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November 7, 2018



Nov /—Announcements

 Midterm review slides have been posted on Canvas in Lectures
section



Lecture Outline/Learning Goals

* Finish particle dynamics in polar coordinates problem from last
day

» Start Chapter 14: Kinetics of a Particle: Work and Energy

— 14.1 The Work of a Force

— 14.2 Principle of Work and Energy



Problem 13-110 (Page 153, 13t edition)

The slotted guide moves the 150 g particle P around the 0.4 m radius circular disk.
Motion is in the vertical plane. Attached to P is an elastic cord extending from O.
The cord has stiffness 30 N/m and unstretched length 0.25 m. Friction may be

neglected.

(1) Determine the force of the guide on

P and the normal force of the disk on P when
=70, 0=>5rad/s and 6 = 2 rad/s’.
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From geometry
w=0
n=90-y =90-60

n and y axes both make an angle 7 with r axis




m g Solution strategy

Determine acceleration components in

polar coordinates, then determine requested
J forces from equations of motion using

acceleration components and other forces

(elastic cord, weight)

, As before, determination of acceleration
components requires computation of various
derivatives (r, r) and we must also determine
angle, v, between radial and tangential

unit vectors

Exercise: Refer to the original diagram. Show that r(&) is given by
r(@) = 2Rsin 8, where R is the radius of the disk.



Data

m=150 g g =9.81 m/s’ r(@)=2Rsin 6 R=0.4m
k =30 N/m r,=025m
0=70 0 =5 rad/s 0 =2 rad/s’

Derivatives (Exercise: verify all calculations here and below)
F =2R6Ocos b i”'zZR(écosH—é’zsiné’)
When 6 =70

r=0.7518 m r =1.3680 m/s F=-18.247 m/s’



Acceleration

When 6 =70

a =¥-r@* =-37.040 m/s’

a, =ré +2r0 =15.184 m/s’

Angle between tangential and radial unit vectors
From geometry (refer to FBD): v =6
Alternatively

r _ 2Rsind

= = =tanf = w=60 and 7=90-6=20
dr/df 2Rcos6

tany



Forces

N =-Nii =N(cosnii. —sinnii,)

F,

—k(r—-r,)u,

F, =-mg j =-mg(cosni, +sinni,)

Equations of motion
ZFr:mar ; N cosn —k(r—r,)—mgcosn =ma, (1)

ZFQ:mag ; F - Nsinn—-mgsinn =ma, (2)



Solution of equations of motion
From (1)

_ k(r—ry)+mgcosn+ma,

N =11.6 N

cosn

From (2)

F = Nsinnp+mgsinn+ma, =6.24 N



Chapter 14: Kinetics of a Particle
Work and Energy

e Qliver Furrer/OceanyCorbis

14_COCO01
As the woman falls, her energy will have to be absorbed by the bungee cord. The principles of work
and energy can be used to predict the motion.
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Conserve energy
Turn off the lights

Jokes onyou,
Ene rgy is always conseryed



14.1 The Work of a Force

* Now want to develop techniques to analyze motion using the concepts of work
and energy

* We first need to define the concept of the work of a force

AF e KEY POINT: A force, F, does work on a
particle only when the particle undergoes a
displacement in the direction of the force

* Consider the figure opposite where a particle
1s travelling along a path, with s measuring
distance along the path




AF * As shown in the figure, we consider the
situation where the particle’s position changes
from r tor', so that the displacement 1s

dr =r'-r
and the magnitude of the displacement 1s ds

* Then the (infinitesimal) work dU done by F
over this interval 1s a scalar quantity given by

dU = Fdscos@

where @ is the angle between dr and F

* Recalling the definition of the dot product between two vectors (A-B = ABcosé),
we can write the above equation as

dU =F-dr



AF¥ * Have two ways of interpreting dU = Fdscos 6

I. Product of F and the component of the
displacement in the direction of F,
i.e. dscosé

2. Product of ds and the component of the
force in the direction of dr, i.e. F'cos&

« IMPORTANT: dU can be positive, negative or 0 as follows

I.

0 <0<90 : cos@>0: Force and displacement vectors have same
sense, work is positive

90 <0<180 : cos@<0: Force and displacement vectors have opposite
sense; work is negative

0=90 : cosd=0: Force and displacement vectors are perpendicular;
no work is done by force



WORK OF A FORCE (continued)

* Also note that no work 1s done by the force if there 1s no displacement

Units for Work

1. SI: Joule (J) -1 Joule is the work done by a force of 1 Newton through a
displacement of 1 meter along its line of action, 1.e. 1 J=1N - m

2. FPS: ft- Ib — Work done by a force of 1 Ib through a displacement of 1 ft
along its line of action

* Note that although the unit combination for work 1s the same as that for a
moment of a force, the concepts of work and moment are not to be identified
(for example, work 1s a scalar quantity, moment is a vector)



WORK OF A FORCE (continued)

* We now consider the work done a force in various circumstances where the
displacement is finite rather than infinitesimal

* This will generally require integration of the basic formula dU =F-dr

WORK OF A VARIABLE FORCE

The most general case we can consider 1s one
where the force vector varies (in magnitude,
direction, or both), as the particle moves
along its path

Referring to the diagram, the particle moves
along the path from s, (position vector r,)
to s, (position vector r,)



WORK OF A VARIABLE FORCE (continued)

* Assume that the force is a given as a function
of s, F = F(s)

* Then we denote the finite amount of work done

by the force as U,_, , and compute it using

U, =]%F-dr :]%Fcosé?ds

Feos #

* As shown in the figure, and using the usual
interpretation of a definite integral, U, , can be
interpreted as the area under the curve of the
function F cos@ (the working component of the

s force) from position s, to position s,




WORK OF A CONSTANT FORCE ALONG A STRAIGHT LINE

F. * Now consider the special, but frequently
//' occurring case where F is a constant vector,
: . \ ‘ F =F, , acting at a constant angle & from the
. F.cos® %2 path of the particle which is moving in a straight

line as shown in the figure at left

* Then the work done by the force as the particle moves from s, to s, 1S

U_,=F cosHJ‘ds

or

U, ,=F cosO(s,—s,)
which we can also write as

U,,=F cosOAs



WORK OF A CONSTANT FORCE ALONG A STRAIGHT LINE (continued)

Feos@

F.ecos 80—

.\I

Y2

In this case the area under the F cos @ curve is
simply the area of a rectangle, as shown in the
figure

WORK OF A WEIGHT

Consider a particle with weight, W, moving up
along a path parameterized by s from position s,
to s, as shown in the figure (note the orientation
of the axes, such that y is the vertical direction)

At any point along the path, the infinitesimal
displacement, dr, is given by

dr =dxi+dy j+dzk



Y2

WORK OF A WEIGHT (continued)

* Wehave W =-W j, so the work done by the
weight 1s

U, , = [F-dr=[(Wj)-(dxi+dyj+dzk)

Y2
> —IWdy ==W(y,=»)

31
or

U,_, =-WAy

* Note that the work done by the weight is
independent of the path taken between the initial
and final positions of the particle



WORK OF A WEIGHT (continued)

« IMPORTANT! Always need to be careful with
signs when dealing with work. In this case we
have

1. Particle moves upward (Ay >0 ), weight
and displacement are in opposite directions,
work is negative

2. Particle moves downward (Ay <0 ), weight
and displacement are in same direction,
work is positive



Unstretched WORK OF A SPRING FORCE

position, =0

f“ . Force on

T r Spring * Here we first consider the work done on a spring
" by a force that elongates/compresses it, then the
work done on a particle attached to the spring, 1.e.
by the force exerted by the spring

* Recall: Magnitude of force exerted on spring
displaced distance s from its equilibrium position
1S

F =ks

A

where k 1s the spring constant (stiffness)

» Referring to the figure above, if the spring is initially elongated (or compressed)
a distance s, from equilibrium, and then is further elongated (or compressed) to
a distance s, from equilibrium, then the work done is positive, since the force on
the spring and the displacement are in the same direction



WORK OF A SPRING FORCE (continued)

 Thus, we have

- Fy=ks K r 1 1
[ U, , = | Fds=[ksds = ks,? —— ks>
/ which can be interpreted as the trapezoidal area
2 : s under the graph F, = ks as shown in the figure
5] 52
 Now consider the second case (and the most
Unstretched . . .
position, s = 0 relevant one for problem solving) where a particle 1s
attached to the spring
| - * Inaccordance with Newton’s third law, the force, F
Fﬁwm , é on the particle now always acts in the opposite
k e direction of the displacement (again assuming that
i we are either further stretching or further

compressing the spring)



Unstretched WORK OF A SPRING FORCE (COHtiIlllEd)

position, s = 0

* Thus, the work done by the force on the particle is
negative and given by

H 1 1
U1_2 = —(Ekszz _Ekslzj

|‘{‘.I]LL on
Particle

IMPORTANT: We again need to be careful with signs when computing work

1. If the force of the spring on the particle and the particle displacement are in the
same direction, the work done by the spring force is positive

2. If the force of the spring on the particle and the particle displacement are in
opposite directions, the work done by the spring force is negative



14.2 Principle of Work and Energy

Inertial coordinate system

Consider the figure at the left which shows a
particle moving along some path with position,
velocity, acceleration and forces acting on it
defined with respect to an inertial coordinate
system

At some instant of time, the particle 1s at location
P, with resultant force F, = 2F acting on it

We can introduce tangential and normal
coordinates (z,n) at P and consider the EOM 1in
the  direction

2F, =ma,



i v E'FI 1
P:I_-:-""_'_r..p.l!ﬂ_-fll______‘_
e \ & I h
. 1
E:F_rl‘ — FH = E-F

Inertial coordinate system

PRINCIPLE OF WORK & ENERGY (cont.)

* Now, recall that for tangential motion we can
apply the kinematic equation

a ds=vdy

* We multiply both sides of this equation by m and
integrate along the path from

1. Wheres=s, andv =y, to
2. Wheres=s, andv=v,

e  We thus have

S Vo
Imat ds = J-mvdv
D V1



i v E'FI 1
P:I_-:-""_'_r..p.l!ﬂ_-fll______‘_
e \ & I h
. 1
E:F_rl‘ — FH = E-F

Inertial coordinate system

PRINCIPLE OF WORK & ENERGY (cont.)

We can manipulate this last equation as follows

s V2
jmat ds = jmvdv
51 Vi

Now we note from the figure that £F =XF cos@ , so that the term on the left is
simply the total work done by all forces acting on the particle from point 1
to point 2 on the path

We have thus derived one form of the principle of work and energy (PWE)

1 5, 1

22U, , =—my, —Emv1

2



PRINCIPLE OF WORK & ENERGY (continued)

We recognize the terms of the form mv’ /2 as representing the kinetic energy
of the particle, which we will denote by T

1 o :
T = —myv” = Kinetic energy of particle

* NOTE: Units of T = units of U = Joule (J)
* We can thus recast the principle of work and energy in the form
T,+3U,, =T,

 Inwords: The initial kinetic energy of the particle plus the work done by all of
the forces acting on the particle as it moves from its initial to final position is
equal to the final kinetic energy of the particle



USE of PRINCIPLE OF WORK & ENERGY IN PROBLEM SOLVING

The principle is an integrated version of XF, =ma,

* It can thus often be used instead of XF, = ma, in problems that involve forces,
velocities and displacements, and may save calculational steps, particularly if
final (1nitial) speeds of particles are to be determined

* Note that the principle cannot replace all equations of motion — for example, it
cannot be used to compute general forces that are normal to the particle path
since those forces do not do work on the particle

* However, for motion on known curved paths, where we have 2F, = my* / Jo i
we may be able to use the principle to compute v, then compute the normal
force, and this may easier than using the “standard” formulae



