PHYS 170 Section 101 Lecture 19 October 22, 2018

Oct 22—Announcements

- Homework assignment 6 is due tonight at 11:59 PM
- Homework assignment 7 is due this Friday at 11:59 PM

Lecture Outline/Learning Goals

- Two worked problems of curvilinear motion using tangential and normal components
- 12.8 Curvilinear Motion: Cylindrical (Polar) Components

Perhaps the last lecture left you feeling a bit like this ...

Curvilinear Motion: Normal & Tangential Components

Position: s = s(t) as measured from *O*

 $\mathbf{v} = v \mathbf{u}_t$

$$v = \frac{ds}{dt} = \dot{s}$$

Curvilinear Motion: Normal & Tangential Components

 $\mathbf{a} = a_t \mathbf{u}_t + a_n \mathbf{u}_n$ $a_t = \dot{v} \qquad \text{or} \qquad a_t \, ds = v \, dv$

$$a_n = \frac{v^2}{\rho}$$

Problem 12-120 (page 66, 14th edition)

The car travels along the circular path. Starting from rest, its acceleration along the path is $0.5 e^t$ m/s² where *t* is in seconds.

(1) Determine how long it takes the car to travel 18 m.

(2) Determine the car's speed and acceleration at this time.

Copyright © 2010 Pearson Prentice Hall, Inc.

Solution strategy

(1) Integrate tangential acceleration(acceleration along the path) to determinethe car's speed, v(t)

(2) Integrate the speed v(t) to determine the distance traveled, s(t), in time *t*.

(3) Determine the time t at which the car has traveled 18 m.

(4) Determine the car's speed and acceleration at that time.

The car's speed v(t) is determined by integrating its tangential acceleration

$$a_{t} = \frac{dv}{dt}$$

$$\int_{0}^{v} dv = \int_{0}^{t} a_{t} dt = \int_{0}^{t} 0.5e^{t} dt$$

$$v(t) = 0.5e^{t} \Big|_{0}^{t} = 0.5(e^{t} - 1) \text{ m/s}$$

The distance s(t) the car travels in time t is determined by integrating its speed v(t)

$$v = \frac{ds}{dt}$$

$$\int_{0}^{s} ds = \int_{0}^{t} v(t) dt = \int_{0}^{t} 0.5(e^{t} - 1) dt$$

$$s(t) = 0.5(e^{t} - t) \Big|_{0}^{t} = 0.5(e^{t} - t - 1) \text{ m}$$

The time t when the car has travelled 18 m along the path is determined by solving

 $0.5(e^t - t - 1) = 18$ or $0.5(e^t - t - 1) - 18 = 0$

Using, for example, the solver function on a TI graphing calculator, we find

t = 3.7064 s

so it takes 3.71 s for the car to travel 18 m.

At this time we have the following:

$$v = 0.5(e^{t} - 1) = 19.9 \text{ m/s}$$

$$a_{t} = 0.5 e^{t} = 20.4 \text{ m/s}^{2}$$

$$a_{n} = \frac{v^{2}}{\rho} = 13.1 \text{ m/s}^{2}$$

$$a = \sqrt{a_{t}^{2} + a_{n}^{2}} = 24.2 \text{ m/s}^{2}$$

Note: These values, and those in subsequent problems of this type were computed using full calculator precision for dependent values (t, v, etc.) and then rounded

Problem 12-125 (page 62, 12th edition)

The car is travelling at 25 m/s at *A*. The brakes are applied at *A* and its speed is reduced by $t^{1/2} / 4$ m/s² where *t* is in seconds.

(1) Determine how long it takes the car to travel from A to C.

(2) Determine the car's speed and acceleration when it reaches C.

Solution strategy

(1) Integrate tangential acceleration(acceleration along the path) to determinethe car's speed, v(t)

(2) Integrate the speed v(t) to determine the distance traveled, s(t), in time *t*.

(3) Determine the distance from A to C using given geometrical information.

(4) Determine time *t* needed to travel that distance.

(5) Determine the car's speed and acceleration at that time.

Starting from *A*, the car's speed v(t) at time *t* along the path is determined by integrating the car's tangential acceleration

$$a_{t} = \frac{dv}{dt}$$

$$\int_{v_{0}}^{v} dv = \int_{0}^{t} a_{t} dt$$

$$\int_{25}^{v} dv = \int_{0}^{t} (-t^{1/2} / 4) dt$$

$$v - 25 = -\frac{1}{4} \frac{t^{3/2}}{3 / 2} \Big|_{0}^{t} = -\frac{t^{3/2}}{6}$$

SO

$$v(t) = 25 - \frac{t^{3/2}}{6}$$
 m/s

The distance s(t) the car travels in time t from A is determined by integrating its speed v(t)

$$v = \frac{ds}{dt}$$

$$\int_{0}^{s} ds = \int_{0}^{t} v(t) dt = \int_{0}^{t} \left(25 - t^{3/2} / 6 \right) dt$$

$$s = \left(25t - \frac{1}{6} \frac{t^{5/2}}{5 / 2} \right) \Big|_{0}^{t}$$

SO

$$s(t) = 25t - \frac{t^{5/2}}{15}$$
 m

To determine the distance between *A* and *C*, note that the angle subtended by the arc *BC* is $\Delta \theta = 30^{\circ} = \pi / 6$ radians. Thus, the distance from *B* to *C* is $\rho \Delta \theta = 250\pi / 6$ m, and the distance from *A* to *C* is $200 + 250\pi / 6$ m. The time *t* when the car is at *C* is determined by solving

$$25t - \frac{t^{5/2}}{15} = 200 + 250\pi / 6$$

or

$$25t - \frac{t^{5/2}}{15} - 200 - 250\pi / 6 = 0$$

Using solver we find the smallest value of *t* that satisfies the above equation

t = 15.94 s

So it takes 15.9 s for the car to travel from A to C.

At time t = 15.94 s we have the following

$$v = 25 - t^{3/2} / 6 = 14.4 \text{ m/s}$$

$$a_t = -t^{1/2} / 4 = -0.998 \text{ m/s}^2$$

$$a_n = \frac{v^2}{\rho} = 0.828 \text{ m/s}^2$$

$$a = \sqrt{a_t^2 + a_n^2} = 1.30 \text{ m/s}^2$$

12.8 Curvilinear Motion: Cylindrical (Polar) Coordinates
MOTIVATION

- For certain types of particle motion, it is often convenient and/or natural to specify position in terms of a **radial distance** and an **angular position**
 - **2D** (planar motion): Polar coordinates: (r, θ)
 - **3D: Cylindrical coordinates:** (r, θ, z)
- As previously, will focus attention on the 2D (planar) case refer to text for discussion of extension to cylindrical coordinates
- Due to time restrictions and similarity of proofs to those in discussion of tangential / normal components, we will skip some steps in the derivations that follow see text for additional details

POLAR COORDINATES

- Again, consider particle located at position, *P*, and traveling along some path, as shown in Fig (a).
- We locate the particle by specifying
 - 1. Radial coordinate, *r*, measured outwards from the origin, *O*, of the polar coordinate system
- 2. Transverse or angular coordinate, θ , measured counterclockwise from a fixed axis through the origin (typically a horizontal axis as in the figure) to the *r* axis
- **NOTE:** Although the angular coordinate can be measured in degrees, the **natural** units are **radians** (recall: 1 radian = $180^{\circ} / \pi$) and the formulae involving angular velocities and angular accelerations derived below are simplest when the associated units of rad/s and rad/s² are used. Thus rad/s and rad/s² will generally be used for angular velocity and angular acceleration, although angles themselves will usually still be specified in degrees (so that you **won't** have to switch units on your calculator from degrees to radians)

POLAR COORDINATES

As usual, with each of the r, θ axes we can associate unit vectors \mathbf{u}_r and \mathbf{u}_{θ} which are perpendicular to one another

(Positive) direction of \mathbf{u}_r : Hold θ fixed; \mathbf{u}_r points in direction of increasing r

(Positive) direction of \mathbf{u}_{θ} : Hold *r* fixed;

 \mathbf{u}_{θ} points in direction of increasing θ

- As is the case for (*t*,*n*) coordinates, as particle moves along path, the orientations of the unit vectors will change in general. However, the origin, *O*, remains fixed
- As particle moves, its (r, θ) coordinates will generally be functions of time

 $(r, \theta) = (r(t), \theta(t))$

• As usual, proceed to derive expressions for the particle's **position**, **velocity** and **acceleration** vectors in these coordinates

POSITION

At any given moment of time, t, when the particle has polar coordinates (r, θ) , the position vector is simply

$$\mathbf{r} = r \mathbf{u}_r$$

VELOCITY

• As usual, the instantaneous velocity, **v**, is given by taking the first time derivative of **r**

 $\mathbf{v} = \dot{\mathbf{r}} = \dot{r} \mathbf{u}_r + r \dot{\mathbf{u}}_r$

• We state without proof (see text for argument), that

$$\dot{\mathbf{u}}_r = \dot{\mathbf{\theta}} \mathbf{u}_{\mathbf{\theta}}$$

• We thus have the following formula for the component form of the velocity in polar coordinates

$$\mathbf{v} = \mathbf{v}_r \, \mathbf{u}_r + \mathbf{v}_\theta \, \mathbf{u}_\theta$$

where the components are given by

$$\mathbf{v}_r = \dot{r}$$

 $\mathbf{v}_ heta = r \dot{ heta}$

VELOCITY (continued)

The velocity components have the following names and interpretations

 $\mathbf{v}_r = \dot{r} \mathbf{u}_r$: Radial component

Time rate of change of radial position

 $\mathbf{v}_{\theta} = (r\dot{\theta})\mathbf{u}_{\theta}$: Transverse component Rate of motion along circumference of circle with radius *r*

- **Nomenclature:** $\dot{\theta} = d\theta / dt$ is known as the **angular velocity** since it quantifies the time rate of change of the angular coordinate, and is measured in **rad/s**
- Magnitude of velocity:

$$v = \sqrt{v_r^2 + v_\theta^2} = \sqrt{\dot{r}^2 + (r\dot{\theta})^2}$$

• **Direction of velocity:** In direction tangent to the particle path at *P*, as usual

ACCELERATION

Take the first time derivative of the velocity vector to get the instantaneous acceleration of the particle

$$\mathbf{v} = \dot{r} \mathbf{u}_r + (r \dot{\theta}) \mathbf{u}_{\theta}$$
$$\mathbf{a} = \dot{\mathbf{v}} = \ddot{r} \mathbf{u}_r + \dot{r} \dot{\mathbf{u}}_r + \dot{r} \dot{\theta} \mathbf{u}_{\theta} + r \ddot{\theta} \mathbf{u}_{\theta} + r \dot{\theta} \dot{\mathbf{u}}_{\theta}$$

We again state without proof (see text for details) that

 $\dot{\mathbf{u}}_{\theta} = -\dot{\theta}\mathbf{u}_{r}$

and we recall that we have $\dot{\mathbf{u}}_r = \hat{\theta} \mathbf{u}_{\theta}$

We thus have

$$\mathbf{a} = \ddot{r} \,\mathbf{u}_{r} + \dot{r} \,\dot{\mathbf{u}}_{r} + \dot{r} \dot{\theta} \,\mathbf{u}_{\theta} + r \ddot{\theta} \,\mathbf{u}_{\theta} + r \dot{\theta} \,\dot{\mathbf{u}}_{\theta}$$
$$= \ddot{r} \,\mathbf{u}_{r} + \dot{r} \dot{\theta} \,\mathbf{u}_{\theta} + \dot{r} \dot{\theta} \,\mathbf{u}_{\theta} + r \ddot{\theta} \,\mathbf{u}_{\theta} - r \dot{\theta}^{2} \mathbf{u}_{r}$$
$$= (\ddot{r} - r \dot{\theta}^{2}) \mathbf{u}_{r} + (r \ddot{\theta} + 2\dot{r} \dot{\theta}) \mathbf{u}_{\theta}$$

ACCELERATION (continued)

Thus, the component form for the acceleration vector in polar coordinates is given by

 $\mathbf{a} = a_r \mathbf{u}_r + a_{\theta} \mathbf{u}_{\theta}$

 $a_{r} = \ddot{r} - r\dot{\theta}^{2}$ $a_{\theta} = r\ddot{\theta} + 2\dot{r}\dot{\theta}$

- **Nomenclature:** $\ddot{\theta} = d^2 \theta / dt^2$ is known as the **angular acceleration**, and is measured in rad/s²
- **Magnitude of acceleration**

$$a = \sqrt{a_r^2 + a_{\theta}^2} = \sqrt{(\ddot{r} - r\dot{\theta}^2)^2 + (r\ddot{\theta} + 2\dot{r}\dot{\theta})^2}$$

Direction of acceleration: No special direction (**not** tangent to path in general), but as in our discussion of curvilinear motion in general, must be oriented to "swing" velocity vector towards concave side of path