
PHYS 170  Section 101

Lecture 28

November 16, 2018



Nov 16vAnnouncements

� Evaluation of teaching assistants during next (final) tutorial, 

Tuesday, November 20

± Bring lead pencil to fill out Scantron forms

± Come prepared with comments as appropriate

� Will be happy to field questions concerning midterm 2 grading 

after class today



Lecture Outline/Learning Goals

� Finish worked example problem solved using principle of work 

and energy

� 14.5 Conservative Forces and Potential Energy

� Sample problem using principle of work and energy, potential 

energy

� 14.6 Conservation of Energy 

� NOTE: 14.4 Power and Efficiencyvself study, no exam problems 

on it



Problem 14-16 (Page 186, 13th edition)

Block  is given an initial speed down the plane.  Block  moves up the plane.

Both blocks eventually come to rest.  The mass of  is 70 kg.  The mass of  is

40 kg.  The coefficient of kinetic friction
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 between  and the inclined plane is 0.20.

The coefficient of kinetic friction between  and the inclined plane is 0.05.

(1) Determine the initial speed of  in 

order that  travels 2 m up the plane 

bef
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B

B

A

ore coming to rest.

(2) Determine the tension in the cord

 during the motion.

(3) Show that the tension force does 

not contribute to the total work done

on the system.
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How many first year engineering 

students does it take to change a 

light bulb?
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How many second year 

engineering students does it take 

to change a light bulb?

Will this question be on the final 

examination?



How many electrical engineers 

does it take to change a light 

bulb?

None.  They simply redefine darkness 

as the industry standard.



14.5 Conservative Forces and Potential Energy

CONSERVATIVE FORCE

� Definition:  A force is called conservative if the work that it does on a 

particle as the particle moves from one point to another is independent of 

the path that the particle travels (i.e. the work done depends only on the 

location of the initial and final points)

� Examples of conservative forces:

± Weight:  Work done by weight is independent of the path since it 

only depends on the relative vertical displacement of the initial and 

final points

± (Elastic) Spring force:  The work done by an elastic spring is 

independent of the path since it only depends on how much the spring 

is extended (compressed)  as the particle to which the spring is attached

moves from its initial point to its final point



CONSERVATIVE FORCE (continued)

� Examples of non-conservative forces:

± (Kinetic) friction:  This is the definitive example of a non-conservative 

force.   The work done by such a force is clearly path dependent in the 

sense that given an initial point and a final point, the longer the path 

taken by the particle in moving between the two points, the more 

(negative) work will be done by the frictional force.   As mentioned in 

the last lecture, some fraction of this work will be converted into heat.



POTENTIAL ENERGY

� One way of defining energy is the capacity to do work

� When discussing the dynamics of particles, we generally identify two types 

of energy

1. KINETIC ENERGY:  Energy associated with motion

2. POTENTIAL ENERGY: Energy associated with position

� Specifically, energy that is associated with the position of a particle 

measured relative to a fixed datum or reference plane

� This type of energy is a measure of how much work a conservative 

force does on a particle, when the particle moves from a specific 

location to the datum 



POTENTIAL ENERGY (continued)

� In basic studies of dynamics, such as ours, we generally encounter two types 

of potential energy

1. Gravitational potential energy

2. Elastic potential energy (potential energy associated with 

compression or elongation of an elastic spring)



GRAVITATIONAL POTENTIAL ENERGY

� Consider the figure at left; when the particle 

is at the top position, it has a vertical 

displacement +y above the datum (which 

can be placed at an arbitrary vertical 

location)

� Its weight W, thus has positive potential 

energy,      , since W will do positive work 

on the particle if the particle moves to the 

datum

� Similarly, when the particle is at the bottom position its weight has negative

potential energy (i.e.            ) since W will do negative work on the particle if the 

particle moves to the datum

� If the particle is at the datum, then we have 
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GRAVITATIONAL POTENTIAL ENERGY

� In general then, assuming that y is positive 

upward (and that the vertical displacement 

is small compared to the radius of the Earth, 

so we can assume that g is constant), the 

gravitational potential energy,      ,  of a 

particle of weight W is

or

where m is the mass of the particle
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ELASTIC POTENTIAL ENERGY

� An elastic (ideal) spring that is compressed or 

elongated a distance s from its equilibrium 

position has an elastic potential energy,     ,

given by

� Note that       is always positive since whether 

the spring is compressed or elongated from 

equilibrium, it will do positive work on a 

particle attached to it, as the particle returns to 

the datum (i.e. as the spring returns to its 

unstretched/equilibrium position)
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POTENTIAL FUNCTION 

(TOTAL POTENTIAL ENERGY)

� In a general case, a particle can have both 

gravitational and elastic forces acting on it, as 

shown in the figure.

� In this case we can simply add 

algebraically (they are both scalars), to get a 

potential function, V, defined by

 and 
g s

V V
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� Bear in mind that both types of potential energy are defined with respect to their 

specific datum (arbitrary vertical position for      , equilibrium spring position 

for      )

� In general, if our particle has a location (x,y,z) in space, we will have 

V  = V(x,y,z), and hence the terminology potential function
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POTENTIAL FUNCTION 

Relation to work:

� The work          done by conservative forces 

(gravitational/elastic) when a particle moves 

from position 1 to position 2 can be expressed 

as the difference in the potential functions at 

the two points
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� For example, in the figure above, the gravitational and spring potential energies 

are being measured from a common datum, so that we have
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POTENTIAL FUNCTION 

Relation to work (continued)

� If the particle now moves from      (below the datum) to      (further below the 

datum), then we have  

� See the text for the discussion of further implications, including the expression 

of a conservative force in terms of the negative of the gradient of the potential 

function 
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Problem 14-33 (Page 190, 12th edition)

The 100 kg crate slides down the plane.  The coefficient of kinetic friction between

the crate and the plane is 0.25.  The spring is initially unstretched and the crate is 

initially at rest.

(1) Determine the compression of the spring required to bring the crate momentarily

to rest.





Use energy balance equation (principle of work

energy)

Set 0 of gravitational  potential energy at height

corresponding to point at which crate is 

instant

Solution 
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Use equilibrium in normal direction to relate normal force to weight of crate
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Substituting in (1) and evaulating numerical values we have

1
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14.6 Conservation of Energy

� Consider a particle which has both conservative and non-conservative forces 

acting on it 

� Then we can write the Principle of Work and Energy in the form

� But we have seen that 

so we have 

or

1 1 2 1 2 non-conservative 2) ( )( V UT V T�� �  � 6
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CONSERVATION OF ENERGY (continued)

� Our last formula was 

� We now consider the special but important case when only conservative forces 

act on the particle

� We then have conservation of mechanical energy or simply conservation of 

energy, stated as 

� In words: For a particle acted on solely by conservative forces, the sum of the 

SDUWLFOH¶V�NLQHWLF�DQG�SRWHQWLDO�HQHUJ\�LV�constant during the motion of the 

particle
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CONSERVATION OF ENERGY (continued)

� An immediate implication of this important principle ± which may be familiar to 

you from previous physics courses ± LV�WKDW�LI�D�SDUWLFOH¶V�NLQHWLF�HQHUJ\�LQFUHDVHV�

by a certain amount as it moves, then its potential energy must decrease by that 

precise amount and vice versa

SYSTEMS OF PARTICLES

� The extension of conservation of energy to systems of particles is straightforward 

± provided that the particles are acted on by only conservative forces, then we 

have 

where the summations are over all the particles

� Again, it is crucial to bear in mind that conservation of energy can only be 

applied when all forces are conservative ± for our purposes, gravitational and 

elastic ± and thus problems involving friction e.g. are specifically excluded! 

1 1 2 2T V T V 6 �6 6 �6



PROBLEM SOLVING USING CONSERVATION OF ENERGY

� Use conservation of energy to solve problems involving velocity, displacement 

and conservative forces

� Generally easier to use than PWE since involves quantities at only two specific 

SRLQWV��W\SLFDOO\�LQLWLDO�DQG�ILQDO�SRLQWV�RI�D�SDUWLFOH¶V�SDWK���UDWKHU�WKDQ�UHTXLULQJ�

the computation of work done by forces through the displacement along the path

� Be careful with signs when dealing with gravitational potential energy, and keep 

in mind that elastic (spring) potential energy is always positive

� May still be beneficial to draw free body diagrams, as we will see in the example 

that follows


