PHYSICS 410

SOLVING BVPs WITH THE ode45 INTEGRATOR AND SHOOTING

Introduction

- Recall: Two pt. boundary value problem (BVP); b.c.'s supplied at two points-typically end points of soln domain-rather than at some single pt as in the case of an IVP
- In idealized physical problems, one of the points will often be $x=\infty$
- 2-pt. BVPs often (but not always) eigenvalue problems
- Problem characterized by parameter (the eigenvalue), and solutions satisfying b.c.'s only exist for certain values of that parameter
- Often a countable infinity of solutions (eigenfunctions) and parameters

Example

- Second order linear ODE:

$$
u^{\prime \prime}(x)=-\omega^{2} u(x) \quad \text { on } \quad 0 \leq x \leq 1
$$

with b.c.'s

$$
u(0)=u(1)=0
$$

- Countable infinity of solutions, $u_{n}(x)$

$$
\begin{gathered}
u_{n}(x)=\sin \left(\omega_{n} x\right) \\
\omega_{n}=\pi n, n=0,1,2, \ldots
\end{gathered}
$$

- $u_{n}(x)$ are the eigenfunctions, ω_{n} are the eigenvalues

Example: Toy model for deuteron (proton-neutron) from Arfken, Ex. 9.1.2

- Potential

$$
\begin{gathered}
V=V_{0}, V_{0}<0 \quad \text { for } \quad 0 \leq r \leq a \\
V=0 \quad \text { for } \quad r>a
\end{gathered}
$$

Time Independent Schrödinger Equation

$$
\begin{equation*}
-\frac{\hbar^{2}}{2 m} \nabla^{2} \psi+V \psi=E \psi \tag{1}
\end{equation*}
$$

where m is the "deuteron" mass

- Assume spherical symmetry, then $\psi(x, y, z) \rightarrow \psi(r)$

$$
\nabla^{2} \psi(r)=\frac{1}{r^{2}} \frac{d}{d r}\left(r^{2} \frac{d \psi}{d r}\right)
$$

- Define $u(r) \equiv r \psi(r)$, then (verify)

$$
\nabla^{2} \psi(r) \rightarrow \frac{1}{r} \frac{d^{2} u(r)}{d r^{2}}
$$

- so (1) can be written

$$
\begin{equation*}
\frac{d^{2} u}{d r^{2}}+\frac{2 m}{\hbar^{2}}(E-V) u=0 \tag{2}
\end{equation*}
$$

- Now, as discussed in Arfken, progress can be made in solving (2) by writing down the general solutions in the domains $0 \leq r \leq a$ and $r>a$ and matching u and $d u / d r$ at $r=a$ subject to normalizability of ψ :

$$
\int \psi \psi^{*} d V=1 \rightarrow 4 \pi \int r^{2}|\psi(r)|^{2}=1
$$

which effectively means $\psi(r) \rightarrow 0$ as $r \rightarrow \infty$.

- Further, for given a and other problem parameters (m, V_{0}) fixed, normalizable soln will only exist for specific (i.e. discrete) values of E
- I.e. E is an eigenvalue and the corresponding wave function $u(r)=r \psi(r)$ is an eigenfunction
- Let us now consider solving (2) directly using shooting; first rewrite (2) in an non-dimensional form
- Let $x \equiv(2 m)^{1 / 2} r$ so that

$$
\frac{d^{2} u}{d r^{2}} \rightarrow 2 m \frac{d^{2} u}{d x^{2}}
$$

and choose units such that $\hbar=1$ and $V_{0}=-1$ (should establish that this is possible if it isn't clear to you)

- Problem left with one free parameter, a, equivalently

$$
x_{0} \equiv(2 m)^{1 / 2} a
$$

and (2) becomes

$$
\begin{gather*}
\frac{d^{2} u}{d x^{2}}+(E-V) u=0 \tag{3}\\
V(x)=\left\{\begin{array}{cc}
-1 & 0 \leq x<x_{0} \\
0 & x>x_{0}
\end{array}\right.
\end{gather*}
$$

- Again, note that E is an eigenvalue in (3). For specified x_{0}, expect specific E to result in normalizable $u(r)$ (eigenfunction)
- Boundary conditions are derived from demands that

1. $\psi(r)$ is regular at $r=0$
2. $\lim _{r \rightarrow \infty} \psi(r)=0$

- Regularity at $r=0$

$$
\begin{gathered}
\lim _{r \rightarrow 0} \psi(r)=\psi_{0}+r^{2} \psi_{2}+O\left(r^{4}\right) \\
\lim _{r \rightarrow 0} u(r)=r \psi(r)=r \psi_{0}+r^{3} \psi_{2}+O\left(r^{5}\right)
\end{gathered}
$$

- Thus

$$
\begin{gathered}
u(0)=0 \\
\frac{d u}{d r}(0)=\psi(0)
\end{gathered}
$$

- Now, note that eqn (1), like all Schrödinger equations, is linear, given any soln $\psi(r), c \psi(r), c \in \Re$ is also a soln; the particular soln we seek is fixed by normalization

$$
\int \psi \psi^{*} d V=1
$$

so we can choose $\psi(0)$ arbitrarily (say $\psi(0)=1$ for convenience) then (for specific x_{0}) vary E until we find a soln which satisfies $\lim _{r \rightarrow \infty} \psi(r)=0$

- This process of varying a parameter and then integrating a set of ODEs outwards (or inwards) to achieve a bundary condition at the outer (inner) limit of ihtegration is known as shooting
- Once we have such a solution, we can then normalize it (upcoming tutorial)
- Note that since both of the b.c.'s on the ODE have been set at $r=0$, we can use an initial value solver, such as ode 45 to solve this problem
- To that end we rewrite (3) in canonical form by introducing $w \equiv d u / d x$, then

$$
\begin{align*}
\frac{d u}{d x} & =w \tag{4}\\
\frac{d w}{d x} & =(V-E) u
\end{align*}
$$

- We can view the task of determining the eigenvalue, E, for specified x_{0} as finding a root of a non-linear equation (consider $f\left(E ; x_{0}\right)=\lim _{x \rightarrow \infty} u\left(x ; E, x_{0}\right)$ for example)
- Provided we have an initial bracket of the eigenvalue $\left[E_{\mathrm{LO}}, E_{\mathrm{HI}}\right]$ such that $E_{\mathrm{LO}} \leq E \leq E_{\mathrm{HI}}$, we can use bisection to systematically refine our estimate of E (tutorial)

Deuteron Model Recap

- Differential equation

$$
\frac{d^{2} u}{d x^{2}}+(E-V) u=0
$$

where the potential $V(x)$ is given by

$$
V(x)=\left\{\begin{array}{cc}
-1 & 0 \leq x<x_{0} \\
0 & x>x_{0}
\end{array}\right.
$$

and the boundary conditions at $x=0$ are

$$
u(0)=0 \quad \frac{d u}{d r}(0)=\psi(0)=1
$$

- E is an eigenvalue and, in the solution of the ODE, must be adjusted using bisection, for example, until the true boundary condition

$$
\lim _{x \rightarrow \infty} u(x)=0
$$

is achieved

Script deut.m

```
% deut: Solves ODE for toy deuteron problem.
global x0 E;
% Domain outer boundary ...
xmax = 60.0;
% Tolerance parameters ...
abstol = 1.0e-8;
reltol = 1.0e-8;
options = odeset('AbsTol', abstol * [1 1]', 'RelTol', reltol);
% Parameters ...
x0 = 6.0;
E = -0.80067
% Integrate ODE
[xout yout] = ode45(@fcn_deut, [0.0 xmax], [0.0 1.0]', options);
% Make plot and output as JPEG ...
figure(1);
clf;
hold on;
axis square;
xlabel('x');
ylabel('u');
plot(xout, yout(:, 1));
print('deut.jpg','-djpeg');
```


Function fcn_deut

```
function dydx = fcn_deut(x, y)
% Function fcn_deut evaluates derivatives for toy deuteron problem.
    global x0 E;
    dydx = ones(2,1);
    dydx(1,1) = y(2);
    if x <= x0
        dydx(2,1) = (-1 - E) * y(1);
    else
        dydx(2,1) = -E * y(1);
    end
end
```

- Sample output during bisection procedure (shooting) for $x_{0}=2.0$

- Normalized wave function for $x_{0}=2.0$

- Normalized wave function for $x_{0}=4.0$

Toy deuteron problem: $x_{0}=4$

- Normalized wave function for $x_{0}=6.0$

- Normalized wave function for $x_{0}=8.0$

