PHYS 170 Section 101 Lecture 23
October 31, 2017

October 31-Announcements

- Contrary to previous claims (somewhat), will need to switch calculator to radians for one question in current homework (12-177). See Canvas version of announcement for a bit more detail
- Have added to the online notes (Lecture 21) the solution to the pulley question I left as an exercise

Lecture Outline/Learning Goals

- Two worked examples solving equations of motion in rectangular coordinates

Recall: Relative Motion of Two Particles Using Translating Axes

Position
$\vec{r}_{B / A}=\vec{r}_{B}-\vec{r}_{A}$
$\vec{r}_{B}=\vec{r}_{A}+\vec{r}_{B / A}$
Velocity
$\vec{v}_{B / A}=\vec{v}_{B}-\vec{v}_{A}$
$\vec{v}_{B}=\vec{v}_{A}+\vec{v}_{B / A}$
Acceleration
$\vec{a}_{B / A}=\vec{a}_{B}-\vec{a}_{A}$
$\vec{a}_{B}=\vec{a}_{A}+\vec{a}_{B / A}$

Problem 13-41 (page 129, $12^{\text {th }}$ edition)

A horizontal force $P=20 \mathrm{lb}$ is applied to block A. The coefficients of kinetic friction between block A and the horizontal surface, between the two blocks, and between block B and the vertical surface are $0.1,0.2$, and 0.3 , respectively.
(1) Determine the acceleration of each block and all normal forces.

PROB13_041.jpg
Copyright © 2010 Pearson Prentice Hall, Inc.

PRO813_041.jpg
Copyright O 2010 Pearson Prentice Hall, Inc.

Accelerations and relative motion

Relative motion: Imagine riding on block A. What is B 's motion relative to you?

Answer: Up and to the left, at an angle θ from the horizontal.

$$
\begin{aligned}
& \vec{a}_{B}=\vec{a}_{A}+\vec{a}_{B / A} \\
& \vec{a}_{B / A}=a_{B / A}(-\cos \theta \vec{i}+\sin \theta \vec{j})
\end{aligned}
$$

Solution strategy

Use equations for relative acceleration to express a_{B} in terms of a_{A}

Using FBDs, write down equations of motion for two blocks

Ensure that there are the same number of equations as unknowns

Solve the equations

Data

$$
\begin{array}{lll}
W_{A}=m_{A} g=8 \mathrm{lb} & W_{B}=m_{B} g=15 \mathrm{lb} & g=32.2 \mathrm{ft} / \mathrm{s}^{2} \\
P=20 \mathrm{lb} & \theta=15^{\circ} & \\
\mu_{\mathrm{A}}=0.1 & \mu_{A B}=0.2 & \mu_{B}=0.3
\end{array}
$$

Accelerations

$$
\begin{aligned}
& \vec{a}_{A}=a_{A} \vec{i} \\
& \vec{a}_{B}=a_{B} \vec{j}
\end{aligned}
$$

Relative motion

$$
\begin{aligned}
& \vec{a}_{B}=\vec{a}_{A}+\vec{a}_{B / A} \\
& \vec{a}_{B / A}=a_{B / A}(-\cos \theta \vec{i}+\sin \theta \vec{j})
\end{aligned}
$$

x component: $\quad 0=a_{A}-a_{B / A} \cos \theta \Rightarrow a_{A}=a_{B / A} \cos \theta$
y component: $\quad a_{B}=a_{B / A} \sin \theta$
from which we have
$a_{B} / a_{A}=\left(a_{B / A} \sin \theta\right) /\left(a_{B / A} \cos \theta\right)=\tan \theta$
$a_{B}=a_{A} \tan \theta$
Equations of motion (refer to FBDs)

Equations of motion for A :

$$
\begin{array}{ll}
\sum F_{x}=m a_{x}: & P-N \sin \theta-\mu_{A B} N \cos \theta-\mu_{A} N_{A}=m_{A} a_{A} \\
\sum F_{y}=m a_{y}: & -N \cos \theta+\mu_{A B} N \sin \theta+N_{A}-W_{A}=0 \tag{2}
\end{array}
$$

$$
\begin{array}{ll}
\sum F_{x}=m a_{x}: & N \sin \theta+\mu_{A B} N \cos \theta-N_{B}=0 \\
\sum F_{y}=m a_{y}: & N \cos \theta-\mu_{A B} N \sin \theta-\mu_{B} N_{B}-W_{B}=m_{B} a_{B} \\
& N \cos \theta-\mu_{A B} N \sin \theta-\mu_{B} N_{B}-W_{B}=m_{B} a_{A} \tan \theta \tag{4}
\end{array}
$$

Equations (1)-(4) contain 4 unknowns: a_{A}, N_{A}, N, N_{B}, so the system (probably) has a solution.

Data

$$
\begin{array}{lll}
W_{A}=m_{A} g=8 \mathrm{lb} & W_{B}=m_{B} g=15 \mathrm{lb} & g=32.2 \mathrm{ft} / \mathrm{s}^{2} \\
P=20 \mathrm{lb} & \theta=15^{\circ} & \\
\mu_{A}=0.1 & \mu_{A B}=0.2 & \mu_{B}=0.3
\end{array}
$$

Equations to be solved

$$
\begin{equation*}
m_{A} a_{A}+\left(\sin \theta+\mu_{A B} \cos \theta\right) N+\mu_{A} N_{A}=P \tag{1}
\end{equation*}
$$

$\left(-\cos \theta+\mu_{A B} \sin \theta\right) N+N_{A}=W_{A}$
$\left(\sin \theta+\mu_{A B} \cos \theta\right) N-N_{B}=0$
$-m_{B} \tan \theta a_{A}+\left(\cos \theta-\mu_{A B} \sin \theta\right) N-\mu_{B} N_{B}=W_{B}$

Numerical results (using $\operatorname{rref}([M])$ where $[M]$ is a 4×5 matrix.
(Exercise: Verify the solution.)

$$
\begin{array}{llll}
a_{A}=26.0 \mathrm{ft} / \mathrm{s}^{2} & N_{A}=29.4 \mathrm{lb} & N=23.4 \mathrm{lb} & N_{B}=10.6 \mathrm{lb} \\
a_{B}=6.97 \mathrm{ft} / \mathrm{s}^{2} & a_{B / A}=26.9 \mathrm{ft} / \mathrm{s}^{2} & &
\end{array}
$$

From the "Don't do this at home folks!" department

Problem 13-46 (page 130, $13^{\text {th }}$ edition)

The diagram shows two triangular blocks A and B each with mass $2 \mathrm{~kg} . B$ is on a horizontal surface. The sloped surface of B makes an angle $\theta=40^{\circ}$ with the horizontal surface. The coefficient of kinetic friction between B and the horizontal surface is 0.5 . The coefficient of kinetic friction between the two blocks is 0.2 . A horizontal force $P=50 \mathrm{~N}$ acts to the right on A.
(1) Determine the acceleration of each block and the normal forces.

PROB13_036-037.jpg
Copyright © 2010 Pearson Prentice Hall, Inc.

PROB13_036-037.jpg
Copyright © 2010 Pearson Prentice Hall, Inc.

Accelerations and relative motion

Relative motion (similar to previous problem, except this time motion of A relative to B is up and to the right at angle θ to the horizontal)
$\vec{a}_{A}=\vec{a}_{B}+\vec{a}_{A / B}$
$\vec{a}_{A / B}=a_{A / B}(\cos \theta \vec{i}+\sin \theta \vec{j})$

Use equations for relative acceleration to express components of \vec{a}_{A} in terms of a_{B} and $a_{A / B}$

Using FBDs, write down equations of motion for two blocks

Ensure that there are the same number of equations as unknowns

Solve the equations

Data

$$
\begin{array}{lll}
m_{A}=2 \mathrm{~kg} & m_{B}=2 \mathrm{~kg} & \\
W_{A}=m_{A} g & W_{B}=m_{B} g & g=9.81 \mathrm{~m} / \mathrm{s}^{2} \\
P=50 \mathrm{~N} & \theta=40^{\circ} & \\
\mu_{B}=0.5 & \mu_{A B}=0.2 &
\end{array}
$$

Accelerations

$$
\begin{aligned}
& \vec{a}_{A}=a_{A x} \vec{i}+a_{A y} \vec{j} \\
& \vec{a}_{B}=a_{B} \vec{i}
\end{aligned}
$$

Relative motion

$$
\begin{aligned}
& \vec{a}_{A}=\vec{a}_{B}+\vec{a}_{A / B} \\
& \vec{a}_{A / B}=a_{A / B}(\cos \theta \vec{i}+\sin \theta \vec{j})
\end{aligned}
$$

Cartesian components of \vec{a}_{A}

$$
\begin{array}{ll}
x \text { component: } & a_{A x}=a_{B}+a_{A / B} \cos \theta \\
y \text { component: } & a_{A y}=a_{A / B} \sin \theta
\end{array}
$$

Equations of motion (refer to FBDs)

Equations of motion for A :

$$
\begin{array}{lc}
\sum F_{x}=m a_{x}: & P-N \sin \theta-\mu_{A B} N \cos \theta=m_{A} a_{A x} \\
& P-N \sin \theta-\mu_{A B} N \cos \theta=m_{A}\left(a_{B}+a_{A / B} \cos \theta\right) \\
\sum F_{y}=m a_{y}: \quad & N \cos \theta-\mu_{A B} N \sin \theta-W_{A}=m_{A} a_{A y} \\
& N \cos \theta-\mu_{A B} N \sin \theta-W_{A}=m_{A} a_{A / B} \sin \theta \tag{2}
\end{array}
$$

Equations of motion for B :

$$
\begin{equation*}
\sum F_{x}=m a_{x}: \quad N \sin \theta+\mu_{A B} N \cos \theta-\mu_{B} N_{B}=m_{B} a_{B} \tag{3}
\end{equation*}
$$

$\sum F_{y}=m a_{y}: \quad-N \cos \theta+\mu_{A B} N \sin \theta+N_{B}-W_{B}=0$

The above 4 equations contain 4 unknowns: $a_{B}, a_{A / B}, N, N_{B}$, so the problem likely has a solution.

Data

$$
\begin{array}{lll}
m_{A}=2 \mathrm{~kg} & m_{B}=2 \mathrm{~kg} & \\
W_{A}=m_{A} g & W_{B}=m_{B} g & g=9.81 \mathrm{~m} / \mathrm{s}^{2} \\
P=50 \mathrm{~N} & \theta=40^{\circ} & \\
\mu_{B}=0.5 & \mu_{A B}=0.2 &
\end{array}
$$

Equations to be solved

$$
\begin{equation*}
m_{A} a_{B}+m_{A} \cos \theta a_{A / B}+\left(\sin \theta+\mu_{A B} \cos \theta\right) N=P \tag{1}
\end{equation*}
$$

$-m_{A} \sin \theta a_{A / B}+\left(\cos \theta-\mu_{A B} \sin \theta\right) N=W_{A}$
$-m_{B} a_{B}+\left(\sin \theta+\mu_{A B} \cos \theta\right) N-\mu_{B} N_{B}=0$
$\left(-\cos \theta+\mu_{A B} \sin \theta\right) N+N_{B}=W_{B}$

Numerical results (using $\operatorname{rref}([M])$ where $[M]$ is a 4×5 matrix)
(Exercise: Verify the solution)

$$
\begin{array}{lll}
a_{B}=4.86 \mathrm{~m} / \mathrm{s}^{2} & a_{A / B}=5.03 \mathrm{~m} / \mathrm{s}^{2} & N=40.9 \mathrm{~N} \\
a_{A x}=8.71 \mathrm{~m} / \mathrm{s}^{2} & a_{A y}=3.23 \mathrm{~m} / \mathrm{s}^{2} & N_{B}=45.7 \mathrm{~N} \\
\vec{a}_{A}=9.29\left(\cos 20.4^{\circ} \vec{i}+\sin 20.4 \vec{j}\right) \mathrm{m} / \mathrm{s}^{2} &
\end{array}
$$

