PHYS 170 Section 101
Lecture 1/
October 17, 2018



Lecture Outline/Learning Goals

Wedge problem

END OF STATICS

START DYNAMICS

Rectilinear Kinematics: Continuous Motion (12.2)

General Curvilinear Motion (12.4)



Problem 8-67 (page 417, 12t edition)

(1) Determine the smallest horizontal force P required to lift the 100 kg cylinder.

The coefficients of static friction at A and B and between the wedge and the ground are

u, =06, u, =02, u.=0.3.
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Solution strategy T8

(1) Formulate Cartesian component equations of equilibrium, determining number of
unknowns and equations

(2) Supplement these equations with sufficient additional ones, based on assumption
of impending motion at some points, to have a solvable system

(3) Solve, check that remaining restrictions hold, repeat (2)-(3) as necessary



Data

m =100 kg g =9.81 m/s’ W =mg r=0.5m
0=10 t, =0.6 Uy =0.2 U =0.3

Cartesian component equations of equilibrium (Note: no tendency for wedge to

rotate, so don't consider moment equilibrium for it)

Wedge: ZszO: P-F.—-F,cos0—N,sin@ =0 (1)
ZFy:O: N.+F,sin0—-N;cos0=0 (2)
Cylinder: Y F,=0: F,cos@+N,sind—-N,=0 (3)
ZFyzO: —F,sinf+N,cos@—-F,-W =0 (4)

Y (M),=0:  Fir=F,r (5)



Restrictions

Equations (1) to (5) contain 7 unknowns

P,F,,N,,F,,N,, F., N,

We need two more equations to solve the problem

Assume impending sliding at C and B

Fo =N, (6)
Fy = 1y Ny (7)



Solution to equations (1) to (7)
(Note: Can transform this set to 4 equations in 4 unknowns (N,,N,, N, P), by making
the substitutions F, = u,N,, F. = u.N,. and F, = F, = u, N, (from (5)) in equations

(1)-(4). Exercise: solve the system)

P=857N F,=F,=262N F.=373N
N, =485N N, =1.31kN N, =124 kN

Check restrictions (no impending motion or motion at A)

F,<uN,=0.6(485) N=291 N = assumptions correct

Therefore, the smallest horizontal force required to lift the cylinder is P =857 N

Exercise: Describe what happens to the cylinder, i.e. what is its motion once

1t starts to move?



Assume impending sliding at C and A

FC = ILlCNC (6)
F,=pu,N, (7)

Solution to equations (1) to (7) (Exercise: solve the system)

P=1.11kN F,=F, =364 N F.=364 N
N, =607 N N, =143 kN N, =1.35kN

Check restrictions (no motion or impending motion at B)

F, > pu,N, =0.2(1430) N =286 N = assumptions incorrect



END OF STATICS!!



Chapter 12: Kinematics of a Particle

{8 Lars Johansson/Fotolia)
12_COCo1
Although each of these boats is rather large, from a distance their motion can be analyzed as if each were a
particle,
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physics [ fiziks]

n (functioning as singular)

1. (Physics / General Physics) the
branch of science concerned with
using extremely long and
complicated formulas to describe
how a ball rolls.




Recall from Lecture 1: Branches of Mechanics

= -

* Remainder of course will deal with dynamics, i.e. with the motion of
bodies that are not in equilibrium, i.e. with accelerated motion of bodies

* Will generally restrict attention to particles, or systems of particles (i.e.
size of bodies will not be important and/or considered)

* Dynamics itself will be considered in two parts

* Kinematics: Considers only the geometric aspects of accelerated
motion

* Kinetics: Analysis of forces causing accelerated motion, as well as
motion per se



Approach and Tools for Remainder of Course

* PROBLEM SOLVING
— Should continue to be the key focus of your efforts to master the material

— Dynamics is generally viewed as more involved than statics due to the
need to take into account the motion of bodies in addition to the forces

acting on them

« MATHEMATICAL TOOLS

— Many applications will now require calculus in addition to vector
analysis, algebra and trigonometry

— Will be working problems in different coordinate systems, e.g. polar [2D]
and cylindrical [3D] coordinates in addition to Cartesian coordinates

 BASIC PHYSICS CONCEPTS ARE IMPORTANT AS WELL!!



12.2 Rectilinear Kinematics: Continuous Motion

Here we restrict attention to straight line motion of a particle (has mass, but
negligible size, shape unimportant)

For bodies with finite size, approximation as a particle requires that center of
mass be used for description of motion, and that rotational effects be ignored

RECTILINEAR KINEMATICS: Specified by giving particle’s position,
velocity and acceleration as a function of time
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Position

Displacement

POSITION

Use single coordinate axis, s, with origin
at O

Position vector, r, 1s always along this
axis, so can represent the particle position
with an algebraic (signed) scalar, s

Typical units: m, ft, ...

DISPLACEMENT

Definition: Change in position
Vector: Ar=r'-r

Scalar: As=s"—s

Note: Displacement is a vectorial
quantity; must be distinguished from
distance traveled, which 1s a positive
scalar quantity

Typical units: m, ft, ...
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Definition: Rate of change of position
g _l with respect to time

Velocity

Average velocity

 If the displacement of the particle is Ar over a time interval Af¢, then
Ar
Vav =~ .
£ Ar
Instantaneous velocity (velocity)

* If the particle displacement 1s a continuous function of time (assumption in this
section), then the instantaneous velocity, v, 1s defined by

or



Instantaneous velocity (velocity) — scalar form

_ds

Yy =—
dt

* The sense of v is the same as that of ds (As)— the text uses an arrow notation to
emphasize the sense; we won’t adopt this notation in these notes

Speed

* Definition: Magnitude of velocity (text denotes this by v, since v as defined
above 1s a signed quantity)

* Typical units for velocity or speed: m/s, ft/s, ...

Average speed

* Definition: Positive scalar given by total distance, s, traveled in a given time
interval At
S T

(Vsp )avg = Zt



—— ACCELERATION

Q s+ Definition: Rate of change of velocity
— — > with respect to time

Acceleration

Average acceleration

 If the change in velocity of a particle is Av over a time interval Az, then

AV
aavg =
At

Instantaneous acceleration (acceleration)

* If the particle velocity is a continuous function of time (assumption in this
section), then the instantaneous velocity, a, 1s defined by

. Av
a=Ilim—
At—0 At

or



Instantaneous acceleration (acceleration) — scalar form

_dv

a__
dt

» Typical units for acceleration: m/s?, ft/s?, ...

* Since v=ds/dt, we have

 Note:

* ais asigned quantity: if a < 0, then particle is slowing down or decelerating

* If a =0, then velocity, v, 1s constant



* Now, start from a = dv/dt , and multiply both sides by ds (note that treatment of
differential quantities, such as ds, dt, dv, ... as algebraic values can be rigorously
justified)

ads =dsﬂ =§dv =vdv
dr dt
or
ads=vdy

* This last equation 1s useful in determining the velocity of a particle when the
acceleration 1s given as a function of position



Constant acceleration

*  We now consider the important special case where the acceleration, a, 1s a
constant, a.

* In this case, we can integrate various equations from above to get formulae
relating a,., v, s and 1.

Velocity as a function of time

Start from a, = %, so a.dt =dv
!

Integrating over the time interval [0,7], with the velocity at t =0

given by v,, we have

LV dv = L: a, dt
SO

V=Y, = Clcf
or

v=y,+a.Lt constant acceleration



Position as a function of time
ds
Start fromv=—, sovdt =ds

dt
Integrating over the time interval [0,7], with the position at # =0

given by s,, we have

J;S ds = 'fot vdt = J; (v, +a.t)dt

SO

S =8, =Vl +—a.Lt
2

or

§=8,+ Vyt+ Eactz constant acceleration



Velocity as function of position

Start from vdv = ads and integrate, using the initial values s, and

v, for the position and velocity, respectively:

J'v vdy = js a,ds

Vo So

Thus,
v vé
= e ac(S_SO)
)
or
y* = vg +2a.(s—s,) constant acceleration

« IMPORTANT: The above formulae are valid only for the case where the
acceleration is constant, such as for a freely falling body close to the surface of
the Earth



12.4 General Curvilinear Motion



0 .

Position

Displacement §

POSITION

Particle moves along path defined
(parameterized) by path function, s
Relative to point O (typically origin of
coordinate system), location of particle is
given by the position vector, r

r=r(r)

DISPLACEMENT

Change 1n position of particle over some
time interval Az , during which the
particle traverses a distance As along the
path

Ar=r'-r

Note that the magnitude of the
displacement, Ar, can be viewed as a

straight-line distance that approximates
As



VELOCITY

Average velocity

* Over the time interval Af, the average velocity is
given by

Velocity Ar
Vav =

AV
Instantaneous velocity (velocity)

e Take the limit Az -0 in the above, so that the direction of Ar approaches the
tangent to the curve at P

* Then the instantaneous velocity is given by

or



Instantaneous velocity (continued)

 NOTE: dr is tangent to the curve at P, so the
direction of v is also tangent to the curve

* The magnitude of v, which is again called the
speed, can be determined by considering the
magnitude of dr in the limit that Ar -0

* In this limit we have Velocity

lim Ar = As

Ar—0

so the speed, v, 1s given by P

. Ar . As
v=Ilm—=lm—
At—0 At At—0 At

or
_ds
dt

Displacement

v

* Note that this means that we can determine the speed of the particle by
differentiating the path function, s(7), with respect to time



ACCELERATION

Average acceleration

Suppose the particle has velocity v at time ¢, and
velocity v' = v+ Av at time ¢ + At

Then the average acceleration over the time
interval 1s

AvV
aavg —
At

We can study this time rate of change by
translating the velocity vectors so that their tails
coincide at some (arbitrary) fixed point O’

Velocity arrowheads then touch points on a curve
known as a hodograph, which 1s analogous to the
particle path for the position vector



Instantaneous acceleration (acceleration)

* Again, we can take the limit Ar - 0 in the expression for the average

acceleration, and this gives the instantaneous acceleration, or simply the
acceleration, a, of the particle

. Av
a=lim—
At—0 At

or

_av

Q=—
dt

» Substituting v =dr/ dt in the above, we also have

_d°r

Q=—
dr’



Acceleration

Hodograph

o’

! path

(Instantaneous) Acceleration (continued)

NOTE: The direction of a (and dv) is always
tangent to the hodograph and not, in general,
tangent to the particle path

In particular, note that a must account for the
change in direction of v as well as the change in
magnitude of v

In order for particle to follow path, a must
“swing” v towards “inside” (“‘concave side’’) of
path as shown in the figure at the left



