Fall 2022
Final exam key

Problem 1: [10 pts]

Problem 1.1: Derivative of a polynomial interpolant [5 pts]

Consider 3 equispaced data points:

$$
\left(-h, f_{-1}\right),\left(0, f_{0}\right),\left(h, f_{1}\right)
$$

Construct the Lagrange interpolating polynomial for these values, then evaluate the derivative at $x=0$.

$$
\begin{aligned}
p(x) & =\sum_{j=1}^{3} f_{j} l_{j}(x)=\sum_{j=1}^{3} f_{j} \prod_{i=1, i \neq j}^{3} \frac{x-x_{i}}{x_{j}-x_{i}} \\
& =f_{-1} \frac{x(x-h)}{(-h)(-2 h)}+f_{0} \frac{(x+h)(x-h)}{(h)(-h)}+f_{1} \frac{(x+h)(x)}{(2 h)(h)} \\
& =f_{-1} \frac{x^{2}-h x}{2 h^{2}}-f_{0} \frac{x^{2}-h^{2}}{h^{2}}+f_{1} \frac{x^{2}+h x}{2 h^{2}}
\end{aligned}
$$

Now, since the above expression is a polynomial in x, to determine the derivative evaluated at $x=0$, we simply need to read off the coefficient of the linear term of the polynomial. Thus we have

$$
\left.\frac{d p}{d x}\right|_{x=0}=\frac{f_{1}-f_{-1}}{2 h}
$$

Problem 1.2: Richardson extrapolating an $O\left(h^{2}\right)$ FDA [5 pts]
We are given

$$
\frac{u_{j+1}-2 u_{j}+u_{j-1}}{\Delta x^{2}}=\frac{d^{2} u}{d x^{2}}+\frac{1}{12} \Delta x^{2} \frac{d^{4} u}{d x^{4}}+O\left(\Delta x^{4}\right)
$$

Truncating at the $O\left(\Delta x^{2}\right)$ term, we have at scales Δx and $2 \Delta x$

$$
\begin{aligned}
& L^{\Delta x} u_{j}=\frac{u_{j+1}-2 u_{j}+u_{j-1}}{\Delta x^{2}} \sim \frac{d^{2} u}{d x^{2}}+\Delta x^{2} e_{2}(x) \\
& L^{2 \Delta x} u_{j} \frac{u_{j+2}-2 u_{j}+u_{j-2}}{4 \Delta x^{2}} \sim \frac{d^{2} u}{d x^{2}}+4 \Delta x^{2} e_{2}(x)
\end{aligned}
$$

We now want to take a linear combination such that

$$
\alpha L^{\Delta x} u_{j}+\beta L^{2 \Delta x} u_{j}=\frac{d^{2} u}{d x^{2}}+O\left(\Delta x^{4}\right)
$$

We thus must have

$$
\begin{array}{r}
\alpha+\beta=1 \\
\alpha+4 \beta=0
\end{array}
$$

Solving, we have

$$
\begin{aligned}
& \alpha=\frac{4}{3} \\
& \beta=-\frac{1}{3}
\end{aligned}
$$

Assembling results:

$$
\frac{4}{3} L^{\Delta x} u_{j}-\frac{1}{3} L^{2 \Delta x} u_{j}=\frac{16 u_{j+1}-32 u_{j}+16 u_{j-1}}{12 \Delta x^{2}}-\frac{u_{j+2}-2 u_{j}+u_{j-2}}{12 \Delta x^{2}}
$$

So our $O\left(h^{4}\right)$ approximation is

$$
\frac{-u_{j+2}+16 u_{j+1}-30 u_{j}+16 u_{j-1}-u_{j-2}}{12 \Delta x^{2}}
$$

Problem 2: [10 pts]

The differential equation is

$$
\frac{d^{2} x}{d t^{2}}+\left(x \frac{d x}{d t}\right)^{3}=s(t)
$$

with initial conditions

$$
\begin{gathered}
x(0)=x_{0} \\
\frac{d x}{d t}(0)=v_{0}
\end{gathered}
$$

Problem 2.1: FDA [2 pts]

The FDA is

$$
\frac{x^{n+1}-2 x^{n}+x^{n-1}}{\Delta t^{2}}+\left(\left(x^{n}\right) \frac{x^{n+1}-x^{n-1}}{2 \Delta t}\right)^{3}=s^{n}
$$

Problem 2.2: Initialization [4 pts]

We need to determine values for $x^{1}=x(0)$ and $x^{2}=x(\Delta t)$. The latter must be computed up to and including terms of $O\left(\Delta t^{2}\right)$ so that the overall scheme is $O\left(\Delta t^{2}\right)$. We have

$$
x^{1}=x_{0}
$$

and using the equation of motion to eliminate the second time derivative in the Taylor series expansion

$$
\begin{aligned}
x^{2} & =x^{1}+\Delta t \frac{d x}{d t}(0)+\frac{1}{2} \Delta t^{2} \frac{d^{2} x}{d t^{2}}(0)+O\left(\Delta t^{3}\right) \\
& \approx x_{0}+\Delta t v_{0}+\frac{1}{2} \Delta t^{2}\left(s(0)-\left(x(0) \frac{d x}{d t}(0)\right)^{3}\right)
\end{aligned}
$$

so

$$
x^{2}=x_{0}+\Delta t v_{0}+\frac{1}{2} \Delta t^{2}\left(s(0)-\left(x_{0} v_{0}\right)^{3}\right)
$$

Problem 2.3: Determining x^{n+1} [4 pts]

The FDA is a nonlinear equation in x^{n+1} :

$$
F\left(x^{n+1}\right)=\frac{x^{n+1}-2 x^{n}+x^{n-1}}{\Delta t^{2}}+\left(\left(x^{n}\right) \frac{x^{n+1}-x^{n-1}}{2 \Delta t}\right)^{3}-s^{n}=0
$$

We can determine x^{n+1} iteratively

$$
x_{(0)}^{n+1} \rightarrow x_{(1)}^{n+1} \rightarrow \ldots x_{(m)}^{n+1} \rightarrow x_{(m+1)}^{n+1} \rightarrow \ldots
$$

using Newton's method. Start with the initial estimate

$$
x_{(0)}^{n+1}=x^{n}
$$

then generate the iterates via

$$
x_{(m+1)}^{n+1}=x_{(m)}^{n+1}-\frac{F\left(x_{(m)}^{n+1}\right)}{d F / d x^{n+1} \mid x=x_{(m)}^{n+1}}
$$

where

$$
\frac{d F}{d x^{n+1}}=\frac{1}{\Delta t^{2}}+\frac{3\left(x^{n}\right)^{3}}{8 \Delta t^{3}}\left(x^{n+1}-x^{n-1}\right)^{2}
$$

Problem 3 [15 pts]

Problem 3.1: FDA [2 pts]

Adopting the usual finite difference notation, the FDA is

$$
\frac{u_{j}^{n+1}-u_{j}^{n-1}}{2 \Delta t}=\frac{u_{j+1}^{n}-u_{j-1}^{n}}{2 \Delta x}+\alpha u_{j}^{n}
$$

Problem 3.2: Truncation Error [4 pts]

Compute the truncation error for the $O\left(h^{2}\right)$ approximation to the first derivative

$$
\begin{aligned}
& u(x+\Delta x)=u(x)+\Delta x u^{\prime}(x)+\frac{1}{2} \Delta x^{2} u^{\prime \prime}(x)+\frac{1}{6} \Delta x^{3} u^{\prime \prime \prime}(x)+O\left(\Delta x^{4}\right) \\
& u(x-\Delta x)=u(x)-\Delta x u^{\prime}(x)+\frac{1}{2} \Delta x^{2} u^{\prime \prime}(x)-\frac{1}{6} \Delta x^{3} u^{\prime \prime \prime}(x)+O\left(\Delta x^{4}\right)
\end{aligned}
$$

so

$$
\frac{u(x+\Delta x)-u(x-\Delta x)}{2 \Delta x}=u^{\prime}(x)+\frac{1}{6} \Delta x^{2} u^{\prime \prime \prime}(x)+O\left(\Delta x^{4}\right)
$$

Writing the difference approximation in the form

$$
\frac{u_{j}^{n+1}-u_{j}^{n-1}}{2 \Delta t}-\frac{u_{j+1}^{n}-u_{j-1}^{n}}{2 \Delta x}-\alpha u_{j}^{n}=0
$$

the truncation error is

$$
\tau=\frac{1}{6} \Delta t^{2} u_{t t t}-\frac{1}{6} \Delta x^{2} u_{x x x}
$$

Problem 3.3: Initialization [4 pts]

To guarantee an $O\left(h^{2}\right)$ accurate solution at any fixed (t, x) we need to know u_{j}^{2} to $O\left(\Delta t^{2}\right)$ accuracy. Taylor series expanding, we have

$$
\begin{equation*}
u(x, \Delta t)=u(x, 0)+\Delta t u_{t}(x, 0)+\frac{1}{2} \Delta t^{2} u_{t t}(x, 0)+O\left(\Delta t^{3}\right) \tag{1}
\end{equation*}
$$

Now, from the initial conditions we have $u(x, 0)=u_{0}(x)$, and from the governing PDE we have

$$
\begin{gathered}
u_{t}(x, 0)=u_{x}(x, 0)+\alpha u(x, 0)=u_{0}^{\prime}+\alpha u_{0} \\
u_{t t}(x, 0)=\left(u_{x}(x, 0)+\alpha u(x, 0)\right)_{t}=u_{x t}(x, 0)+\alpha u_{t}(x, 0)=u_{t x}(x, 0)+\alpha u_{t}(x, 0) \\
=u_{0}^{\prime \prime}+\alpha u_{0}^{\prime}+\alpha u_{0}^{\prime}+\alpha^{2} u_{0}=u_{0}^{\prime \prime}+2 \alpha u_{0}^{\prime}+\alpha^{2} u_{0}
\end{gathered}
$$

Substituting in (1) we have

$$
\begin{aligned}
& u_{j}^{1}=u_{0_{j}} \\
& u_{j}^{2}=u_{0_{j}}+\Delta t\left(u_{0}^{\prime}+\alpha u_{0}\right)_{j}+\frac{1}{2} \Delta t^{2}\left(u_{0}^{\prime \prime}+2 \alpha u_{0}^{\prime}+\alpha^{2} u_{0}\right)_{j}
\end{aligned}
$$

Problem 3.4: Stability Analysis [5 pts]

First, according to a theorem quoted without proof in class, we can neglect undifferentiated terms when performing a von Neummann stability analysis.
Second, rewrite the difference equation in "first order" form, introducing $v_{j}^{n}=u_{j}^{n-1}$:

$$
\begin{aligned}
u_{j}^{n+1} & =v_{j}^{n}+\lambda\left(u_{j+1}^{n}-u_{j-1}^{n}\right), \\
v_{j}^{n+1} & =u_{j}^{n},
\end{aligned}
$$

where $\lambda=\Delta t / \Delta x$. In matrix form

$$
\left[\begin{array}{l}
u \\
v
\end{array}\right]^{n+1}=\left[\begin{array}{cc}
\lambda D_{0} & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
u \\
v
\end{array}\right]^{n}
$$

where $D_{0} u_{j}^{n}=u_{j+1}^{n}-u_{j-1}^{n}$. Under Fourier transformation this becomes

$$
\left[\begin{array}{c}
\tilde{u} \\
\tilde{v}
\end{array}\right]^{n+1}=\left[\begin{array}{cc}
2 i \lambda \sin \xi & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
\tilde{u} \\
\tilde{v}
\end{array}\right]^{n}
$$

where $\xi=k h$ as usual. We must now determine conditions under which the above matrix has eigenvalues that lie within or on the unit circle. The characteristic equation is

$$
\left|\begin{array}{cc}
2 i \lambda \sin \xi-\mu & 1 \\
1 & -\mu
\end{array}\right|=0
$$

or

$$
\mu^{2}-(2 i \lambda \sin \xi) \mu-1=0 .
$$

This equation has roots at

$$
\mu(\xi)=i \lambda \sin \xi \pm \sqrt{1-\lambda^{2} \sin ^{2} \xi}
$$

Need sufficient conditions for

$$
|\mu(\xi)| \leq 1,
$$

or equivalently

$$
|\mu(\xi)|^{2} \leq 1
$$

Two cases to consider

1. $1-\lambda^{2} \sin ^{2} \xi \geq 0 \rightarrow \lambda \leq 1$
2. $1-\lambda^{2} \sin ^{2} \xi<0 \rightarrow \lambda>1$

Case 1
$|\mu(\xi)|^{2}=\lambda^{2} \sin ^{2} \xi+1-\lambda^{2} \sin ^{2} \xi=1$, so we have von Neumann stability.

Case 2

The argument of the square root is negative for sufficiently large ξ so the square root itself is purely imaginary. Together with the fact that $|i \lambda \sin (\xi)|>1$ this implies that $\mu(\xi)>1$ for large ξ, so we have von Neumann instability.
Thus, the von Neumann stability criterion for this scheme is

$$
\lambda \leq 1
$$

