
THE 3+1 EINSTEIN EQUATIONS

These notes rework the calculation of the 3+1 equations as presented in Kinematics and Dy-

namics of General Relativity, by J. W. York, Jr., which itself is contained in the volume Sources of

Gravitational Radiation, edited by L. Smarr. Many calculational details omitted from that source
are included here.

(Note: A colleague of mine, who will remain anonymous this week, has used these notes to
demonstrate the power of his symbolic manipulation software and has found at least one error
amongst the many “intermediate” results that are derived below. There is a $234 Argentinian
peso reward for the PSI student who first identifies such an error and who submits a hand-written
explanation of the gaffe, along with the corrected expression, to the tutor.)

1) Foliations and Normals

As before, we consider a spacetime M with metric gab which is sliced into a foliation {Σ} defined
by the isosurfaces of a scalar field τ (the time parameter). Then the spacelike hypersurfaces are,
at least locally, described by a closed one-form (dual vector field), Ωa:

Ωa = ∇aτ . (1)

Note that since Ωa is the gradient of a scalar function, and ∇a is torsion-free, we have

∇[aΩb] = ∇[a∇b]τ = 0 . (2)

The norm of Ωa is given by
gabΩaΩb = −α−2 , (3)

where α is the lapse function, as previously. Thus we can construct the unit-norm dual-vector field,
na, via

na = −αΩa = −α∇aτ , (4)

where the sign is chosen so that the associated unit-norm, hypersurface-orthogonal vector field, na,

na = gabnb , (5)

is future-directed. Note that we can view na as the 4-velocity field of a congruence of observers
moving orthogonally to the slices (not necessarily coordinate-stationary). Such observers will have
a 4-acceleration, ab given by

ab = na∇an
b . (6)

2) The Projection Tensor and the Spatial Metric

In the derivation of the 3+1 form of the Einstein equations, we will necessarily be interested in
decomposing various spacetime tensors into hypersurface-tangential (“spatial”) and hypersurface-
orthogonal (“temporal”) pieces. Determining the “temporal” part of a tensor is straightforward, we
simply contract with na. York throws in a slight twist by introducing a relative minus depending
on whether a vector or covector index is being projected. Thus, for a vector field, W a, we define

W n̂ = −W ana , (7)
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and, in general, any upstairs n̂ index denotes that the original tensor index has been contracted
with −na. On the other hand, for a dual vector field, Wa, we define

Wn̂ = +Wan
a , (8)

and then any downstairs n̂ index denotes contraction with +na. To determine the spatial parts of
tensors, it is convenient to introduce the notion of a projection tensor which, as the name suggests,
projects tensors onto the hypersurface. The mixed form of this two-rank tensor is denoted ⊥a

b and
is defined by

⊥a
b ≡ δa

b + nanb . (9)

Note the relative “+” between the identity tensor and nanb which follows from the Lorenztian
signature on spacetime. By construction, we have

⊥ na ≡⊥a
b n

b = (δa
b + nanb)n

b = na − na = 0 , (10)

where we have also introduced the notation that a ⊥ with no indices, operating on an arbitrary
tensor expression, means apply the projection tensor to very free tensor index in the expression.
Thus, for example

⊥ Sa
bc ≡⊥a

d ⊥e
b ⊥

f
c S

d
ef . (11)

Any tensor which has had all its free indices projected in this manner is called a spatial tensor. It
is worth emphasizing the rather obvious point that ⊥ applied to any tensor expression of the form
“tensor product of na (or na) and something else”, vanishes. We will use this fact many times in
the following.

If we apply the projection tensor to the spacetime metric gab itself (which is clearly the same
thing as lowering an index on the projection tensor) we get the (spatial) metric, γab, on the hyper-
surfaces:

γab = gab + nanb . (12)

Similarly, the contravariant form of the spatial metric is given by

γab = gacgbdγcd = gab + nanb . (13)

Note that all tensor indices continue to be raised and lowered with the spacetime metric, gab, and
that γab and γab are not inverses. (In fact, of course, the mixed form, γa

b, of the spatial metric is
just the projection tensor ⊥a

b.) We also have

Tr ⊥ ≡ ⊥a
a = δa

a + nana = 4 − 1 = 3 . (14)

Note also, however, that spatial tensors can equally well have their indices raised and lowered with
γab.

3) The Spatial Derivative Operator and Curvature Tensor

We can also use the projection tensor to define a natural derivative operator, Da, for spatial
tensors. Formally, we define

Da ≡ ⊥∇a , (15)

so that for a scalar field ψ, for example, we have

Daψ ≡ ⊥∇aψ = ⊥b
a∇bψ , (16)
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while for a (spatial) vector field, W a

DaW
b ≡ ⊥∇aW

b = ⊥c
a ⊥b

d∇cW
d . (17)

The action of Da on an arbitrary spatial tensor is then defined in the obvious fashion. Da is the
natural derivative operator for spatial tensors since it is compatible with the spatial metric, i.e.

Daγbc = ⊥∇aγbc = ⊥∇a (gbc + nbnc) = ⊥∇a (nbnc) = ⊥(nc∇anb + nb∇anc) = 0 . (18)

Daγ
bc = 0 follows from an exactly parallel computation, or, more directly, simply by raising indices

(using either metric!) on the above expression.
The intrinsic curvature of the three-dimensional hypersurfaces is given by the Riemann tensor

associated with the spatial metric and is denoted Rabc
d. It may be defined via its action on an

arbitrary spatial dual-vector, Wa:

(DaDb −DbDa)Wc = Rabc
dWd . (19)

Rabc
d is, of course, a spatial-tensor itself, and hence satisfies

Rabc
d na = Rabc

d nb = Rabc
d nc = Rabc

d nd = 0 . (20)

In addition, Rabcd has the usual symmetries:

Rabcd = R[ab]cd = Rab[cd] , (21)

R[abc]d = 0 , (22)

and
Rabcd = Rcdab . (23)

Finally, we can contruct the spatial Ricci tensor, Rab, and spatial Ricci scalar, R, in the usual
manner

Rab = Racb
c , (24)

R = Ra
a . (25)

4) The Extrinsic Curvature Tensor

The embedding of the slices in the spacetime is described by the extrinsic curvature tensor.
Before defining this tensor and discussing its properties, we establish two useful results concerning
derivatives of the normal vector field. The first of these is

⊥∇[anb] = 0 . (26)

To see this, start from

⊥∇anb = (δc
a + ncna)(δ

d
b + ndnb)∇cnd

= ∇anb + nan
c∇cnb + nbn

d∇and + nan
cnbn

d∇cnd

= ∇anb + nan
c∇cnb (27)

= ∇anb + naab , (28)
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where we have used

nd∇and = nd∇an
d =

1

2
∇a

(

ndnd

)

=
1

2
∇a (−1) = 0 , (29)

to eliminate the last two terms in the second line. We now consider each of the two terms of (27)
in turn. Using (4), we have

∇anb = −∇a (αΩb) = − (∇aα) Ωb − α (∇aΩb) = − (∇aα) Ωb − α (∇a∇bτ) , (30)

so that
∇[anb] = −(∇[aα)Ωb] . (31)

Next, again using (4), we have

nan
c∇cnb = α2ΩaΩ

c (− (∇cα) Ωb − α (∇cΩb))

= −α2Ωc (∇cα) ΩaΩb − α3ΩaΩ
c∇cΩb

= −α2Ωc (∇cα) ΩaΩb − α3ΩaΩ
c∇bΩc

= −α2Ωc (∇cα) ΩaΩb −
α3

2
Ωa∇b

(

−α−2
)

= −α2Ωc (∇cα) ΩaΩb − (∇bα) Ωa , (32)

where we have used (2) in going from the second to third line, and (3) in going from the third to
fourth. Thus,

n[an
c∇cnb] = −(∇[bα)Ωa] = +(∇[aα)Ωb] , (33)

which, when combined with (31), immediately establishes (26) from (27).
Our second useful preliminary result relates the 4-acceleration ab to the derivative of the lapse

function. Specifically, we have
ab = Db lnα . (34)

To see this, we reexpress the right and left hand sides to show that they are indeed equal. On the
one hand we have from (32), and again using (4),

ab = nc∇cnb = αΩc (∇cα) Ωb + α−1∇bα , (35)

while on the other we have

Db lnα =⊥c
b∇c lnα = (δc

b + ncnb)
(

α−1∇cα
)

= αΩc (∇cα) Ωb + α−1∇bα . (36)

Recalling our first preliminary result (26), we now define the extrinsic curvature tensor, Kab:

Kab = K(ab) = − ⊥∇(anb) = − ⊥∇anb . (37)

Using this definition and (28), we have

∇anb = −Kab − naab , (38)

which rather explicitly displays the decomposition of the derivative of the normal field into a
hypersurface-tangential piece—the extrinsic curvature, and a hypersurface-orthogonal piece—the
4-acceleration.
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A definition of Kab which is equivalent to (37) can be made in terms of the Lie derivative along
the normal vector field. Specifically, we have

Kab = −
1

2
£nγab = −

1

2
⊥£ngab . (39)

To see this, we note that we have from (37) and (38)

Kab = K(ab) = −(∇(anb) + n(aab)) , (40)

while £nγab can be written as

£nγab = nc∇cγab + γcb∇an
c + γac∇bn

c

= nc∇c (gab + nanb) + (gcb + ncnb)∇an
c + (gac + nanc)∇bn

c

= nc∇c (nanb) + ∇anb + ∇bna

= 2
(

∇(anb) + n(aab)

)

= −2Kab , (41)

where we have used (29) (two times) in going from the second line to the third. Also,

£ngab = nc∇cgab + gcb∇an
c + gac∇bn

c = ∇anb + ∇bna = 2∇(anb) , (42)

and then

Kab = −
1

2
⊥£ngab , (43)

follows immediately from (37). Finally, we note that since the extrinsic curvature is a spatial tensor,
we of course have

naKab = 0 . (44)

This last result will also be used often in the sequel.

5) The Gauss-Codazzi Equations

We now begin computing projections of the 4-dimensional Riemann curvature tensor, Rabcd,
starting with ⊥Rabcd. To this end, we first consider the 4-dimensional Ricci identity as applied to
a spatial dual-vector, va:

va⊥Rabcd =⊥(vaRabcd) =⊥(Ra
bcdva) =⊥(Rdcb

ava) =⊥(∇d∇cvb −∇c∇dvb) , (45)

where
nava = 0 . (46)

We have

⊥∇cvb = ∇cvb + nbn
f∇cvf + ncn

e∇evb + ncn
enbn

f∇evf

= ∇cvb − nbvf∇cn
f + ncn

e∇evb − ncnbvfa
f , (47)

where we have used (6) and
nf∇evf = −vf∇en

f , (48)

which follows from applying ∇b to (46). Continuing, we have

⊥(∇d ⊥∇cvb) = DdDcvb = ⊥∇d∇cvb + ⊥∇d

(

ncne∇evb − nbvf∇cn
f − ncnbvfa

f
)

= ⊥∇d∇cvb − ⊥(∇dnb)(∇cnf )vf

= ⊥∇d∇cvb −KdbKcav
a , (49)
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or
⊥∇d∇cvb = DdDcvb +KdbKcav

a . (50)

Thus we have

⊥(Ra
bcdva) = ⊥(∇d∇cvb −∇c∇dvb)

= DdDcvb −DcDdvb +KdbKcav
a −KcbKdav

a

= (Rdcba +KdbKca −KcbKda) v
a

= (Rabcd +KdbKca −KcbKda) v
a

= va⊥Rabcd . (51)

or
⊥Rabcd = Rabcd +KdbKca −KcbKda . (52)

We now wish to compute ⊥Rabcn̂; applying the Ricci identity to na and projecting, we have

⊥Rn̂bcd = ⊥(Rabcdn
a) =⊥(Rdcban

a)

= ⊥(∇d∇cnb −∇c∇dnb)

= ⊥(∇d(Kcb + ncab) −∇c(Kdb + ndab))

= ⊥(∇dKcb −∇cKdb + (∇dnc −∇cnd)ab)

= ⊥(∇dKcb −∇cKdb)

= DdKcb −DcKdb . (53)

where we have used (38) in going from the second to third line and (26) in going from the fourth
to fifth. Relabeling indices, and using the symmetries of Riemann, we have

⊥Rabcn̂ = DbKac −DaKbc . (54)

Equations (52) and (54) are known as the Gauss-Codazzi equations.

6) The Constraint Equations

We are now nearly ready to derive the constraint equations. We begin by noting that, as is easily
verified, a generic type (0,2) symmetric tensor, σab = σ(ab) has the following 3+1 decomposition:

σab =⊥σab − 2n(a⊥σb)n̂ + nanbσn̂n̂ . (55)

We define the following projections of the stress tensor, Tab

ρ ≡ Tn̂n̂ = Tabn
anb , (56)

ja ≡ ⊥T an̂ = − ⊥(T abnb) , (57)

Sab ≡ ⊥Tab . (58)

ρ, ja and Sab may be interpreted as the local energy density, momentum density and spatial stress
tensor, respectively, as measured by observers moving orthogonally to the slices.

We now consider

⊥Rab = ⊥(gcdRacbd)

= ⊥(γcdRacbd) − ⊥(ncndRacbd)

= ⊥(γcdRacbd) − ⊥Ran̂bn̂ . (59)
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Now, clearly, by the same argument that allowed us to write (45):

va⊥Rabcd =⊥(vaRabcd) , (60)

where va is an arbitrary spatial vector, we have

⊥(γcdRacbd) = γcd ⊥Racbd = gcd ⊥Racbd . (61)

Thus we find
⊥Rab = gcd ⊥Racbd − ⊥Ran̂bn̂ . (62)

Now using the general 3+1 decomposition formula (55) for a symmetric tensor, we have

Ran̂bn̂ =⊥Ran̂bn̂ − 2n(a⊥Rb)n̂n̂n̂ + nanbRn̂n̂n̂n̂ . (63)

Since Rabcd is antisymmetric on its first two or last two indices, the last two terms in the above
decomposition vanish, and we have

⊥Ran̂bn̂ = Ran̂bn̂ . (64)

Contracting (62) and using this last result, we find

gab ⊥Rab = −Rn̂n̂ + gabgcd ⊥Racbd . (65)

We can derive another expression for gab ⊥Rab by starting from the 3+1 decomposition (55) applied
to Rab (and slightly rearranged):

⊥Rab = Rab + 2n(a⊥Rb)n̂ − nanbRn̂n̂ . (66)

Contracting, and using the fact that na⊥va = 0 for any dual-vector va, we find

gab ⊥Rab = R+Rn̂n̂ . (67)

Equating (65) and (67) and solving for R, we have

R = −2Rn̂n̂ + gabgcd ⊥Racbd . (68)

Now consider the Einstein field equations

Gab = Rab −
1

2
gabR = 8πTab , (69)

and contract both indices with the normal field, na, to produce what could be called the “purely
temporal” Einstein equation:

Gabn
anb = Rabn

anb −
1

2
gabn

anbR = 8πTabn
anb , (70)

or, using (68) and (56)

Rn̂n̂ +
1

2
R = Rn̂n̂ +

1

2
(−2Rn̂n̂ + gabgcd ⊥Racbd) =

1

2
gabgcd ⊥Racbd = 8πρ . (71)

But from the first of the Gauss-Codazzi equations (52) we have

gabgcd ⊥Racbd = gabgcd(Racbd +KabKcd −KadKbc) = R +K2 −Ka
bK

b
a . (72)
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where
K ≡ Ka

a , (73)

is the trace of the extrinsic curvature tensor. Thus, we find from (71) and (72)

R +K2 −Ka
bK

b
a = 16πρ , (74)

which is known as the Hamiltonian constraint.
We now consider the Einstein equation in the form

Gab = Rab −
1

2
gabR = 8πT ab , (75)

and contract one index with −na (recall the convention given by equation (7)):

Gan̂ = Ran̂ +
1

2
naR = 8πT an̂ . (76)

Projecting the remaining index onto the hypersurface and using the definition (57) of the momentum
density, we have

⊥Gan̂ =⊥Ran̂ = 8π ⊥T an̂ = 8πja . (77)

Following a development precisely analogous to (61)–(62), we find

⊥Ran̂ = gcd⊥Racn̂d − ⊥Ran̂n̂n̂ = −gcd⊥Racdn̂ . (78)

Using the second of the Gauss-Codazzi equations (54), this becomes

⊥Ran̂ = −gcd (DcKad −DaKcd) = DaK −DbKab . (79)

Raising the remaining free index we have (again recalling (7))

⊥Ran̂ =⊥Gan̂ = DbK
ab −DaK . (80)

Thus, we find
DbK

ab −DaK = 8πja , (81)

which is known as the momentum constraint.
The crucial feature of the constraint equations (74) and (81), is that they involve only spatial

tensors (including spatial derivatives of spatial tensors)—in particular, they do not involve explicit

time derivatives of spatial tensors. Thus, these equations are equations of constraint which must
be satisfied by the fundamental 3+1 variables, γab and Kab at all times (i.e. on all slices).
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7) Time and Time Derivatives

In this section we establish some results concerning certain vector fields and Lie derivatives
along these vector fields. The idea here is to introduce sufficiently general notions of “time” and
“time derivatives while maintaining a geometric approach.

We first prove two results concerning Lie derivatives along the normal vector field, na, of spatial

type (0, l) tensors (spatial covariant tensors). The first result states that if Sa1a2···al
is a spatial

tensor, so that
nai Sa1···al

= 0 i = 1, 2, · · · , l , (82)

then £nSa1···al
is also a spatial tensor. Denoting the general type (0, l) spatial tensor by S we can

thus write
⊥£nS = £nS . (83)

The proof is straightforward. We have

£nSa1···al
= nc∇cSa1···al

+
l
∑

i=1

(∇ai
nc)Sa1···c···al

. (84)

Now contract the jth index with na:

naj £nSa1···al
= najnc∇cSa1···al

+
l
∑

i=1

(∇ai
nc)najSa1···c···al

. (85)

Now, because Sa1···c···al
is spatial, all of the terms in the sum (the “correction terms”) vanish except

when i = j (i.e. when the jth index of Sa1···c···al
is being corrected. Also, we can use nai Sa1···al

= 0
to throw the derivative in the first term onto naj . Thus, we have

naj £nSa1···al
= −nc∇cn

ajSa1···al
+ nc∇cn

ajSa1···al
= 0 , (86)

and since this holds for arbitrary j = 1, · · · l, we have established (83). Our second result is that if
Sa1a2···al

is spatial, and f is an arbitrary function, then

£fnSa1a2···al
= f£nSa1a2···al

(87)

Again, the proof is straightforward:

£fnSa1a2···al
= fnc∇cSa1···al

+
l
∑

i=1

∇ai
(fnc)Sa1···c···al

= fnc∇cSa1···al
+

l
∑

i=1

((∇ai
f)nc + f (∇ai

nc))Sa1···c···al

= f

(

nc∇cSa1···al
+

l
∑

i=1

(∇ai
nc)Sa1···c···al

)

= f£nSa1a2···al
. (88)

Below we will argue that the vector field, Na defined by

Na = αna (89)
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is a natural orthogonal vector field with which to Lie-differentiate tensors in computing general
time derivatives. This vector field has the important property that

£N ⊥a
b = 0 (90)

which implies that if S is any spatial tensor (not necessarily type (0, l)), then £NS is also spatial:

⊥£NS = £NS (91)

To see that (91) follows from (90), note that for a general type (k, l) spatial tensor we have

Sa1a2···ak
b1b2···bl

= ⊥a1

c1 ⊥a2

c2 · · · ⊥
ak

ck
⊥d1

b1 ⊥d2

b2 · · · ⊥
dl

bl
Sc1c2···ck

d1d2···dl
(92)

Now, applying £N to both sides of this expression, and using the Liebnitz rule, we easily see that,
given (90), the only term which survives is the one where the Lie derivative acts on Sa1a2···ak

b1b2···bl
:

£NS
a1a2···ak

b1b2···bl
= ⊥a1

c1 ⊥a2

c2 · · · ⊥
ak

ck
⊥d1

b1 ⊥d2

b2 · · · ⊥
dl

bl
£NS

c1c2···ck
d1d2···dl

, (93)

and this is precisely (91). It remains to show that (90) is true. We have

£N ⊥a
b = N c ∇c⊥

a
b − ⊥c

b∇cN
a + ⊥a

c∇bN
c

= (αnc)∇c (δa
b + nanb) − (δc

b + ncnb)∇c (αna) + (δa
c + nanc)∇b (αnc)

= αnanc∇cnb + αnbn
c∇cn

a −∇b (αna) − nbn
c∇c (αna) + ∇b (αna) + nanc∇b (αnc)

= αnaab + αnba
a − αnba

a − nbn
anc∇cα+ αnanc∇bn

c − na∇bα

= αna
(

ab − α−1 (∇bα+ nbn
c∇cα)

)

= αna
(

ab − α−1Dbα
)

= αna (ab −Db lnα) = 0 . (94)

where we have used (9), (89), (29) and (34).
Now, recall that our foliation is defined by a closed one-form (dual-vector field), Ωa:

Ωa = ∇aτ . (95)

Since na = −αΩa and ΩaΩa = −α−2, we have

NaΩa = 1 . (96)

It is this normalization which makesNa the natural orthogonal vector field to use in computing “time
derivatives” (i.e. for use in Lie differentiation). However, there is no justification for restricting
attention only to “normal time derivatives” and, in fact, we can and will consider Lie differentiation
along other “time directions”, ta, appropriately normalized via

taΩa = 1 , (97)

by adding to Na an arbitrary spatial vector βa (which is just the shift vector we have previously
discussed):

ta = Na + βa = αna + βa , (98)

βana = 0 . (99)
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8) The Evolution Equations

In order to derive the 3+1 evolution equations, we have to compute the projection of one more
piece of the spacetime curvature tensor, namely ⊥Ran̂bn̂. Starting from the Ricci identity applied
to na and using (38) and (6), we have

⊥Ran̂bn̂ = ⊥(nc (∇b∇cna −∇c∇bna))

= ⊥(nc∇c (Kba + nbaa) − nc∇b (Kca + ncaa))

= ⊥(nc∇cKba + abaa − nc∇bKca + ∇baa) ,

(100)

Now, since ncKca = 0, we have
−nc∇bKca = ∇bn

cKca . (101)

Thus, using this result, adding and subtracting ∇an
cKbc, and noting that from (37) we have

− ⊥∇an
cKbc = Ka

cKbc, we find

⊥Ran̂bn̂ = ⊥(nc∇cKba + ∇bn
cKca + ∇an

cKbc −∇an
cKbc + abaa + ∇baa)

= ⊥(£nKab +Ka
cKbc + aaab + ∇baa) . (102)

Now, using ab = Db lnα, we have

⊥(aaab + ∇baa) = ⊥
(

Da lnα Db lnα+ ∇b

(

α−1∇aα
))

= ⊥
(

α−2Daα Dbα− α−2Dbα Daα+ α−1 (∇bDaα)
)

= α−1DbDaα = α−1DaDbα (103)

(the torsion-free property of Da used in the last step follows directly from the torsion free proerty
of ∇a.) In addition, using the two preliminary results (82) and (87) from the beginning of this
section we have

⊥£nKab = £nKab = α−1
£NKab . (104)

Using (103) and (104), (102) becomes

⊥Ran̂bn̂ = α−1
£NKab +KacK

c
b + α−1DaDbα . (105)

8a) The Evolution Equations for the Spatial Metric

The evolution equations for the spatial metric are essentially identities which follow from the
definition (39) of the extrinsic curvature:

Kab = −
1

2
£ngab (106)

However, as discussed above, for full generality, we wish to use Lie-differentiation along the vector
field

ta = Na + βa = αna + βa (107)

as our “time derivative”. Again using (87), as well as a fundamental property of the Lie derivative
for arbitrary vector fields va and wa, and arbitrary tensor fields S:

£v+wS = £vS + £wS , (108)
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we have

£tγab = £Nγab + £βγab

= α£nγab + £βγab . (109)

or
£tγab = −2αKab + £βγab . (110)

8b) The Evolution Equations for the Extrinsic Curvature

We first observe that the Einstein equations

Gab = Rab −
1

2
gabR = 8πTab , (111)

may be contracted to yield
G = −R = 8πT . (112)

Thus, the field equations may be rewritten as

Rab = 8πTab +
1

2
gabR = 8π

(

Tab −
1

2
gabT

)

. (113)

Projecting onto the hypersurface, we have

⊥Rab = 8π

(

⊥Tab −
1

2
γabT

)

. (114)

Now from definitions (56)–(58), as well as our expression (55) for the 3+1 decomposition of a
general, symmetric, type (0, 2) tensor, we find

⊥Tab ≡ Sab = Tab + 2n(a⊥Tb)n̂ − nanbTn̂n̂ . (115)

Contracting, we get
S = T + Tn̂n̂ , (116)

or, using (56)
T = S − ρ . (117)

Thus, (114) becomes

⊥Rab = 8π

(

Sab −
1

2
γab (S − ρ)

)

(118)

Now, from (62), we have
⊥Rab = − ⊥Ran̂bn̂ + gcd ⊥Racbd . (119)

Using (52) and (105), this becomes

⊥Rab = −
(

α−1
£NKab +KacK

c
b + α−1DaDbα

)

+ gcd (Rabcd +KabKcd −KadKcb)

= −α−1
£NKab − 2KacK

c
b − α−1DaDbα+ Rab +KKab . (120)

Equating (118) and (120), and using

£NKab = £t−βKab = £tKab − £βKab , (121)
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we solve for £tKab to get our evolution equations for the extrinsic curvature:

£tKab = £βKab −DaDbα+ α

(

Rab +KKab − 2KacK
c
b − 8π

(

Sab −
1

2
γab (S − ρ)

))

. (122)

We can derive an alternate version of this evolution equation which involves the “mixed” form, Ka
b

of the extrinsic curvature, which has been used by several researchers in the past, and which we
will tend to use in the course. We start from

α−1
£NKab − 2KacK

c
b − α−1DaDbα+ Rab +KKab = 8π

(

Sab −
1

2
γab (S − ρ)

)

, (123)

and note that because all of the tensors appearing in this expression are spatial, we can raise indices
with γab to get:

α−1γac
£NKab − 2KacKcb − α−1DaDbα+Ra

b +KKa
b = 8π

(

Sa
b −

1

2
δa

b + nanb (S − ρ)

)

. (124)

Now

£NK
a
b = £N (γacKcb)

= Kcb£Nγ
ac + γac

£NKcb

= αKcb£nγ
ac + γac

£NKcb

= −2αKcbK
ac + γac

£NKcb , (125)

so
γac

£NKcb = £NK
a
b + 2αKacKcb . (126)

Substituting this result in (124) and using

£NK
a
b = £tK

a
b − £βK

a
b , (127)

we find

£tK
a
b = £βK

a
b −DaDbα+ α

(

Ra
b +KKa

b + 8π

(

1

2
⊥a

b (S − ρ) − Sa
b

))

. (128)
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9) Summary

Identifying {α, βa} as kinematical variables and {γab,K
a
b} as dynamical variables, the full set

of Einstein equations is:
R +K2 −Ka

bK
b
a = 16πρ , (129)

DbK
ab −DaK = 8πja , (130)

£tγab = £βγab − 2αγacK
c
b , (131)

£tK
a
b = £βK

a
b −DaDbα+ α

(

Ra
b +KKa

b + 8π

(

1

2
⊥a

b (S − ρ) − Sa
b

))

. (132)
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