PHYS 170 Section 101
November Midterm Review November 6, 2018

WARNING / DISCLAIMER

The instructor does not guarantee that the following review is complete. In particular, concepts and/or equations pertinent to the midterm may have been omitted below.

CHAPTER 5
 EQUILIBRIUM OF A RIGID BODY

Conditions for Rigid Body Equilibrium

$$
\begin{gathered}
\mathbf{F}_{R}=\sum \mathbf{F}=\mathbf{0} \\
\left(\mathbf{M}_{R}\right)_{o}=\sum \mathbf{M}_{o}=\mathbf{0}
\end{gathered}
$$

- A body is in equilibrium if the sum of the external forces acting on it vanishes and the sum of the moments about some point due to those forces added to all the couple moments also vanishes.
(b)

Free Body Diagrams \& Support Reactions

A force is developed by a support that restricts the translation of its attached member

A couple moment is developed when rotation of the attached member is prevented

Will not be told which reactions are developed by which supports, so may want to include details of at least some of them on your information sheet, but also study available problems (lectures, homework, old exams, for other examples)

TABLE 5-2 Supports for Rigid Bodies Subjected to Three-Dimensional Force Systems

Types of Connection Reaction Number of Unknowns
(1)

cable

One unknown. The reaction is a force which acts away from the member in the known direction of the cable.

One unknown. The reaction is a force which acts perpendicular to the surface at the point of contact.
(3)

One unknown. The reaction is a force which acts perpendicular to the surface at the point of contact.

TABLE 5-2 Supports for Rigid Bodies Subjected to Three-Dimensional Force Systems
Types of Connection Reaction Number of Unknowns
(5)

ball and socket

single journal bearing

Three unknowns. The reactions are three rectangular force components.

Four unknowns. The reactions are two force and two couple-moment components which act perpendicular to the shaft. Note: The couple moments are generally not applied if the body is supported elsewhere. See the examples.
Types of Connection Number of Unknowns
(7)

single thrust bearing
(8)

single smooth pin

Five unknowns. The reactions are two force and three couple-moment components. Note: The couple moments are generally not applied if the body is supported elsewhere. See the examples.

Five unknowns. The reactions are three force and two couple-moment components. Note: The couple moments are generally not applied if the body is supported elsewhere. See the examples.

Five unknowns. The reactions are three force and two couple-moment components. Note: The couple moments are generally not applied if the body is supported elsewhere. See the examples.

TABLE 5-2 Continued

Types of Connection Reaction Number of Unknowns
(9)

Five unknowns. The reactions are three force and two couple-moment components. Note: The couple moments are generally not applied if the body is supported elsewhere. See the examples.

Six unknowns. The reactions are three force and three couple-moment components.

Equations of Equilibrium

Vector equations of equilibrium

The vector conditions for equilibrium of a rigid body are

$$
\begin{aligned}
& \sum \vec{F}=0 \\
& \sum \vec{M}_{O}=0
\end{aligned}
$$

where $\sum \vec{F}$ is the vector sum of all the forces acting on the body and $\sum \vec{M}_{o}$ is the sum of any couple moments and the moments of all the forces about any point O.

Scalar equations of equilibrium

In Cartesian vector form, the equations of equilibrium become

$$
\begin{gathered}
\sum \vec{F}=\sum F_{x} \vec{i}+\sum F_{y} \vec{j}+\sum F_{z} \vec{k}=0 \\
\sum M_{O}=\sum M_{x} \vec{i}+\sum M_{y} \vec{j}+\sum M_{z} \vec{k}=0
\end{gathered}
$$

The \vec{i}, \vec{j}, and \vec{k} components are independent of one another, so these are equivalent to the six scalar equations:

$$
\begin{array}{lll}
\sum F_{x}=0 & \sum F_{y}=0 & \sum F_{z}=0 \\
\sum M_{x}=0 & \sum M_{y}=0 & \sum M_{z}=0
\end{array}
$$

These equations can be used to solve for at most six unknowns shown on the free body diagram.

CHAPTER 8
 FRICTION

Resultant Normal and Frictional Forces

EQUILIBRIUM

- Assume block is in equilibrium and consider its FBD as in the figure to the left
- Observe

1. Friction force \mathbf{F} acts tangentially to surface and opposes \mathbf{P}
2. \mathbf{N} acts normally (perpendicular) to surface, and is directed upwards to balance \mathbf{W}

- We can determine where \mathbf{N} acts by considering moment equilibrium about point O

$$
W x=P h \quad(\mathrm{CCW} \text { and CW moments balance })
$$

or, solving for x

$$
x=\frac{P h}{W}
$$

- Important special case: When $x=a / 2$, the normal forces acts at the right corner of the block, and block is on verge of tipping (i.e. on verge of not being in moment equilibrium)

IMPENDING MOTION

- Depending on circumstances (e.g. h small, contact surfaces "slippery") frictional force \mathbf{F} may not be large enough to balance \mathbf{P}
- In this case, the block slips (translates) before it tips
- Imagine slowly increasing P from 0 - then F also slowly increases, but only to some maximum value, F_{s}
- F_{s} is known as the limiting static frictional force; any further increase in P causes the block to slip
- The following experimentally determined formula relates the limiting frictional force to the normal force

$$
F_{s}=\mu_{s} N
$$

where μ_{s} is known as the coefficient of static friction

Key Characteristics of Dry Friction

- Frictional force, \mathbf{F}, acts tangentially to contact surfaces and opposes relative motion (or tendency for motion)
- Maximum static friction force, F_{s}, can usually be assumed to be independent of contact area
- Generally, $F_{s}>F_{k}$ for any two surfaces in contact
- When slipping/sliding is about to occur, we have $F_{s}=\mu_{s} N$
- When slipping/sliding is occurring, we have $F_{k}=\mu_{k} N$

Types of Friction Problems

1. EQUILIBRIUM

- Total number of unknowns must equal total number of equilibrium eqns.
- Once frictional forces determined must check that $F \leq \mu_{s} N$

2. IMPENDING MOTION AT ALL POINTS

- Total number of unknowns will equal the total number of equilibrium eqns. plus the total number of available frictional equations

3. IMPENDING MOTION AT SOME POINTS

- Total number of unknowns will be less than the total number of available equilibrium equations, plus the total number of available frictional equations or conditional equations (such as tipping)
- Will be more than one possibility for motion/impending motion and part of the solution of the problem is to determine which motion occurs, or is about to occur.

CHAPTER 12
 KINEMATICS OF A PARTICLE

Rectilinear Kinematics: Continuous Motion

Position coordinate: s

Position vector: \mathbf{r}

$$
\mathbf{v}=\frac{d \mathbf{r}}{d t} \quad \mathbf{a}=\frac{d \mathbf{v}}{d t} \quad a d s=v d v
$$

Constant acceleration, a_{c}

$$
\begin{aligned}
& v=v_{0}+a_{c} t \\
& s=s_{0}+v_{0} t+\frac{1}{2} a_{c} t^{2} \\
& v^{2}=v_{0}^{2}+2 a_{c}\left(s-s_{0}\right)
\end{aligned}
$$

General Curvilinear Motion

Position vector: \mathbf{r}

$$
\mathbf{v}=\frac{d \mathbf{r}}{d t}
$$

Curvilinear Motion: Rectangular Components

Position

$$
\mathbf{r}=x \mathbf{i}+y \mathbf{j}+z \mathbf{k}
$$

Acceleration

Velocity

$$
\mathbf{v}=\frac{d \mathbf{r}}{d t}=v_{x} \mathbf{i}+v_{y} \mathbf{j}+v_{z} \mathbf{k}
$$

$$
\begin{aligned}
& a_{x}=\dot{v}_{x}=\ddot{x}=\frac{d^{2} x}{d t^{2}}=\frac{d v_{x}}{d t} \\
& \mathbf{a}=\frac{d \mathbf{v}}{d t}=a_{x} \mathbf{i}+a_{y} \mathbf{j}+a_{z} \mathbf{k} \\
& a_{y}=\dot{v}_{y}=\ddot{y}=\frac{d^{2} y}{d t^{2}}=\frac{d v_{y}}{d t} \\
& a_{z}=\dot{v}_{z}=\ddot{z}=\frac{d^{2} z}{d t^{2}}=\frac{d v_{z}}{d t}
\end{aligned}
$$

Projectile Motion

$$
\begin{array}{ll}
v=v_{0}+a_{c} t: & v_{x}=\left(v_{0}\right)_{x} \\
x=x_{0}+v_{0} t+\frac{1}{2} a_{c} t^{2}: & x=x_{0}+\left(v_{0}\right)_{x} t \\
v^{2}=v_{0}^{2}+2 a_{c}\left(s-s_{0}\right): & v_{x}=\left(v_{0}\right)_{x} \\
v=v_{0}+a_{c} t: & v_{y}=\left(v_{0}\right)_{y}-g t \\
y=y_{0}+v_{0} t+\frac{1}{2} a_{c} t^{2}: & y=y_{0}+\left(v_{0}\right)_{y} t-\frac{1}{2} g t^{2} \\
v^{2}=v_{0}^{2}+2 a_{c}\left(s-s_{0}\right): & v_{y}^{2}=\left(v_{0}\right)_{y}^{2}-2 g\left(y-y_{0}\right)
\end{array}
$$

$$
y(x)=a\left(x-x_{0}\right)^{2}+b\left(x-x_{0}\right)+y_{0}
$$

$$
\begin{aligned}
& a=-\frac{g}{2 v_{0}^{2} \cos ^{2} \theta_{0}} \\
& b=\tan \theta_{0}
\end{aligned}
$$

Trajectory equation

Curvilinear Motion: Normal \& Tangential Components

(a)

Position: $s=s(t)$ as measured from O

Radius of curvature, ρ

Velocity
(c)

$$
\begin{gathered}
\mathbf{v}=v \mathbf{u}_{t} \\
v=\frac{d s}{d t}=\dot{s}
\end{gathered}
$$

Curvilinear Motion: Normal \& Tangential Components

Curvilinear Motion: Cylindrical (Polar) Coordinates

(a)

$$
\mathbf{r}=r \mathbf{u}_{r}
$$

(c)

$$
\mathbf{v}=v_{r} \mathbf{u}_{r}+v_{\theta} \mathbf{u}_{\theta}
$$

$$
\begin{aligned}
& v_{r}=\dot{r} \\
& v_{\theta}=r \dot{\theta}
\end{aligned}
$$

Curvilinear Motion: Cylindrical (Polar) Coordinates

$$
\begin{aligned}
& \mathbf{a}=a_{r} \mathbf{u}_{r}+a_{\theta} \mathbf{u}_{\theta} \\
& a_{r}=\ddot{r}-r \dot{\theta}^{2} \\
& a_{\theta}=r \ddot{\theta}+2 \dot{r} \dot{\theta}
\end{aligned}
$$

Acceleration
(e)

Make sure that you can take an expression such as (example only!!)

$$
r(\theta)=2 e^{\theta} \sin (\theta)
$$

and compute \dot{r} and \ddot{r} in terms of $\theta, \dot{\theta}$ and $\ddot{\theta}$

(a)

12_037a

Absolute Dependent Motion: Analysis of Two Particles (Example)
Determine the relationship between v_{A} and v_{B}.

1. Label the non-constant length segments of the rope, l_{1}, l_{2}, l_{3}, etc.
2. Write down the rope equation

$$
l_{1}+l_{2}+l_{3}=\text { constant }
$$

3. Write down the path equations (when summed these should contain all of the l_{i} 's)

$$
\begin{aligned}
& l_{1}=s_{B} \\
& l_{2}=s_{B} \\
& l_{3}=s_{A}
\end{aligned}
$$

(a)

12_037a
4. Sum the path equations

$$
l_{1}+l_{2}+l_{3}=s_{A}+2 s_{B}
$$

5. Use the rope equation to eliminate the l_{i} 's

$$
\begin{aligned}
& \text { constant }=s_{A}+2 s_{B} \\
& s_{A}+2 s_{B}=\text { constant }
\end{aligned}
$$

6. Differentiate with respect to time to get the relationship between the velocities

$$
\begin{aligned}
& v_{A}+2 v_{B}=0 \\
& v_{B}=-\frac{1}{2} v_{A}
\end{aligned}
$$

Relative Motion of Two Particles

$$
\begin{array}{lc}
\vec{r}_{B / A}=\vec{r}_{B}-\vec{r}_{A} & \vec{r}_{B}=\vec{r}_{A}+\vec{r}_{B / A} \\
\vec{v}_{B / A}=\vec{v}_{B}-\vec{v}_{A} & \vec{v}_{B}=\vec{v}_{A}+\vec{v}_{B / A} \\
\vec{a}_{B / A}=\vec{a}_{B}-\vec{a}_{A} & \vec{a}_{B}=\vec{a}_{A}+\vec{a}_{B / A}
\end{array}
$$

Relationship between tangential/normal and Cartesian unit vectors (example!!)

$$
\begin{aligned}
& \vec{u}_{t}=\cos \theta \vec{i}+\sin \theta \vec{j} \\
& \vec{u}_{n}=\sin \theta \vec{i}-\cos \theta \vec{j}
\end{aligned}
$$

Be sure you can derive relationships such as these.

