ 12% of the
matter forms a disk and ∼ 13% is ejected completely from the system. Here bound and unbound
matter trajectories are distinguished by the sign of u0 − 1, where u0 is the time-component of
the matter 4-velocity. Note that the quantity u0 remains nearly constant in time for the (low
pressure) outflowing gas streaming along quasi-geodesic worldlines in the nearly static spacetime
that forms following the accretion of the bulk of the disrupted star. The bound matter in the
disk, while cold at first and ejected into the spiral arm without strong shock heating, eventually
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Figure 17.5: Snapshots of the same simulation depicted in Figure 17.4 at late time, t/MBH = 990,
projected onto the equatorial (left panel) and meridional (right panel) planes. A hot torus at
r/MBH

<∼ 50 is evident. Bound fluid elements satisfying u0 − 1 < 0 are shown as heavy dots,
unbound elements as light dots. [After Faber et al. (2006).]

undergoes shock heating as it falls back and wraps around the black hole forming a torus. The
torus extends to a radius r/MBH ∼ 50 within a time t/MBH ∼ 1000 (corresponding to ∼ 0.07s
for typical neutron star masses). The characteristic temperature in the inner part of the torus is
estimated to be T ∼ 3− 10MeV ∼ (2− 7)× 1010K. Faber et al. (2006) point out that this system
is a plausible model for the central engine of a short-hard GRB. Among its other attributes, a
funnel is cleared out along the polar axis along which a GRB jet can presumably propagate (no
“baryon pollution”). Also the high temperatures can produce an appreciable thermal neutrino
luminosity, Lν ∼ 1054ergs−1, which in turn can produce an appreciable electron pair annihilation
luminosity required by some GRB models to generate the observed gamma-ray flux.29 However,
there are other scenarios involving neutron stars and compact binary mergers that are possible
progenitors of short-hard GRBs.30

We have thus seen that the main virtue of binary black hole-neutron star simulations in con-
formal gravitation is that, to first approximation. they can track the bulk motion of matter in a
relativistic gravitational field, at least in the case when the black hole-to-neutron star mass ratio
is large. In particular, such similations can follow the tidal-break up of the neutron star by a
black hole when break-up occurs, and they can trace the subsequent dynamical flow of the matter,
including possible disk formation about the black hole. But since the spatial metric is restricted
to be conformally flat, simulations in conformal gravitation are only qualitatively reliable at best.
In particular, the predictions of disk masses and ejected mass fractions are not very trustworthy,

29See, e.g., Aloy et al. (2005); Piran (2005) and references therein.
30For high-mass binary neutron stars containing unequal mass companions with q ∼ 0.7, prompt collapse to

a black hole following merger also leads to the formation of a substantial, hot, neutrino-radiating accretion disk
for which the polar axes are also free of intervening matter (Shibata and Taniguchi, 2006). However it is not
clear whether such unequal mass binaries exist, since all observed systems containing pulsars that yield reliable
mass measurements have q >∼ 0.9. Lower-mass binary neutron stars produce hypermassive neutron stars upon
merger which undergo delayed collapse to a black hole. Simulations show that substantial, hot accretion disks with
collimated magnetic fields are also formed in this case, so hypermassive neutron stars are also possible progenitors
of short-hard GRB central engines. See Chapters 14 and 16 and Figure 16.12 for more extensive discussion.
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especially when the black hole is rapidly spinning. Moreover, because the metric is not dynami-
cal, these simulations do not convey any direct information about the emitted gravitational wave
content of the spacetime. At best, information about gravitational waves can be estimated by
evaluating the wave components of the metric perturbatively, after the simulation is completed.
We did this in Chapter 16.2 for binary neutron stars when we adopted the quadrupole approxima-
tion to calculate gravitational waveforms. Here we shall postpone a discussion of the gravitational
waves generated by black hole-neutron star mergers for the next section, where we will describe
fully relativistic treatments of the evolution.

17.2.2 Fully Relativistic Simulations

As we mentioned earlier, simulations of binary black hole-neutron star mergers provide the ul-
timate challenge of evolving compact binaries in full general relativity: they involve all of the
complications of relativistic hydrodynamics, including shocks, in a strong, dynamical field, to-
gether with all of the hurdles of tracking moving black holes without encountering their interior
spacetime singularities. It is not surprising that progress in this area has been achieved by adapt-
ing and extending many of the tools and techniques used to evolve binary black holes and binary
neutron stars. In this section we will summarize some of the earliest simulations that have tackled
this problem successfully.

Corotational Neutron Stars and Nonspinning Black Holes

Shibata and Uryū (2006, 2007) performed some of the earliest simulations of black hole-neutron
star mergers in full general relativity. Their initial data consists of corotational neutron stars
in quasiequilibrium circular orbit about nonspinning black holes and are determined using the
conformal transverse-tracelss approach discussed in Section 17.1.2.31 The black hole is modeled
by a moving puncture with no spin and the neutron star by a Γ-law EOS, with Γ = 2 (i.e.
polytropic index n = 1), and a corotating velocity field. The approach of treating the black
hole by moving punctures, which has worked so well in the case of vacuum binary black hole
mergers (see Chapter 13.1.3), again proves to be a robust technique for tracking the motion and
determining the evolution of the black hole without enountering singularities. Handling a moving
black hole puncture in the presence of relativistic matter turns out to be straightforward. In fact,
the ability of the moving puncture method to incorporate matter without imposing black hole
excision has been bolstered by independent test-bed simulations.32

The evolution code employed by Shibata and Uryū (2006, 2007) is based on the BSSN scheme
for the gravitational field, with a few refinements, and an HRSC scheme for the hydrodynamic
matter. One of the refinements concerns the function φ appearing in the BSSN conformal factor
(recall equation 11.46). They choose to evolve φ−6 instead of φ, since φ diverges at the puncture.33

31See Löffler et al. (2006) for simulations in general relativity of head-on collisions between neutron stars and
black holes of comparable mass.

32See, e.g., Faber et al. (2007), who treat relativistic Bondi accretion onto a moving black hole puncture to test
their algorithm.

33Campanelli et al. (2006); Baker et al. (2006) employed a similar substitution for handling puncture BHBH sim-
ulations. Marronetti et al. (2007) advocate evolving the variable W ≡ exp−2φ: not only is W regular everywhere,
varying linearly with radius near black hole punctures, but it enters other field equations only as W 2. Hence even
if numerical errors drive W slightly negative this will not cause other field variables to change sign and cause codes
to crash.
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Note, however, that for the binaries considered here, the location of the puncture remains in the
equatorial plane and, with a cell-centered Cartesian grid, never encounters a grid point.

Exercise 17.2 Show that the evolution equation for φ−6 is

∂tφ
−6 = ∂i(φ−6βi) + (αK − 2∂iβ

i)φ−6 . (17.26)

Another refinement deals with the handling of the advective terms in the field evolution equa-
tions, which have the form (∂tQ − βi∂i)Q, where Q is one of the field variables. Shibata and
Uryū (2006, 2007) recast these terms in “conservative” form as ∂tQ − ∂i(Qβ

i) + Q∂iβ
i and then

adopt the same high-resolution, conservative to evolving the field equations as they use for the
hydrodynamic equations. They surmise that this technique proves important because, like many
of the other field variables, the term βi∂iQ varies sharply near the puncture. As in other puncture
calculations, they choose an advective “1+log” time slicing condition for the lapse,

∂t lnα = βi∂i lnα− 2K . (17.27)

Their shift condition is a modified parabolic “Gamma-driver” condition,

∂tβ
i = 0.75γ̃ij(Fj + ∆t∂tFj) , (17.28)

where γ̃ij is the inverse conformal 3-metric and Fi = δjk∂j γ̃ik. Here ∆t is the time step in the
simulation and the second term on the right-hand side of equation (17.28) is employed to stablize
the integration.

Exercise 17.3 Discuss the role of the advective term in equation (17.27).
Hint: ∂tx

i
punct = −βi

punct.

Exercise 17.4 Recast equation (17.28) in terms of the conformal connection function Γ̃i = −∂j γ̃
ij

and compare with the usual Gamma-driver condition (4.82).

In their simulations, Shibata and Uryū (2006, 2007) adopt equatorial symmetry and a nonuni-
form cell-centered Cartesian grid (x, y, z) with a total grid size (2N, 2N,N). The inner grid
domain has a size (2N0, 2N0, N0) and is uniform, while the outer domain is nonuniform with
gradually increasing grid separation. To test convergence they vary the resolution, choosing
N = 160−220, N0 = 105−150, with a grid spacing in the inner domain of size δx/Mp = 1/8−7/120,
where Mp ≈Mirr is the puncture mass parameter. The outer boundary falls at L/λ = 0.46− 0.83,
where λ is the wavelength of the initial gravitational waveform (λ/M ≈ 50, where M ≈ 5 is the
total ADM mass).

They study three cases for low-mass mergers (q <∼ 3) in which the initial black hole irreducible
masses are in the range MBH = 3.2−4.0M� and the neutron stars at infinite separation have ADM
masses MNS = 1.3M� and radii R = 13−14 km, corresponding to compactions MNS/RNS = 0.14−
0.15. The total ADM masses of the systems are M = 4.5− 5.3M� and the total angular momenta
are J/M2 = 0.65− 0.73, corresponding to close, circular orbits with periods P/M = 110− 120.

In all the cases studied, the neutron star is tidally disrupted near the ISCO. Most of the matter
(80− 90%) is swallowed by the black hole, with the remainder going into a disk. The final state is
a rotating black hole of spin JBH/M

2
BH ≈ 0.4−0.6 surrounded by a disk of mass ∼ 0.1−0.3M�. An

appreciable fraction of the initial angular momentum of the system is deposited in the disk. As we
will discuss below, these disk masses are unrealistically large, in part because of the assumption



518 BLACK HOLE-NEUTRON STAR BINARIES

Figure 17.6: Snapshots of rest-density contours and 3-velocity vectors at selected times during the
binary merger of a 1.3M� neutron star corotating about a 3.2M� nonspinning black hole. The
total initial ADM mass of the system is M = 4.5M�. Contours are drawn in the equatorial plane
at ρ0 = 1014 (blue), 1012 (cyan), 1011 (magenta), and 1010 g cm−3 (green). The maximum density
at t = 0 is ≈ 7.2× 1014 g cm−3. The thick red circle denotes the apparent horizon. [From Shibata
and Uryū (2007).]

of corotation and in part because of the (nonadaptive) grid structure used in the calculation.
Nevertheless, they strengthen the argument that, since a rotating black hole with an ambient disk
could serve as the central engine for a short-hard GRB, the merger and disruption of a neutron
star with a low mass black hole might be the progenitor of such a source. A representative tidal
disruption is illustrated in Figure 17.6.

Gravitational waveforms for a typical merger are shown in Figure 17.7. The waves are extracted
from the metric near the outer boundaries of the grid, using the gauge-invariant Moncrief formalism
discussed in Chapter 9.4.1. In particular, Shibata and Uryū (2006, 2007) focus on the dominant
even-parity, l=2 mass quadrupole modes and define the quantities

R+ =

√
5

16π
R22+ , R× =

√
5

16π
R22− , (17.29)

where Rlm± are the even-parity functions defined in equations (9.117) and (9.118).

Exercise 17.5 Why do the functions R2±1 vanish for these simulations?
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Figure 17.7: Gravitational waveforms for the binary merger of a 1.3M� neutron star corotating
about a 4.0M� black hole. The total initial ADM mass of the system is M = 5.3M� (see text).
[From Shibata and Uryū (2007).]

The wave amplitude is maximum for observers viewing along the binary axis, perpendicular
to the orbital plane, for which we may write

h ≡
√
h2

+ + h2
× =

√
R2

+ +R2
×

r
≈ 1.0× 10−22

(√
R2

+ +R2
×

0.31 km

)(
100 Mpc

D

)
, (17.30)

where D is the distance of the observer to the source.

Exercise 17.6 Verify equation (17.30).
Hint: Use equations (9.115) and (9.116).

From Figure 17.7, which applies to a system with total mass M ≈ 5.3M� this maximum
amplitude is h ≈ 5× 10−22 for a characteristic distance of D = 100 Mpc. Such a waveform should
be detectable by a gravitational wave laser interferometer like advanced LIGO. The waveform
exhibits the characteristic increase in amplitude and frequency during the late inspiral phase,
tret ≡ t − D <∼ 120M . At the end of the inspiral the wavelength of the radiation is ∼ 25M ,
appropriate for orbital motion near the ISCO. For 120 <∼ tret/M <∼ 150, black hole ringdown
radiation is evident, with an expected quasinormal wavelength of ∼ 15M f

BH, where the final black
hole mass M f

BH is comparable to the total initial mass of the binary.



520 BLACK HOLE-NEUTRON STAR BINARIES

Irrotational Binaries

The merger of irrotational binaries (irrotational neutron stars orbiting nonspinning black holes)
has been treated by several investigators in full general relativity.34 The emphasis has been on low-
mass cases (q <∼ 5) for which the neutron star undergoes tidal disruption prior to capture. In most
of these investigations, the gravitational fields are evolved by the BSSN scheme, and the matter
is evolved by a HRSC algorithm on the same spacetime lattice. By contrast, Duez et al. (2008)
evolve Einstein’s equations by a first order representation of the generalized harmonic formulation
using pseudospectral methods. The equations of hydrodynamics are evolved on a separate grid

using shock-capturing finite difference or finite volume techniques. The consensus of all the studies
is that a toroidal disk forms around the black hole in most cases but that the typical disk masses
are much lower than the values quoted in the previous Sections. In the following discussion we
shall highlight the calculations of Etienne et al. (2009), in part to facilitate a comparison in the
next section with spinning black holes, which they also treat. For irrotational binaries, Etienne
et al. (2009) find that that, though indeed lower, the disk masses that form around the remnant
black hole following neutron star disruption are still astrophysically significant, <∼ 0.01− 0.05M�.

The code developed by Etienne et al. (2009) is a refinement of the BSSN HRSC relativistic
MHD scheme of Duez et al. (2005b) discussed earlier in the book in several other contexts.35 Their
most significant improvement consists of the implementation of AMR36 to track the evolution
of the strong-field, inner regions at high resolution while simultaneously allowing the grid outer
boundary to extend far out into the wave zone for more accurate wave extraction and more reliable
boundary conditions. Etienne et al. (2009) launched a new suite of tests to check the AMR version
of their code. These tests involved both vacuum spacetimes and spacetimes with hydrodynamic
matter sources and included shock-tube tests and simulations of linear gravitational waves, single
stationary and boosted puncture black holes, puncture black hole binary mergers,37 rapidly and
differentially rotating equilibrium stars, and relativistic Bondi accretion onto a Schwarzschild black
hole. Convergence tests performed in all cases confirmed the reliability of the AMR version.

The BSSN equations are integrated with fourth-order accurate, centered, finite-differencing
stencils, except on shift advection terms, where fourth-order accurate upwind stencils are used.
Outgoing wave boundary conditions are adopted for all BSSN fields. Fourth-order Runge-Kutta
time-stepping is managed by a MoL (Method of Lines) routine, with a Courant-Friedrichs-Lewy
factor set to 0.45.38 Etienne et al. (2009) find that in the presence of hydrodynamic matter, the
evolution of the conformal variable φ rather than χ = e−4φ or W = e−2φ yields a more stable
evolution near the black hole puncture and better rest-mass conservation.39 The equations are
evolved using standard puncture gauge conditions: an advective “1+log” slicing condition for the
lapse and a “Gamma-driver” condition for the shift.40

34See, e.g., Shibata and Taniguchi (2007); Etienne et al. (2008); Yamamoto et al. (2008); Duez et al. (2008);
Etienne et al. (2009).

35See, e.g. Chapters 5.2.4, 14.2.3, and 16.3.
36The implementation uses the moving-box AMR infrastructure provided by the ‘Carpet’ algorithm; see Schnetter

et al. (2004) for a description of the FMR version of the AMR algorithm and http://www.carpetcode.org for
publically available modules of the AMR version.

37See Appendix I, where these simulations of binary black hole mergers are summarized, together with some of
the features of the vacuum sector of this AMR code.

38See Chapter 6 for a discussion of these concepts.
39In contrast to evolution on a fixed grid using a conservative HRSC scheme, rest-mass conservation is not

guaranteed on an AMR grid, where spatial and temporal prelongation (interpolation) is performed at the grid
boundaries.

40See equations 4.51 and 4.83, implementing the “shifting shift” version in the later case.
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The HRSC scheme for the hydrodynamics is second-order accurate for laminar flow, but first-
order accurate when discontinuities like shocks arise. To stabilize the scheme in vacuum regions,
a tenuous atmosphere is maintained, with a density floor ρatm set equal to 10−10 times the initial
maximum density on the grid.

Etienne et al. (2009) consider irrotational binaries with mass ratios q = 1, 3 and 5. For initial
data they use the quasiequilibrium models constructed using the conformal thin-sandwich method
in Taniguchi et al. (2008). All three cases are tracked from approximately the same starting
value of MΩ, where Ω is the orbital angular velocity and M is the total ADM mass. The black
hole interiors are excised in this method, but with suitable care these regions can be filled with
smooth, but otherwise arbitrary, constraint-violating “junk” initial data that does not affect the
black hole exterior when evolved.41 The neutron stars obey an n = 1 polytropic EOS initially
and evolve accordingly to a Γ = 2 adiabatic EOS. All neutron stars in this study have the same
nondimensional rest-mass, M̄0 = 0.15, which is 83% of the maximum rest mass of a nonrotating
star built with the same polytropic EOS; the compaction of the adopted neutron star is C = 0.145
in isolation.

The q = 3 case (case A) represents a generic tidal disruption scenario. Evolution starts from
a binary coordinate separation of D0/M = 8.81, corresponding to MΩ = 0.0333. The AMR grid
used in this case has nine levels of refinement; there are two sets of nested refinement boxes, one
centered on the black hole and the other on the neutron star. The maximum resolution (minimum
spacing) is M/32.5 in the innermost box centered on the black hole. Approximately 41 grid
points cover the diameter of the (spherical) apparent horizon initially and 85 grid points cover the
(smallest) diameter of the neutron star. The outer boundary of the grid is located at r/M = 197.

Figure 17.8 shows the inspiral trajectories of the black hole and neutron stars while Figure 17.9
shows snapshots of the density and velocity vectors at selected times during the evolution for the
q = 3 case. Note that the equilibrium shape of the neutron star is hardly disturbed for the
first two orbits (upper middle). The lower panels show how the neutron star tail deforms into a
quasistationary disk, as the bulk of the matter is accreted onto the black hole. A time history of
the rest-mass consumption by the black hole is plotted in Figure 17.10 for this case, as well as
for the irrotational q = 1 (case E) and 5 (case D) mergers. Astrophysically, we expect that the
formation of a binary black hole-neutron star will typically occur with q > 1.

Figure 17.10 suggests that for q = 3 and q = 1 there are two distinct phases during which
matter falls into the black hole following tidal disruption of the neutron star: an initial plunge
phase and a secondary accretion phase. The plunge phase occurs early in the merger as part of
the disrupted star streams onto the black hole and the remainder deforms into a tidal tail. The
plunge phase ends when 70–90% of the matter falls into the BH, resulting in a sudden drop in
the slope of the exterior M0 vs. time plot in the figure. The debris in the tail, having larger
specific angular momentum, spreads out and forms a disk. Material with lower specific angular
momentum in the disk accretes onto the BH. Since there is neither viscosity nor magnetic fields
in this simulation, the accretion should eventually cease as the evolution continues. However, in
realistic astrophysical environments, viscosity and magnetic fields frozen into the initial gas will
drive further accretion on secular timescales.42

For the q = 5 case plotted in Figure 17.10 the neutron star essentially plunges into hole, leaving
< 1% of its rest mass outside the at the end of the simulation. This result is not surprising since,
at the ISCO, the tidal effect of the black hole is smaller for larger q, resulting in tidal disruption

41Etienne et al. (2007); see also Brown et al. (2007).
42Recall the examples of viscous and MHD disk accretion onto black holes discussed in Chapter 14.2.4 and 14.2.5.
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Figure 17.8: Trajectories of the black hole and neutron star coordinate centroids for the merger of
an irrotational binary with mass ratio q = 3 (case A). The black hole (BH) centroid corresponds
to the centroid of the apparent horizon, and the neutron star (NS) centroid is computed via the
integral X̃ i

c ≡ (
∫
V
xiρ∗d

3x)/(
∫
V
ρ∗d

3x), where V is the total simulation volume. [From Etienne
et al. (2009).]

occurring closer to the ISCO. Moreover, for a given neutron star, the horizon size of the black hole
is larger for larger q, making it easier to capture neutron star matter during the plunge. More
surprising is that result that the disk mass in the q = 1 case (Mdisk/M0 ≈ 2.3%) is less than the
disk mass in the q = 3 case (Mdisk/M0 ≈ 3.9%). This result is presumably due to the complicated
interaction of the disrupted matter in the merging process. A low-density, hot spiral region of
disrupted matter winds around the black hole and smashes into the tidal tail of the disrupted
star, causing significant shock heating. As shown in Exercise 17.7 the degree of shock heating can
be considerable in a supersonic, low-density stream. Some of the heated matter transfers angular
momentum to the other part of the tail and then falls into the black hole. The remaining matter
in the tail deforms into an inhomogeneous disk before settling into a quasistationary state in which
a high density, relatively low temperature torus of matter surrounds the black hole.

Exercise 17.7 Shock heating can be measured by the degree to which the polytropic gas constant
K ≡ P/ρΓ

0 increases in a gas that passes through a shock front. Recall that this quantity remains
constant for adiabatic flow in the absence of shocks. Assume Newtonian hydrodynamics in doing this
exercise.
(a) Assume that matter evolves adiabatically with the same adiabatic constant Γ > 1 both before and
after entering a planar shock front. Let the upstream Mach number in a fluid entering a shock be
defined by M ≡ v1/c1, where v1 is the upstream flow as viewed in the frame of the shock front and
c1 is the upstream sound speed. Use the fact that the flow always enters a shock front supersonically
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Figure 17.9: Snapshots of rest-density contours and 3-velocity vectors at selected times during
the merger of the irrotational black hole-neutron star binary with mass ratio q = 3 shown in
Figure 17.8 (case A). The contours represent the density in the orbital plane, plotted according to
ρ0 = ρ0,max10−0.38j−0.04, (j=0, 1, ... 12), with darker grey scaling for higher density. The maximum
initial neutron density is Kρ0,max = 0.126, where K is the initial polytropic gas constant, or
ρ0,max = 9 × 1014g cm−3(1.4M�/M0)

2. Arrows represent the velocity field in the orbital plane.
The apparent horizon interior is marked by a filled black circle. In cgs units, the initial ADM
mass for this case is M = 2.5 × 10−5(M0/1.4M�) s= 7.6(M0/1.4M�)km. [From Etienne et al.
(2009).]

(i.e. M > 1) to show that the downstream-to-upstream ratio of the gas constants is given by

K2/K1 =
2ΓM2 − (Γ− 1)

(Γ + 1)Γ+1

(
Γ− 1 +

2
M2

)Γ

. (17.31)

Prove that this ratio is always larger than unity.
(b) Evaluate M in terms of v1 and ρ1 and argue that for a given upstream velocity, M is larger for a
lower density fluid.
(c) Assume highly supesonic flow M� 1 and show that

K2/K1 ≈
2v2

1

(Γ + 1)K1ρ
Γ−1
1

(
Γ− 1
Γ + 1

)Γ

(17.32)

Equation 17.32 shows that when the density ρ1 of the upstream matter is low, the degree of shock
heating downstream can be substantial, i.e. K2/K1 � 1.
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Figure 17.10: Rest-mass fraction outside the black hole as a function of time for irrotational
binaries with different mass ratios. Here, the time coordinate is shifted by t25, the time at which
25% of the neutron star rest mass has fallen into the apparent horizon. [From Etienne et al.
(2009).]

Etienne et al. (2009) find that the disk is smallest and most dense for the q = 1 binary.
Specifying the length scale in km via the relation M = 1.9(q + 1)(M0/1.4M�)km, and setting the
neutron star rest mass M0 equal to 1.4M�, they obtain a characteristic radius of rdisk ≈ 20km and
a maximum density of ρ0,max ≈ 6 × 1012g cm−3 for this disk. The corresponding values for the
disk in the q = 3 case are rdisk ≈ 50km and ρ0,max ≈ 4 × 1011g cm−3. In all cases the disk forms
a hot, thick torus whose height is about 15− 20% of the characteristic radius and whose density
plummets at the black hole ISCO. The low density regions are hottest, due to shock heating
(see Exercise 17.7). However the gas constant K ≡ P/ρΓ

0 increases by more than a factor of 6
everywhere in the q = 1 disk and by more than 85 everywhere in the q = 3 disk.

Etienne et al. (2009) determine the thermal temperature T in the gas from the specific energy
density ε, which can determined from the evolved hydrodynamic variables. For a polytropic
equation of state, the “cold” contribution εcold is defined as

εcold = −
∫
Pcoldd(1/ρ0) =

Kcold

Γ− 1
ρΓ−1

0 , (17.33)

where Pcold ≡ Kcoldρ
Γ
0 governs the initial (cold) neutron star. Now define the thermal contribution

to the specific energy density generated by shock heating as εth = ε−εcold and compute the thermal
contribution according to

εth = ε− εcold =
1

Γ− 1

P

ρ0

− Kcold

Γ− 1
ρΓ−1

0
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= (K/Kcold − 1)εcold . (17.34)

To estimate T , Etienne et al. (2009) model εth according to

εth =
3kT

2mn

+ fs
aT 4

ρ0

, (17.35)

where mn is the mass of a nucleon, k is the Boltzmann constant, and a is the radiation constant.
The first term represents the approximate thermal energy of the nucleons, and the second term
accounts for the thermal energy due to radiation and (thermal) relativistic particles. The factor
fs reflects the number of species of ultrarelativistic particles that contribute to thermal radiation.
When T � 2me/k ∼ 1010K, where me is the mass of electron, thermal radiation is dominated by
photons and fs = 1. When T � 2me/k, electrons and positrons become ultrarelativistic and also
contribute to radiation, and fs = 1 + 2 × (7/8) = 11/4. At sufficiently high temperatures and
densities (T >∼ 1011K, ρ0

>∼ 1012 g cm−3), thermal neutrinos are copiously generated and become
trapped, so, taking into account three flavors of neutrinos and antineutrinos, fs = 11/4+6×(7/8) =
8.

Using equation (17.35), the characteristic temperature is T ∼ 5 × 1010K (or ∼4MeV) in the
disk formed following the q = 3 binary merger, with comparable values for the other disks. Nu-
merical models of rotating black holes with ambient disks with similar temperatures and densities
suggest that such systems can produce a total gamma-ray energy E ∼ 1047–1050erg from neu-
trino-antineutrino annihilation.43 This result is promising for generating a short-hard GRB from
a merging black hole-neutron star binary.

Gravitational waveforms are computed for the three cases described above and the results are
compared in Figure 17.11. Waveforms extracted at different radii are found to overlap well provided
the extraction radius is sufficiently large: rex >∼ 40M . With approximately the same initial MΩ,
we observe more wave cycles are emitted as the mass ratio q is decreased. The amplitudes are
attenuated at frequencies roughly equal to double the orbital frequency at which tidal disruption
begins.

Exercise 17.8 The gravitational waveforms h+ and h× can be decomposed into s = −2 spin-weighted
spherical harmonics −2Ylm according to

h+ − ih× =
∑
l,m

(hlm
+ − ihlm

× )−2Ylm , (17.36)

where hlm
+ and hlm

× are real functions. Each (l,m) mode is a function of radius and time only.
(a) Use the results of Chapter 9.4 to express hlm

+ and hlm
× in terms of gauge-invariant Moncrief functions.

(b) Use the results of Chapter 9.4 to express hlm
+ and hlm

× in terms of the Weyl scalar ψ4.

One significant measure of the accuracy of the simulations is provided by the degree to which
energy and angular momentum are conserved. Etienne et al. (2009) calculate the diagnostic
quantities

δE ≡ M −Mf −∆EGW , (17.37)

δJ ≡ J − Jf −∆JGW , (17.38)

where M and J are the ADM mass and angular momentum of the initial binary, Mf and Jf are
the ADM mass and angular momentum of the final system, and ∆EGW and ∆JGW are the energy

43Setiawan et al. (2006)
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Figure 17.11: Gravitational wave signal for irrotational binaries with mass ratios (top to bottom)
q = 1, 3 and 5. The black solid (blue dash) line denotes the (2,2) mode of h+ (h×) extracted at
rex = 43.4M . [From Etienne et al. (2009).]

and angular momentum carried off by gravitational waves. Assuming that no matter or other
form of radiation leaves the computational domain, which is the case here, strict conservation
of energy and angular momentum demands that δE = 0 = δJ . Etienne et al. (2009) find that
(δE/M, δJ/J) = (−2× 10−4, 2.2× 10−2) for the q = 3 case, which takes approximately 4.5 orbits
before merger, with comparable errors for the other cases. Maintaining conservation of angular
momentum is typically more difficult than energy conservation, due to spurious numerical viscosity
(shear) effects. However, the determination of the final disk mass is particularly sensitive to errors
in angular momentum conservation, so they must be kept to a minimum (<∼ a couple percent) for
a reliable measure.

The radiated fractions (∆EGW/M,∆JGW/J) are found to be (0.35%, 7.2%) for the q = 1
system, (0.93%, 17.4%) for q = 3, and (0.98%, 19.2%) for q = 5. The spins Jf/M

2
f of the black

hole remnants are 0.85 for q = 1, 0.56 for q = 3 and 0.42 for q = 5. Binary black hole-neutron
star mergers typically impart kick velocities to the remnant black holes due to recoil.44 The kick
velocity vkick is calculated to be 17 km/s for q = 1, 33 km/s for q = 3 and 73 km/s for q = 5.

By evolving initial binaries along the same quasiequilibrium sequences as those chosen here but
with larger initial separations (smaller MΩ) Etienne et al. (2009) find that the outcomes (apart
from a phase shift in the case of gravitational waves) are essentially unchanged. This indicates
that choosing the initial separation corresponding to MΩ = 0.0333 is sufficiently large to predict
the onset of tidal disruption, merger evolution, gravitational waveforms and disk masses reliably,

44See Chapter 13.2.2 for a discussion of recoil in the context of binary black hole mergers.
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although this result may only be marginally true in the case of q = 1 (see Exercise 17.9).

Exercise 17.9 Explain why fixing the initial value of MΩ leads to closer initial separations as the
binary mass ratio q is decreased. Specifically, estimate the separation in a circular binary as a function
of MΩ and q.

Figure 17.12 plots the gravitational wave power spectra (i.e. the effective wave strain heff(f) =
(
√

2/πD)(
√
dE/df) versus f , where E(f) is the Fourier transform of the energy, f the frequency

and D the source distance) for the three cases, using only the dominant (2,2) and (2,-2) wave
modes, and compares them to the Advanced LIGO sensitivity curve, or effective strain, hLIGO(f) ≡√
fSh(f).45 To set the scale in the figure, the neutron star is assumed to have a rest mass

of 1.4M� and the binary is placed at a distance of 100Mpc. This is the distance required to
reach one merger per year in one estimate,46 assuming an overall rate of 10 mergers per Myr per
Milky Way-equivalent galaxy (and a density of these of 0.1 gal/Mpc3). This distance is roughly
that of the Coma cluster, and approximately five times the distance to the Virgo cluster. The
gravitational wave spectra of nonspinning binary black hole mergers with the same mass ratios
as in the three black hole-neutron star cases are also plotted for comparison. The figure shows
that the wave signal drops appreciably near the frequency corresponding to the onset of neutron
star tidal disruption. The difference in wave signals between binary black hole and black hole
mergers is seen to be marginally observable in the Advanced LIGO frequency band in most cases.
Distinguishing binary black hole from binary black hole-neutron star inspirals and mergers may
thus require narrow-band wave detection techniques with advanced detectors. The observation
of an accompanying GRB would also serve to distinguish the two types of events (and would
be a dramatic discovery!). Should the chirp mass determination, combined with higher order
PN waveform phase effects, allow for an independent determination of the individual masses and
spins of the binary companions, the measurement of the black hole-neutron star tidal disruption
frequency should give a good estimate of the neutron star radius and, hence, insight into the
nuclear EOS.

Irrotational Neutron Stars with Spinning Black Holes

Etienne et al. (2009) also explore the effects of black hole spin on the merger of black hole-neutron
star binaries. They consider irrotational neutron stars orbiting spinning black holes, taking the
black hole spins to be either aligned or anti-aligned with the orbital angular momentum. They
again use conformal thin-sandwich quasiequilibrium initial data for the binaries and evolve models
with the initial spin parameter of the black hole between JBH/M

2
BH = -0.5 (anti-aligned) and 0.75,

fixing the mass ratio at q = 3 and the initial orbital angular velocity at MΩ ≈ 0.033. As the
initial spin parameter increases, the total initial angular momentum increases, requiring more
gravitational wave cycles to emit sufficient angular momentum to bring the companions close
enough to merge. Not surprisingly, the binary undergoes more orbits before merger as JBH/M

2
BH

increases: for spins −0.5, 0.0, and 0.75, the binary inspiral phase lasts for 3.25, 4.5, and 6.5 orbits,
respectively. The coordinate trajectories of the apparent horizon and neutron star centroids are
shown in Figure 17.13 for the case with JBH/M

2
BH = 0.75 (case B).

Figure 17.14 shows snapshots of the density and velocity vectors at selected times during the

45The quantity hLIGO(f) is related to the LIGO “strain per root Hertz”, or noise, h̃(f) plotted in Figure 9.4 by
hLIGO(f) = h̃(f)

√
f .

46Belczynski et al. (2002).
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Figure 17.12: Gravitational wave power spectra for the q = 1, 3 and 5 cases (Cases E, A and D,
respectively). The solid curve in each panel shows the combined waveform found by attaching the
restricted 2.5 order PN waveform to the dominant modes computed by the numerical relativity
simulation (NR), while the dotted curve shows the contribution from the latter only. The dashed
curve shows the power spectrum for a nonspinning black hole binary merger (BHBH) for black
holes with the same mass ratios as the black hole-neutron star binaries (BHNS); the later exhibit
significantly less power at higher frequencies, due to tidal disruption. The heavier solid curve is the
effective strain of the Advanced LIGO detector, defined by hLIGO(f) (see text) . To set physical
units, we assume a neutron star rest mass of M0 = 1.4M� and a source distance of D=100Mpc.
[From Etienne et al. (2009).]

evolution for the JBH/M
2
BH = 0.75 case. The upper plots in the figure demonstrate that the

neutron star retains its shape after 4 orbits (upper middle), and begins shedding its outer layers
due to tidal disruption only after about 5 orbits (upper right). Notice however, in this case, the tail
is quite massive (lower left), and by the time 75% of the mass has been accreted (lower center) it is
much larger than the tail measured at the same point for a nonspinning black hole (lower left plot
in Figure 17.9). The lower right plot is a snapshot taken near the end of the simulation, when a
quasistationary disk resides outside the BH. The disk is massive: Mdisk/M0 ≈ 15%, corresponding
to 0.2M� for a 1.4M� neutron star. The maximum density of the disk is ρ0,max ≈ 5× 1011g cm−3

and the characteristic temperature is T ∼ 510K (or ∼4MeV), which are similar to the nonspinning
case. However, the disk is about twice as large in size, with a characteristic radius of rdisk = 100km,
in addition to being much more massive.

Etienne et al. (2009) conclude from their simulations that the black hole-neutron star inspiral
phase lasts longer the larger the spin JBH/M

2
BH. Also, larger aligned spins form more extensive
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Figure 17.13: Trajectories of the black hole and neutron star coordinate centroids for the merger
of an irrotational neutron star orbiting a spinning black hole with spin JBH/M

2
BH = 0.75 (case B).

Compare with Figure 17.8 for the merger of an identical neutron star with a nonspinning black
hole, assuming the same binary mass ratio q = 3 and initial orbital angular velocity MΩ ≈ 0.033.
[From Etienne et al. (2009).]

and more massive disks: the final disk mass grows from < 1% of the initial neutron star rest mass
when the black hole has spin = −0.5 (case C) to ≈ 4% for spin = 0 (case A) to ≈ 15% for spin
= 0.75 (case B). Figure 17.15 shows the rest mass outside the black hole as a function of time for
these three cases, illustrating once again the two phases of mass consumption by the black hole.
If the formation of a massive disk about a rotating black hole is a prerequisite for a short-hard
GRB, then it appears that the more rapidly spinning and closely aligned the initial black hole,
the more likely it is to power such a source by binary black hole-neutron star merger.

A comparison between the final disks formed in three merger scenarios is shown in Figure 17.16.
Both the mass ratios and initial black hole spins are varied for a cross-the-board comparison: recall
that (q, JBH/M

2
BH) = (1,0) for case E, (3,0) for case A and (3,0.75) for case B.

Finally, we show a comparison between gravitational waveforms emitted for three merger sce-
narios in Figure 17.17. The mass ratios are all identical (q = 3) but the initial black hole spins
are varied: recall that JBH/M

2
BH = -0.5 for case C, 0 for case A and 0.75 for case B.

Though tentalizing, all of these results are quite preliminary. Simulations that take into account
the detailed microphysics, including the correct hot, nuclear EOS, magnetic fields and neutrino
and photon transport, are necessary to fully assess the viability of and mechanism for generating
short-hard GRBs from binary black hole-neutron star mergers. But much of the groundwork,
especially the tool of numerical relativity, now has been prepared to carry out such simulations.
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Figure 17.14: Snapshots of rest-density contours and 3-velocity vectors at selected times during the
merger of an irrotational neutron star orbiting a black hole with spin a/MBH = JBH/M

2
BH = 0.75,

as shown in Figure 17.13 (case B). The contours represent the density in the orbital plane, plotted
according to ρ0 = ρ0,max10−0.38j−0.04, (j=0, 1, ... 12), with darker grey scaling for higher density.
The maximum initial neutron density is Kρ0,max = 0.126, where K is the initial polytropic gas
constant, or ρ0,max = 9×1014g cm−3(1.4M�/M0)

2. Arrows represent the velocity field in the orbital
plane. The apparent horizon interior is marked by a filled black circle. In cgs units, the initial
ADM mass for this case is M = 2.5 × 10−5(M0/1.4M�) s= 7.6(M0/1.4M�)km. [From Etienne
et al. (2009).]
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Figure 17.15: Rest-mass fraction outside the black hole as a function of time for the merger of an
irrotational neutron star orbiting a black hole with different initial black hole spins a/MBH. Here
the time coordinate is shifted by t25, the time at which 25% of the neutron star rest mass has
fallen into the apparent horizon. [From Etienne et al. (2009).]
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Figure 17.16: Snapshots of rest-density contours and 3-velocity vectors at the end of the simula-
tions for three binary black hole-neutron star merger scenarios (see text). The remnant disks are
shown in the orbital plane (upper row) and meridional plane (bottom rows). The contours repre-
sent the density plotted according to ρ0 = ρ0,max10−0.1j−3.3 (j=0, 1, ... 13) for Cases A and B and
ρ0 = ρ0,max10−0.19j−2.32 (j=0, 1, ... 12) for Case E, with darker grey scaling for higher density. In
all cases the maximum initial neutron density is Kρ0,max = 0.126, where K is the initial polytropic
gas constant, or ρ0,max = 9 × 1014g cm−3(1.4M�/M0)

2. Arrows represent the velocity field. The
apparent horizon interior in the orbital plane is marked by a filled black circle. Length scales are
specified in km, assuming the neutron star has a rest mass of 1.4M�; it can be converted to units
of M via the formula M = 1.9(q + 1)km. [After Etienne et al. (2009).]
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Figure 17.17: Gravitational wave signal for three binaries with mass ratio q = 3 initial black hole
spins (top to bottom) JBH/M

2
BH = -0.5, 0 and 0.75. The black solid (blue dash) line denotes the

(2,2) mode of h+ (h×) extracted at rex = 43.4M . [From Etienne et al. (2009).]
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Chapter 18

Epilogue

This is not the end.
It is not even the beginning of the end.
But it is, perhaps, the end of the beginning.

Winston Churchill (1942)

This brings us to the end of our introduction to numerical relativity. A quick glance at the table
of contents shows that we have covered a wide range of subjects, starting with the foundations
of numerical relativity and continuing with applications to different areas of gravitation physics
and astrophysics. Despite the breadth of our survey, we have had to be selective in our choice
of topics. Our focus has been on solving the Cauchy problem in general relativity for dynamical,
asymptotically flat spacetimes, with applications to compact objects and compact binaries. There
are a number of alternative approaches for solving Einstein’s equations that we did not touch
on at all, such the characteristic approach and the Regge calculus. We also did not discuss in
any detail applications involving strictly stationary spacetimes, such as gas accretion onto Kerr
black holes, although some of the same schemes we described for matter evolution have been used
successfully to treat problems with fixed background metrics. We trust that interested readers
will find discussions of the subjects we omitted elsewhere in the literature.

We hope that our discussion laying out the foundations of numerical relativity will remain
relevant for the foreseeable future. However, we suspect that some of the large-scale simulations
we have chosen to illustrate different implementations will be superseded by more sophisticated
calculations. Such calculations will invariably incorporate more detailed microphysics and will
take advantage of more advanced, computational algorithms and hardware. Yet even for these
cases we would like to believe that, at the very least, the examples we have selected to highlight
will help preview and elucidate these more sophisticated, future simulations. We invite our readers
to assess this siutation for themselves.

Exercise 18.1 Pick one of the applications of numerical relativity treated in this book, such as binary
neutron star mergers, or magnetorotational stellar collapse, or one of the other topics. Perform a search
of the recent computational literature to determine what new physical input or methods of solution
have been implemented and what new results have emerged for this application since the writing of
this book.

535
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One exciting prospect is that numerical relativity will be applied to areas of gravitation physics
and astrophysics that have yet to take full advantage of this powerful computational tool. It is
possible, for example, that numerical relativity will prove useful to probe certain aspects of cos-
mology where homogeneity is not applicable and where neither perturbation theory nor Newtonian
gravitation is adequate. It is also possible that numerical relativity will play a greater role in in-
vestigating the higher-dimensional spacetimes that arise in quantum field theories, such as string
theory. More than likely, there are areas that we cannot even fathom now that will turn to nu-
merical relativity in the future for computational insight. We again leave it to future readers to
identify such areas, or, even better, to lead the charge!

Exercise 18.2 Do a casual search of the research literature and see if there are any new applications
of numerical relativity in physics or astrophysics that have not been mentioned at all in this book.



Appendix A

Lie Derivatives, Killing Vectors, and
Tensor Densities

In this Appendix we introduce a few of the mathematical concepts used in the book with which
some readers may be less familiar, namely, the Lie derivative, Killing vectors and tensor densities.
The aim of our presentation is to make these concepts transparent and easy to use in applications;
for a more complete and rigorous treatment we refer the reader to the discussions in, for example,
Schutz (1980) and Wald (1984).

A.1 The Lie Derivative

Consider a (non-zero) vector field Xa in a manifold M .1 We can find the integral curves xa(λ) (or
orbits, or trajectories) of Xa by integrating the ordinary differential equations

dxa

dλ
= Xa(x(λ)). (A.1)

Here λ is some affine parameter, and we use bold-face notation x instead of index notation xa

for the coordinate location in the argument to make the expressions more transparent. For a
sufficiently well-behaved vector field Xa a solution is guaranteed, at least locally, by the existence
and uniqueness theorem for ordinary diffential equations. This procedure is completely equivalent
to finding the paths of fluid particles, given their fluid velocity. The integral curves xa(λ) are now
a family of curves in M , so that exactly one curve passes through each point in M (see Fig. A.1).
Such a family is known as a congruence of curves. Obviously at each point the tangent to the
integral curves is given by Xa.

We would now like to define a derivative of a tensor field, say T ab, using Xa. This involves
comparing the tensor field at two different points along Xa, say P and Q, and taking the limit as
Q tends to P . This is where we encounter a conceptual problem: what do we mean by comparing
two tensors at two different locations in the manifold M?

We could, of course, simply compare components of the tensor field T ab at P , T ab(P ) and at
Q, T ab(Q). This leads to the definition of the partial derivative. Note, however, what happens
under a coordinate transformation. The tensors T ab(P ) and T ab(Q) have to be transformed with
the transformation matrix evaluated at the two points P and Q. In general the two matrices will

1This Section closely follows the discussion in d’Inverno (1992).
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Figure A.1: A vector field Xa generates a congruence of curves xa.

be different, and, accordingly, the result of this differentiation cannot be a tensor. This is one way
to understand why the partial derivative of a tensor is not a tensor.

In order to differentiate a tensor in a tensorial manner, we therefore have to evaluate the two
tensors at the same point. To do so, we have to drag one tensor to the other point before we can
compare the two tensors. For example, we can drag T ab(P ) along Xa to the point Q. At Q, we
can then compare the dragged tensor, which we will denote with primes, T a

′

b′(Q), with the tensor
already present at Q, T ab(Q) (see Fig. A.2).

However, this recipe still leaves open how we drag T ab along Xa. One approach would be to
parallel-transport the tensor T ab from P to Q. This idea leads to the definition of the covariant
derivative. Put into words, the covariant derivative measures by how much the changes in a tensor
field along Xa differ from being parallel-transported.

Parallel-transporting is not the only way of dragging T ab along Xa. In some sense an even
more straight-forward approach is to view the dragging as a simple coordinate transformation
from P to Q. This, in fact, defines the Lie derivative. In other words, the Lie derivative along a
vector field Xa measures by how much the changes in a tensor field along Xa differ from a mere
infinitesimal coordinate transformation generated by Xa. Unlike the covariant derivative, the Lie
derivative does not require an affine connection, and hence requires less structure.

Consider now the infinitesimal coordinate transformation

xa
′
= xa + δλXa(x), (A.2)

which maps the point P , with coordinates xa, into the point Q, with coordinates xa
′
. We regard

this as an active coordinate transformation, which maps points (and tensors) to new locations in
the old coordinate system. Completely equivalently, a passive coordinate transformation assigns
new coordinate values to the old point.

Assuming a coordinate basis we can differentiate (A.2) to find

∂xa
′

∂xb
= δab + δλ ∂bX

a, (A.3)
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Figure A.2: Dragging a tensor T ab from P to Q.

and, to first order in δλ,
∂xa

∂xb′
= δab − δλ ∂bX

a. (A.4)

We now start at point P , where the components of the tensor field T ab are T ab(x). We map this
tensor into the primed tensor T a

′

b′(x
′) at Q with the help of the coordinate transformation (A.2)

T a
′

b′(x
′) =

∂xa
′

∂xc
∂xd

∂xb′
T cd(x)

= (δac + δλ ∂cX
a)(δdb − δλ ∂bX

d)T cd(x)

= T ab(x) + δλ (∂cX
aT cb(x)− ∂bX

cT ac(x)) +O(δλ2). (A.5)

For the purpose of defining the Lie derivative this is the result of dragging T ab along Xa from P
to Q. The components of the unprimed tensor already present at Q, T ab(x

′), can be related to
T ab(x) by Taylor expanding

T ab(x
′) = T ab(x

c′) = T ab(x
c + δλXc) = T ab(x) + δλXc∂cT

a
b +O(δλ2). (A.6)

We now denote the Lie derivative of T ab with respect to Xa as LXT
a
b and define

LXT
a
b = lim

δλ→0

T ab(x
′)− T a

′

b′(x
′)

δλ
. (A.7)

This definition holds for any tensor of arbitrary rank and type (i.e. covariant and contravariant).
Note that we evaluate both tensors at the same point, so that the Lie derivative of a tensor is
again a tensor, and moreover a tensor of the same rank. Note also a subtlety of our abstract
tensor notation: The expression LXT

a
b = (LXT )ab implies that the Lie derivative of the tensor T ab

is again a tensor of rank (1
1); it does not denote the Lie derivative of the a-b component of T ab.

2

For our tensor T ab of rank (1
1) we can insert (A.5) and (A.6) into (A.7) to find

LXT
a
b = Xc∂cT

a
b − T cb∂cX

a + T ac∂bX
c. (A.8)

2See also exercise (8.13) in Lightman et al. (1975).
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The Lie derivative of a general tensor field can be found by first taking a partial derivative of the
tensor and contracting it with Xa, and then adding additional terms involving derivatives of Xa

as in (A.8) for each index, with a negative sign for contravariant indices and a positive sign for
covariant indices.

We can always introduce an adapted coordinate system, in which, for example, the coordinate
basis vector ea(0) is aligned with Xa, and all the other coordinates are constant along Xa. Setting
Xa = ea(0) then yields

Xα = δα0 = (1, 0, . . . , 0). (A.9)

We have used greek indices as opposed to the latin indices of our abstract index notation, since
this relationship for components only holds in these adapted coordinates. Writing equation (A.8)
in this coordinate system, we immediately find

LXT
α
β =

∂

∂x0
Tαβ. (A.10)

In this sense the Lie derivative is a tensorial generalization of the partial derivative. In fact, this
relationship is sometimes used as a starting point for defining the Lie derivative.

It is an important property of the Lie derivative that, for any symmetric affine connection
(i.e. Γabc = Γa(bc)) we can replace all the partial derivatives with covariant derivatives.

Exercise A.1 Show that the expression

LXT
a
b = Xc∇cT

a
b − T c

b∇cX
a + T a

c∇bX
c, (A.11)

where ∇a denotes a covariant derivative3 with a symmetric connection, is equivalent to equation (A.8).

As we have emphasised, our derivation holds only for coordinate or holonomic bases, for which
the affine connection associated with the metric is symmetric. But for these bases we can replace
all the partial derivatives with covariant derivatives, obtaining covariant (coordinate-free) expres-
sions for the Lie derivative. Accordingly, these covariant expressions for the Lie derivative, like
equation (A.11), hold even in non-coordinate bases, and are hence more general. In the following
we will therefore use covariant derivatives when writing out a Lie derivative.

For a scalar f , the Lie derivative naturally reduces to the partial derivative

LXf = Xb∇bf = Xb∂bf, (A.12)

since there are no free indices on f to take care of. For a vector field va, we find from (A.8)

LXv
a = Xb∇bv

a − vb∇bX
a = [X, v]a, (A.13)

which is the commutator of the two vector fields, while for a 1-form ωa we have

LXωa = Xb∇bωa + ωb∇aX
b. (A.14)

Note that the Lie derivative satisfies the Leibnitz rule for outer products.

Exercise A.2 Show that
LX(vaωa) = vaLXωa + ωaLXv

a. (A.15)

3We depart from our convention in the rest of the book and denote by ∇a a covariant derivative in any number
of dimensions.
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Also, the Lie derivative commutes with the outer derivative of a p-form Ω̃.

Exercise A.3 Show that for a p-form Ω̃

LXd̃Ω̃ = d̃LXΩ̃. (A.16)

Exercise A.4 Let xa(λ) be the integral curves of a vector field Xa, and let Y a be a second vector
field. Show that if Y a is Lie dragged along Xa,

LXY
a = 0, (A.17)

then it will connect points of equal λ along the congruence xa(λ).

The last exercise provides a geometrical interpretation of a property of the Lie derivative that
is very important in constructing 3 + 1 evolution equations in Chapter 2. If a vector Y a resides in
a spacelike hypersurface, then it connects, in the language of Chapter 2, points in spacetime that
have the same coordinate time t. Exercise (A.4) shows that if we Lie drag Y a along the vector
αna, where α is the lapse function and na the normal vector, then it will still connect points of
equal t, and hence will continue to reside in our spacelike hypersurfaces.

A.2 Killing Vectors

As an important application, consider the Lie derivative along Xa of a metric gab

LXgab = Xc∇cgab + gcb∇aX
c + gca∇bX

c. (A.18)

If ∇a is compatible with the metric, the first term vanishes, and we find

LXgab = ∇aXb +∇bXa. (A.19)

A Killing vector field ξa can now be defined by

Lξgab = 0. (A.20)

In other words, a Killing field ξa generates an isometry of the spacetime, and a displacement along
ξa leaves the metric invariant. From (A.19), we immediately recover Killing’s equation

∇aξb +∇bξa = 0. (A.21)

In some cases it is very easy to identify a Killing vector. If the metric components are indepen-
dent of a coordinate xi, then it follows from the property (A.10) that the coordinate basis vector
ea(i) is a Killing vector. An example is the flat metric of a unit sphere in spherical polar coordinates
θ and φ,

ηij = diag
(
1, sin2 θ

)
. (A.22)

The above metric is independent of φ, making ei(φ) a Killing vector.
In general it is much less trivial to identify Killing vectors. If we happen to know a Killing

vector ξa and its derivatives at one point of a manifold, the following relation can help to find ξa

everywhere.
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Exercise A.5 Show that a Killing vector field ξa satisfies

∇a∇bξc = −R d
bca ξd, (A.23)

where R d
bca is the Riemann tensor.

We can now define the quantity Lab ≡ ∇aξb. If both ξa and Lab are given at a point P of a
manifold, then we can find ξa and Lab at another point Q by integrating

va∇aξb = vaLab (A.24)

va∇aLbc = −R d
bca ξdv

a, (A.25)

along a curve connecting P and Q, where va denotes the tangent to this curve.
Among other useful properties, Killing vectors can be used to identify conserved quantities.

For example, given a stress energy tensor T ab and a Killing vector field ξa, we can show that the
flux Ja = T abξb is conserved

∇aJ
a = ∇a(T

abξb) = ξb∇aT
ab + T ab∇aξb = 0. (A.26)

Here the first term vanishes because the stress energy tensor is divergence free (conservation of
stress-energy), and the second term vanishes as a consequence of Killing’s equation (A.21): the
term ∇aξb is antisymmetric, so that the contraction with T ab, which is symmetric, vanishes.

Exercise A.6 Let ξa be a Killing vector field and let pa be the 4-momentum vector of a particle (or
photon) moving on a geodesic curve. Show that ξapa is conserved along the geodesic.

Since freely falling particles (or photons) follow geodesics, we see that each symmetry of the
spacetime, i.e. each linearly independent Killing vector field, gives rise to a conserved quantity for
such particles. Specifically, if the metric is independent of some coordinate xb, then that coordinate
basis vector ea(b) is a Killing vector and the particle momentum conjugate to that coordinate, pb,
is conserved.

Before leaving this Section we briefly discuss conformal Killing vectors.

Exercise A.7 Use the conformal transformation laws for the connection coefficients (3.7) to show that
a Killing vector ξa of the metric gab, i.e. a vector that satisfies Killing’s equation (A.21), also satisfies
the conformal Killing equation

∇̄aξb + ∇̄bξa − 2
n
γ̄ab∇̄cξ

c = 0. (A.27)

where ∇̄a is the covariant derivative associated with the conformally related metric ḡab = ψ−4gab, and
where n = δa

a is the number of dimensions.

A vector field ξa that satisfies the conformal Killing’s equation (A.27) is called a conformal
Killing vector. Exercise (A.7) demonstrates that a Killing vector of the metric gab is automatically
a conformal Killing vector of the conformally related metric ḡab.

We point out that in three dimensions the differential operator in (A.27) is identical to the
longitudinal operator, or vector gradient,

(L̄W )ij = ∇̄iW j + ∇̄jW i − 2

3
γ̄ij∇̄kW

k (A.28)

defined in (3.50), which is therefore also known as the conformal Killing operator.
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A.3 Tensor Densities

So far we have restricted our attention to tensors, which are defined by their transformation
properties from one coordinate system xa to another xa

′
. A rank (1

1) tensor, for example, is
defined by transforming as

T a
′

b′ =
∂xa

′

∂xc
∂xd

∂xb′
T cd (A.29)

under a coordinate transformation. There is a related class of objects that behaves similar to
tensors, except that they pick up a certain power of the Jacobian

J ≡ det

∣∣∣∣ ∂xa∂xb′

∣∣∣∣ (A.30)

during the transformation. An example of such an object is the determinant of the metric. The
spacetime metric transforms as

ga′b′ =
∂xc

∂xa′
∂xd

∂xb′
gcd, (A.31)

so taking the determinant of this equation yields

g′ = J2g. (A.32)

We now define a tensor density of weight W and rank (1
1) as an object that transforms as

T a′

b′ = JW
∂xa

′

∂xc
∂xd

∂xb′
T c
d. (A.33)

Tensors of different rank transform in an analogous way, namely as the normal tensor transforma-
tion times J to the power W . Normal “plain-old” tensors are therefore tensor densities of weight
zero. The determinant of the spacetime metric, on the other hand, is a scalar density of weight
W = +2. Another example of a tensor density is the “natural” conformal three-metric (3.6)

γ̄ij = γ−1/3γij (A.34)

that we encounter in several places throughout this book.4 Given that γ = det(γij) is a scalar
density of weight +2, γ̄ij is then a tensor density of weight -2/3.

We now construct the Lie derivative of a tensor density. Following the procedure of Section
A.1 we drag T a

b from a point P to a point Q, assuming that the tensor transforms as if under
an infinitesimal coordinate transformation generated by Xa. That means that we simply have to
replace the transformation (A.5) for a tensor with (A.33) for a tensor density. To first order in δλ
the Jacobian of the coordinate transformation (A.4) is

J = 1− δλ ∂cX
c +O(δλ2), (A.35)

so that (A.5) now becomes

T a′

b′(x
′) = JW

∂xa
′

∂xc
∂xd

∂xb′
T c
d(x)

= (1−Wδλ∂cX
c)(δac + δλ ∂cX

a)(δdb − δλ ∂bX
d)T c

d(x) +O(δλ2) (A.36)

= T a
b(x) + δλ (∂cX

aT c
b(x)− ∂bX

cT a
c(x)−W∂cX

cT a
b(x)) +O(δλ2).

4For example in the context of the minimal distortion gauge condition in Section 4.5 and the BSSN formulation
in Section 11.5.
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The Taylor expansion (A.6) is unaffected by T a
b now being a tensor density, so inerting (A.36)

together with (A.6) into the definition of the Lie derivative (A.7) we find5

LXT a
b = Xc∂cT a

b − T c
b∂cX

a + T a
c∂bX

c +WT a
b∂cX

c. (A.37)

This expression can be generalized for a tensor of any other rank. The rule is that the Lie derivative
of a tensor density of weight W is the same as that of a tensor, except that we have to add a term
WT ∂cXc, where T is the tensor density of whatever rank we are considering. From the definition
(A.7) we note that the Lie derivative of a tensor density of weight W is again a tensor density of
the same weight.

As in exercise A.1 it might be desirable to express the Lie derivative (A.37) in terms of covariant
derivatives instead of partial derivatives. The attentive reader may object that we do not yet know
what the covariant derivative of a tensor density is. We may counter that, by construction, the Lie
derivative is independent of the connection, so that we can express it in terms of any connection
(as we have seen in Section A.1). In fact, requiring that the Lie derivative of a tensor density take
the same form as (A.37) when expressed in terms of covariant derivatives will guide us in defining
the covariant derivative of a tensor density.

Since Xa is a vector, we have

∇aX
b = ∂aX

b +XdΓbad. (A.38)

Using equation (A.38) to substitute for all the partial derivatives of Xa in equation (A.37) gives

LXT a
b = Xc

(
∂cT a

b + T d
bΓ

a
cd − T a

dΓ
d
cb −WT a

bΓ
d
dc

)
−T c

b∇cX
a + T a

c∇bX
c +WT a

b∇cX
c . (A.39)

We now identify the first line in (A.39) with the covariant derivative of a tensor density of weight
W and rank (1

1) as

∇cT a
b = ∂cT a

b + T d
bΓ

a
cd − T a

dΓ
d
cb −WT a

bΓ
d
dc. (A.40)

The generalization to other tensors of arbitrary rank is straight-forward following this rule: the
covariant derivative of a tensor density T a...

b... of weight W is the same as that of a tensor T a...b...
of the same rank, except that we have to subtract a term WT a...

b...Γ
d
dc in the case of the tensor

density.

Exercise A.8 Use the identity
∂ag = ggbc∂agbc (A.41)

to show that
∇ag = 0. (A.42)

Exercise A.9 Show that for a vector Xa we have

∇a(|g|1/2Xa) = ∂a(|g|1/2Xa), (A.43)

and hence

∇aX
a =

1
|g|1/2

∂a(|g|1/2Xa). (A.44)

5See exercise 11.3 for an example of how the Lie derivative of an even more general object can be constructed.
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With the definition (A.40) we can now, by construction, write the Lie derivative of a tensor
density in terms of any covariant derivative

LXT a
b = Xc∇cT a

b − T c
b∇cX

a + T a
c∇bX

c +WT a
b∇cX

c. (A.45)

Exercise A.10 Show that the Lie derivative of the conformal metric (A.34) is

LXγ̄ij = ∇̄iXj + ∇̄jXi −
2
3
γ̄ij∇̄kX

k = (L̄X)ij , (A.46)

where we have lowered the indices of Xa with γ̄ij .

Exercise A.10 provides an alternative definition of a conformal Killing vector. The definition
(A.20) states that the Lie derivative of the metric along a Killing vector vanishes, while (A.46)
together with (A.27) states that the Lie derivative of the conformal metric along a conformal
Killing vector vanishes.
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Appendix B

Solving the Vector Laplacian

In this Appendix we discuss two approaches to solving the vector Poisson equation in flat space,

(∆flat
L W )i = Si, (B.1)

which in Cartesian coordinates becomes

∂j∂jWi +
1

3
∂i∂

jWj = Si. (B.2)

We have encountered this operator in several places in this book, starting with the momentum
constraint (3.60) in the conformal transverse-traceless decomposition in Chapter 3.2.

The first approach1 to solving this equation entails writing the vector field Wi as a sum of a
vector field Vi and the gradient of a scalar field U ,

Wi = Vi + ∂iU. (B.3)

Inserting this decomposition into equation (B.2) yields

∂j∂jVi +
1

3
∂i∂

jVj + ∂j∂j∂iU +
1

3
∂i∂

j∂jU = Si. (B.4)

We can now choose U in such a way that the two terms involving U in equation (B.4) cancel the
second term,

∂j∂jU = −1

4
∂jV

j, (B.5)

so that equation (B.4) reduces to
∂j∂jVi = Si. (B.6)

We have thereby rewritten the vector Poisson equations (B.2) as a set of four coupled scalar
Poisson equations for U and the three components of Vi. We use this decomposition to construct
the solution for a spinning black hole in Chapter 3.2.

A second approach2 adopts the ansatz

Wi =
7

8
Vi −

1

8

(
∂iU + xk∂iVk

)
. (B.7)

1Bowen and York, Jr. (1980).
2Shibata (1999b); see also Oohara et al. (1997).
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Inserting this decomposition into equation (B.2) yields

5

6
∂j∂jVi −

1

6
∂i∂

j∂jU −
1

6
xk∂i∂

j∂jVk = Si (B.8)

If we now choose U so that it satisfies

∂j∂jU = −Sjxj, (B.9)

then equation (B.8) reduces to

5

6
∂j∂jVi +

1

6
xj∂iSj −

1

6
xj∂i∂

k∂kVj =
5

6
Si , (B.10)

which is solved by
∂j∂jVi = Si. (B.11)

The vector equation (B.2) now has been reduced to a set of four decoupled scalar Poisson equations,
(B.9) and (B.11). In Chapter 3.2 we use this decomposition to construct boosted black holes.

While the second approach of (B.7) seems a little more complicated, it has the advantage that
the equations are decoupled and the source terms in equations (B.9) and (B.11) are nonzero only
where Si is nonzero. In some cases this later feature results in compact sources,3 which can have
advantages for numerical implementations. In the approach (B.3), on the other hand, the source
term of equation (B.5) is never compact. Other approaches have been suggested,4 and we refer the
reader to the literature5 for a comparison of the numerical performance of these different methods.

3By “compact” we mean that the sources are nonzero only on a bounded subset of the coordinate space.
4See, e.g., Oohara and Nakamura (1999).
5See Grandclément et al. (2001).



Appendix C

The Surface Element on the Apparent
Horizon

In this Appendix we outline a method for computing the surface element on a closed 2-surface S
embedded in some three-dimensional spatial hypersurface Σ. The approach is useful for diverse
numerical applications that require areas of closed 2-surfaces on spatial slices, but our prime
motivation here is to compute the proper area of an apparent horizon of a black hole or a system
of black holes. Recall that for stationary spacetimes, the apparent horizon coincides with the event
horizon and its area then determines the irreducible mass (7.2) of a black hole.

One approach to computing this surface element is to construct the induced metric mij on the
surface S (see Chapter 7). Typically. however, the resulting line element will not be expressed
in terms of coordinates that are convenient for setting up the surface element. One way of con-
structing such a coordinate system is the following:1 We start with the line element for the spatial
hypersurface Σ,

dl2 = γijdx
idxj, (C.1)

where the xi denote the spatial coordinates that have been used to label points on Σ in the
numerical calculation. We can now transform to spherical polar coordinates, centered on some
fiducial point Ci. The coordinate separation between nearby points as expressed in the two
coordinate systems will then be related by the usual transformation,

dxi =
∂xi

∂rC
drC +

∂xi

∂θ
dθ +

∂xi

∂φ
dφ. (C.2)

Using the notation of Chapter 7, we define the closed 2-surface S around Ci as the level surface

τ(xi) = rC(xi)− h(θ, φ) = 0, (C.3)

where rC is the coordinate separation between the point xi and the point Ci. For example, in
Cartesian coordinates, we have r2

C = x2 + y2 + z2, provided the centers of the polar and Cartesian
coordinate systems coincide. The function h(θ, φ) then measures the coordinate distance from
Ci to the 2-surface S in the (θ, φ) direction.2 In the following we assume that we have already

1See Appendix D in Baumgarte et al. (1996).
2By our notation h(θ, φ) we mean that h can be expressed in terms of the coordinates θ and φ via, for example,

a superposition of spherical harmonics (cf. Chapter 7.3.3). In Cartesian coordinates, it may be more convenient to
express h in terms of combinations of x, y and z via, for example, a superpositions of symmetric, tracefree “STF”
tensors.
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determined h(θ, φ) by means, for example, of the techniques described in Chapter 7 in the case
where S is an apparent horizon.

On S, where rC = h(θ, φ), we must have

drC =
∂h

∂θ
dθ +

∂h

∂φ
dφ . (C.4)

Inserting this into equation (C.2) we obtain

dxi =

(
∂xi

∂rC

∂h

∂θ
+
∂xi

∂θ

)
dθ +

(
∂xi

∂rC

∂h

∂φ
+
∂xi

∂φ

)
dφ (C.5)

We now define the vectors

Θi =
1

rC

(
∂xi

∂rC

∂h

∂θ
+
∂xi

∂θ

)
(C.6)

and

Φi =
1

rC sin θ

(
∂xi

∂rC

∂h

∂φ
+
∂xi

∂φ

)
, (C.7)

both of which are tangent to S.

Exercise C.1 Show that both Θi and Φi are orthogonal to mi = Diτ (i.e., mi = ∂iτ), which demon-
strates that both are tangent to S.

With the help of Θi and Φi we can now write the line element on S as

dl2 = γij(rCΘidθ + rC sin θΦidφ)(rCΘjdθ + rC sin θΦjdφ)

= r2
C(ΘiΘidθ

2 + 2 sin θΘiΦidθdφ+ ΦiΦi sin
2 θφ2), (C.8)

where we have lowered the indices on Θi and Φi with γij. In the above equation we may, of
course, replace rC with h. We have now expressed the line element on S in terms of the polar
coordinates θ and φ. The outward-oriented surface element on the apparent horizon is then given
by dSi = si

√
(2)γdθdφ (cf. Chapter 3.5), which yields

dSi = si
(
(ΘiΘi)(Φ

jΦj)− (ΘkΦk)
2
)1/2

h2 sin θdθdφ . (C.9)

Here si = λDiτ is the unit normal on S (see equation (7.33)), λ is a normalization factor, and (2)γ
is the determinant of the 2-metric appearing in equation (C.8).

What remains to be done is computing the vectors Θi and Φi, whose form depends on the orig-
inal coordinate system xi. If these coordinates were already spherical polar coordinates centered
on Ci, then they take the particularly simple form

Θi =
1

rC
(∂θh, 1, 0)

Φi =
1

rC sin θ
(∂φh, 0, 1)

(spherical polar coordinates). (C.10)
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If the original coordinates xi are Cartesian, we find the more complicated expressions

Θx =
lxlz√

1− (lz)2
(1 + lx∂xh+ ly∂yh)− lx

√
1− (lz)2 ∂zh

Θy =
lylz√

1− (lz)2
(1 + lx∂xh+ ly∂yh)− ly

√
1− (lz)2 ∂zh

Θz =
(lz)2√

1− (lz)2
(lx∂xh+ ly∂yh)−

√
1− (lz)2 (1 + lz∂zh)

Φx =
1√

1− (lz)2
(lx(lx∂yh− ly∂xh)− ly)

Φy =
1√

1− (lz)2
(ly(lx∂yh− ly∂xh) + lx)

Φz =
lz√

1− (lz)2
(lx∂yh− ly∂xh)

(Cartesian coordinates),

(C.11)
where li = ∂xi/∂rC = xi/rC = (sin θ cosφ, sin θ sinφ, cos θ).
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Appendix D

Scalar, Vector and Tensor Spherical
Harmonics

In this Appendix we provide a partial list of useful properties of scalar, vector and tensor spherical
harmonics. We focus on those properties that we use in our treatment of gravitational wave
extraction in Section 9.4.1. We adopt the notation of Nagar and Rezzolla (2005) and refer to
Thorne and Campolattaro (1967), Sandberg (1978) and Thorne (1980) for additional details and
references.

Here it is useful to depart from our general notation convention. Instead of separating spa-
tial indices from spacetime indices, it is more convenient, in the context of the spherical polar
coordinates used here, to separate the angular coordinates θ and φ from the remaining spacetime
coordinates r and t. Following this convention, we label the former (θ and φ) with lower-case
letters a, b, . . ., and the latter (t and r) with upper-case letters A,B, . . .. We also write the two-
dimensional metric on the unit sphere S2 as

σabdx
adxb = dθ2 + sin2 θdφ2. (D.1)

Scalar Spherical Harmonics

The scalar spherical harmonics Ylm(θ, φ) satisfy the equations

σab∇a∇bYlm = −l(l + 1)Ylm (D.2)

and
∂φYlm = imYlm , (D.3)

and can be expressed in terms of associated Legendre polynomials Pm
l (cos θ) as

Ylm(θ, φ) =

√
2l + 1

4π

√
(l −m)!

(l +m)!
Pm
l (cos θ)eimφ. (D.4)

Under a space inversion, spherical harmonics have even (or polar) parity (see our discussion in
Section 9.1.2)

Ylm(π − θ, π + φ) = (−1)l Ylm(θ, φ). (D.5)

We also note the property
Yl−m(θ, φ) = (−1)m Y ∗lm(θ, φ). (D.6)
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l = 0 l = 1 l = 2

m = −2 1
4

√
15
2π

sin2 θe−2iφ

m = −1 1
2

√
3
2π

sin θe−iφ 1
2

√
15
2π

sin θ cos θe−iφ

m = 0 1
2

√
1
π

1
2

√
3
π

cos θ 1
4

√
5
π
(3 cos2 θ − 1)

m = 1 −1
2

√
3
2π

sin θeiφ −1
2

√
15
2π

sin θ cos θeiφ

m = 2 1
4

√
15
2π

sin2 θe2iφ

Table D.1: The scalar spherical harmonics Ylm up to l = 2.

The first few scalar spherical harmonics, up to l = 2, are listed in Table D.1.
The derivative ∂θYlm can be computed in terms of the associated Legrendre polynomials as

∂θYlm(θ, φ) = −
√

2l + 1

4π

√
(l −m)!

(l +m)!

(
(l+m)(l−m+1)Pm−1

l (cos θ)+m cot θPm
l (cos θ)

)
eimφ . (D.7)

The scalar spherical harmonics satisfy the orthogonality relation∫
Y ∗lmYl′m′dΩ = δll′δmm′ . (D.8)

A generalization of the scalar spherical harmonics are the spin-weighted spherical harmonics,
which can be computed from the regular spherical harmonics by applying certain spin-raising
or lowering operators. Other than the s = 0 harmonics, which are the usual scalar spherical
harmonics, the s = −2 spin-weighted harmonics,

−2Ylm(θ, φ) =

√
(l − 2)!

(l + 2)!

(
Wlm(θ, φ)− i

Xlm(θ, φ)

sin θ

)
, (D.9)

are of special interest for our purposes in Section 9.4.1. Here the functions Wlm and Xlm are
defined in terms of derivatives of the scalar spherical harmonics by

Wlm =

(
∂2
θ − cot θ∂θ −

1

sin2 θ
∂2
φ

)
Ylm (D.10)

and
Xlm = 2∂φ(∂θ − cot θ)Ylm. (D.11)

The function Wlm can also be expressed as

Wlm = l(l + 1)Ylm + 2∂2
θYlm = −l(l + 1)Ylm − 2 cot θ∂θYlm +

2m2

sin2 θ
Ylm. (D.12)

We will see below that the functions Xlm and Wlm are also very useful in the context of the tensor
spherical harmonics (see equation (D.25) below). The spin-weighted spherical harmonics satisfy
the same orthogonality relation as the spherical harmonics,∫

sY
∗
lmsYl′m′dΩ = δll′δmm′ . (D.13)
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Exercise D.1 Compute the s = −2 spin-weighted spherical harmonic −2Y20 and show that it has the
same angular behavior as the h+ polarization of a l = 2, m = 0 linearized wave at large radii r (see
equation (9.57); the h× polarization vanishes identically for this mode).

Vector Spherical Harmonics

In addition to the familiar scalar spherical harmonics, we can also define vector and tensor spherical
harmonics. Vector spherical harmonics form a basis for vectors on S2. Evidently, we need two
linearly independent vectors to form a basis on S2, and we can create such a basis by taking
two different derivatives of the Ylm. The electric vector spherical harmonics Elm

a are defined as
gradients of the scalar spherical harmonics

Elm
a ≡ ∇aYlm, (D.14)

and have even (or polar) parity under space inversion, while the magnetic vector spherical har-
monics Slma are defined as the duals1 of the gradients,

Slma ≡ εba∇bYlm , (D.15)

and have odd (or axial) parity. Here εab is the two-dimensional Levi-Civita tensor on S2, which
has

εθφ = −εφθ = sin θ (D.16)

as the only nonvanishing components.

Exercise D.2 Show that that the electric and magnetic vector spherical harmonics are orthogonal,

Ea
lmS

lm
a = σabElm

a Slm
b = 0. (D.17)

Since the scalar spherical harmonics Ylm are scalars, the covariant derivatives in the above
expressions can be expressed in terms of partial derivatives, and can be evaluated with the help
of equations (D.3) and (D.7).

The vector spherical harmonics satisfy the orthogonality relations∫
(Elm

a )∗Ea
l′m′dΩ = l(l + 1)δll′δmm′ (D.18)

and ∫
(Slma )∗Sal′m′dΩ = l(l + 1)δll′δmm′ . (D.19)

Exercise D.3 Show that the electric and magnetic l = 2, m = 0 vector spherical harmonics are

Elm
a =

 −3
2

√
5
π

cos θ sin θ

0

 and Slm
a =

 0

−3
2

√
5
π

cos θ sin2 θ

 . (D.20)

1In two dimensions the dual of a vector is again a vector.
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Tensor Spherical Harmonics

It will also be useful to have a basis for symmetric, traceless rank-2 tensors on S2. In two
dimensions, these objects again have only two independent components, and we can therefore
create a basis, in complete analogy to the vector spherical harmonics, by taking two different
second derivatives of the scalar spherical harmonics. In particular, we define

Z lm
ab ≡ ∇a∇bYlm +

l(l + 1)

2
σabYlm, (D.21)

which have even (or polar) parity under space inversion, and

Slmab ≡ ∇(aS
lm
b) , (D.22)

which have odd (or axial) parity. By construction, both Z lm
ab and Slmab are symmetric.

Exercise D.4 (a) Show that the two tensor spherical harmonics Slm
ab and Zlm

ab are orthonormal,

Sab
lmZ

lm
ab = 0. (D.23)

(b) Show that the tensor spherical harmonics Slm
ab and Zlm

ab are traceless,

σabSlm
ab = 0 and σabZlm

ab = 0. (D.24)

Both Z lm
ab and Slmab are symmetric, traceless, two-dimensional rank-2 tensors, meaning that

each one has only two independent components. The orthogonality relation (D.23) reduces the
combined number of independent components to three. One of these three can be accounted for
by an arbitrary normalization, so that we are left with only two independent components for the
Z lm
ab and Slmab . That is not surprising, of course, since we have constructed the Z lm

ab and Slmab as a
basis for symmetric, traceless, two-dimensional rank-2 tensors, which only have two independent
components. As it turns out, we can conveniently express these two independent components in
terms of the functions Xlm and Wlm defined by equations (D.10) and (D.11).

Exercise D.5 (a) Show that

Zlm
ab =

1
2

(
Wlm Xlm

Xlm − sin2 θWlm

)
and Slm

ab =
1

2 sin θ

(
−Xlm sin2 θWlm

sin2 θWlm sin2 θ Xlm

)
. (D.25)

(b) Show that for l = 2, m = 0, the tensor spherical harmonics are

Z20
ab =


3
4

√
5
π

sin2 θ 0

0 −3
4

√
5
π

sin4 θ

 and S20
ab =

 0
3
4

√
5
π

sin3 θ

3
4

√
5
π

sin3 θ 0

 . (D.26)

Finally, the tensor spherical harmonics satisfy the orthogonality relations∫
(Z lm

cd )∗Zcd
l′m′dΩ =

(l − 1)l(l + 1)(l + 2)

2
δll′δmm′ (D.27)

and ∫
(Slmab )∗Sabl′m′dΩ =

(l − 1)l(l + 1)(l + 2)

2
δll′δmm′ . (D.28)



Appendix E

Post-Newtonian Results

The central premise of this book is that, for many situations of greatest physical interest, Einstein’s
field equations (1.32),

Gab = 8πTab , (E.1)

do not admit exact, analytic solutions. In order to treat these situations we therefore need to
construct approximate solutions. This book is an introduction to numerical relativity, which
aims at constructing such solutions by numerical means. The intrinsic accuracy of this approach
depends on the reliability of the numerical algorithms and the adopted computational resources,
but it can handle gravitational fields that are arbitrarily strong and speeds v of the sources that
are arbitrarily close to the speed of light.

Post-Newtonian methods provide an alternative approach to constructing approximate solu-
tions to Einstein’s equations (E.1). In this approach a solution is constructed iteratively, starting
with the corresponding Newtonian solution. In each step of the iteration a new correction term
of order v2 times the previous one is added so that the resulting solution is effectively a Taylor-
expansion in the parameter v2 about the Newtonian solution. Given that this expansion is carried
out analytically, this approach does not introduce any numerical error per se. Instead, its accuracy
is limited by the number of terms retained and the rate of convergence of the expansion. Practi-
cally speaking, then, the method is limited both by the strength of the gravitational field and the
speed of the sources, which are required to be small for any finite expansion to be accurate.

For compact binaries, numerical relativity and post-Newtonian approaches complement each
other very well. For moderately large binary separations the binary inspirals very slowly, and the
orbital speeds and tidal deformations are small (see the discussion of binary inspiral in Section
12.1). Post-Newtonian approximations based on point-mass companions are very accurate in this
regime, while numerical models are severely challenged by the vast dynamic range of the problem
that serve to stretch computational resources. For close binary separations, on the other hand,
the different time and length scales characterizing binary inspiral all become comparable. The
orbital speeds become large and approach the speed of light, nonlinear gravitation, including the
tidal interaction between the configurations, becomes significant, and the evolution drives the
sources far from equilibrium. In this regime, post-Newtonian models become inaccurate, while
numerical methods become both crucial and well-suited to tracking the dynamical behavior. In
the intermediate regimes, both approaches are reliable and comparisons between post-Newtonian
and numerical calculations provide very valuable checks (see Section 13.2 for some examples).
Furthermore, realistic numerical binary initial data, which by practical necessity consist of binaries
at relatively small separation, can incorporate post-Newtonian results that encode effects of the
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prior inspiral.1

In this Appendix we sketch how post-Newtonian expansions are constructed, and list some of
the most important results for compact binaries.2

Post-Newtonian expansions

Einstein’s equations (E.1) form a set of differential equations for the spacetime metric gab. We
may express this metric in terms of new variables3

hab =
√
−ggab − ηab, (E.2)

which are sometimes referred to as the gravitational field perturbation amplitudes. Here g is the
determinant of the 4-metric, g = det(gab), and ηab is the Minkowski metric. Evidently, for a flat
spacetime we have hab = 0, so that hab measures deviations from Minkowski spacetime. In general,
however, hab is neither zero, nor small; in strong-field regions we might have |hab| >∼ 1.

Einstein’s equations cannot determine a solution for the metric uniquely, since they allow for a
choice of four coordinate conditions. If we choose harmonic coordinates, also known as de Donder
coordinates,4

∂bh
ab = 0 (E.3)

(see Section 4.3), we can bring Einstein’s equations (E.1) into the form

�hab = 16πτab. (E.4)

Here � = ηcd∂c∂d is the flat d’Alembertian operator, and the source term

τab = −gT ab +
1

16π
Λab (E.5)

contains contributions from both the stress-energy tensor T ab as well as terms that are nonlinear
in hab, and which we have absorbed in a new quantity Λab. For our purposes it is sufficient to
state that Λab, the stress-energy pseudo-tensor, contains terms that are at least quadratic in hab

as well as its first two derivatives.5

We can now write the formal solution to Einstein’s equations (E.4) in terms of the Green’s
function for the flat d’Alembertian operator,

hab(t,x) = −4

∫
τab(x′, t− |x− x′|)d3x′

|x− x′|
, (E.6)

where, for convenience, we have denoted the three spatial coordinates with a bold-face x. Unfortu-
nately, this solution is not of very much immediate help, since the source term τab in the integrand

1We briefly discuss some of these approaches in Chapter 12.
2Our brief summary of post-Newtonian methods and results is based on the review by Blanchet (2006), to which

we refer the reader for a more detailed treatment, as well as a list of references. We also refer the reader to Blanchet
et al. (2008) for some more recent results on 3PN gravitational wave polarizations.

3Note that some authors introduce these quantities with the opposite sign, which leads to sign differences in
many of the following equations.

4Also compare with the Lorentz gauge condition (9.3), which we introduced in the context of perturbation
theory and linearized waves in Section 9.1.1.

5For a precise definition, see Blanchet (2006).
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depends on the integral hab. It forms, however, the basis for the iteration that is involved in
constructing post-Newtonian approximations.

We start the iteration with some known Newtonian solution. For example, for a binary this
solution could describe two point-masses in a circular orbit. Using this Newtonian solution we
can compute a Newtonian stress-energy tensor T ab0 = T abNewt and set the corresponding Newtonian
values of the gravitational field perturbation amplitudes to zero, hab0 = 0. This determines the
Newtonian source term τab0 , which we may insert into equation (E.6). Solving the integral then
yields the first correction to the gravitational field perturbations, hab1 . Given these, we can re-
evaluate the equations of motion, compute τab1 , insert these into the integrand of equation (E.6),
and compute the next correction, hab2 . In general, we can obtain the (n + 1)-th correction by
inserting the previous one into the integrand of equation (E.6),

habn+1(t,x) = −4

∫
τabn (x′, t− |x− x′|)d3x′

|x− x′|
. (E.7)

If all goes well, this iteration converges to give the correct solution hab(t,x).
While our crude recipe grossly over-simplifies the problem, it does lay out a starting point

for constructing a post-Newtonian expansion. Each iteration in the above procedure adds a new
correction that improves the previous one by an order 1/c2, where, in a rare reappearance in this
volume, c is the speed of light. An n-th order post-Newtonian expansion therefore includes terms
up to order 1/c2n; a “3PN” expansion, for example, goes to order 1/c6.

Starting out with a purely Newtonian expression we obtain correction terms that are even
powers in 1/c. These terms capture only the so-called conservative effects, but not the radiation-
reaction effects. The latter first appear at the odd order 1/c5, or in a 2.5PN expansion. We
have seen this, for example, in Exercise 9.3, where we computed the leading-order gravitational
wave luminosity dE/dt for a binary in circular orbit using the weak-field, slow-velocity quadrupole
formula. There we expressed the result (9.41) in geometrized units with c = G = 1, where G is
the gravitational constant; if we now restore these constants we find

dE

dt
= −32

5

G

c5
µ2R4Ω6, (E.8)

demonstrating that the leading-order radiation-reaction effects indeed appear in a 2.5PN expan-
sion. When referring to post-Newtonian expansions of the gravitational radiation, an nPN expan-
sion usually means a correction of order 1/c2n beyond the leading order quadrupole formula above.

Results for compact binaries

In lieu of pursuing the construction of post-Newtonian expansions in greater detail here, we simply
shall summarize some of the most important post-Newtonian results for compact binary inspiral.
Binary inspiral has been the focus of considerable attention, given its importance as a promising
source of gravitational radidation.6

Label the masses of the two stars m1 and m2, and define the total mass as M = m1 +m2 and
the reduced mass as µ = m1m2/M . It will also be useful to introduce the symmetric mass ratio

ν ≡ µ

M
=

m1m2

(m1 +m2)2
, (E.9)

6We refer the reader to the review article by Blanchet (2006) for a much more detailed discussion and references.
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which takes its maximum value of νmax = 1/4 for equal-mass binaries and approaches zero for
extreme mass ratios. We will focus on nonspinning binaries7 in quasicircular orbit, a problem
which, at the time of this writing, has been solved up to order 3.5PN for the orbital phase
evolution and to order 3PN for the gravitational waveform.8

We first write the binary’s orbital angular velocity ω as a function of the binary separation R,
where R is the coordinate separation in the harmonic gauge (equation E.3). Following Blanchet
(2006), we introduce a dimensionless measure of the binary separation

γ ≡ G

c2
M

R
= O

(
1

c2

)
. (E.10)

In terms of this ratio we then obtain

ω2 =
GM

R3

{
1 +

(
− 3 + ν

)
γ +

(
6 +

41

4
ν + ν2

)
γ2

+
(
− 10 +

(
− 75707

840
+

41

64
π2 + 22 ln (

R

R0

)
)
ν +

19

2
ν2 + ν3

)
γ3

}
+O

(
1

c8

)
. (E.11)

This is the 3.5PN version of Kepler’s third law in harmonic coordinates; the leading-order term is
recognizable as the Newtonian expression.9 Upon further thought, we realize that the harmonic
coordinate conditions (E.3) do not fully specify the coordinates uniquely.10 This gauge ambiguity
is encoded in the term ln(R/R0) in the above expression, which includes as yet an undetermined
length scale R0.

The energy E of a circular orbit to the same order is given by

E = −µc
2γ

2

{
1 +

(
− 7

4
+

1

4
ν
)
γ +

(
− 7

8
+

49

8
ν +

1

8
ν2
)
γ2

+
(
− 235

64
+
(46031

2240
− 123

64
π2 +

22

3
ln (

R

R0

)
)
ν +

27

32
ν2 +

5

64
ν3
)
γ3

}
+O

(
1

c8

)
.(E.12)

We again recognize the Newtonian result as the leading-order term.
Both the angular velocity ω and the energy E are gauge-invariant quantities. In equa-

tions (E.11) and (E.12), however, both of these quantities still appear to depend on the gauge-
dependent length scale R0. The dependence is an artifact that results from having expressed ω
and E in terms of the harmonic coordinate binary separation R, which itself is a gauge-dependent
quantity. To eliminate this gauge dependence we express E in terms of ω. For this purpose it is
convenient to introduce a dimensionless angular velocity according to

x ≡
(
GMω

c3

)2/3

= O
(

1

c2

)
. (E.13)

We can now invert equation (E.11) to find γ in terms of x. Substituting this result into equa-
tion (E.12) then yields

E = −µc
2x

2

{
1 +

(
− 3

4
− 1

12
ν
)
x+

(
− 27

8
+

19

8
ν − 1

24
ν2
)
x2

7Effects of spin have been included up to order 2.5PN, see Faye et al. (2006); Blanchet et al. (2006) (and errata).
8See Blanchet et al. (2008); recall that a 3PN expansion of the gravitational waveforms includes corrections up

to order 1/c6 beyond the weak-field, slow-velocity quadrupole formula (E.8).
9Recall that in terms of the areal radius Rs, the angular velocity of a test particle in circular orbit about a

Schwarzschild black hole is given by ω2 = GM/R3
s exactly, to all orders of γ.

10Compare the discussion following equation (9.4) in the context of the Lorentz gauge for linearized waves.
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+
(
− 675

64
+
(34445

576
− 205

96
π2
)
ν − 155

96
ν2 − 35

5184
ν3
)
x3

}
+O

(
1

c8

)
, (E.14)

which, as expected, is gauge-invariant, and independent of the length scale R0.
The above expressions hold for binaries in quasicircular orbit. To model the slow, adiabatic in-

spiral, caused by the emission of gravitational radiation, we also need to compute the gravitational
radiation luminosity

LGW = −dE
dt
. (E.15)

In order to keep this expression consistent with the 3.5PN expressions above, we need to compute
this luminosity beyond the weak-field, slow-velocity expression (E.8) to order 3.5PN. The result,
when expressed in terms of x, is

LGW =
32

5

c5

G
ν2x5

{
1 +

(
− 1247

336
− 35

12
ν
)
x+ 4πx3/2 +

(
− 44711

9072
+

9271

504
ν +

65

18
ν2
)
x2

+
(
− 8191

672
− 583

24
ν
)
πx5/2

+
(6643739519

69854400
+

16

3
π2 − 1712

105
C − 856

105
ln(16x)

+
(41

48
π2 − 134543

7776

)
ν − 94403

3024
ν2 − 775

324
ν3
)
x3

+
(
− 16285

504
+

214745

1728
ν +

193385

3024
ν2
)
πx7/2 +O

(
1

c8

)}
. (E.16)

Here C = 0.57722 . . . is the Euler constant. It is easy to verify that the leading-order term is the
familiar quadrupole formula (E.8).

We can now use the above results to obtain the binary’s orbital phase Φ as a function of time.
The idea is to integrate

dx

dt
=
dE/dt

dE/dx
= − LGW

dE/dx
(E.17)

to find x, and hence ω, as a function of time. Since

dΦ

dt
= ω, (E.18)

a further integration then yields the phase Φ. It is convenient to express these results in terms of
a dimensionless measure of time,

Θ ≡ νc3

5GM
(T − t), (E.19)

where T denotes the time of coalescence, at which point the angular speed ω diverges. Clearly, we
should abandon post-Newtonian methods well before this time. The first integration now yields
x in terms of Θ,

x =
1

4
Θ−1/4

{
1 +

( 743

4032
+

11

48
ν
)

Θ−1/4 − 1

5
πΘ−3/8 +

( 19583

254016
+

24401

193536
ν +

31

288
ν2
)

Θ−1/2

+
(
− 11891

53760
+

109

1920
ν
)
πΘ−5/8 +

(
− 10052469856691

6008596070400
+

1

6
π2 +

107

420
C

− 107

3360
ln
( Θ

256

)
+
(3147553127

780337152
− 451

3072
π2
)
ν − 15211

442368
ν2 +

25565

331776
ν3
)

Θ−3/4

+
(
− 113868647

433520640
− 31821

143360
ν +

294941

3870720
ν2
)
πΘ−7/8 +O

(
1

c8

)}
. (E.20)
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It is easy to verify that the leading-order term again agrees with the weak-field, slow-velocity
result, which we derived in Exercise 12.3. Integrating this expression again then yields the phase
Φ in terms of Θ,

Φ = −1

ν
Θ5/8

{
1 +

(3715

8064
+

55

96
ν
)

Θ−1/4 − 3

4
πΘ−3/4 +

( 9275495

14450688
+

284875

258048
ν +

1855

2048
ν2
)

Θ−1/2

+
(
− 38645

172032
+

65

2048
ν
)
πΘ−5/8 ln

( Θ

Θ0

)
+
(831032450749357

57682522275840
− 53

40
π2 − 107

56
C

+
107

448
ln
( Θ

256

)
+
(
− 126510089885

4161798144
+

2255

2048
π2
)
ν +

154565

1835008
ν2 − 1179625

1769472
ν3
)

Θ−3/4

+
(188516689

173408256
+

488825

516096
ν − 141769

516096
ν2
)
πΘ−7/8 +O

(
1

c8

)}
. (E.21)

Here Θ0 is a constant of integration that can be fixed by the initial conditions. It is also possible
to combine the last two results and obtain the phase Φ in terms of the angular speed x,

Φ = −x
−5/2

32ν

{
1 +

(3715

1008
+

55

12
ν
)
x− 10πx3/2 +

(15293365

1016064
+

27145

1008
ν +

3085

144
ν2
)
x2

+
(38645

1344
− 65

16
ν
)
πx5/2 ln

(
x

x0

)
+
(12348611926451

18776862720
− 160

3
π2 − 1712

21
C − 856

21
ln(16x)

+
(
− 15737765635

12192768
+

2255

48
π2
)
ν +

76055

6912
ν2 − 127825

5184
ν3
)
x3

+
(77096675

2032128
+

378515

12096
ν − 74045

6048
ν2
)
πx7/2 +O

(
1

c8

)}
, (E.22)

where x0 is another constant of integration.
Finally we list the two gravitational wave polarization amplitudes h+ and h×. Following

Blanchet et al. (2008) we write these as

h+,× =
2Gµx

c2r
H+,× +O

(
1

r2

)
, (E.23)

where r is the distance to the binary, and expand

H+,× =
∞∑
n=0

xn/2H
(n/2)
+,× . (E.24)

To order 3PN, the coefficients of the “+” polarization are given by11

H
(0)
+ = −(1 + c2i ) cos 2ψ − 1

96
s2
i (17 + c2i ) , (E.25)

H
(0.5)
+ = − si ∆

[
cosψ

(
5

8
+

1

8
c2i

)
− cos 3ψ

(
9

8
+

9

8
c2i

)]
, (E.26)

11Note that the nonlinear memory (DC) term is included in the lowest order (“Newtonian”) H(0)
+ term. For a

discussion see Arun et al. (2004).
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H
(1)
+ = cos 2ψ

[
19

6
+

3

2
c2i −

1

3
c4i + ν

(
−19

6
+

11

6
c2i + c4i

)]
− cos 4ψ

[
4

3
s2
i (1 + c2i )(1− 3ν)

]
, (E.27)

H
(1.5)
+ = si ∆ cosψ

[
19

64
+

5

16
c2i −

1

192
c4i + ν

(
−49

96
+

1

8
c2i +

1

96
c4i

)]
+ cos 2ψ

[
−2π(1 + c2i )

]
+ si ∆ cos 3ψ

[
−657

128
− 45

16
c2i +

81

128
c4i + ν

(
225

64
− 9

8
c2i −

81

64
c4i

)]
+ si ∆ cos 5ψ

[
625

384
s2
i (1 + c2i )(1− 2ν)

]
, (E.28)

H
(2)
+ = π si ∆ cosψ

[
−5

8
− 1

8
c2i

]
+ cos 2ψ

[
11

60
+

33

10
c2i +

29

24
c4i −

1

24
c6i + ν

(
353

36
− 3 c2i −

251

72
c4i +

5

24
c6i

)
+ ν2

(
−49

12
+

9

2
c2i −

7

24
c4i −

5

24
c6i

)]
+π si ∆ cos 3ψ

[
27

8
(1 + c2i )

]
+ cos 4ψ

[
118

15
− 16

5
c2i −

86

15
c4i +

16

15
c6i + ν

(
−262

9
+ 16 c2i +

166

9
c4i −

16

3
c6i

)
+ ν2

(
14− 16 c2i −

10

3
c4i +

16

3
c6i

)]
+ cos 6ψ

[
−81

40
s4
i (1 + c2i )

(
1− 5ν + 5ν2

)]
+ si ∆ sinψ

[
11

40
+

5 ln 2

4
+ c2i

(
7

40
+

ln 2

4

)]
+ si ∆ sin 3ψ

[(
−189

40
+

27

4
ln(3/2)

)
(1 + c2i )

]
, (E.29)

H
(2.5)
+ = si ∆ cosψ

[
1771

5120
− 1667

5120
c2i +

217

9216
c4i −

1

9216
c6i

+ ν

(
681

256
+

13

768
c2i −

35

768
c4i +

1

2304
c6i

)
+ ν2

(
−3451

9216
+

673

3072
c2i −

5

9216
c4i −

1

3072
c6i

)]
+π cos 2ψ

[
19

3
+ 3 c2i −

2

3
c4i + ν

(
−16

3
+

14

3
c2i + 2 c4i

)]
+si ∆ cos 3ψ

[
3537

1024
− 22977

5120
c2i −

15309

5120
c4i +

729

5120
c6i

+ ν

(
−23829

1280
+

5529

1280
c2i +

7749

1280
c4i −

729

1280
c6i

)
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+ ν2

(
29127

5120
− 27267

5120
c2i −

1647

5120
c4i +

2187

5120
c6i

)]
+ cos 4ψ

[
−16π

3
(1 + c2i ) s

2
i (1− 3ν)

]
+si ∆ cos 5ψ

[
−108125

9216
+

40625

9216
c2i +

83125

9216
c4i −

15625

9216
c6i

+ ν

(
8125

256
− 40625

2304
c2i −

48125

2304
c4i +

15625

2304
c6i

)
+ ν2

(
−119375

9216
+

40625

3072
c2i +

44375

9216
c4i −

15625

3072
c6i

)]
+∆ cos 7ψ

[
117649

46080
s5
i (1 + c2i )(1− 4ν + 3ν2)

]
+ sin 2ψ

[
−9
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while the coefficients for the cross polarization are
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We have used several new quantities and abbreviations in the above expressions. The phase
variable ψ is related to the orbital phase Φ by

ψ = Φ− 2GMADMω

c3
ln

(
ω

ω0

)
, (E.39)

where

MADM = m
(

1− νγ

2

)
+O

(
1

c4

)
(E.40)

is the ADM mass, and where ω0 is some arbitrary constant frequency. It could be chosen, for
example, to be the entry frequency of a gravitational wave detector. We also use the dimensionless
mass difference ∆ = (m1 − m2)/M , and the abbreviations ci = cos i and si = sin i, where i is
the inclination angle between the binary’s axis of rotation and the direction to the observer. The
waveforms can also be decomposed into spin-weighted spherical tensor harmonics, but we shall
refer the reader elsewhere for the expressions and further details.12

Before closing this Appendix we mention in passing two alternative “resummation” techniques
that have been suggested to enhance the convergence of post-Newtonian approximations. Our
description above outlines the construction of a post-Newtonian approximation as a Taylor ex-
pansion in the parameters γ or x (see equations E.10 or E.13). Such a polynomial expansion
can converge well only in the absence of poles in the functions that we aim to approximate. For
small binary separations, however, poles may appear. It has therefore been suggested that one
construct, from the information contained in the polynomial expansion, an expansion in terms
of rational functions.13 The resulting expansion is an example of a so-called Padé approximant,
which sometimes converge faster than the corresponding Taylor expansion.14

In yet another approach, the general relativistic binary problem is mapped onto that of a test
particle moving in an effective external metric, thereby reducing a two-body problem to an effective
one-body (EOB) problem.15 Starting with a post-Newtonian expansion for the relativistic two-
body equations of motion, this approach may be viewed as a nonperturbative means of resumming
the post-Newtonian expressions. In Chapter 12.4 we have included EOB results in our comparison
with post-Newtonian predictions for locating the innermost stable circular orbit for binary black
holes.

12See Blanchet et al. (2008).
13See Damour et al. (1998).
14See, e.g., Press et al. (2007) for a brief introduction.
15See Buonanno and Damour (1999).



Appendix F

Collisionless Matter Evolution in
Axisymmetry: Basic Equations

Here we list the key equations describing a mean-field, particle simulation scheme that can treat
the evolution of collisionless matter in axisymmetry according to general relativity.1 The scheme
is a generalization of the one described in Chapter 8.2 for spherical systems and employs the stan-
dard ADM form of the field equations as listed in Box 2.1. We adopt spherical polar spacetime
coordinates (t, r, θ, φ), assume axisymmetry and specialize to the case where there is no net angular
momentum.2 In axisymmetry all quantities are functions only of (t, r, θ). We also impose maximal
slicing and quasi-isotropic spatial coordinates as our gauge conditions.3 This spatial gauge condi-
tion reduces to isotropic coordinates for Schwarzschild geometry.4 The field equations listed below
constitute a fully constrained approach to solving the Einstein field equations for this problem,
i.e., one which solves all of the constraint equations in lieu of integrating evolution equations for
some of the variables. Fully constraint schemes have the advantage over unconstrained schemes
that the constraints are guaranteed to be satisfied at all times, which may in some cases also
eliminate some instabilities associated with the evolution equations. Their disadvantage is that
the constraints constitute elliptic equations, which typically require more computational resources
to solve than explicit time evolution equations. This disadvantage is not so severe, however, in
1+1 or 2+1 spacetimes. A similar set of variables and field equations to the ones summarized
below have been used to simulate the gravitational collapse of hydrodynamic fluids5 and vacuum
gravitational waves6 in nonrotating, axisymmetric spacetimes, as well as the head-on collision of
neutron stars7

Gravitational field equations

The metric is written as

ds2 = −α2dt2 + A2(dr + βrdt)2 + A2r2(dθ + βθdt)2 +B2r2 sin2 θdφ2 . (F.1)

1Shapiro and Teukolsky (1991b, 1992b,a).
2Evans (1984). For extension to rotating spacetimes, see Abrahams et al. (1994).
3See Chapter 4 for a discussion.
4For an alternative radial gauge choice, which reduces to Schwarzschild (areal) coordinates, see Bardeen and

Piran (1983) and Chapter 4.
5See, e.g., Evans (1986).
6Abrahams and Evans (1993).
7Abrahams and Evans (1992).
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Here we used the fact that the absence of axial rotation demands invariance with respect to all
changes φ → −φ, which implies βφ = 0 = γrφ = γθφ. The simplified quasi-isotropic form of the
three-metric γij = diag(A2, A2r2, B2r2 sin2 θ) results from imposing the gauge conditions

∂tγrθ = 0, ∂t(r
2γrr − γθθ) = 0 , (F.2)

with initial conditions

γrθ = 0, r2γrr − γθθ = 0 . (F.3)

In addition to the metric coefficients α, βr, βθ, A and B, we need to determine the components
of the extrinsic curvature tensor, Ki

j. It is convenient to introduce the related quantities

K̂i
j ≡ A2BKi

j , (F.4)

and similarly for all other variables with a caret (i.e., all quantities with a caret are related to
“uncareted” quantities by a factor A2B).

The evolution equations are used to determine the “radiation variables” η = ln(A/B) and K̂r
θ

according to

∂tη =
α

A2B
λ̂+ βr∂rη + βθ∂θη + ∂θβ

θ − βθ cot θ , (F.5)

∂tK̂
r
θ =

1

r2
∂r(r

2βrK̂r
θ) +

1

sin θ
∂θ(sin θβ

θK̂r
θ)

− αA

r sin θ

{
∂θ

[
sin θ

A
∂r(Br)

]
− 1

A2
∂r(Ar)∂θ(B sin θ)

}
+K̂r

θ(∂θβ
θ − ∂rβ

r) + (2λ̂− 3K̂φ
φ)∂θβ

r − AB∂θ

(
1

A
∂rα

)
+
B

Ar
∂r(Ar)∂θα−

α

A2
Ŝrθ , (F.6)

where

λ̂ = K̂r
r + 2K̂φ

φ , (F.7)

and where matter source terms like Ŝrθ will be defined below.

The momentum constraint equations, which we use to solve for K̂r
r, are

1

sin θ
∂θ(sin θ K̂

r
r) +

T

sin2 θ
∂θ

(
sin2 θ

T
K̂φ

φ

)
= −Ŝθ +

1

r2
∂r(r

2K̂r
θ) , (F.8)

1

r3
∂r(r

3K̂r
r) + K̂φ

φ ∂rη = Ŝr −
1

r2 sin θ
∂θ(sin θ K̂

r
θ) , (F.9)

where T = A/B. The Hamiltonian constraint yields an elliptic equation for ψ = B1/2,

1

r2
∂r(r

2∂rψ) +
1

r2 sin θ
∂θ(sin θ ∂θψ) = −1

4
ψ
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1

r
∂r(r∂rη) +

1

r2
∂2
θη

+
1

T 2ψ8
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φ + 3(K̂φ
φ)2 +

(
K̂r

θ/r
)2
}]

− ρ̂

4ψ
. (F.10)
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Maximal slicing ∂tK = 0 = K yields an elliptic equation for the lapse, which we combine with
the Hamiltonian constraint (F.10) to obtain an elliptic equation for αψ,

1

r2
∂r[r

2∂r(αψ)] +
1

r2 sin θ
∂θ[sin θ∂θ(αψ)] =

1

4
αψ

[
−1

r
∂r(r∂rη)− 1

r2
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θη
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7
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{
λ̂2 − 3λ̂K̂φ

φ + 3(K̂φ
φ)2 +

(
K̂r

θ/r
)2
}

+
1

B
(ρ̂+ 2Ŝ)

]
. (F.11)

An attractive feature of this equation for the lapse is that the simple flat space form of the three-
dimensional Laplacian appears on the left-hand side. Imposing the quasi-isotropic spatial gauge
conditions (F.2) leads to a system of coupled first order equations for the two shift components8,
βr and βθ:

r∂r

(
βr

r

)
− ∂θβ

θ =
α

A2B
(2λ̂− 3K̂φ

φ) , (F.12)

r∂rβ
θ + ∂θ

(
βr

r

)
=

2α

A2Br
K̂r

θ . (F.13)

In spherical symmetry, the above equations reduce to those presented in Chapter 8.2. The vari-
able η is a measure of the deviation from spherical symmetry, since η = 0 in spherical spacetimes.
In an asymptotically flat, axisymmetric spacetime, η also measures the even-parity gravitational
wave amplitude at large distances according to

η = hTT+ +O(r−2) . (F.14)

According to equation (F.5), we also have ∂tη → λ as r → ∞. With hTT× = 0 in the absence of
rotation, we can then use equation (9.30) to compute the energy loss due to gravitational radiation,

dE

dt
= − 1

16π
lim
r→∞

r2

∫
dΩλ2 . (F.15)

No angular momentum is carried off by gravitational waves in axisymmetry.

Matter equations

The geodesic equations of motion for the collisionless particles are:

dr

dt
=

αur
ΓA2

− βr , (F.16)

dθ

dt
=

αuθ
ΓA2r2

− βθ , (F.17)

dφ

dt
=

α

B2r2 sin2 θ

uφ
Γ
, (F.18)

dur
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u 2
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1
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)
u 2
φ

sin2 θ

]
, (F.19)

8See Evans (1984), p. 121, for a proof that this is an elliptic system.
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duθ
dt

= −Γ∂θα + ur∂θβ
r + uθ∂θβ
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, (F.20)

duφ
dt

= 0 , (F.21)

where the normalization condition uµuµ = −1 gives

Γ ≡ αu0 =

[
1 +

u 2
r

A2
+

u 2
θ

r2A2
+

u 2
φ

B2r2 sin2 θ

]1/2

. (F.22)

Assuming that all N particles have the same rest-mass m = M0/N , where M0 is the total rest
mass of the system, they may be binned to determine the source terms for the field equations as
follows:

ρ̂ =
∑
j

mΓj
(r2 sin θ∆r∆θ∆φ)j

, (F.23)

Ŝr =
∑
j

mujr
(r2 sin θ∆r∆θ∆φ)j

, (F.24)

Ŝθ =
∑
j

mujθ
(r2 sin θ∆r∆θ∆φ)j

, (F.25)

Ŝrθ =
∑
j

mujru
j
θ

Γj(r2 sin θ∆r∆θ∆φ)j
, (F.26)

Ŝ = ρ̂−
∑
j

m

Γj(r2 sin θ∆r∆θ∆φ)j
. (F.27)

Since the particles are distributed axisymmetrically in rings the bin width ∆φ can be set to 2π.

Disks

The above scheme is easily adapted to treat infinitely thin, axisymmetric disks of matter residing
in the equatorial plane.9 In this case, “jump” conditions satisfied by the field variables across the
equator replace the usual matter source terms that appear in the field equations. As an example
of how the jump conditions are obtained, consider equation (F.9). Functions like K̂r

r , K̂
φ
φ and

η are symmetric across the equatorial plane and continuous there. Multiplying the equation by
r sinθ and integrating across the equator therefore yields

0 =

∫ +

−
Ŝrr sinθdθ − 1

r
K̂r
θ |+− , (F.28)

where ± denotes θ = π/2±ε, ε→ 0. Since K̂r
θ is antisymmetric across the equator, equation (F.28)

gives

K̂r
θ |+ = −K̂r

θ |− =
r

2

∫ +

−
Ŝrr sinθdθ . (F.29)

9Abrahams et al. (1994, 1995).
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The jump condition (F.29) is used to set the value of K̂r
θ at the boundary of an integration along

the equatorial plane. In the vacuum outside of the equatorial plane, K̂r
θ is determined by evolving

equation (F.6) in the usual way. Since particles are confined to the equatorial plane where βθ = 0,
the particle four-velocity satisfies uθ = uθ = 0, hence Sθ = 0. Integrating equation (F.8) across
the equator then reduces to 0 = 0.

In a similar fashion, integration of the Hamiltonian constraint equation (F.10) gives

1

r
sinθ ∂θψ|+ = − 1

4r
ψ∂θη|+ −

1

8ψ

∫ +

−
ρ̂r sinθdθ . (F.30)

Integrating the lapse equation (F.11) yields

1

r
sinθ ∂θ(αψ)|+ = − 1

4r
αψ∂θη|+ +

1

8

αψ

B

∫ +

−
(ρ̂+ 2Ŝ)r sinθdθ . (F.31)

In finite differencing, say, the Hamiltonian constraint, the derivative terms ∂θψ and ∂θη appear
in exactly the same combination as in the jump condition (F.30). Thus the only place where the
matter source term appears is through the boundary conditions. The same result holds for the
lapse equation.

The evolution equation (F.5) for η and the shift equations (F.12) and (F.13) for βr and βφ do
not contain any matter sources and remain unchanged. We recall that η, βr and βφ are metric
coefficients and must be continuous across the equator.

The geodesic equations for the particles are unchanged, except for the simplification that
θ = π/2 and uθ = 0. Accordingly, only the radial motion of the particles is dynamical in an
infinitely thin, axisymmetric disk, as in spherical symmetry.

The matter source terms appearing in the jump conditions can be determined by binning the
particles in radial annuli, yielding

σ̂ ≡
∫ +

−
ρ̂r sinθdθ =

∑
j

mΓj
(2πr∆r)j

, (F.32)

Σ̂r ≡
∫ +

−
Ŝrr sinθdθ =

∑
j

m(ur)j
(2πr∆r)j

, (F.33)

Σ̂ ≡
∫ +

−
Ŝr sinθdθ = σ̂ −

∑
j

m

Γj(2πr∆r)j
, (F.34)

Once again, the particle rest mass m is related to the total rest mass M0 by m = M0/N , where
N is the total particle number. The rest mass can be found from

M0 =

∫
σ̂02πrdr , (F.35)

where

σ̂0 =

∫ +

−

(
ρ̂

Γ

)
r sinθdθ =

∑
j

m

(2πr∆r)j
. (F.36)
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Appendix G

Rotating Equilibria: Gravitational Field
Equations

In this Appendix we assemble the gravitational field equations that are required to construct
numerical models of rotating relativistic equilibrium configurations, such as the rotating fluid
stars discussed in Chapter 14 and the rotating collisionless clusters discussed in Chapters 10 and
14.

Following Komatsu et al. (1989a) we assume stationary equilibrium and write the spacetime
metric in the form (14.1),

ds2 = −eγ+ρdt2 + e2σ(dr2 + r2dθ2) + eγ−ρr2 sin2 θ(dφ− ωdt)2 , (G.1)

where the metric potentials ρ, γ, ω, and σ are functions of r and θ only. Einstein’s equations
Gab = 8πTab then provide three elliptic equations (14.2)-(14.4) for the metric potentials ρ, γ and
ω,

∇2[ρeγ/2] = Sρ(r, µ) , (G.2)(
∇2 +

1

r
∂r −

µ

r2
∂µ

)
[γeγ/2] = Sγ(r, µ) , (G.3)(

∇2 +
2

r
∂r −

2µ

r2
∂µ

)
[ωe(γ−2ρ)/2] = Sω(r, µ) , (G.4)

where ∇2 is the flat-space Laplace operator in spherical polar coordinates and µ = cos θ. The
effective sources terms Sρ, Sγ and Sω are given by

Sρ(r, µ) = eγ/2
{

1

r
∂rγ −

µ

r2
∂µγ +

ρ

2

[
−∂rγ

(
1

2
∂rγ +

1

r

)
− 1

r2
∂µγ

(
1− µ2

2
∂µγ − µ

)]
+r2(1− µ2)e−2ρ

(
(∂rω)2 +

1− µ2

r2
(∂µω)2

)
+8πe2σ

[
T φ̂φ̂ − T t̂ t̂ +

ρ

2
(T r̂ r̂ + T θ̂ θ̂)

]}
(G.5)

Sγ(r, µ) = eγ/2
{
γ

2

[
−1

2
(∂rγ)2 − 1− µ2

2r2
(∂µγ)2

]
+ 8πe2σ

(
1 +

γ

2

)
(T r̂ r̂ + T θ̂ θ̂)

}
, (G.6)

Sω(r, µ) = e(γ−2ρ)/2

{
ω

[
−1

r

(
2∂rρ+

1

2
∂rγ

)
+
µ

r2

(
2∂µρ+

1

2
∂µγ

)
+

1

4

(
4(∂rρ)2 − (∂rγ)2

)
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+
1− µ2

4r2

(
4(∂µρ)2 − (∂µγ)2

)
− r2(1− µ2)e−2ρ

(
(∂rω)2 +

1− µ2

r2
(∂µω)2

)]
+8πe2σ

[
−ω(T φ̂φ̂ − T t̂ t̂) +

ω

2
(T r̂ r̂ + T θ̂ θ̂)−

2eρT t̂φ̂
r(1− µ2)1/2

]}
. (G.7)

Here T âb̂ are the orthonormal components of the stress-energy tensor for matter as observed
by a normal observer, na. In the literature dealing with stationary, rotating equilibria, normal
observers are often referred to as zero angular momentum observers (ZAMOs).1 We purposely
leave the stress-energy tensor unspecified to allow for different matter models 2(see Chapter 5 for
some astrophysically relevant examples).

The fourth field equation determines σ and is given by

∂µσ = −1

2
(∂µρ+ ∂µγ)− {(1− µ2)(1 + r∂rγ)2 + [µ− (1− µ2)∂µγ]2}−1

×
{

1

2
[r2(∂2

rγ + (∂rγ)2)− (1− µ2)(∂2
µγ + (∂µγ)2)][−µ+ (1− µ2)∂µγ]

+r∂rγ

[
1

2
µ+ µr∂rγ +

1

2
(1− µ2)∂µγ

]
+

3

2
∂µγ[−µ2 + µ(1− µ2)∂µγ]

−r(1− µ2) (∂r∂µγ + (∂rγ)(∂µγ)) (1 + r∂rγ)− 1

4
µr2(∂rρ+ ∂rγ)2

−r
2

(1− µ2)(∂rρ+ ∂rγ)(∂µρ+ ∂µγ) +
1

4
µ(1− µ2)(∂µρ+ ∂µγ)2

−r
2

2
(1− µ2)∂rγ(∂rρ+ ∂rγ)(∂µρ+ ∂µγ)

+
1

4
(1− µ2)∂µγ[r2(∂rρ+ ∂rγ)2 − (1− µ2)(∂µρ+ ∂µγ)2]

+(1− µ2)e−2ρ
[1

4
r4µ(∂rω)2 +

1

2
r3(1− µ2)(∂rω)(∂µω)− 1

4
r2µ(1− µ2)(∂µω)2

+
1

2
r4(1− µ2)(∂rγ)(∂rω)(∂µω)− 1

4
r2(1− µ2)∂µγ[r2(∂rω)2 − (1− µ2)(∂µω)2]

]
−r2[µ− (1− µ2)∂µγ]e2σ4π(T r̂ r̂ − T θ̂ θ̂) + r2(1− µ2)1/2(1 + r∂rγ)e2σ8πT r̂ θ̂

}
. (G.8)

The equations for the metric components assembled by Komatsu et al. (1989a) and listed above
are most easily derived by projecting the Einstein field equations onto the orthonormal tetrad of
a ZAMO.

Following Komatsu et al. (1989a), the integral Green’s function solutions to the three elliptical
field equations (G.2)-(G.4) are

ρ = −e−γ/2
∞∑
n=0

∫ ∞

0

dr′
∫ 1

0

dµ′r′2f 2
2n(r, r′)P2n(µ)P2n(µ′)Sρ(r

′, µ′) , (G.9)

γ = − 2

π

e−γ/2

r sin θ

∞∑
n=1

∫ ∞

0

dr′
∫ 1

0

dµ′r′2
f 1

2n−1(r, r
′)

2n− 1
sin ((2n− 1)θ) sin ((2n− 1)θ′)Sγ(r

′, µ′) , (G.10)

1Bardeen (1973).
2Shapiro and Teukolsky (1993a).
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ω = −e
(2ρ−γ)/2

r sin θ

∞∑
n=1

∫ ∞

0

dr′
∫ 1

0

dµ′r′3 sin θ′
f 2

2n−1(r, r
′)

2n(2n− 1)
P 1

2n−1(µ)P 1
2n−1(µ

′)Sω(r′, µ′) , (G.11)

where

f 1
n(r, r′) =

{
(r′/r)n , for r′/r ≤ 1 ,
(r/r′)n , for r′/r > 1 ,

(G.12)

and

f 2
n(r, r′) =

{
(1/r)(r′/r)n , for r′/r ≤ 1 ,
(1/r′)(r/r′)n , for r′/r > 1 .

(G.13)

Here the Pn are Legendre polynomials and the Pm
n are associated Legendre functions. Equa-

tion (G.8) for σ is solved by integrating the linear ordinary differential equation from the pole
(µ = 1) to the equator with the initial condition that

σ =
γ − ρ

2
at µ = 1 , (G.14)

which arises from the requirement of local flatness on the coordinate axis.
The coupled equations for the gravitational and matter fields can be solved by a stable iteration

scheme like the one described in Komatsu et al. (1989a) for fluid stars.3 It is modeled after the
approach devised by Hachisu (1986) for Newtonian systems. The integral equations can be solved
on a discrete two-dimensional spatial grid covering the computational domain over a large but
finite radius, 0 ≤ r ≤ rmax and 0 ≤ µ ≤ 1. In the implementation by Cook et al. (1992), a
coordinate transformation to a new radial coordinate s, defined by

r = re
s

1− s
, 0 ≤ s ≤ 1 , (G.15)

allows to extend the computational domain to spatial infinity (rmax = ∞). Here re is the radius
of the surface of the matter at the equator. Derivatives of quantities appearing in the effective
source terms are handled by finite differencing.

3See Chapter 14.1.2 for a brief sketch.
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Appendix H

Moving-Puncture Representions of
Schwarzschild: Analytical Results

As we discussed in Chapter 13.1.3, moving puncture simulations typically employ the 1+log slicing
condition (4.51),

∂tα− βi∂iα = −2αK. (H.1)

We also pointed out that moving puncture simulations that start with Schwarzschild initial data
– specifically, the v = 0 time slice of Schwarzschild in a Kruskal-Szekeres diagram (Figure 1.1) –
settle down asymptotically to a stationary solution. In this Appendix we derive some analytical
representations of these asymptotic solutions. These solutions are very valuable for two reasons:
they provide very useful code tests,1 and help delineate the geometrical properties of moving
puncture solutions.

Maximal Slicing

Let us first consider a “nonadvective” version of the 1+log slicing condition (H.1), i.e.

∂tα = −2αK. (H.2)

If at late times the solution settles down and becomes time-independent, we must have ∂tα =
0, implying that the late-time solution must be maximally sliced with K = 0. The solution
must therefore be a member of the family of time-independent, maximal slicings of Schwarzschild
described by equations (4.23) – (4.25) and parametrized by the constant C. Hannam et al. (2007)
show that evolving with the Gamma-driver shift condition (4.83) yields the late-time solution
corresponding to the particular member C = 3

√
3M2/4, which has a limiting surface at the areal

radius rs = 3M/2. The family (4.23) – (4.25) is expressed in terms of an areal radius rs, but for
numerical purposes it is often more convenient to express this solution in terms of an isotropic
radius r. As it turns out, the cases C = 0 (see Exercise 3.4) and C = 3

√
3M2/4 are the only

cases for which these solutions can be expressed in isotropic coordinates in terms of elementary
functions.2

Exercise H.1 (a) To transform from the areal radius rs in (4.23) to an isotropic radius r, identify the
spatial metric (4.23) with its counterpart in isotropic, polar coordinates, γij = ψ4ηij . Show that this

1Employing moving puncture gauge conditions, and using these solutions as initial data, should result in a
time-independent solution. Any nonzero time evolution is therefore a measure of the numerical error.

2The remainder of this Section follows Baumgarte and Naculich (2007).
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Figure H.1: The conformal factor ψ (equation H.7) for the maximally sliced asymptotic solution
(solid lines), together with its asymptotic limits (equation H.8) (dashed lines), as functions of the
isotropic radius r. [From Baumgarte and Naculich (2007).]

yields

ψ =
(rs
r

)1/2

(H.3)

as well as the differential equation

±
∫
dr

r
=
∫

rsdrs√
r4s − 2Mr3s + C2

. (H.4)

(b) In the general case the right-hand side of equation (H.4) may be expressed in terms of elliptic
integrals. The integral simplifies, however, for C = 0 (in which case we recover the situation of Exercise
3.4), and for C = 3

√
3M2/4. Show that for C = 3

√
3M2/4 the quartic polynomial in equation (H.4)

has a double root at rs = 3M/2, and show that integration yields

r =
2rs +M + (4r2s + 4Mrs + 3M2)1/2

4

(
(4 + 3

√
2)(2rs − 3M)

8rs + 6M + 3(8r2s + 8Mrs + 6M2)1/2

)1/
√

2

, (H.5)

where a constant of integration has been fixed so that r → rs as rs → ∞. Also show that r → 0 as
rs → 3M/2.

Given equation (H.5) we can now construct the entire spacetime metric

ds2 = −α2dt2 + ψ4ηij(dx
i + βidt)(dxj + βjdt) (H.6)
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as follows. From equation (H.3) we find the conformal factor

ψ =

(
4rs

2rs +M + (4r2
s + 4Mrs + 3M2)1/2

)1/2(
8rs + 6M + 3(8r2

s + 8Mrs + 6M2)1/2

(4 + 3
√

2)(2rs − 3M)

)1/2
√

2

.

(H.7)
To express ψ in terms of the isotropic radius r would require inverting equation (H.5); clearly that
is not possible. Instead, equations (H.5) and (H.7) together provide a parametric representation of
ψ(r). Exercise H.2 demonstrates that the conformal factor features a 1/

√
r coordinate singularity

at r = 0, so that this point corresponds to a surface of finite areal radius rs (cf. exercise 13.1).

Exercise H.2 Show that the conformal factor (H.7) has the expected asymptotic limits

ψ →


(

3M
2r

)1/2

r → 0

1 +
M

2r
r →∞.

(H.8)

The lapse α in equation (4.24) transforms like a scalar under spatial coordinate transformations
and hence remains

α =

(
1− 2M

rs
+

27M4

16r4
s

)1/2

, (H.9)

while the shift has to be transformed from the areal radius rs in equation (4.25) to the isotropic
radius r,

βr =
dr

drs
βrs =

r

rs

1

f

Cf

r2
s

=
3
√

3M2

4

r

r3
s

. (H.10)

Both the lapse and shift can again be represented parametrically in terms of r.

Stationary 1+log slicing

Now let us return to the “advective” 1+log slicing condition (H.1). The time-independent, asymp-
totic solution must then satisfy3

K =
βi∂iα

2α
. (H.11)

We can construct these slices using the same “height-function” approach that we used in Chapter
4.2 to find the family of maximal slices (4.23) – (4.25). Recall that, starting with the standard
Schwarzschild coordinates, we introduced a new time coordinate t̄ = t + h(rs), where t is the
original Schwarzschild time and h(rs) the height function. We then identified the lapse and the
shift on t̄ = const surfaces and found the expressions (4.18)

βrs =
f 2

0h
′

1− f 2
0h

′2 , α2 =
f0

1− f 2
0h

′2 , (H.12)

where h′ ≡ dh/drs and f0(rs) = 1 − 2M/rs. It is now convenient to express h′ in terms of the
lapse,

h′ =
1

αf0

(
α2 − f0

)1/2
, (H.13)

3This Section follows Hannam et al. (2008).
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so that the shift becomes

βrs = α
(
α2 − f0

)1/2
. (H.14)

From equation (4.19) we can also show that

K =
1

r2
s

d

drs

(
r2
sf0αh

′) =
1

r2
s

d

drs

(
r2
s

(
α2 − f0

)1/2)
. (H.15)

Inserting the shift (H.14) and the mean curvature (H.15) into the slicing condition (H.11) then
yields a differential equation for the lapse

dα

drs
= − 2

rs

3M − 2rs + 2rsα
2

rs − 2M + 2rsα− rsα2
. (H.16)

Exercise H.3 Show that the differential equation (H.16) is solved by the implicit equation

α2 = 1− 2M
rs

+
C2eα

r4s
(H.17)

for any value of the constant C.

Remarkably, the solution (H.17) for the lapse differs from the maximal slicing result (4.24) only
by the exponential term eα. This term complicates matters considerably, of course, since now the
lapse is given only implicitly. As for the maximal slicing case, again we have discovered an entire
family of solutions that satisfies the slicing condition (H.11), and again we can parameterize this
family in terms of the constant C.

We notice, however, that the solutions may become singular if the denominator in equation
(H.16) vanishes. To ensure that the solution remains regular we demand that the numerator of
the equation vanish simultaneously with the denominator; this condition determines the constant
C. The numerator of equation (H.16) vanishes when

α =

(
1− 3M

2rs

)1/2

(H.18)

(where we have chosen the positive root). Given this value of the lapse, the denominator of
equation (H.16) then vanishes at a critical radius rc given by

rc =
3 +

√
10

4
M. (H.19)

At rc, the lapse is then

αc =
√

10− 3. (H.20)

We can now insert both equations (H.19) and (H.20) into equation (H.17), which yields

C =

√
2

16
(
√

10 + 3)3/2e(3−
√

10)/2M2 ' 1.24672M2. (H.21)

This value of C identifies the member of the family in which we are interested. Substituting C
into equation (H.17) we can then find, at least implicitly, α for all values of the areal radius rs.
Knowing α we can find h′ from equation (H.13), which then determines all other metric quantities.
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Exercise H.4 (a) Recall that the 1+log slicing condition (H.1) is a member of a larger family of slicing
conditions (4.49)

∂tα− βi∂iα = −α2f(α)K (H.22)

with f(α) = 2/α. Retrace our derivation above for the more general form f(α) = n/α, where n is
some arbitrary constant.
Hint: Try α2 = 1 − 2M/rs + C2e2α/n/r4s as the generalization of (H.17). You should find C2 =
(3n+

√
4 + 9n2)3/(128n3) e−2αc/n.

(b) In Chapter 4.3 we argued that maximal slicing can be recovered in the limit n→∞. Demonstrate
that the solution of part (a) does indeed reduce to the maximal slicing solution of the previous Section
(with C = 3

√
3M2/4) in this limit.

The above steps complete the solution in terms of the areal radius rs. For numerical purposes
it would again be desirable to express this solution in terms of an isotropic radius; while does not
seem to be possible analytically, the transformation can be carried out numerically. We refer the
reader to Hannam et al. (2008) for a more detailed discussion of these solutions, as well as their
geometrical properties.
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Appendix I

Binary Black Hole Puncture Simulations
As Test Problems

Simulating the late inspiral, merger and ringdown of a binary black hole was for many years the
“holy grail” of numerical relativity. Dozens of researchers have spent many years attempting to
formulate a stable algorithm capable of solving this important problem. As discussed in Chap-
ter 13, several different techniques and corresponding codes now exist that can evolve coalescing
binary black holes successfully. In this Appendix we summarize two simulations in sufficient detail
to enable the reader to assess the requirements and caliber of a typical computation. We employ
one widely adopted method for the simulations, based on the BSSN evolution scheme and binary
puncture initial data. The examples chosen here, and the quoted results, can be used as test
problems for the construction of new algorithms and new modules.

We emphasize that performing a simulation of binary black hole coalescence provides a highly
nontrivial and comprehensive laboratory for testing a 3 + 1 code capable of solving Einstein’s field
equations in vacuum in the strong-field regime of general relativity. It tests the caliber of not
only the basic evolution scheme, but also the all-important diagnostic routines. These routines
measure globally conserved quantities like the total mass and angular momentum of the system,
the masses and spins of the individual black holes, the location and area of the black hole horizons,
the asymptotic gravitational waveforms, the recoil kick imparted to the black hole remnant, and
other “vital statistics” characterizing a dynamical spacetime containing black holes. Appreciable
effort invariably goes into implementing and testing these diagnostic modules in order to extract
meaningful and reliable physical information from the numerical output.

We consider two cases of merging, nonspinning black holes: one is an equal-mass system, and
the other has a 3:1 mass ratio. Both cases employ initial data constructed using the binary punc-
ture technique to obtain quasiequilibrium binaries in circular orbit, as discussed in Chapter 12.2.
The initial data for the two cases are specified by the puncture parameters listed in Table I.1.
The code employs AMR with equatorial symmetry; the AMR grid setup is described in Table I.2.
The basic evolution scheme is BSSN with moving puncture gauge conditions. Details concerning
the implementation of the evolution scheme are summarized in Table I.3. A number of the global
diagnostic parameters, and several key physical results, are listed in Table I.4.

In reading through the summaries of these simulations as provided by the tables and figures
below, it should become apparent that performing such calculations requires an understanding of
much of the formalism and computational machinery reviewed in this book. This point is implicit
in the many references cited below to earlier equations and discussions throughout the main text
where many of the quantities that appear in tables and figures are introduced. The simulation of
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equal mass (q = 1) unequal mass (q = 3)

Location of punctures x+ = (0, 4.891, 0), x+ = (5.25, 0, 0),
x− = (0,−4.891, 0) x− = (−1.75, 0, 0)

“Bare” mass M+ = M− = 0.4856 M+ = 0.234, M− = 0.735
Spin S+ = S− = 0 S+ = S− = 0

Momentum P+ = (0.0969, 0, 0), P+ = (0, 0.09407, 0),
P− = (−0.0969, 0, 0) P− = (0,−0.09407, 0)

ADM mass M = 0.9894 M = 0.9895
Angular momentum J = 0.9479 J = 0.6587

Irreducible mass M+
irr = M−

irr = 0.5000 M+
irr = 0.2498, M−

irr = 0.7494
Mean coord. radius of BHs’ horizon R+ = R− = 0.2359 R+ = 0.1097, R− = 0.3605

Binary coord. separation (|x+ − x−|) 9.887M 7.074M

Table I.1: Binary Black Hole Puncture Initial Data. The freely chosen parameters are each
puncture’s coordinate position x, “bare” mass M, momentum P and spin S. The resulting initial
puncture geometry is specified by the 3-metric γij and extrinsic curvature Kij, as constructed in
Chapter 12.2 for nonspinning black holes in quasiequilibrium circular orbit. In the last five lines
we list diagnostic parameters computed from these initial data, including the total ADM mass
M (equation 3.140), the total angular momentum J (equation 3.191), and the irreducible mass
Mirr of each black hole (equation 7.2). Quantities like x, P, etc, are listed above in “code units”,
(where 1 code unit = 1.011M) and can be scaled to arbitrary M . [Adapted from Etienne et al.
(2009).]

the inspiral and merger of a binary black hole thus represents the culmination of our training and
ability to evolve a pure vacuum, dynamical spacetime in 3 + 1 dimensions. It is also the logical
starting point of many nonvacuum dynamical scenarios involving strong gravitational fields and
requiring the tools of numerical relativity for solution.

Of special signficance is the degree to which total energy and angular momentum are conserved
when properly accounting for losses due to gravitational wave emission. The fractional errors are
seen in Table I.4 to be a few times 10−4 for the energy and 10−3 for the angular momentum. Also,
different measures of the mass and spin of the final (stationary) remnant Kerr black hole, such as
the irreducible mass and ADM mass, agree closely, given the adopted computational resources.

The coordinate trajectories of the two black holes are plotted in Figure I.1 for the two cases;
the emitted gravitational waveforms are shown in Figure I.2.

The cases analyzed here have been considered by many different investigators. The actual
numerical results reported here were obtained by Etienne et al. (2009), who performed these simu-
lations to test the vacuum sector of their relativistic hydrodynamics AMR code. Usually, vacuum
codes that can simulate these two cases successfully can automatically evolve more complicated
scenarios, such as spinning black hole binaries. Such codes can also treat black hole binaries for
which approaches other than the puncture method are adopted to construct the initial data (e.g.
the conformal thin-sandwich approach is one such alternative; see Chapter 12.3).
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Figure I.1: Trajectory of the coordinate centroid of the “+” (black solid line) and “-” (blue dash
line) black hole during nonspinning binary black hole inspiral and merger. The left-hand panel is
the equal-mass case, the right-hand panel in the unequal mass case. [From Etienne et al. (2009).]

equal-mass (q = 1) unequal mass (q = 3)

L 320 (= 323.4M) 409.6 (= 413.9M)
N+ 8 10
N− 8 9
R+ (160, 80, 140/3, 20, 5, 2.5, 1.25, 0.625) (256, 128, 64, 24, 12, 6, 3, 1.5, 0.75, 0.375)
∆+ (4, 2, 1, . . . , 0.0625, 0.03125) (5.12, 2.56, 1.28, . . . , 0.02, 0.01)
R− (160, 80, 140/3, 20, 5, 2.5, 1.25, 0.625) (256, 128, 64, 32, 16, 8, 4, 2, 1)
∆− (4, 2, 1, . . . , 0.0625, 0.03125) (5.12, 2.56, 1.28, . . . , 0.04, 0.02)
N+

AH ≈ 15 ≈ 22
N−

AH ≈ 15 ≈ 36

Table I.2: Grid Setup. The parameter L is the location of the outer boundary, i.e., xmax = ymax =
zmax = L, xmin = ymin = −L, zmin = 0 (equatorial symmetry). N+ (N−) is the number of AMR
refinement levels (Chapter 6.2.5) centered at the “+” (“-”) puncture. R+ (R−) are the radii of the
refinement levels centered at the “+” (“-”) puncture in code units (where 1 code unit = 1.011M).
∆+ (∆−) is the grid spacing in each refinement level centered at the “+” (“-”) puncture (in code
units). Note that the grid spacing doubles in each successive refinement level. The coarest grid
spacing is twice of that of the outermost refinement level, which is 8 for the equal-mass case and
10.24 for the unequal-mass case. N+

AH (N−
AH) is the number of grid points across the mean diameter

of the apparent horizon of the “+” (“-”) black hole at t = 0. [Adapted from Etienne et al. (2009).]
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Formalism BSSN
Lapse 1+log slicing: ∂0α = −2αK, where ∂0 ≡ ∂t − βj∂j
Shift Γ-freezing: ∂0β

i = (3/4)Bi, ∂0B
i = ∂0Γ̃

i − ηBi, η = 0.25 = 0.2474/M
Conformal variable Evolve e−2φ (instead of φ), where det γij ≡ e12φ

Symmetry Equatorial

(1) Enforce auxiliary constraints det(γ̃ij) = 1 and Tr(Ãij) = 0

(2) Enforce auxiliary constraint Γ̃i = −∂j γ̃ij
Other Numerical (3) Add 5th order Kreiss-Oliger dissipation of the form

techniques (ε/64)(∆x5∂6
x + ∆y5∂6

y + ∆z5∂6
z )f

in all lapse, shift and BSSN evolution equations, ∂tf .
Here ∆x, ∆y and ∆z are grid spacings and ε = 0.1.

Grid-driver code Carpet
Spatial differencing 4th order upwind on shift advection terms,

4th order centered otherwise
Temporal differencing Method of lines (MOL) with 4th order Runge-Kutta (RK4)
Courant (CFL) factor 0.25

Prolongation 5th order spatial prolongation, 2nd order temporal prolongation
Wave extraction radii 10.11M–54.58M for equal-mass,

30.32M–70.75M for unequal-mass case

Table I.3: Evolution Scheme. The basic BSSN scheme is summarized in Chapter 11.5 (see Box
11.1). “Moving puncture” gauge conditions are adopted for the lapse and shift (see equation 4.51
and discussion following equation 4.83). To enforce the auxiliary constraints in (1) the technique
described in Etienne et al. (2008) is implemented; to enforce the auxiliary constraint in (2) the
technique suggested by Marronetti et al. (2007) is adopted (see also equations 14.41–14.43 and
related discussion). Kreiss and Oliger (1973) dissipation (Chapter 6.2.3) is employed here to
reduce any high-frequency noise arising at the moving refinement boundaries. Carpet is a Cactus-
based module that implements AMR (see http://www.carpetcode.org for full documentation).
Upwind differencing vs. centered spatial differencing, as well as the method of lines (MOL) algo-
rithm for time-integrations, are discussed in Chapter 6.2.3. The Courant factor is defined below
equation (6.72). Prolongation refers to interpolations in space and time at the AMR refinement
boundaries. A range of extraction radii is chosen to confirm convergence of waveforms. [Adapted
from Etienne et al. (2009).]
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equal mass (q = 1) unequal mass (q = 3)

Mf/M 0.9615 0.9808
Jf/M

2 0.636± 0.008 0.52± 0.04
MBH/M 0.9617 0.9809
JBH/M

2
BH 0.6852 0.5413

∆EGW/M 0.03794 0.01934
∆JGW/M

2 0.3306 0.1513
vkick — 174 km s−1

δE 4× 10−4 −2× 10−4

δJ 4× 10−3 9× 10−4

Table I.4: Simulation Results: The Black Hole Remnant and Emitted Radiation. Mf ad Jf are
the final ADM mass and angular momentum measured at radius 43.90M in the equal-mass case,
and at 50.35M in the unequal-mass case. Here M is the initial ADM mass as listed in Table
I.1. The value of Jf fluctuates slightly; the quoted error is the fluctuation amplitude at late
times. MBH is the mass of the final black hole as determined by its irreducible mass (equations 7.2
and 7.4); JBH/M

2
BH is the spin parameter of the final hole as determined by the ratio of polar

and equatorial circumferences, assuming the Kerr relation. ∆EGW and ∆JGW are the energy
and angular momentum carried off by gravitational radiation (equations 9.130 and 9.131.) The
waves are extracted at radius 50.53M , where the Weyl scalar ψ4 is evaluated (equation 9.121).
The parameter vkick is the kick velocity imparted to the black hole in the unequal-mass case
(equation 9.132). (Wave data for t− r < 50M , arising from gravitational radiation present in the
initial data, are removed before computing the kick velocity.) The paramter δE ≡ (M −MBH −
∆EGW)/M measures the fractional violation of energy conservation; δJ ≡ (J − JBH −∆JGW)/J
measures the fractional violation of angular momentum conservation. [Adapted from Etienne et al.
(2009).]
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Figure I.2: Gravitational waveforms for the inspiral and merger of nonspinning binary black holes.
Shown here are the dominant l = 2, m = 2 wave amplitudtes (r/M)h22

+ (black solid line) and
(r/M)h22

× (blue dash line) as functions of retarded time t − r. The left-hand panel is the equal-
mass case while the right-hand panel is the unequal-mass case. The waveforms are extracted at
radius r = 50.53M and computed by integrating the s = −2 spin-weighted spherical harmonics of
the Weyl scalar ψ4 twice with time (equations 9.126 and 9.134). [From Etienne et al. (2009).]
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Bona, C. and J. Massó (1988). Harmonic synchronizations of spacetime. Phys. Rev. D 38, 2419–
2422.
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Reimann, B. and B. Brügmann (2004). Maximal slicing for puncture evolutions of Schwarzschild
and Reissner-Nordström black holes. Phys. Rev. D 69, 044006.

Reinhart, B. (1973). Maximal foliations of extended Schwarzschild space. J. Math. Phys. 14,
719–719.

Reula, O. (1998). Hyperbolic methods of einstein’s equations. Living Rev. Rel. 1, 3.

Rezzolla, L. and J. C. Miller (1994). Relativistic radiative transfer for spherical flows. Class.
Quantum Grav. 11, 1815–1832.

Rezzolla, L. and J. C. Miller (1996). Evaporation of cosmological quark drops and relativistic
radiative transfer. Phys. Rev. D 53, 5411–5425.

Richtmyer, R. D. and K. W. Morton (1967). Difference Methods for Initial Value Problems.
Wiley-Interscience, New York.
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Spergel, D. N., R. Bean, O. Doré, M. R. Nolta, C. L. Bennett, J. Dunkley, G. Hinshaw, N. Jarosik,
E. Komatsu, L. Page, H. V. Peiris, L. Verde, M. Halpern, R. S. Hill, A. Kogut, M. Limon, S. S.
Meyer, N. Odegard, G. S. Tucker, J. L. Weiland, E. Wollack, and E. L. Wright (2007). Wilkin-
son Microwave Anisotropy Probe (WMAP) Three Year Results: Implications for Cosmology.
Astrophys. J. Suppl. 170, 377.

Spitzer, L. (1987). Dynamical evolution of globular clusters. Princeton University Press, Princeton.

Stairs, I. H. (2004). Pulsars in Binary Systems: Probing Binary Stellar Evolution and General
Relativity. Science 304, 547–552.

Stairs, I. H., Z. Arzoumanian, F. Camilo, A. G. Lyne, D. J. Nice, J. H. Taylor, S. E. Thorsett, and
A. Wolszczan (1998). Measurement of Relativistic Orbital Decay in the PSR B1534+12 Binary
System. Astrophys. J. 505, 352–357.

Stark, R. F. and T. Piran (1985). Gravitational-wave emission from rotating gravitational collapse.
Phys. Rev. Lett. 55, 891–894.

Stark, R. F. and T. Piran (1987). A General Relativistic Code for Rotating Axisymmetric Con-
figurations and Gravitational Radiation: Numerical Methods and Tests. Comput. Phys. Rep. 5,
221–264.

Stephens, B. C., S. L. Shapiro, and Y. T. Liu (2008). Collapse of magnetized hypermassive neutron
stars in general relativity: Disk evolution and outflows. Phys. Rev. D 77, 044001–+.

Stergioulas, N. (2003). Rotating Stars in Relativity. Living Rev. Relativity 6, 3–+.

Stergioulas, N. and J. L. Friedman (1995). Comparing models of rapidly rotating relativistic stars
constructed by two numerical methods. Astrophys. J. 444, 306–311.

Stergioulas, N. and J. L. Friedman (1998). Nonaxisymmetric Neutral Modes in Rotating Rela-
tivistic Stars. Astrophys. J. 492, 301–+.

Symbalisty, E. and D. N. Schramm (1982). Neutron star collisions and the r-process. Astrophys.
J. Lett. 22, 143–145.

Szekeres, G. (1960). On the Singularities of a Riemannian Manifold. Publ. Mat. Debrecen. 7,
285–301.

Tananbaum, H., H. Gursky, E. M. Kellogg, R. Levinson, E. Schreier, and R. Giacconi (1972).
Discovery of a Periodic Pulsating Binary X-Ray Source in Hercules from UHURU. Astrophys.
J. Lett. 174, L143+.

Taniguchi, K., T. W. Baumgarte, J. A. Faber, and S. L. Shapiro (2005). Black hole-neutron star
binaries in general relativity: effects of neutron star spin. Phys. Rev. D 72, 044008.

Taniguchi, K., T. W. Baumgarte, J. A. Faber, and S. L. Shapiro (2006). Quasiequilibrium se-
quences of black-hole neutron-star binaries in general relativity. Phys. Rev. D 74, 041502–+.



BIBLIOGRAPHY 631

Taniguchi, K., T. W. Baumgarte, J. A. Faber, and S. L. Shapiro (2007). Quasiequilibrium black
hole-neutron star binaries in general relativity. Phys. Rev. D 75, 084005–+.

Taniguchi, K., T. W. Baumgarte, J. A. Faber, and S. L. Shapiro (2008). Relativistic black hole-
neutron star binaries in quasiequilibrium: effects of the black hole excision boundary condition.
Phys. Rev. D 77, 044003.

Taniguchi, K. and E. Gourgoulhon (2002). Quasiequilibrium sequences of synchronized and irro-
tational binary neutron stars in general relativity. III. Identical and different mass stars with
gamma=2. Phys. Rev. D 66, 104019.

Taniguchi, K. and E. Gourgoulhon (2003). Various features of quasiequilibrium sequences of binary
neutron stars in general relativity. Phys. Rev. D 68, 124025.

Taniguchi, K. and T. Nakamura (2000a). Almost Analytic Solutions to Equilibrium Sequences of
Irrotational Binary Polytropic Stars for n = 1. Phys. Rev. Lett. 84, 581–585.

Taniguchi, K. and T. Nakamura (2000b). Equilibrium sequences of irrotational binary polytropic
stars: The case of double polytropic stars. Phys. Rev. D 62, 044040–+.

Tassoul, J.-L. (1978). Theory of rotating stars. Princeton University Press, Princeton.

Taub, A. H. (1948). Relativistic Rankine-Hugoniot Equations. Phys. Rev. 74, 328–334.

Taub, A. H. (1959). On circulation in relativistic hydrodynamics. Archive for Rational Mechanics
and Analysis 3, 312–324.

Taub, A. H. (1978). Relativistic fluid mechanics. Annual Review of Fluid Mechanics 10, 301–332.

Taylor, J. H. and J. M. Weisberg (1989). Further experimental tests of relativistic gravity using
the binary pulsar PSR 1913 + 16. Astrophys. J. 345, 434–450.

Teukolsky, S. A. (1982). Linearized quadrupole waves in general relativity and the motion of test
particle. Phys. Rev. D 26, 745.

Teukolsky, S. A. (1998). Irrotational binary neutron stars in quasi-equilibrium in general relativity.
Astrophys. J. 504, 442.

Teukolsky, S. A. (2000). On the stability of the iterated Crank-Nicholson method in numerical
relativity. Phys. Rev. D 61, 087501.

The LIGO Scientific Collaboration: B. Abbott (2007). Searching for a Stochastic Background of
Gravitational Waves with the Laser Interferometer Gravitational-Wave Observatory. Astrophys.
J. 659, 918–930.

The LIGO Scientific Collaboration: B. Abbott, M. Kramer, and A. G. Lyne (2007). Upper limits
on gravitational wave emission from 78 radio pulsars. Phys. Rev. D 76, 042001.

Thornburg, J. (1987). Coordinates and boundary conditions for the general relativistic initial data
problem. Class. Quantum Grav. 4, 1119.

Thornburg, J. (1996). Finding apparent horizons in numerical relativity. Phys. Rev. D 54, 4899–
4918.



632 BIBLIOGRAPHY

Thorne, K. S. (1972). Nonspherical Gravitational Collapse–A Short Review. In J. Klauder (Ed.),
Magic Without Magic: John Archibald Wheeler, pp. 231–258. W.H. Freeman, San Francisco.

Thorne, K. S. (1974). Disk-Accretion onto a Black Hole. II. Evolution of the Hole. Astrophys.
J. 191, 507–520.

Thorne, K. S. (1980). Multipole expansions of gravitational radiation. Reviews of Modern
Physics 52, 299–340.

Thorne, K. S. (1981). Relativistic radiative transfer - Moment formalisms. Mon. Not. R. Astron.
Soc. 194, 439–473.

Thorne, K. S. and A. Campolattaro (1967). Non-Radial Pulsation of General-Relativistic Stellar
Models. I. Analytic Analysis for L ≥ 2. Astrophys. J. 149, 591.

Thorne, K. S., R. A. Flammang, and A. N. Zytkow (1981). Stationary spherical accretion into
black holes. I - Equations of structure. Mon. Not. R. Astron. Soc. 194, 475–484.

Thorne, K. S. and D. MacDonald (1982). Electrodynamics in Curved Spacetime - 3+1 Formulation.
Mon. Not. R. Astron. Soc. 198, 339–+.
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Uryū, K., M. Shibata, and Y. Eriguchi (2000). Properties of general relativistic, irrotational
binary neutron stars in close quasiequilibrium orbits: Polytropic equations of state. Phys. Rev.
D 62 (10), 104015.
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Uryū, K., F. Limousin, J. L. Friedman, E. Gourgoulhon, and M. Shibata (2006). Binary neutron
stars in a waveless approximation. Phys. Rev. Lett. 97, 171101.

Usui, F. and Y. Eriguchi (2002). Quasiequilibrium sequences of synchronously rotating binary
neutron stars with constant rest masses in general relativity: Another approach without using
the conformally flat condition. Phys. Rev. D 65, 064030–+.
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1+log slicing, see also Slicings
concept, 100–101
moving-puncture simulations, 382–384, 515,

518, 575–579, 584
of Schwarzschild spacetime, 577–579
singularity avoidance, 101

1-forms, see also Lie derivative
basis 1-forms, 2, 3
brief review, 2, 3
in foliations of spacetime, 26, 27, 29, 37–39

3+1 decomposition of Einstein’s equations
concept, 22, 23
formulations, see Arnowitt-Deser-Misner for-

malism; Baumgarte-Shapiro-Shibata-Na-
kamura formalism; First-order symmet-
ric hyperbolic formulations

illustrated by Maxwell’s equations, see Max-
well’s equations

3+1 decomposition of spacetime, 26, 27

Accretion, 113, 130, 288–290, 373, 413, 415, 482,
see also Bondi accretion; Disks

Adaptive mesh refinement (AMR)
applications in

binary black hole evolution, 387–389, 392,
396, 581–584

binary black hole-neutron star evolution,
518, 519

head-on collision of neutron stars, 186, 187
rotating stars, 420

concept, 187
ADM formalism, see Arnowitt-Deser-Misner for-

malism
ADM mass, see Arnowitt-Deser-Misner mass
α-freezing, see Collisionless cluster evolution
Alternating-direction implicit (ADI), 181
AMR, see Adaptive mesh refinement
Angular momentum, see also Conserved quan-

tities; Gravitational waves
Arnowitt-Deser-Misner (ADM), 85

Komar, 85
quasi-local, 73, 220
rotating equilibrium configuration, 86, 409
spinning black holes, 8, 11, 47, 64, 85

Apparent horizons, see also Horizons
brief review, 18–19
concept, 203
formalism, 207–211
locating

axisymmetry, 212–216
curvature flow method, 218
finite-difference method, 218
shooting method, 216
spectral method, 215, 217–218
spherical symmetry, 211–212
without symmetry assumptions, 216–218

Oppenheimer-Snyder collapse, 18–19, 211–
212

Area theorem, 12, 201, 202, 321, 392
Arnowitt-Deser-Misner (ADM) formalism, see also

Mass, Angular Momentum; Linear Mo-
menum; 3+1 decompositions of space-
time

2+1 equations, 565
3+1 equations, 23, 39, 42
applications to

collisionless cluster collapse, 238, 268, 312,
319, 327

collisionless disk collapse, 323
head-on black hole collisions, 318
spherical black holes, 228

summary box, 43
Arnowitt-Deser-Misner (ADM) mass

as volume integral, 79
concept, 76–77
examples

boosted black hole, 80–81, 215
Brill waves, 81
Schwarzschild spacetime in Kerr-Schild co-
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ordinates, 77–78
Schwarzschild spacetime in Painlevé-Gull-

strand coordinates, 81–82
in terms of conformal factor, 77–79
Newtonian limit, 79–80
rotating equilibrium configuration, 86, 409
spherical symmetry, 242

Asymptotic flatness
assumed throughout, 6
black hole solutions, 9, 53–57, 359, 383–385
boundary conditions, 259, 270, 360, 365, 407,

503
cosmic censorship, 311, 312
definitions of global quantities, 74–86, 372
gravitational waves, 282, 307, 567

Axions, 146, 155, 317

Bach tensor, 51, 52, 65, 476
Bar-mode instability, 289, 413–415, 421–423
Basis vectors, see Vectors
Baumgarte-Shapiro-Shibata-Nakamura (BSSN)

formalism, see also Conformal connec-
tion functions

3+1 equations, 341–346
applications to

binary black hole-neutron stars, 514, 517,
518

binary black holes, 380, 382, 387, 388, 392,
396

binary neutron stars, 475, 476, 482
magnetorotational collapse, 437
rotating stars, 418, 421, 424, 427, 430, 433

summary box, 347
Bernoulli equation, 121, 454
Bianchi identities, 4, 21, 22, 82, 339
Binary black hole evolution

black hole recoil, 386, 392–396, 399–402, 581,
585

generalized harmonic formulation, 386–387,
392

gravitational waveforms, 386–393, 581–582
handling singularities, see Excision; Moving-

puncture method; Singularity avoiding
coordinates

head-on collisions, 202, 204–207, 317–321,
379–380

inspiral and coalescence

equal-mass binaries, 386–393, 581–582
spinning black holes, 393, 398–403
unequal-mass binaries, 393, 395–398, 581–

582
moving-puncture simulations, 387–393, 581–

582
test problem, 581–582

Binary black hole initial data
quasiequilibrium binaries, see also Bowen-

York solutions; Innermost stable circu-
lar orbit

black hole boundary conditions, see Bound-
ary conditions

conformal imaging, 359, 363, 365–377
conformal thin-sandwich decomposition, 363–

377, 387
conformal transverse-traceless decomposi-

tion, 357–363
corotational vs. nonspinning, 370, 374–377
helical Killing vector, see Killing vectors
identifying circular orbits, 371–373
puncture method, 359–363, 365–366, 377,

388
quasiequilibrium sequences, 373–378

time-symmetric data
conformal imaging, 56
three-sheeted, 55
two-sheeted, 55, 56
wormhole solution, 56

Binary black hole-neutron star evolution
black hole recoil, 523
disks, 508, 511–528
generalized harmonic formulation, 517
gravitational waveforms, 499–501, 508, 513–

517, 523–528, 530
handling singularities, see Excision; Moving

puncture-gauge conditions; Singularity
avoiding coordinates

head-on collisions, 514
inspiral and coalescence

conformal flatness approximation, 510–514
corotational neutron star and nonspinning

black hole, 514–517
irrotational binaries, 517–525
irrotational neutron star and spinning black

hole, 526–528
moving-puncture simulations, 514
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tidal disruption, 499–501, 510–527
Binary black hole-neutron star initial data, see

also Innermost stable circular orbit; Cusps
black hole boundary conditions, see Bound-

ary conditions
conformal thin-sandwich decomposition, 502–

508
conformal transverse-traceless decomposition,

508–510
corotational, 503
helical Killing vector, see Killing vectors
irrotational, 502–511
puncture method, 509
quasiequilibrium sequences, 501, 505
tidal disruption limit, 500–501, 504–508

Binary black hole-neutron stars, see also Binary
black hole-neutron star initial data; Bi-
nary black hole-neutron star evolution;
Post-Newtonian formalism

astrophysical context, see Extreme mass-ratio
inspiral binaries; Gamma-ray bursts; Grav-
itational waves; r-process nuclei

Binary black holes, see also Binary black hole
initial data; Binary black hole evolution;
Post-Newtonian formalism

astrophysical context, see Accretion; Grav-
itational waves; Quasars; Supermassive
black holes; X-shaped radio jets

Binary inspiral, see also Binary black hole evolu-
tion; Binary neutron star evolution; Bi-
nary black hole-neutron star evolution;
Extreme mass ratio inspiral; Gravitatio-
nal waves

chirp signal, 353, 391, 461, 481, 491
concept, 350–357
post-Newtonian treatment, 555–564
quasiadiabatic, 468–470

Binary neutron star evolution, see also Hyper-
massive stars

disks, 484–488, 491–495
ellipsoidal treatment, 472, 489, 490, 492
gravitational waveforms, 471–476, 485–490,

493–495
head-on collisions, 187, 472
hydro-without-hydro, 469
inspiral and coalescence

conformal flatness approximation, 473–482

equal-mass n = 1 polytropic binaries, 482–
487

magnetized binaries, 493–495
realistic equations of state, 488–493
unequal-mass n = 1 polytropic binaries,

487–488
Newtonian simulations, 472–473, 483, 488,

489
prompt vs. delayed collapse, 471, 484, 491,

495, 513
Binary neutron star initial data, see also Confor-

mal thin-sandwich decomposition; Cusps;
Innermost stable circular orbit; Turning-
point criterion

computational method, 455–457, 465
corotational binaries, 454–462, 469–470
helical Killing vector, see Killing vectors
irrotational binaries, 462–470
Newtonian equilibrium equations, 449–452
quasiequilibrium circular orbits, 447, 453
quasiequilibrium sequences, 458–459, 461–

470
relativistic equilibrium equations, 447–448,

452–454, 462–464
Binary neutron stars, see also Binary neutron

star evolution; Binary neutron star ini-
tial data; Hypermassive neutron stars;
Post-Newtonian formalism

astrophysical context, see Gamma-ray bursts;
Gravitational waves; r-process nuclei

no star-crushing effect, 459, 460, 477
Binding energy, see also Turning-point criterion

binary black hole-neutron stars, 505–507
binary black holes, 361–362, 371, 375–377,

391
binary neutron stars, 461, 462, 467, 468
collisionless clusters, 235, 252, 256, 257
Newtonian spheroid, 313, 322
rotating stars, 410, 411

Birkhoff’s theorem, 9, 156, 223, 251
Black hole excision, see Excision
Black holes, see also Kerr black holes; Oppenhei-

mer-Snyder collapse; Schwarzschild black
holes; Singularities

binaries, see Binary black holes
brief review, 8–12
elementary solutions to constraint equations,
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see Bowen-York solutions; Constraint equa-
tions

embedding diagram, 54–56, 384
entropy, 12
formed from collapse, see Collapse; Critical

phenomena; Oppenheimer-Snyder collapse;
Schwarzschild

global theorems, 12, see also Area theorem
handling singularity in evolution, 380–385,

see also Excision; Moving-puncture method;
Singularity avoiding coordinates

Hawking radiation, 12
horizons, see Horizons
no-hair theorem, 156, 428
quasinormal modes, 157, 289, 321, 325, 391,

488, 517
toroidal, 205, 327–328

Boltzmann equation, 126, 128, 147, see also Ra-
diation; Collisionless matter

Bondi accretion, 139, 437, 514, 518
Bondi-Sachs mass, 82
Boson stars, 155, 159, 406, see also Scalar fields
Boundary conditions

asymptotic flatness, see Asymptotic flatness
conformal imaging, see Binary black hole

initial data
Dirichlet, 165, 168
in black hole excision, see Excision
Neumann, 165, 168
outgoing wave, 343, 518
quasiequilibrium black hole horizon

concept, 366–371
in binary black hole initial data, 374
in binary black hole-neutron star initial

data, 503–504
leading-order approximation, 371, 374, 504

Robin, 168, 241, 360
Bowen-York solutions, see also Binary black hole

initial data; Binary black hole-neutron
star initial data; Conformal transverse-
traceless decomposition

binary black hole-neutron stars, 508
binary black holes, 357–365, 371–377
boosted black hole, 66–67
concept, 63
spinning black hole, 63–66

Brans-Dicke theory, 203, 427

Brill mass, 81
Brill waves, 58, 81, 285, 312, 316, 317
BSSN, see Baumgarte-Shapiro-Shibata-Nakamu-

ra formalism

CACTUS, 174, 584
CARPET, 518, 584
Cartoon method, 420
Cauchy problem, 21–23, 264, 531
Chandrasekhar limit, 15, 406, see also White

dwarfs
Chebychev polynomials, 190–196, see also Nu-

merical methods
Chirp mass, 288, 354, 477, 479, 525
Christoffel symbols, see Connection coefficients
Circulation, see Hydrodynamics
Classification of partial differential equations, 161–

165, see also Hyperbolicity
Close limit approximation, 323–326
Codazzi equation, 23, 33–36
Codazzi-Mainardi relation, 35
Collapsars, 421, 443
Collapse, see Collisionless cluster evolution; Cos-

mic Censorship; Delayed Collapse; Grav-
itational waves; Hoop conjecture; Rotat-
ing star evolution; Scalar fields; Singu-
larities; Stellar collapse; Supernovae

Collisionless cluster equilibrium models, see also
Collisionless matter

n = 4 polytropes, 248, 252, 253, 257
central redshifts, 234, 248, 252, 253, 257
extreme core-halo configurations, 243, 244,

248, 253, 254
Maxwell-Boltzmann clusters, 247, 251, 252,

258
nonspherical models, 311, 327, 415, 571
radial instability, 234–235, 247–252

Collisionless cluster evolution, see also Collision-
less matter; Hoop conjecture; Lin-Mistel-
Shu instability; Singularities

α-freezing, 243–252
collapse

avalanche instability, 235, 251
axisymmetric, 311–328, 565–569
disks, 322–326, 568–569
Newtonian limit, 236–237
prolate spheroids, 311–317
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rotating toroidal clusters, 205, 326–328
spherical, 234–257
violent relaxation, 153, 236

head-on collisions, 205, 317–321
virialization, 153, 318

Collisionless clusters, see also Collisionless clus-
ter equilibrium models; Collisionless clus-
ter evolution; Collisionless matter

astrophysical context
N -body stellar systems, 145
quasars, 249
relativistic star clusters, 146, 244, 247, 257
supermassive black hole formation, 236,

249
weakly interacting particles, 146

Collisionless matter, see also Collisionless clus-
ters; Distribution functions; Geodesics;
Stress-energy tensor

N -body systems, 145, 147, 151, 237, 238
collisionless Boltzmann equation, 148–154,

254, 317
integrals of motion, 150
Jean’s theorem, 150
Liouville equation; seecollisionless Boltzmann

equation, 582
Liouville’s theorem, 148, 153
numerical evolution schemes

mean-field particle methods, 151–153, 236–
252, 311–328, 567–569

phase space methods, 153–154, 252–257
phase space, 124–128, 147–154, 236, 248,

252–257
Vlasov equation; seecollisionless Boltzmann

equation, 582
Collisions, see Binary black holes; Binary black

hole-neutron stars; Binary neutron stars
Compaction

binary black hole-neutron stars, 499–501, 505–
508, 511–512, 515, 519

binary neutron stars, 458, 461, 462, 468,
475, 477

brief review, 14
gravitational wave sources, 285–286, 290
rotating stars, 405, 411–412, 414, 423

Conformal connection functions, see also Gamma-
driver condition; Gamma-freezing con-
dition

defined, 342
evolution equation, 343

Conformal factor, see also Conformal transfor-
mations

concept, 50–51
Conformal flatness

approximation for evolution schemes, see Bi-
nary black hole-neutron star evolution;
Binary neutron star evolution

concept, 52–53
Conformal imaging, see Binary black hole initial

data
Conformal Killing operator, see Vector gradient
Conformal Killing’s equation, 370, 538
Conformal thin-sandwich (CTS) decomposition

and minimal distortion, 72
degrees of freedom, 69–70
extended

concept, 70–73
conformal flatness, cartesian coordinates,

71–72
maximal slicing, 71
summary box, 71

original
concept, 68–70
summary box, 69

solutions, see Binary black hole initial data;
Binary neutron star initial data; Binary
black hole-neutron star initial data

Conformal transformations
connection coefficients, 51
extrinsic curvature, 58–59, 341
metric, 50–51
Ricci scalar, 52
Ricci tensor, 51

Conformal transverse-traceless (CTT) decompo-
sition

concept, 61–62
conformal flatness, 63
degrees of freedom, 62
solutions, see Bowen-York solutions
summary box, 62

Conformally related metric, see also Conformal
transformations

concept, 50–51
Conjugate gradient method, 174
Connection coefficients
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3-dimensional
defined, 29
in terms of 3-metric, 44
spherical symmetry, 44–45

4-dimensional, 3–4, 99
Conserved quantities, see Angular momentum;

Circulation; Linear momentum; Mass
Constraint equations, see also Arnowitt-Deser-

Misner formalism; Baumgarte-Shapiro-
Shibata-Nakamura formalism; First-order
symmetric hyperbolic formalisms; Gen-
eralized harmonic formulation; Initial data

auxiliary constraint, 337, 340, 343
concept, 21–23, 25, 33, 35–37
conformal decompositions, 50–74, see also

Conformal thin-sandwich decomposition;
Conformal transverse-traceless decompo-
sition

constraint propagation and damping, 343–
346

elementary solutions, see also Bowen-York
solutions; Brill waves

multiple black holes, 55–58
Schwarzschild black holes, 52–55

Hamiltonian, 36
momentum, 36
uniqueness of solutions, 59–61, 70

Conventions, 23–24
Convergence tests, 197–200, see also Numerical

methods
Coordinates, see Slicings; Spatial coordinates
Core collapse, see Stellar collapse; Supernovae
Cosmic censorship conjecture, 18, 268, 273, 311,

381, 428, 429
Cosmological constant, 6, 155
Cotton-York tensor, see Bach tensor
Courant condition, 177–184, 196
Courant-Friedrich-Lewy condition, see Courant

condition
Covariant derivative, see also Lie derivative

brief review, 3, 4
compared with Lie derivative, 534
spatial projection, 29–30
tensor densities, 540

Cowling approximation, 430–432, 443
Crank-Nicholson scheme, 181–185, see also Iter-

ative Crank-Nicholson scheme

Critical phenomena, see also Scalar fields
concept, 267–268
cosmic censorship, 268, 272–273
critical exponent, 272
scale echoing, 271
type I vs. type II, 271
universality, 271

Cusps in stellar surfaces
and Gibbs phenomena, 197, 466
binary black hole-neutron stars, 505–506
binary neutron stars, 357, 466–467, 477–478,

482
summary table for binary neutron stars, 468

Dedekind ellipsoid, 492
Delayed collapse

gravitational radiation, 289
hypermassive neutron stars, 357, 415, 423,

438, 471, 484, 491–495, 513
induced by

magnetic instabilities, 438, 440–441
viscosity, 434

Differential rotation, 406, 407, 410–423, 429, 434–
441, 445, 471, 478–492

Disks
accretion, 430–443, 495, 511–513, 519, 520
collapse, 322–327, see also Collisionless clus-

ter evolution
formation, see Binary black hole-neutron star

evolution; Binary neutron star evolution;
Rotating star evolution

role in Gamma-ray bursts, 443, 471–472, 481–
482, 491, 493, 508, 511–515, 523, 528,
see also Gamma-ray bursts

Distribution function
collisionless matter, 147–154, 246–256, 313,

327, 415–416
Fermi-Dirac, 126
relation to intensity, 125

Dynamical horizons, 219–221, 402, see also Hori-
zons

Effective potential method, see also Turning-
point criterion

binary black holes, 362, 363, 371, 374–377
illustration, 351–352

Einstein tensor, 5
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Einstein’s field equations
3+1 decompositions, see 3+1 decomposition

of Einstein’s equations
brief review, 5–6
linearized vacuum, 6, 276

Einstein-Bianchi formulation, 339
Einstein-Christoffel formulation, 339–340
Einstein-Rosen bridge, 55–56, 230–233, 359, 383
EMRI, see Extreme mass ratio inspiral
Energy, see Conserved quantities; Mass
Enthalpy, 110, 158, 260, 449–455, 464–466, 503
EOS, see Equations of state
Equations of state (EOS)

cold vs. hot, 488, 522, 528
hybrid equation of state, 445, 488, 489
ideal Γ-law, 112, 261, 263, 482, 487, 514
polytropic, 14–16, 112, 408, 455, see also

Polytropes
realistic nuclear

APR, 491–492
FPS, 488, 491
Lattimer and Swesty, 480
SLy, 488

Euler equation, see Hydrodynamics
Euler-Lagrange equations, see Geodesics
Event horizons, see also Horizons

brief review, 8–11
concept, 201–203
locating

null-hypersurface mapping, 205–207
null-ray tracing, 204–205

null generators, 319–321, 328
Oppenheimer-Snyder collapse, 17–19
pair of pants, 205, 206, 319, 321
topology, 204, 318–319, 328

Evolution equations for gravitational fields, see
also 3+1 decomposition of Einstein’s equa-
tions

concept, 22–23, 25, 35–39
constrained evolution, 240, 331, 379

Excision
applications

binary black holes, 386
binary neutron stars, 491, 492
collapse of rotating star, 428–435, 440–442
magnetized Oppenheimer-Snyder collapse,

143

boundary conditions, 165, 381
concept, 381, 424–428

Expansion
of fluid, 123
of normal observers, 32, 90
of outgoing null geodesics, 208, 366, see also

Apparent horizons
Extreme mass-ratio inspiral (EMRI) binaries, 290–

291, 500–501, see also Supermassive black
holes

Extrinsic curvature, see also 3+1 decomposi-
tions of Einstein’s equations; Conformal
transformations

concept, 30–32
elementary examples, see also Bowen-York

solutions
Kerr spacetime, 46–47
moment of time-symmetry, 52
Schwarzschild spacetime, 44–46, 94

Faraday tensor, see Magnetohydrodynamics
First-order symmetric hyperbolic (FOSH) for-

mulations, 339–340
Fisheye coordinates, 304, 388, 430, 494
Fixed mesh refinement (FMR), 430, 494, 518
Flux-conservative form of equations

advective terms, 514
concept, 114
hydrodynamics, 114–117, 435
Magnetohydrodynamics, 137
radiation hydrodynamics, 130
viscous fluids, 124

FMR, see Fixed mesh refinement
Foliations of spacetime, see 3+1 decompositions

of spacetime
Forward-time centered-space (FTCS) scheme, 176–

177, 181–182, 184
FOSH, see First-order symmetry hyperbolic for-

mulations
Friedmann equations, 89
FTCS, see Forward-time centered-space scheme
Full approximation storage methods, 173

Galactic nuclei, 249, 290, 500
Gamma-driver condition, see also Spatial coor-

dinates
concept, 106–107
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moving-puncture simulations, 382–385, 515,
518, 575

Gamma-freezing condition, 106, see also Spatial
coordinates

Gamma-ray bursts (GRBs), 130, 415, 421, 440,
441, 443, 471–473, 481–482, 491–493, 499,
501, 508, 512–513, 515, 523, 525, 528,
see also Binary black hole-neutron stars;
Binary neutron stars; Disks; Hypermas-
sive neutron stars; Rotating stars

Gauge conditions, see Slicings; Spatial coordi-
nates; Transverse-traceless gauge

Gauge source functions, 99, 337–338
Gauss integration, 192
Gauss’ equation, 23, 33–38
Gauss-Codazzi equations, 35
Gauss-Lobatto integration, 192
Gauss-Seidel method, 173–174
Gaussian normal coordinates, see Geodesic slic-

ing
Generalized harmonic formulation, see also Gauge

source functions, Harmonic coordinates
applications to

binary black hole-neutron stars, 517
binary black holes, 386–387, 392

equations, 336–338
Geodesic deviation equation, 5, 277
Geodesic slicing, see also Slicings; Spatial coor-

dinates
applications, 141, 262, 304
concept, 89–91
examples

Oppenheimer-Snyder collapse, 16, 120
Robertson-Walker metric, 89
Schwarzschild black hole, 90
weak gravitational wave, 90

Geodesics
brief review, 4–5
constants of motion, 538
Euler-Lagrange equations, 5, 229
geodesic separation, 57, 361, 477
massive particles, 147–152, 238
null, 164, 201–208, 221, 243, 265, 316, 318
Oppenheimer-Snyder collapse, 16–17

Gibbs phenomena, 197, 466
Gravitational radiation, see Gravitational waves
Gravitational waves, see also Binary black hole-

neutron stars; Binary black holes; Bi-
nary neutron stars; Brill waves; Collapse;
Rotating stars; Stress-energy tensor

angular momentum emission rate, 7, 280–
282, 304, 308–309

astrophysical sources
compact binaries, 287–288
cosmological, 292
extreme mass-ratio inspiral (EMRI) bina-

ries, 290–291
rotating neutron stars, 289
stellar core collapse, 288–289
stochastic backgrounds, 290
supermassive black holes, 290–291
white dwarf binaries, 291

brief review, 6–8
chirp mass, see Chirp mass
energy emission rate, 7, 280–282, 304, 308–

309
frequency bands, 286–292
interferometers

ACIGA, 295
DECIGO, 297
GEO600, 294
LIGO, 294–296, 491, 499–501, 508, 516,

524–525
LISA, 290–291, 296–297, 443, 500
TAMA300, 294
VIRGO, 294

linear momentum emission rate, 280–281, 304,
308–309, see also Recoil in binary merg-
ers

linearized Einstein’s equations, see Einstein’s
field equations

linearized waves, 275–285
Lorentz gauge, 7, 276, 554, 556
matched filtering, 287, 293, 298
plane waves, 277, 282
point-mass binaries, 279–281, 353–354
polarization

brief review, 7
concept, 276–279
Newtonian ellipsoid, 490
numerical results, 390, 481
observations, 291–293
parity, 282
post-Newtonian binary waveform, 558–563
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quadrupole wave, 284, 309
spherical harmonics, 550
wave extraction, 303–304

power spectra, 524, 525
quadrupole approximation, see Quadrupole

approximation
quadrupole waves, 283–285, 301–304, 310
radiation reaction, see Radiation reaction
reduced quadrupole moment tensor, 8, 278,

279, 281, 288, 350
transverse-traceless (TT) gauge, 7, 276, 278,

307
wave extraction, see Moncrief formalism; New-

man-Penrose formalism
weak-field, slow-velocity regime, 8, 276–279,

281, 287, 305, 350, 555–558
Grid stretching, see Slicings

Hamiltonian constraint, see Constraint equations
Harmonic coordinates, see also Gauge source

functions; Generalized harmonic formu-
lation; Harmonic slicing

concept, 99–101
Ricci tensor, 99

Harmonic slicing, see also Harmonic coordinates;
Slicings

compared with geodesic slicing, 100
concept, 100
Schwarzschild spacetime, 100
singularity avoidance, 100

Head-on collisions, see Binary black hole evolu-
tion; Binary black hole-neutron star evo-
lution; Binary neutron star evolution;
Collisionless cluster evolution

Height function, 93, 230, 577
Helical Killing vector, see Killing vectors
Hernandez-Misner formulation, see also Misner-

Sharp formulation
introduced, 262–264
observer time coordinates, 262–266
summary box, 265

Higgs boson, 154, 159, see also Scalar fields
High-resolution shock-capturing (HRSC) schemes,

see also Hydrodynamics; Magnetohydro-
dynamics

applications

binary black hole-neutron stars, 514, 517,
518

binary neutron stars, 473, 475, 487, 493
rotating stars, 424, 427, 430, 433, 437, 442

concept, 114–116
magnetohydrodynamics, 138, 141
radiation hydrodynamics, 130
Riemann solvers, 114–116

Hoop conjecture, 312, 313, 315
Horizons, see also Cosmic censorship; Global

theorems; Hoop conjecture; Singularities;
Topological censorship

area, 202, 216, 221
concepts, 201–203
surface element, 545–547
types, see Apparent horizons; Dynamical hori-

zons; Event horizons; Isolated horizons
HRSC, see High-resolution shock-capturing schemes
Hulse-Taylor binary pulsar, 287, 405
Hydrodynamics, see also Equations of state; Stress-

energy tensor
artificial viscosity

applications, 265, 418, 427, 479, 482
concept, 113–114
Riemann shock tube problem, 120–121
Smoothed particle hydrodynamics, 118

circulation
binary neutron stars, 448, 463, 492
concept, 122–123
rotating stars, 410, 423, 435

conservative form of equations, see Flux-con-
servative form of equations

Kelvin-Helmholtz theorem, 122, 448
Lagrangian vs. Eulerian, 117, 259
numerical methods, see High-resolution shock-

capturing schemes; Smoothed particle hy-
drodynamics; van Leer schemes; Wilson
scheme

primitive variables, 114–116, 124, 137
Riemann shock tube problem, 114–116, 120
sound speed, 158, 263, 474, 521
vorticity, 158, 462, 492

Hyperbolicity, see also Numerical methods
Arnowitt-Deser-Misner formulation, 333
Baumgarte-Shapiro-Shibata-Nakamura formu-

lation, 343
characteristics, 163–165, 264, 381
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concept, 162–163, 165, 332–333
Einstein’s equations in harmonic coordinates,

99
First-order symmetric hyperbolic formula-

tions, 339–340
Generalized harmonic formulations, 337

Hypermassive neutron stars, see also Binary neu-
tron star evolution; Collapse; Delayed
collapse

astrophysical context, see Gamma-ray bursts;
Gravitational waves; Binary neutron star
evolutions

concept, 412–413
differential rotation, see Differential rotation
equilibrium models, 412
evolution

magnetic, 438–442
viscous, 434–436

formation, 415, 471, 478–495, 513
stability

bar-mode, 413–415, 421–423
quasi-radial, 413
secular vs. dynamical, 413

Inflatons, 155, 159, see also Scalar Fields
Initial data

equations, see Constraint equations
solutions, see Binary black hole-neutron star

initial data; Binary black hole initial data;
Binary neutron star initial data; Bowen-
York solutions; Oppenheimer-Volkoff equi-
librium stars; Rotating star equilibrium
models

Initial value equations, see Constraint equations
Initial value problem, see Cauchy problem
Innermost stable circular orbit (ISCO), see also

Turning-point criterion
binary black hole-neutron stars, 500–501, 506–

508, 511–522
binary black holes, 362, 374–377
binary neutron stars, 461–462, 466–468
concept, 355–357
summary table

corotational binary black holes, 376
corotational binary neutron stars, 462
nonspinning binary black holes, 377

test particle in Schwarzschild spacetime, 355,
376

Intensity, 124–127, 292, 319, see also Distribu-
tion function; Radiation

Irreducible mass
and area theorem, 202
defined, 202
examples

boosted black hole, 214–215
Schwarzschild black hole, 202

quasiequilibrium sequences, 373, 505
ISCO, see Innermost stable circular orbit
Isolated horizons, 203, 219–221, 366, 402, see

also Horizons
Isotropic coordinates, see also Quasi-isotropic

gauge; Spatial coordintes
of Schwarzschild spacetime, see Schwarzschild

black holes
Iterative Crank-Nicholson scheme, 182–183, see

also Crank-Nicholson scheme

Jacobi’s method, 173, 184

K-driver condition, 98, 106, see also Maximal
slicing

Kelvin-Helmholtz theorem, see Hydrodynamics
Kepler limit, see Mass-shedding limit
Kerr black holes

and conformal flatness, 64–66
brief review, 11–12
formed from coalescence of

binary black holes, 386, 387, 402, 582
binary neutron stars, 483

formed from collapse of
collisionless matter, 327–328
rotating fluid star, 419, 428–430, 432–433

in Boyer-Linquist coordinates, 46–47
in Kerr-Schild coordinates, 47

Kerr-Newman black holes, 8, 100
Kick in binary mergers, see Recoil in binary

mergers
Killing lapse, see Lapse
Killing shift, see Shift
Killing vectors

and Lie derivative, 537
concept, 537–538
conformal, 538
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helical, 363–364, 371–373, 447–450, 453, 502,
509

Killing’s equation, 537
Komar mass

as volume integral, 84
concept, 82–83
in rotating coordinates, 372–373
in terms of 3+1 variables, 83
Newtonian limit, 84
rotating equilibrium configuration, 86, 409
virial theorem, 84, 363, 371

Kreiss-Oliger dissipation, 179, 584

LAPACK, 174
Lapse, see also Slicing

concept, 27, 37
in 4-metric, 41
in normal vector, 40–41
Killing lapse, 47–48

Laser Interferometer Gravitational-wave Obser-
vatory (LIGO), see Gravitational waves

Laser Interferometer Space Antenna (LISA), see
Gravitational waves

Lax scheme, 177–179
Leap-frog scheme, 179–180
Lie derivative, see also Covariant derivative

1-forms, 536
adapted coordinate system, 536
compared with covariant derivative, 534
concept, 533–537
general tensors, 535
in 3+1 decomposition, 31–32
Lie drag, 537
scalars, 536
tensor densities, 539–540
vectors, 536

LIGO, see Gravitational waves
Lin-Mestel-Shu instability, 312
Linear momentum, see also Conserved quanti-

ties; Gravitational waves; Recoil in bi-
nary mergers

Arnowitt-Deser-Misner (ADM), 86
boosted black hole, 66, 86

LISA, see Gravitational waves
Longitudinal operator, see Vector gradient
LORENE, 477, 504, 511

Magnetars, 438, 493

Magnetohydrodynamics (MHD), see also Binary
neutron star evolution; Collapse; Mag-
netorotational instability; Hydrodynam-
ics; Maxwell’s equations; Rotating star
evolution

conservative form of equations, see Flux-con-
servative form of equations

constrained transport schemes, 133
electric field 4-vector, 131
Faraday tensor, 131
high-resolution shock capturing schemes, see

High-resolution shock-capturing schemes
hyperbolic divergence cleaning, 133
ideal MHD condition, 131
induction equation, 133
magnetic field 4-vector, 131
magnetic winding, 436–440, 445, 495
nonconservative schemes, 137
numerical tests

Bondi accretion, 139
gravitational wave in magnetized fluid, 139–

142
nonlinear Alfvén wave, 137–139

Ohm’s law, 132
summary box, 138

Magnetorotational collapse, see Collapse; Ro-
tating star evolution

Magnetorotational instability (MRI)
concept, 438
rotating stars, 438–443, 445, 495

Marginally outer-trapped surface, 208, see also
Horizons; Trapped surfaces

Mass, see Arnowitt-Deser-Misner mass; Bondi-
Sachs mass; Brill mass; Irreducible mass;
Komar mass; Rest mass

Mass-energy, see Mass
Mass-shedding limit, 411–412, 417–421, 430, 431,

442, 448
Matter sources for 3+1 equations, see Collision-

less matter; Hydrodynamics; Magneto-
hydrodynamics; Scalar fields; Stress-energy
tensor

Maximal slicing, see also K-driver condition; Slic-
ings

approximate, 98
collapse of the lapse, see Slicings
compared with geodesic slicing, 92–93, 95
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concept, 91–98
conformal thin-sandwich decomposition, 71
of Schwarzschild spacetime

areal radius, 93–96, 227–233
isotropic radius, 575–577

singularity avoidance, 95, 227, 231–233
Maximum principle for elliptic equations, 59–60
Maxwell’s equations

in general spacetimes, see also Magnetohy-
drodynamics

3+1 form, 134
in terms of Faraday tensor, 132–134

in Minkowski spacetime
to illustrate reformulations of 3+1 ADM

equations, 334–336, 344–345
to introduce 3+1 decomposition of Ein-

stein’s equations, 24–26
May and White simulations, 257
Mean curvature, 32, see also Extrinsic curvature
Method of lines (MOL), 183, 584
Metric, see also Gravitational waves

3-metric
conformally related metric, see Conformally

related metric; Conformal transforma-
tions

defined, 28
evolution equations, 42, see also 3+1 de-

compositions of Einstein’s equations
4-metric

3+1 decomposition, 41
defined, 2

determinant, 41
flat Minkowski spacetime, 1
Robertson-Walker, 89–90, 159
rotating black hole spacetime, see Kerr black

holes
static black hole spacetime, see Schwarzschild

black holes
static neutron star spacetime, see Oppenheimer-

Volkoff equilibrium star
MHD, see Magnetohydrodynamics
Milky Way, 249, 393, 500, see also Supermassive

black holes
Minimal distortion, see also Spatial coordinates

approximate, 105, 482
concept, 103–108
coordinate blow-out, 107–108

in conformal thin-sandwich decomposition,
72

spherical symmetry, 240
Misner-Sharp formulation, see also Hernandez-

Misner formulation; May and White sim-
ulations

introduced, 260–262
summary box, 265

MOL, see Method of lines
Momentum constraints, see Constraint equations
Moncrief formalism, see also Gravitational waves

applications
binary black hole-neutron stars, 515, 523
close limit approximation, 324–326

compared with Newman-Penrose formalism,
309–310

concept, 298–305
Regge-Wheeler equation, 303
Zerilli equation, 301, 325

Moving-puncture method
analytic solutions for Schwarzschild space-

time, 575–579
applications, see Binary black hole evolu-

tion; Binary black hole-neutron star evo-
lution

concept, 381–385
MRI, see Magnetorotational instability
Multigrid methods, see also Adaptive mesh re-

finement; Fixed mesh refinement
applications, 317, 477, 479
concept, 173–174
prolongation, 174
restriction, 174

Naked singularities, see Singularities
Navier-Stokes equations, 124, 178, 434, see also

Hydrodynamics; Stress-energy tensor
Neutralinos, 146
Neutrinos, see also Gamma-ray bursts; Radia-

tion
as collisionless matter, 317
as dark matter, 146
counterpart observation, 289
in binary black hole-neutron stars, 512, 513,

522, 523, 528
in binary neutron stars, 475, 480, 481, 491
in rotating stars, 434, 440, 444, 445
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in spherical stars, 257, 267
transport, 124–130

Neutron stars, see also Hydrodynamics; Hyper-
massive neutron stars; Magnetohydro-
dynamics; Rotating stars

as remnant of
binary neutron star coalescence, see Bi-

nary neutron star evolution
core collapse, see Rotating star evolution;

Stellar collapse
astrophysical context, see Gamma-ray bursts;

Gravitational waves; Pulsars; Supernovae
binaries, see Binary neutron stars
compaction, see Compaction
equations of state, see Equations of state
equilibrium models, see Binary black hole-

neutron star initial data; Binary neutron
star initial data; Oppenheimer-Volkoff
equilibrium stars; Rotating star equilib-
rium models

Newman-Penrose formalism, see also Gravita-
tional waves

applications
binary black hole-neutron stars, 523
binary black holes, 397

compared with Moncrief formalism, 309–310
concept, 306–310
null tedrad, 306–307
quasi-Kinnersley frame, 306
Weyl scalar ψ4 defined, 306
Weyl scalars, 306

Normal vector
to horizons, 207
to integration hypersurfaces, 76
to spatial hypersurfaces

defined, 27
in terms of lapse and shift, 40–41

Notation, 23–24
Null tedrad, see Newman-Penrose formalism
Numerical methods, see also Classification of

partial differential equations; Collision-
less matter; Hydrodynamics; Radiation

code validation and calibration, 197–200
elliptic equations

band diagonal matrix, 172
linearizing nonlinear equations, 174–175
matrix inversion, 170–172, 174, 195

methods, see Conjugate gradient method;
Gauss-Seidel method; Jacobi’s method;
Multigrid methods; Successive overrelax-
ation

packages, see LAPACK; LORENE; PETSc
Poisson equation, 161
tridiagonal matrix, 170

finite difference methods, see also Adaptive
mesh refinement; Kreiss-Oliger dissipa-
tion; Fixed mesh refinement, Multigrid
methods

cell-centered vs. vertex-centered, 168–169
comparison with spectral methods, 195–

197
concept, 166–168
implicit vs. explicit, 181
order of convergence, 167
packages, see CACTUS; CARPET
stability, see Courant condition; von Neu-

mann stability analysis
truncation error, 166–168

finite element methods, 196
hydrodynamics, see High-resolution shock-

capturing schemes; Smoothed particle hy-
drodynamics; van Leer schemes; Wilson
scheme

hyperbolic equations
methods, see Alternating direction implicit

scheme; Crank-Nicholson scheme; Forward-
time centered-space scheme; Iterative Crank-
Nicholson scheme; Lax scheme; Method
of lines; Predictor-corrector schemes; Up-
wind differencing scheme

model advective equation, 176
wave equation, 162–163

Monte Carlo methods, 196
numerical viscosity, 178
ordinary differential equations

Euler method, 183
Runge-Kutta method, 183, 196

parabolic equations
diffusion equation, 162
methods, see Crank-Nicholson scheme; For-

ward-time centered-space scheme
spectral methods, see also Chebychev poly-

nomials; Gibbs phenomena
collocation points, 191
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comparison with finite difference methods,
195–197

concept, 187–188
exponential convergence, 195
Galerkin method, 190
packages, see LORENE
pseudo-spectral method, 191
simple example, 188–190
tau method, 190

Oppenheimer-Snyder (OS) collapse
as numerical test, 120, 246, 265–266
brief review, 16–19
horizons, see Apparent horizons; Event hori-

zons; Trapped Surfaces
magnetized, 142–143
thermal, 127–130

Oppenheimer-Volkoff (OV) equilibrium stars
as numerical test, 120, 198
brief review, 13–16
Buchdahl limit, 14
maximum mass, 16, see also Chandrasekhar

limit
onset of radial instability, 16, see also Turning-

point criterion
Outer-trapped surfaces, 208

Parallel transport, 3, 4, 534, see also Covariant
derivative

Particle methods, see Collisionless matter
PETSc, 174
Phase-space distribution function, see Distribu-

tion function
Phase-space methods, see Collisionless matter
Polar slicing

and radial gauge, 103
singularity avoidance, 211, 239, 243
spherical symmetry, 239–250

Polytropes, see also Binary black hole-neutron
star initial data; Binary neutron star ini-
tial data; Equations of state; Hydrody-
namics; Neutron stars; Oppenheimer-Volkoff
equilibrium models; Rotating star equi-
librium models; Supermassive stars

brief review, 14–16
examples

nonrelativistic, degenerate fermions, 14, 412

thermal radiation pressure, 15
ultrarelativistic, degenerate fermions, 14

n = 3 polytropes, 15, 266, 411, 420–421,
430–433, 442–444

polytropic gas constant, 14
polytropic index, 14
scaling to arbitrary masses, 15, 408
summary table of maximum masses, 411

Population I stars, 420, 442, 443
Population III stars, 393, 420, 442, 443
Post-Newtonian formalism

binaries
binding energy, 556
gravitational wave luminosities, 557
orbital phase, 558
wave amplitudes, 558–564

effective one-body (EOS) approach, 564
expansions, 554–555
Padé approximant, 564
perturbation amplitudes, 554

Predictor-corrector schemes, 182
Price’s theorem, 156, 157
ψ4, see Newman-Penrose formalism
Pulsars, 287–292, 405, 412, 415, 448, 471, 491,

513
Puncture method, see also Moving-puncture method

fixed puncture in binary black hole evolu-
tion, 382

initial data, see Binary black hole initial data;
Binary black hole-neutron star initial data

Pythagorean theorem, 41, 42

Quadrupole approximation, see also Gravitational
waves

applications
binary black hole-neutron stars, 513
binary neutron stars, 468, 469, 471, 474–

476, 478, 487, 490
rotating stars, 443

brief review, 7
concept, 278–281
post-Newtonian formalism, 555–557

Quasars, 249, 290, 394, 500
Quasi-isotropic gauge, 101–103
Quasi-Kinnersly frame, see Newman-Penrose for-

malism
Quasi-local horizon mass, 220
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Quintessence, 6, 155, see also Scalar fields

r-mode instability, 289, 413
r-process nuclei, 472, 473
Radial gauge, 102–103
Radiation, see also Distribution function; Hy-

drodynamics; Intensity; Stress-energy ten-
sor

4-force density, 126
Boltzmann equation of radiative transfer

comoving spherical, 127
in closed Friedmann spacetime, 127

conservative form of equations, see Flux-con-
servative form of equations

emissivity, 126–127, 148
Kirchoff’s law, 126
moments, 125–128
opacity

absorption, 126
grey-body, 126
Rosseland mean, 124
scattering, 126

projected symmetric trace-free (PSTF) ten-
sor formalism, 128

radiation shocks, 130
thermal Oppenheimer-Snyder collapse, see

Oppenheimer-Snyder collapse
variable Eddington factor, 128

Radiation reaction, see also Gravitational waves
applications

binary neutron stars, 472, 474, 478, 492
collisionless clusters, 322

brief review, 8
concept, 281, 291
conserves circulation, 448
potential, 8, 281, 474, 478, 492
role in

binary black holes, 395
binary neutron stars, 487
binary white dwarfs, 291
extreme mass-ratio inspiral binaries, 349
secular instabilities, 413

Rankine-Hugoniot junction conditions, 118–120,
see also Hydrodynamics; Shocks

Raychaudhuri’s equation, 221
Recoil in binary mergers, see Binary black hole

evolution; Binary black hole-neutron star

evolution
Regge-Wheeler equation, see Moncrief formal-

ism
Rest mass, 75–76
Ricci equation, 23, 33–38
Ricci scalar

3-dimensional
conformal transformation, see Conformal

transformations
defined, 30

4-dimensional, 4
Ricci tensor

3-dimensional
conformal transformation, see Conformal

transformations
defined, 30
in terms of 3-metric, 44, 334
in terms of Christoffel symbols, 44
Schwarzschild spacetime, 45

4-dimensional
defined, 4
harmonic coordinates, 99
in terms of gauge source functions, 337

Riemann curvature invariant, 9, 121, 313–314,
316, 317

Riemann shock tube problem, see Hydrodynam-
ics

Riemann solvers, see High-resolution shock-capturing
schemes

Riemann tensor, see also Codazzi Equation; Gauss’
equation; Ricci equation

3-dimensional, 30
4-dimensional

defined, 4
in terms of 3+1 quantities, 307–308

symmetries, 4, see also Bianchi identities
Rotating star equilibrium models, see also Mass-

shedding limit; Turning point criterion
computational method, 406–407, 573
diagnostics, 409
gravitational field equations, 571–573
incompressible models, 413, 423
maximum masses and spins, 410–414
nonradial instabilities

bar-mode instability, see Bar-mode insta-
bility

m = 1 mode instability, 423
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magnetorotational instability, see Magne-
torotational instability

r-mode instability, see r-mode instability
quasi-radial stability

differentially rotating hypermassive stars,
421, 435, 440

uniformly rotating polytropes, 410–411, 413,
417–421, 430–433, 442, 443

secular vs. dynamical stability, 410–418, 421,
423, 483

summary table of maximum mass for poly-
tropes, 411

Rotating star evolution, see also Delayed col-
lapse; Hypermassive neutron stars

collapse to black holes
cosmic censorship, see Cosmic censorship

conjecture
excision, see Excision
magnetorotational, 438–443
n = 1 polytropes, 418–420, 429
n = 3 polytropes, 420–421, 430–433, 442–

443
viscous, 434–436

disks, 418–421, 429–435, 443
magnetorotational collapse to neutron stars,

443–445
Rotating stars, see also Rotating star equilib-

rium models; Rotating star evolution
astrophysical context, see Boson Stars; Col-

lapsars; Gamma-ray bursts; Gravitational
waves; Magnetars; Population I stars;
Population III stars; Pulsars; Supermas-
sive stars; Supernovae

Scalar fields, see also Stress-energy tensor
astrophysical context, see Boson stars; Infla-

tons; Higg’s boson; Quintessence; Soli-
ton stars

collapse, 270–273, see also Critical phenom-
ena

Klein-Gordon equation, 155–158, 269
self-interaction potential, 159

Schwarzschild black holes
brief review, 8–11
formed from collapse, see Collisionless clus-

ter evlution; Oppenheimer-Snyder Col-
lapse; Scalar fields; Stellar collapse

in 1+log slicing, see 1+log slicing
in isotropic coordinates, 10–11, 28–29, 44–

45, 575–577
in Kerr-Schild coordinates, 46
in Kruskal-Szekeres coordinates, 9–10
in maximal slicing, see Maximal slicing
in Painlevé-Gullstrand coordinates, 45–46
limit slice, 91, 95–96, 231–233
static vs. dynamical slicing, 95–96, 230–233
summary table for 3+1 decompositions, 46
trumpet representation, 383–385
wormhole representation, 383–385

Shear
coordinate, see Minimal distortion
of fluid, 123
of outgoing null geodesics, 221, 366–370
viscosity, see Viscosity

Shift, see also Spatial coordinates
concept, 37
in 4-metric, 41
in normal vector, 40
Killing shift, 47–48

Shocks, see High-resolution shock capturing schemes;
Hydrodynamics; Radiation; Rankine-Hugoniot
junction conditions

Singularities
avoidance, see Singularity avoiding coordi-

nates
coordinate

black hole horizon, 9
geodesic slicing, 90
in fluid collapse, 262
in trumpet representation of Schwarzschild

spacetime, 577
origin in isotropic coordinates, 53

curvature (spacetime), 8, see also Riemann
curvature invariant

naked, see also Cosmic censorship conjec-
ture

collisionless cluster collapse, 314–317, 327
cosmic censorship, 18, 311–312
Hoop conjecture, 312
rotating star collapse, 428
scalar field collapse, 272–273

spindle, 311–316
Singularity avoiding coordinates

applications
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collisionless cluster collapse, 236
magnetized Oppenheimer-Snyder collapse,

143
collapse of the lapse, see Slicings
concept, 95, 380
grid stretching, see Slicings
Kerr-Schild slicing, 226–227
moving puncture method, 385
Schwarzschild time slicing, 226
slicing conditions, see 1+log slicing; Har-

monic slicing; Maximal slicing; Polar slic-
ing

Slicings
collapse of the lapse, 96–97, 233, 245, 429
concept, 87–89
grid stretching, 244–245, 250, 323, 325, 380,

385, 429, 435, 482
horizon penetrating, 88, 143, 225–227
slicing conditions, see 1+log slicing; Geodesic

slicing; Harmonic slicing; K-driver; Max-
imal slicing; Polar slicing

summary box, 107
Smoothed particle hydrodynamics (SPH) schemes,

see also Hydrodynamics
applications

binary black hole-neutron stars, 511, 512
binary neutron stars, 472, 477–479
spherical stars, 259

concept, 116–118
Soliton stars, 155, see also Scalar fields
SOR, see Successive overrelaxation
Spatial coordinates

concept, 87–89
spatial coordinate conditions, see Gamma-

driver; Gamma-freezing; Geodesic slic-
ing; Harmonic coordinates; Minimal dis-
tortion; Quasi-isotropic gauge; Radial gauge

summary box, 107
SPH, see Smoothed particle hydrodynamics
Spherical harmonics

scalar, 549–550
spin-weighted, 550
tensor, 551–552
vector, 551

Spin, see Angular momentum
Standard 3+1 equations, 42, see also Arnowitt-

Deser-Misner formalism

Star-crushing effect, see Binary neutron stars
Stellar collapse, see also Collapse; Hydrodynam-

ics; Magnetohydrodynamics
non-spherical, see Rotating star evolution
spherical

Eulerian, 259
Lagrangian, see Hernandez-Misner formu-

lation; May and White simulations; Misner-
Sharp formulations

Stress-energy tensor
collisionless matter

discrete particles, 152
smooth distribution, 149, 150

electromagnetic field, 131
gravitational radiation, 280
ideal magnetohydrodynamics, 135
imperfect gas

heat and radiation diffusion, 124
viscous fluid, 123

perfect gas, 110
projections for 3+1 source terms, 36, 38, 109
pseudo-tensor, 277, 554
radiation, 124, 128
scalar fields

charged complex scalar fields, 159
real scalar fields, 156
self-interacting complex scalar fields, 159

vacuum, 110
Successive overrelaxation, 173
Supermassive black holes, see also Black holes;

Kerr black holes; Gravitational waves
astrophysical context, see Accretion; Binary

black holes; Collisionless cluster collapse;
Extreme mass ratio inspiral binaries; Galac-
tic nuclei; Gravitational waves; Milky
Way; Population III stars; Quasars; Re-
coil in binary merger; Supermassive stars

formation, see Collisionless cluster evolution;
Rotating star evolution

Supermassive stars, see also Supermassive black
holes; Rotating star evolution

astrophysical context, see Supermassive black
holes

collapse, see Rotating star evolution
n = 3 polytropes, see Polytropes
stability, see Rotating star equilibrium mod-

els
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Supernovae, 116, 130, 257, 264, 267, 287–289,
405, 415, 475, 476, 499, 500, see also
Gravitational waves; Stellar collapse

Supramassive stars
concept, 411–412
stability, 417–420
summary table of maximum masses for poly-

tropes, 411
Surface-fitting coordinates, 197, 452, 465

Tensor densities, 539–541, see also Covariant
derivative; Lie derivative

Tensor virial theorem, 278
Tensors, see also Covariant derivative; Lie deriva-

tive, see also Lie derivative
basis tensors, 3
brief review, 3
notation, see Notation
spatial projection, 28

Theorema Egregium, 35
Tolman-Oppenheimer-Volkoff (TOV) equilibrium

stars, see Oppenheimer-Volkoff equilib-
rium stars

Topological censorship, 327, 328
Tortoise coordinate, 157, 301, 325
Transverse-traceless (TT) gauge, see Gravita-

tional waves
Trapped surfaces, see also Horizons; Marginally

outer-trapped surface
brief review, 18
concept, 208
Oppenheimer-Snyder collapse, 18–19

Turning-point criterion
binary black hole-neuton stars, 506–507
binary black holes, 362–363
binary neutron stars, 461–462
brief review, 16
collisionless clusters, 234–235, 252, 256
for binary orbit, 352
for rotating stars, 410
simultaneous turning-point in energy and an-

gular momentum, 356, 377, 461, 506

Upwind differencing scheme, 179–183

van Leer algorithm, 427, 434, 435, 482, see also
Hydrodynamics

Vector gradient, 61, 538

Vector Laplacian
conformal flatness, cartesian coordinates, 63
defined, 61
methods of solution, 543–544

Vectors, see also Lie derivative
basis vectors, 2
brief review, 2
notation, see Notation
spatial vectors, 28

Violent relaxation, see Collisionless cluster evo-
lution

Virial equilibrium, 236, 318
Virial theorem, see also Komar mass

circular orbits, 351–352, 363, 371, 510
equality of ADM and Komar mass, 84
Newtonian, 84

Viscosity, see also Navier-Stokes equations; Ro-
tating star evolution

artificial, see Hydrodynamics
bulk, 123
dynamic, 123
numerical, see Numerical methods
role in secular instabilities, 413
shear, 123

von Neumann stability analysis, 177, see also
Courant condition

Waveless approximation, 73–74
Weyl scalars, see Newman-Penrose formalism
Weyl tensor, 4, 51–53
White dwarfs

as black hole companion, 500
brief review, 14, 15
gravitational wave sources, 286, 290, 291,

297
maximum mass, see Chandrasekhar limit
rotating, 405, 411, 415

Wilson scheme, see also Hydrodynamics
applications

binary neutron stars, 474, 482
Riemann shock tube problem, 120–121
rotating stars, 418, 427, 434, 435

concept, 111–114

X-shaped radio jets, 395, 403, 404

Z4 formalism, 337
Zerilli equation, see Moncrief formalism
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