PHYS 170 Section 101 Lecture 4
September 12, 2018

Lecture Outline/Learning Goals

- Finish introduction to Cartesian vectors
- Cartesian vector: direction, coordinate direction angles, direction cosines
- Operations with Cartesian vectors
- Concurrent force systems
- Interpretation of 3D figures
- Sample problem (concurrent force system)

CARTESIAN VECTOR REPRESENTATION \& MAGNITUDE OF A CARTESIAN VECTOR

$$
\begin{aligned}
& \mathbf{A}=A_{x} \mathbf{i}+A_{y} \mathbf{j}+A_{z} \mathbf{k} \\
& A=\sqrt{A_{x}^{2}+A_{y}^{2}+A_{z}^{2}}
\end{aligned}
$$

Cappright 02016 Pearaon Education, all Rughes Reserved
A_{x}, A_{y} and A_{z} can have either sign in general.

Rene Descartes (1596-1650)

One of Descartes' most enduring legacies was his development of Cartesian or analytic geometry, which uses algebra to describe geometry. He "invented the convention of representing unknowns in equations by x, y, and z, and knowns by a, b, and $c . "$... (Wikipedia)

DIRECTION OF A CARTESIAN VECTOR

- Introduce coordinate direction angles

$$
\alpha, \beta, \gamma
$$

as measured between the tail of the vector and the positive x, y, z axes located at the tail

DIRECTION COSINES

(a)

$$
\cos \alpha=\frac{A_{x}}{A} \quad \cos \beta=\frac{A_{y}}{A} \quad \cos \gamma=\frac{A_{z}}{A}
$$

- Consider unit vector in direction of \mathbf{A}

$$
\mathbf{u}_{A}=\frac{\mathbf{A}}{A}=\frac{A_{x}}{A} \mathbf{i}+\frac{A_{y}}{A} \mathbf{j}+\frac{A_{z}}{A} \mathbf{k}
$$

- Therefore have

$$
\mathbf{u}_{A}=\cos \alpha \mathbf{i}+\cos \beta \mathbf{j}+\cos \gamma \mathbf{k}
$$

- Important relationship (since \mathbf{u}_{A} is a unit vector)

$$
\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma=1
$$

RELATION TO CARTESIAN VECTOR FORM

- Will sometimes be given a vector in terms of its magnitude and direction angles
- Can then convert to Cartesian vector form using

$$
\begin{aligned}
\mathbf{A} & =A \mathbf{u}_{A} \\
& =A \cos \alpha \mathbf{i}+A \cos \beta \mathbf{j}+A \cos \gamma \mathbf{k} \\
& =A_{x} \mathbf{i}+A_{y} \mathbf{j}+A_{z} \mathbf{k}
\end{aligned}
$$

ADDITION \& SUBTRACTION OF CARTESIAN VECTORS

- EASY!! Simply add/subtract corresponding components
- ADDITION

$$
\begin{aligned}
\mathbf{R} & =\mathbf{A}+\mathbf{B} \\
& =\left(A_{x}+B_{x}\right) \mathbf{i}+\left(A_{y}+B_{y}\right) \mathbf{j}+\left(A_{z}+B_{z}\right) \mathbf{k}
\end{aligned}
$$

- SUBTRACTION

$$
\begin{aligned}
\mathbf{R}^{\prime} & =\mathbf{A}-\mathbf{B} \\
& =\left(A_{x}-B_{x}\right) \mathbf{i}+\left(A_{y}-B_{y}\right) \mathbf{j}+\left(A_{z}-B_{z}\right) \mathbf{k}
\end{aligned}
$$

CONCURRENT FORCE SYSTEMS

- Can extend this technique of vector addition to system of an arbitrary number of concurrent (simultaneously applied) forces
- General resultant force is given by

$$
\mathbf{F}_{R}=\Sigma \mathbf{F}=\Sigma F_{x} \mathbf{i}+\Sigma F_{y} \mathbf{j}+\Sigma F_{z} \mathbf{k}
$$

Interpreting Three-dimensional (3D) Figures
 (expressing vectors in Cartesian form)

Express \mathbf{F} as a
Cartesian vector

(a)

(a)
$\left|\vec{F}^{\prime}\right|=|\vec{F}| \cos 60^{\circ}=(100 \mathrm{lb}) \cos 60^{\circ}=50 \mathrm{lb}$ $F_{x}=\left|\vec{F}^{\prime}\right| \cos 45^{\circ}=(50 \mathrm{lb}) \cos 45^{\circ}=35.4 \mathrm{lb}$ $F_{y}=-\left|\vec{F}^{\prime}\right| \sin 45^{\circ}=-(50 \mathrm{lb}) \sin 45^{\circ}=-35.4 \mathrm{lb}$ $F_{z}=|\vec{F}| \sin 60^{\circ}=(100 \mathrm{lb}) \sin 60^{\circ}=86.6 \mathrm{lb}$ $\vec{F}=(35.4 \vec{i}-35.4 \vec{j}+86.6 \vec{k}) \mathrm{lb}$

(b)

02_030b_EX08 are the components of the force \vec{F}, not the magnitudes of the vectors \vec{F}_{x}, \vec{F}_{y} and \vec{F}_{z} (text differs)

Problem F2-18 (page 51)

Determine the resultant force acting on the block

Shaded blue triangles always have one vertex that concides with origin. Among other things means that vector \vec{F}_{1} lies in the $y z$ plane (i.e. no x component). Resolution of \vec{F}_{2} into components follows same two-step * procedure as previously to determine $F_{2 x}$ and $F_{2 y}$

$$
\begin{aligned}
& F_{1 y}=\left(\frac{4}{5}\right)(500)=400 \mathrm{lb} \\
& F_{1 z}=\left(\frac{3}{5}\right)(500)=300 \mathrm{lb} \\
& F_{2 x}=(800)\left(\cos 45^{\circ}\right)\left(\cos 30^{\circ}\right)=489.90 \mathrm{lb} \\
& F_{2 y}=(800)\left(\cos 45^{\circ}\right)\left(\sin 30^{\circ}\right)=282.84 \mathrm{lb} \\
& F_{2 z}=-(800)\left(\sin 45^{\circ}\right)=-565.69 \mathrm{lb}
\end{aligned}
$$

Note that we have suppressed units in the intermediate steps of the calculation. This is perfectly acceptable practice. Just ensure that your final

$$
\begin{aligned}
\vec{F}_{R} & =\sum F_{x} \vec{i}+\sum F_{y} \vec{j}+\sum F_{z} \vec{k} \\
& =(490 \vec{i}+683 \vec{j}-266 \vec{k}) \mathrm{lb}
\end{aligned}
$$ answers ALWAYS include units.

Problem F2-14 (page 51)

Express the force as a Cartesian vector

In this example, the angles which are given are coordinate direction angles. Specifically, we are given $\alpha=60^{\circ}$ and $\gamma=60^{\circ}$. From those, and the equation $\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma=1$ we can determine β.
$\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma=1$
$\cos \beta=\sqrt{1-\cos ^{2} 60^{\circ}-\cos ^{2} 60^{\circ}}= \pm 0.70711$
We choose $\cos \beta=-0.70711$ since $F_{y}<0$ from
 the figure.

Expressing the force as a Cartesian vector we have

$$
\begin{aligned}
F & =F \vec{u}_{F} \\
& =(500)\left(-\cos 60^{\circ} \vec{i}-0.70711 \vec{j}+\cos 60^{\circ} \vec{k}\right) \\
& =(-250 \vec{i}-354 \vec{j}+250 \vec{k}) \mathrm{N}
\end{aligned}
$$

Problem 2-79, (page 54, $12^{\text {th }}$ edition)

Specify the magnitude of \vec{F}_{3} and its coordinate direction angles α_{3}, β_{3} and γ_{3} so that the resultant force is $9 \vec{j} \mathrm{kN}$

Fig. (a)
Fig. (b)

PROB02_079.jpg
Copyright 02010 Pearson Prentice Hall, Inc.

