
PHYSICS 410

FINAL EXAM REVIEW



Ground Rules / General Information

• The exam is completely closed book and electronics-free: no books, notes,
calculators, computers or cell-phones

• The exam will generally involve calculations of various length based on class
notes, tutorials and homework/project assignments.

• Three questions, but multi-part

• You will have 150 minutes (2 1/2 hours) to complete the test

• The review materials given below are not to be considered a complete set of
notes for exam study—you are ultimately responsible for all material that was
covered in class, tutorials and the homeworks and projects; nonetheless start
here first if you’re short on time

• No coding in exam (could be pseudo-coding)

• No coverage of Fourier transforms

• I dropped some hints during lectures; consult classmates if you missed those
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Polynomial Interpolation

• Given n data points:

(xj, fj), j = 1, 2, . . . , n

construct unique polynomial of maximum degree n− 1 that passes through all
of the data points (degree of polynomial ≡ largest power of independent var.)

p(x) =

n−1∑
i=0

cix
i

• Lagrange approach

p(x) =

n∑
j=1

fj lj(x)

lj(x) =

n∏
i=1,i6=j

x− xi
xj − xi
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Barycentric Polynomial Interpolation

• Define barycentric weights

wj =
1∏n

k=1,k 6=j(xj − xk)

• Then

p(x) = l(x)

n∑
j=1

wj
x− xj

fj

or

p(x) =

n∑
j=1

wj
x−xj

fj

n∑
j=1

wj
x−xj
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Polynomial Interpolation: Symbolic Example

• Consider 3 equispaced data points:

(x0 − h, f−1), (x0, f0), (x0 + h, f1)

• Construct the Lagrange interpolating polynomial for these values, then evaluate
the derivative at x = x0.

• Without loss of generality, we can set x0 = 0, so that the data points are

(−h, f−1), (0, f0), (h, f1)
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p(x) =
3∑
j=1

fj lj(x)

= f−1
x(x− h)

(−h)(−2h)
+ f0

(x+ h)(x− h)

(h)(−h)
+ f1

(x+ h)(x)

(2h)(h)

= f−1
x2 − hx

2h2
− f0

x2 − h2

h2
+ f1

x2 + hx

2h2

• Now, since the above expression is a polynomial in x, to determine the
derivative evaluated at x = 0, we simply need to read off the coefficient of the
linear term of the polynomial. Thus we have

dp

dx

∣∣∣∣∣
x=0

=
f1 − f−1

2h
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Solution of Nonlinear Equations: Bisection

• Given f(xmin)f(xmax) < 0

converged = false

fmin = f(xmin)

while not converged do

xmid = (xmin + xmax) / 2

fmid = f(xmid)

if fmid == 0

break

elseif fmid * fmin < 0 then

xmax = xmid

else

xmin = xmid

fmin = fmid

end if

if (xmax - xmin) / abs(xmid) < epsilon then

converged = true

end if

end while

root = xmid
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Newton’s Method in 1 Dimension

x(n+1) = x(n) − f(x(n))

f ′(x(n))
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Newton’s Method in d Dimensions

• Want to solve

f(x) = 0

where

x = (x1, x2, . . . , xd)

f = (f1(x), f2(x), . . . , fd(x))
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• Newton iteration

x(n+1) = x(n) − δx(n)

where the update vector, δx(n), satisfies the d× d linear system

J[x(n)] δx(n) = f(x(n))

• Jacobian matrix, J[x(n)], has elements

Jij[x
(n)] =

∂fi
∂xj

∣∣∣∣∣
x=x(n)
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Finite Difference Approximation

• Taylor series

f(x+ h) =

∞∑
n=0

hn
f (n)(x)

n!
h is the expansion parameter

• Example

f(x+ h) = f(x) + hf ′(x) +
h2

2
f ′′(x) +

h3

6
f ′′′(x) +

h4

24
f ′′′′(x) +O(h5)

• Domain discretization

∆x =
xmax − xmin

nx − 1

xj ≡ xmin + (j − 1)∆x, j = 1, 2, . . . , nx

∆x =
xmax − xmin

2l
l is level parameter
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Derivation of FDAs

• Example: O(h2) centred approximation for f ′(x)

1

2

(
f(x+ ∆x)− f(x)

∆x
+
f(x)− f(x−∆x)

∆x

)
=
f(x+ ∆x)− f(x−∆x)

2∆x

f ′(xj)→
fj+1 − fj−1

2∆x

• Truncation error: Taylor series

f(x+ ∆x) = f(x) + ∆xf ′(x) +
∆x2

2
f ′′(x) +

∆x3

6
f ′′′(x) +O(∆x4)

f(x−∆x) = f(x)−∆xf ′(x) +
∆x2

2
f ′′(x)− ∆x3

6
f ′′′(x) +O(∆x4)
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• Gives

f(x+ ∆x)− f(x−∆x)

2∆x
= f ′(x) +

1

6
∆x2f ′′′(x) +O(∆x4)

= f ′(x) +O(∆x2)

• Example: O(h2) centred approximation for f ′′(x)

f ′′(xj)→
fj+1 − 2fj + fj−1

∆x2
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f(x−∆x) = f(x)−∆xf ′(x) +
∆x2

2
f ′′(x)− ∆x3

6
f ′′′(x) +

∆x4

24
f ′′′′(x) +O(∆x5)

f(x) = f(x)

f(x+ ∆x) = f(x) + ∆xf ′(x) +
∆x2

2
f ′′(x) +

∆x3

6
f ′′′(x) +

∆x4

24
f ′′′′(x) +O(∆x5)

• Adding series, then dividing by ∆x2 we have

f(x+ ∆x)− 2f(x) + f(x−∆x)

∆x2
= f ′′(x)+

∆x2

12
f ′′′′(x)+. . . = f ′′(x)+O(∆x2)

• Subtracting the continuum expression, f ′′(x) from the above, we have the
truncation error

∆x2

12
f ′′′′(x) +O(∆x4) = O(∆x2)
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Derivation of FDAs Using Taylor Series

• Example: Determine approximation to f ′′(x) that uses grid points xj−1, xj and
xj+1.

• Assume a linear combination of truncated Taylor series for fj−1, fj and fj+1

will give the formula; require

αfj−1 + βfj + γfj+1 = f ′′(x) + . . .

• Taylor expanding

fj−1 = f(x−∆x) = f(x)−∆xf ′(x)+
∆x2

2
f ′′(x)−∆x3

6
f ′′′(x)+

∆x4

24
f ′′′′(x)+O(∆x5)

fj = f(x)

fj+1 = f(x+∆x) = f(x)+∆xf ′(x)+
∆x2

2
f ′′(x)+

∆x3

6
f ′′′(x)+

∆x4

24
f ′′′′(x)+O(∆x5)

14



• From requirement that first equation yields f ′′(x) at leading order, and the
Taylor expansions, we have three linear equations

α+ β + γ = 0

−α+ γ = 0

∆x2

2
(α+ γ) = 1

• Solving:

α =
1

∆x2

β = − 2

∆x2

γ =
1

∆x2

so our FDA is

f ′′(xj)→
fj+1 − 2fj + fj−1

∆x2

as previously.
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Richardson Extrapolation

• Basic idea: FD Approximations using different scales of discretization, h1, h2,
etc. but same finite difference template, can be combined to produce an
approximation of higher order

• Example: O(∆x4) Centred approximation of first derivative from O(∆x2)
formula

• Have

L∆xfj =
fj+1 − 2fj + fj−1

∆x2
= f ′′(xj) +

1

12
∆x2f ′′′′(xj) +O(∆x4)

• Same formula, but applied on the scale 2∆x:

L2∆xf =
fj+2 − 2fj + fj−2

(2∆x)2
= f ′′(xj) +

1

12
(2∆x)2f ′′′′(xj) +O(∆x4)
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• Take linear combination
αL∆xfj + βL2∆xfj

so that leading order term is f ′(xj) and leading order error term is eliminated

α+ β = 1

α+ 4β = 0

Solving this system

α =
4

3

β = −1

3
Then

4

3
L∆xfj −

1

3
L2∆xfj =

16fj+1 − 32fj + 16fj−1

12∆x2 − fj+2 − 2uj + fj−2

12∆x2

So O(h4) approximation is

f ′′(xj) ≈
−fj+2 + 16fj+1 − 30fj + 16fj−1 − fj−2

12∆x2
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FDA Example: Nonlinear Pendulum

• Equation of motion, initial conditions:

d2θ

dt2
= − sin θ 0 ≤ t ≤ tmax

θ(0) = θ0

ω(0) = ω0

• O(h2) FDA (explicit):

θn+1 − 2θn + θn−1

∆t2
= − sin θn n = 2, 3, . . . nt − 1)

or
θn+1 = 2θn − θn−1 −∆t2 sin θn n = 2, 3, . . . nt − 1)
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• Initialization:
θ1 = θ(0) = θ0

and

θ(∆t) = θ(0) + ∆t
dθ

dt
(0) +

1

2
∆t2

d2θ

dt2
(0) +O(∆t3)

≈ θ0 + ∆t ω0 +
1

2
∆t2

d2θ

dt2
(0)

• Now use equation of motion to eliminate d2θ/dt2; i.e. d2θ/dt2 = − sin θ, so we
have

θ(∆t) ≈ θ0 + ∆t ω0 −
1

2
∆t2 sin θ0
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Solving ODEs

• Know how to cast system of ODEs into first order form; example

y′′(x) + q(x)y′(x) = r(x) ′ ≡ d

dx

• Introduce new variable z(x) ≡ y′(x), then above becomes

y′ = z

z′ = r − qz

• Know distinction between initial value and boundary value problems

• Know basic methods

• Euler
• Modified Euler
• Improved Euler
• Fourth order Runge-Kutta
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Solving ODEs: Independent Residual Evaluation

• Idea: Attempt to directly verify that approximate solution, û satisfies the
ODE(s) through the use of an independent discretization of the ODE (i.e. a
discretization distinct from that used by the ODE integrator).

Lhû(ε) =
(
L+ h2E2 + h4E4 + · · ·

)
(u+ e(ε))

= Lu+ h2E2u+ · · ·+ Lhe(ε)

≈ h2E2 [u] + Lh [e(ε)]

≈ h2E2 [u] = h2r = O(h2)

• SHM example
dy1

dt
= y2

dy2

dt
= −y1

• Independent residual (y = y1)

Rn ≡
ŷn+1 − 2ŷn + ŷn−1

h2
+ ŷn
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ODE IVPs: Example Problems

• Understand solution approach and qualitative physics of

• Orbiting dumbbell
• One-dimensional Toda lattice
• Driven Van der Pol Oscillator
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ODEs: Boundary Value Problems

• Example: Toy model for deuteron (u(r) = rψ(r), x ≡ (2m)1/2r)

d2u

dx2
+ (E − V )u = 0

V (x) =

{
−1 0 ≤ x < x0

0 x > x0

• First order form

du

dx
= w

dw

dx
= (V − E)u

• Initial conditions u(0) = 0 (regularity), w(0) = 1 (arbitrary), shoot on value of
E = E(x0) until solution approaches 0 for large x
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Time Dependent PDEs: IVPs

• IVP nomenclature not precise; in most cases we are solving initial-boundary
value problems since boundary conditions will need to be satisfied

• Understand the following terms and concepts (apply to all FDAs, including
those derived for ODEs)

• Residual
• Truncation error
• Consistency
• Convergence
• Accuracy
• Solution Error
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1-d Diffusion Equation (Forward Time, Centred
Space)

• Continuum Equation

u(x, t)t = σuxx , u(x, 0) = u0(x) , u(0, t) = u(1, t) = 0

• Interior FDA
un+1
j − unj

∆t
= σ

unj+1 − 2unj + unj−1

∆x2

• Truncation error

τ =
(
∂ht − σ∂hxx

)
u =

1

2
∆t(utt)

n
j−

1

12
σ∆x2(uxxxx)

n
j+O(∆t2)+O(∆x4) = O(∆t,∆x2)

• Discretized boundary conditions and initial conditions

u
n+1
1 = u

n+1
J = 0 , u

0
j = u0(xj)
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Von Neumann Stability Analysis

• Consider update operation in Fourier space (k-space)

ũ
n+1

(k) = G̃[ũ
n
(k)] ,

where

ũ
n
(k) =

1√
2π

∫ +∞

−∞
e−ikxu

n
(x) dx .

• For a general difference scheme, we will find (ξ ≡ kh ≡ k∆x)

ũ
n+1

(k) = G̃(ξ) ũ
n
(k) ,

• Determining stability conditions ≡ determining conditions such that G̃(ξ)’s
eigenvalues lie within or on the unit circle for all conceivable ξ

• Appropriate range for ξ is
−π ≤ ξ ≤ π ,

26



Diffusion Equation: Stability Analysis

• Define a (non-divided) difference operator D2 as follows:

D2 u(x) = u(x+ h)− 2u(x) + u(x− h) .

• Suppress spatial grid index, difference equation is

u
n+1

= u
n

+ αD2 u
n
,

where α ≡ σ∆t/h2 = σ∆t/∆x2 (but σ = 1 below).

• Need to know the action of D2 in Fourier-space. Using the inverse transform
have

u(x) =
1√
2π

∫ +∞

−∞
eikx ũ(k) dk ,

so
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D2 u(x) = u(x+ h)− 2u(x) + u(x− h) ∝
∫ +∞

−∞

(
eikh − 2 + e−ikh

)
eikx ũ(k) dk

∝
∫ +∞

−∞

(
eiξ − 2 + e−iξ

)
eikx ũ(k) dk .

• Now consider the quantity −4 sin2(ξ/2):

−4 sin2 ξ

2
= −4

(
eiξ/2 − e−iξ/2

2i

)2

=
(
eiξ/2 − e−iξ/2

)2

= eiξ − 2 + e−iξ ,

so

D2 u(x) =
1√
2π

∫ +∞

−∞

(
−4 sin2 ξ

2

)
eikx ũ(k) dk .

• In summary, under Fourier transformation, we have

u(x) −→ ũ(k) ,

D2u(x) −→ −4 sin2 ξ

2
ũ(k) .
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• Difference scheme is
u
n+1

= u
n

+ αD2u
n

• Using these results in the Fourier transform of the update, we have (cancelling
all of the 1/

√
2π’s)

∫ +∞

−∞
eikxũ(k)

n+1
dk =

∫ +∞

−∞
eikxũ(k)

n
dk − α

∫ +∞

−∞
eikx4 sin2 ξ

2
ũ(k)

n
dk

• So amplification factor in Fourier space is

G̃(ξ) = 1− 4α sin2 ξ

2

• Thus, for stability—|G̃(ξ)| ≤ 1—we must have

4α sin2 ξ

2
≤ 2 → α ≤ 1

2
→ ∆t

∆x2 ≤
1

2

29



Diffusion Equation: Crank-Nicolson Scheme

• Average spatial operators at tn and tn+1

un+1
j − unj

∆t
=

1

2
σ

(
un+1
j+1 − 2un+1

j + un+1
j−1

∆x2
+
unj+1 − 2unj + unj−1

∆x2

)

• Truncation error (note expansion about (x, t) = (xj, t
n+1/2))

τ =
1

24
∆t2(uttt)

n+1/2
j − 1

8
σ∆t2(uttxx)

n+1/2
j − 1

12
σ∆x2(uxxxx)

n+1/2
j

+O(∆t4) +O(∆x4) +O(∆t2∆x2)

= O(∆t2,∆x2)

• Stability: Write scheme as(
1− α

2
D2
)
u
n+1
j =

(
1 +

α

2
D2
)
u
n
j
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• Now apply Fourier transform. Get(
1 + 2α sin2 ξ

2

)
ũ(k)

n+1
=

(
1− 2α sin2 ξ

2

)
ũ(k)

n

• So amplification factor is

G̃(ξ) =
1− 2α sin2(ξ/2)

1 + 2α sin2(ξ/2)

• This is of the form
1−X
1 +X

with X ≥ 0, which we can show satisfies∣∣∣1−X
1 +X

∣∣∣ ≤ 1

• Thus, we have
G̃(ξ) ≤ 1

for all ξ and α, so this scheme is unconditionally stable
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1-d Schrödinger Equation

• Continuum equation: (ψ complex)

iψt = − h̄
2

2m
ψxx + V (x, t)ψ

• Non-dimensionalize, solve on unit interval with homogeneous Dirichlet
conditions

iψt = −ψxx + V ψ

ψ(x, 0) = ψ0(x)

ψ(0, t) = ψ(1, t) = 0
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• Apply Crank-Nicholson differencing

i
ψn+1
j − ψnj

∆t
= − 1

2

(
ψn+1
j+1 − 2ψn+1

j + ψn+1
j−1

∆x2 +
ψnj+1 − 2ψnj + ψnj−1

∆x2

)

+
1

2
V
n+1/2
j

(
ψ
n+1
j + ψ

n
j

)
ψ
n+1
1 = ψ

n+1
J = 0

• Truncation error

τ = O(∆t2,∆x2)

• Stability

• In stability analysis, can neglect terms that do not involve spatial or temporal
derivatives (theorem)

• Thus can ignore potential term in stability analysis
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• Write scheme (without V ) as(
i+

1

2
αD2

)
ψ
n+1

=

(
i− 1

2
αD2

)
ψ
n

where D2 is as defined for the diffusion equation and α = ∆t/∆x2

• Under Fourier transform, this becomes(
i− 2α sin2 ξ

2

)
ψ̃
n+1

(k) =

(
i+ 2α sin2 ξ

2

)
ψ̃
n
(k)

• Thus, the amplification factor is

G̃(ξ) =
i+ 2α sin2 ξ

2

i− 2α sin2 ξ
2

which has unit modulus for all α and ξ

• Thus, the scheme is unconditionally stable.
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Implicit Schemes

• The Crank-Nicholson schemes for the diffusion and Schrödinger equation are
implicit

• Written as a linear system for the advanced unknown vector, un+1
j

Au
n+1
j = b

the matrix A is tridiagonal

• Know how to identify such systems (including the boundary conditions), and
how to set up and solve them in MATLAB (codeless description).
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1-d Wave Equation

• Continuum equation (non-dimensionalized, c = 1)

u(x, t)tt = uxx , u(x, 0) = u0(x) , ut(x, 0) = v0(x) , u(0, t) = u(1, t) = 0

• Interior FDA

un+1
j − 2unj + un−1

j

∆t2
=
unj+1 − 2unj + unj−1

∆x2 j = 2, 3, · · · , J − 1

• Truncation error

τ =
1

12
∆t2(utttt)

n
j −

1

12
∆x2(uxxxx)

n
j +O(∆t4)+O(∆x4) = O(∆t2,∆x2) = O(h2)

• Discrete boundary conditions

u
n+1
1 = u

n+1
J = 0
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• Discrete initial conditions

u
0
j , j = 1, 2, · · · , J

u
1
j , j = 1, 2, · · · , J

• First time level comes from u0(x)

u
0
j = u0(xj)

• u1
j must be initialized up to and including terms of order O(∆t2):

u
1
j = u

0
j + ∆t (ut)

0
j +

1

2
∆t2 (utt)

0
j +O(∆t3)

= u
0
j + ∆t (ut) +

1

2
∆t2 (uxx)

0
j +O(∆t3)

≈ u0(xj) + ∆t v0(xj) +
1

2
∆t2u′′0(xj)
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• Stability analysis

• First rewrite difference equation in “first order” form; introduce vnj = un−1
j :

u
n+1
j = 2u

n
j − v

n
j + λ2

(
u
n
j+1 − 2u

n
j + u

n
j−1

)
,

v
n+1
j = u

n
j ,

or, in matrix form [
u
v

]n+1

=

[
2 + λ2D2 −1

1 0

] [
u
v

]n

• Under Fourier transformation this becomes[
ũ
ṽ

]n+1

=

[
2− 4λ2 sin2 ξ/2 −1

1 0

] [
ũ
ṽ

]n

• We must now determine conditions under which above matrix has eigenvalues
that lie within or on the unit circle
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• Characteristic equation (whose roots are the e.v.’s) is∣∣∣∣∣ 2− 4λ2 sin2(ξ/2)− µ −1
1 −µ ,

∣∣∣∣∣ = 0

or

µ2 +

(
4λ2 sin2 ξ

2
− 2

)
µ+ 1 = 0 .

• Equation has roots

µ(ξ) =

(
1− 2λ2 sin2 ξ

2

)
±

((
1− 2λ2 sin2 ξ

2

)2

− 1

)1/2

.

• Need sufficient conditions for
|µ(ξ)| ≤ 1,

or equivalently
|µ(ξ)|2 ≤ 1.

• Can write
µ(ξ) = (1−Q) ± ((1−Q)2 − 1)1/2 ,
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where

Q ≡ 2λ2 sin2 ξ

2
,

is real and non-negative (Q ≥ 0).

• Three cases to consider:

1. (1−Q)2 − 1 = 0 ,
2. (1−Q)2 − 1 < 0 ,
3. (1−Q)2 − 1 > 0 .

• Case 1: Q = 0 or Q = 2; in both cases |µ(ξ)| = 1

• Case 2: ((1−Q)2 − 1)1/2 is purely imaginary, so

|µ(ξ)|2 = (1−Q)2 + (1− (1−Q)2) = 1 .

• Case 3: (1−Q)2 − 1 > 0 −→ (1−Q)2 > 1 −→ Q > 2, then

1−Q− ((1−Q)2 − 1)1/2 < −1 ,

so stability criterion will always be violated.
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• Thus, necessary condition for Von-Neumann stability is

(1−Q)2 − 1 ≤ 0 −→ (1−Q)2 ≤ 1 −→ Q ≤ 2 .

• But Q ≡ 2λ sin2(ξ/2) and sin2(ξ/2) ≤ 1, so have

λ ≡ ∆t

∆x
≤ 1 ,

for stability of our scheme
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2-d Diffusion Equation: ADI Solution

• Continuum equation: u = u(x, y, t), σ = 1

ut = uxx + uyy , 0 ≤ x ≤ 1 , 0 ≤ y ≤ 1 , t ≥ 0

u(x, y, t) = u0(x, y) , u(0, y, t) = u(1, y, t) = u(x, 0, t) = u(x, 1, t) = 0

• Define operators

∂hxxu
n
i,j =

uni+1,j − 2uni,j + uni−1,j

∆x2

∂hyyu
n
i,j =

uni,j+1 − 2uni,j + uni,j−1

∆y2

• FDA
un+1
i,j − u

n
i,j

∆t
=

1

2

(
∂hxx + ∂hyy

) (
u
n+1
i,j + u

n
i,j

)
• Truncation error

τ = O(∆x2,∆t2)
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• ADI solution(
1− ∆t

2
∂hxx

)(
1− ∆t

2
∂hyy

)
u
n+1
i,j =

(
1 +

∆t

2
∂hxx

)(
1 +

∆t

2
∂hyy

)
u
n
i,j

• Retains O(∆x2,∆t2) truncation error

• System can be solved in stages by introducing an intermediate gridfunction,

u
n+1

2
i,j , then solving in turn

(
1− ∆t

2
∂hxx

)
u
n+1

2
i,j =

(
1 +

∆t

2
∂hxx

)(
1 +

∆t

2
∂hyy

)
u
n
i,j

(
1− ∆t

2
∂hyy

)
u
n+1
i,j = u

n+1
2

i,j

• Solve via

• Stage 1: For each j = 2, 3, . . . n− 1 solve a tridiagonal system for u
n+1

2
i,j ,

i = 1, 2, . . . n
• Stage 2: For each i = 2, 3, . . . n− 1 solve a tridiagonal system for un+1

i,j ,
j = 1, 2, . . . n
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PDEs: Elliptic Equations

• Model problem: Poisson equation on unit square

∇u(x, y) ≡ uxx + uyy = f(x, y)

on
Ω : 0 ≤ x ≤ 1 , 0 ≤ y ≤ 1

subject to
u(0, y) = u(1, y) = u(x, 0) = u(x, 1) = 0 .

• O(h2) discretization

ui+1,j + ui−1,j + ui,j+1 + ui,j−1 − 4ui,j
h2

= fi,j 2 ≤ i, j ≤ n− 1

u1,j = un,j = ui,1 = ui,n = 0, 1 ≤ i, j ≤ n
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• Solution by Gauss-Seidel relaxation

r
(n)
i,j = h−2

(
u

(n+1)
i−1,j + u

(n)
i+1,j + u

(n+1)
i,j−1 + u

(n)
i,j+1 − 4u

(n)
i,j

)
− fi,j

Fhi,j =
ui+1,j + ui−1,j + ui,j+1 + ui,j−1 − 4ui,j

h2
− fi,j = 0

u
(n+1)
i,j = u

(n)
i,j − r

(n)
i,j

[
∂Fhi,j
∂ui,j

∣∣∣
ui,j=u

(n)
i,j

]−1

= u
(n)
i,j −

r
(n)
i,j

−4h−2

= u
(n)
i,j +

1

4
h2r

(n)
i,j

• Solution by successive overrelaxation (SOR) (û = GS solution):

u
(n+1)
i,j = ωû

(n+1)
i,j + (1− ω)u

(n)
i,j
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• Generating a test solution:

• Strategy: specify u(x, y) that satisfies boundary conditions, then compute
corresponding r.h.s. function, f(x, y)

u(x, y) = sin(ωxx) sin(ωyy)

where ωx and ωy are integer multiples of π

• Then
f(x, y) = −

(
ω2
x + ω2

y

)
u(x, y)

• NOTE: This strategy of specifying a solution that satisfies appropriate
conditions and then, from the governing equation, computing an effective
source term can be used in many contexts, including the solution of ODEs and
time-dependent PDEs.
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Generation of Non-uniform Pseudo-Random
Numbers

• Given a probability distribution function p(x), and a uniform pseudo-random
number generator, the following pseudo-code describes an algorithm that will
generate random numbers distributed according to p(x)

accept = false

until accept do

x = random(xmin, xmax)

y = random(0, pmax)

if y < p(x) then

rand = x

accept = true

end if

end do
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Monte Carlo Algorithm

set T and H

initialize all spins s_i (i = 1, 2, ...n^2)

for desired number of Monte Carlo sweeps through lattice

for each spin

calculate E_flip

if E_flip <= 0

flip spin

else

generate r = random(0,1)

if r <= exp(-E_flip/(k_B T))

flip spin

else

leave spin as is

end

end

end

compute new energy, magnetization, ...

end
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