THE 341 EINSTEIN EQUATIONS

These notes rework the calculation of the 3+1 equations as presented in Kinematics and Dy-
namics of General Relativity, by J. W. York, Jr., which itself is contained in the volume Sources of
Gravitational Radiation, edited by L. Smarr. Many calculational details omitted from that source
are included here.

(Note: A colleague of mine, who will remain anonymous this week, has used these notes to
demonstrate the power of his symbolic manipulation software and has found at least one error
amongst the many “intermediate” results that are derived below. There is a $234 Argentinian
peso reward for the PSI student who first identifies such an error and who submits a hand-written
explanation of the gaffe, along with the corrected expression, to the tutor.)

1) Foliations and Normals

As before, we consider a spacetime M with metric g4, which is sliced into a foliation {3} defined
by the isosurfaces of a scalar field 7 (the time parameter). Then the spacelike hypersurfaces are,
at least locally, described by a closed one-form (dual vector field), Q,:

Oy, = V7. (1)
Note that since €2, is the gradient of a scalar function, and V, is torsion-free, we have
ViaSl = V[ Vg7 =0. (2)
The norm of 2, is given by
900 = —a 2, (3)

where « is the lapse function, as previously. Thus we can construct the unit-norm dual-vector field,
Ng, Via

Nng = —afdy = —aV,1, (4)

where the sign is chosen so that the associated unit-norm, hypersurface-orthogonal vector field, n®,
nt = gabnb ) (5)

is future-directed. Note that we can view n® as the 4-velocity field of a congruence of observers
moving orthogonally to the slices (not necessarily coordinate-stationary). Such observers will have

a 4-acceleration, a® given by
a® = n*Vnl. (6)

2) The Projection Tensor and the Spatial Metric

In the derivation of the 3+1 form of the Einstein equations, we will necessarily be interested in
decomposing various spacetime tensors into hypersurface-tangential (“spatial”) and hypersurface-
orthogonal (“temporal”) pieces. Determining the “temporal” part of a tensor is straightforward, we
simply contract with n®. York throws in a slight twist by introducing a relative minus depending
on whether a vector or covector index is being projected. Thus, for a vector field, W%, we define

W = —Wn,, (7)



and, in general, any upstairs n index denotes that the original tensor index has been contracted
with —n,. On the other hand, for a dual vector field, W,, we define

Wﬁ = —|—Wana, (8)

and then any downstairs 7 index denotes contraction with +n®. To determine the spatial parts of
tensors, it is convenient to introduce the notion of a projection tensor which, as the name suggests,
projects tensors onto the hypersurface. The mixed form of this two-rank tensor is denoted 1%, and
is defined by

1% = 6% +n"ny. (9)

Note the relative “+” between the identity tensor and n®n; which follows from the Lorenztian
signature on spacetime. By construction, we have

1L n® =1%n’ = (6% 4+n%ny)n’ =n*—n®=0, (10)

where we have also introduced the notation that a L with no indices, operating on an arbitrary
tensor expression, means apply the projection tensor to very free tensor index in the expression.
Thus, for example

LS. =1% 1% 17.8%;. (11)

Any tensor which has had all its free indices projected in this manner is called a spatial tensor. It
is worth emphasizing the rather obvious point that | applied to any tensor expression of the form
“tensor product of n® (or n,) and something else”, vanishes. We will use this fact many times in
the following.

If we apply the projection tensor to the spacetime metric gq itself (which is clearly the same
thing as lowering an index on the projection tensor) we get the (spatial) metric, v4, on the hyper-
surfaces:

Yab = Gab + Nallp - (12)

Similarly, the contravariant form of the spatial metric is given by

'Yab — gacgbd,ycd — gab + nanb. (13)

Note that all tensor indices continue to be raised and lowered with the spacetime metric, g4, and
that v, and ¥* are not inverses. (In fact, of course, the mixed form, ¥%, of the spatial metric is
just the projection tensor L%,.) We also have

Tr L =1%=6.+n",=4—-1=3. (14)
Note also, however, that spatial tensors can equally well have their indices raised and lowered with

Yab-

3) The Spatial Derivative Operator and Curvature Tensor

We can also use the projection tensor to define a natural derivative operator, D,, for spatial
tensors. Formally, we define
D,= 1V,, (15)

so that for a scalar field v, for example, we have

Dy = LV = L%V, (16)



while for a (spatial) vector field, W
DW= 1V, wb = 1°, 10 v .we. (17)

The action of D, on an arbitrary spatial tensor is then defined in the obvious fashion. D, is the
natural derivative operator for spatial tensors since it is compatible with the spatial metric, i.e.

Dovoe = LVaVoe = LV o (ghe + none) = LV4 (mpne) = L (neVany + npVane) = 0. (18)

D 7% = 0 follows from an exactly parallel computation, or, more directly, simply by raising indices
(using either metric!) on the above expression.

The intrinsic curvature of the three-dimensional hypersurfaces is given by the Riemann tensor
associated with the spatial metric and is denoted Rgpc?. It may be defined via its action on an
arbitrary spatial dual-vector, W,:

(DaDy — DyDg) We = Rapt Wy . (19)
Rape’ is, of course, a spatial-tensor itself, and hence satisfies
7-‘)'abcd n® = Rabcd nb = 7-‘7'ab0d nt = Rabcd ng = 0. (20)

In addition, R4peq has the usual symmetries:

Rabed = R[ab}cd = Rab[cd] ’ (21)
R[abc]d =0, (22)

and
Rabed = Redab - (23)

Finally, we can contruct the spatial Ricci tensor, R,p, and spatial Ricci scalar, R, in the usual
manner

7zab = 7zacbcy (24)
R =R (25)

4) The Extrinsic Curvature Tensor

The embedding of the slices in the spacetime is described by the extrinsic curvature tensor.
Before defining this tensor and discussing its properties, we establish two useful results concerning
derivatives of the normal vector field. The first of these is

L Vigny = 0. (26)
To see this, start from
LVany = (6% +n°ng) (6% + nny)Veng
= Vanp + nanVenp + npn®Vong + ngnnyn®v.ng
= V. +nenVeny (27)
= vanb + Nqap , (28)



where we have used
1 1
nVang = ngVaen® = 5va (ndnd) = 5va (-1)=0, (29)

to eliminate the last two terms in the second line. We now consider each of the two terms of (27)
in turn. Using (4), we have

Vang = =V (a) = — (Vaa) Qp — a (Vo) = — (Vaa) Qp — a (Vo Vo) (30)

so that
Viany = —(V[aa) Q) - (31)

Next, again using (4), we have

nanVeny = a?QaQ¢ (— (Vo) Q — a (V)

(—
Vo) QaQp — a3Q,Q°V

— QQC(
= 0208 (Vea) 2y — a*Q,0°V,Q,
063
— _a2Q° (Vo) Qap — TQGV;, (_05_2)
= —a2Q%(Vea) Q — (Vo) Q, (32)

where we have used (2) in going from the second to third line, and (3) in going from the third to
fourth. Thus,
nEanVeny = —=(Vpa) Qq = +(Vie@) Oy, (33)

which, when combined with (31), immediately establishes (26) from (27).
Our second useful preliminary result relates the 4-acceleration a; to the derivative of the lapse
function. Specifically, we have
=Dylna. (34)

To see this, we reexpress the right and left hand sides to show that they are indeed equal. On the
one hand we have from (32), and again using (4),

ap = nVeny = aQf (Vea) U + a 'V, (35)
while on the other we have
Dylna=1%V.Ina = (6% + nny) (a_lvca) = a0 (Vea) Q +a V. (36)
Recalling our first preliminary result (26), we now define the extrinsic curvature tensor, Kg:
Koy = K@)y = — LV(gny = — LVany. (37)
Using this definition and (28), we have
Vanp = —Kap — naap, (38)

which rather explicitly displays the decomposition of the derivative of the normal field into a
hypersurface-tangential piece—the extrinsic curvature, and a hypersurface-orthogonal piece—the
4-acceleration.



A definition of K,; which is equivalent to (37) can be made in terms of the Lie derivative along
the normal vector field. Specifically, we have

K=~ 5 £ =~ L £ngus. (39)
To see this, we note that we have from (37) and (38)
Kap = K(apy = —(V(aM) + () , (40)
while £,,74 can be written as

L£nYab = ncvc'}/ab + 'chvanc + ’Yacvbnc
= ncvc (gab + nanb) + (gcb + ncnb) vanc + (gac + nanc) vbnc
= n°Ve(ngny) + Veny + Ving
= 2 (V(anb) + n(aab)) = 2K, (41)

where we have used (29) (two times) in going from the second line to the third. Also,

£ng9ab = 1Vegap + 9t Van® + gacVon® = Vany + Vipn, = 2v(anb) ) (42)
and then )
Ko = ) L £n9ab (43)

follows immediately from (37). Finally, we note that since the extrinsic curvature is a spatial tensor,
we of course have

nKy, = 0. (44)

This last result will also be used often in the sequel.

5) The Gauss-Codazzi Equations

We now begin computing projections of the 4-dimensional Riemann curvature tensor, Rupcd,
starting with | Rgpeq. To this end, we first consider the 4-dimensional Ricci identity as applied to
a spatial dual-vector, v,:

v L Rapea = L (V" Raped) = L (R%cdVa) = L (Raep va) = L (VaVevy — VeVawy) | (45)
where
n%v, = 0. (46)
We have
1V, = Ve + nbnfvcvf + nen®Vevy + ncnenbnfvevf
= V. — nbvacnf + nen®Vevp — ncnbvfaf , (47)
where we have used (6) and
nfvevf = —vaenf, (48)
which follows from applying V; to (46). Continuing, we have
L (Vg LVey) =DgDovy = 1V4Very, + LVy (ncnevevb — nbvacnf — ncnbvfaf)
1L V4V — L(Vdnb)(vcnf)vf
= 1V4Vevy — KgpKeqgv®, (49)



or
1 V4Vevy = DgDovp + Kgp Keqv® . (50)

Thus we have

L (R%cava) = L (VaVevp — VeVauy)

DyD.vy — DeDgup + Kgp Keqv® — Kep K gqv®

(Racba + KapKea — Koy Kaa) v°

(Raved + KapKea — KepKaa) v*

= 0L Roped - (51)

or
1 Raped = Rabed + KapKea — Ky Kaq - (52)

We now wish to compute L Rgc; applying the Ricci identity to n® and projecting, we have

L Ribed abedn”) = L (Racban®)
VaVeny — Ve Vany)
d(Kep +neap) — Ve(Kap + naap))
VaKep — VeKap + (Vane — Veng)ap)
= L1(ViKea — VeKa)
= DyKopp— DKy, . (53)

L(R
Lo
= 1(V
Lo

where we have used (38) in going from the second to third line and (26) in going from the fourth
to fifth. Relabeling indices, and using the symmetries of Riemann, we have

1 Ropen = Dy Koo — D K (54)

Equations (52) and (54) are known as the Gauss-Codazzi equations.

6) The Constraint Equations

We are now nearly ready to derive the constraint equations. We begin by noting that, as is easily
verified, a generic type (0,2) symmetric tensor, 045 = 04 has the following 3+1 decomposition:

Oap = Logy — 2n(a J_O'b)ﬁ + NgNpOas - (55)

We define the following projections of the stress tensor, Ty

p = Thn = Tynn’, (56)
§j = LT = — 1 (T%ny), (57)
Sab = J—Tab' (58)

p, j¢ and Sy, may be interpreted as the local energy density, momentum density and spatial stress
tensor, respectively, as measured by observers moving orthogonally to the slices.
We now consider

LRy = L(g°*Racba)
= J—(P)/Cd]%acbd) - J—(ncndRacbcl)
= L (vRawa) — L Rapi - (59)



Now, clearly, by the same argument that allowed us to write (45):
0" L Rapea = L (v*Raped) » (60)
where v® is an arbitrary spatial vector, we have
L (Y Racba) =" L Racba = 9° L Racha - (61)

Thus we find
L Rap = g L Rupa — L Rasibir - (62)

Now using the general 3+1 decomposition formula (55) for a symmetric tensor, we have
Ranbn = L Raavn — 210 L Reyaan + nanp Ranan - (63)

Since Rgpeq 18 antisymmetric on its first two or last two indices, the last two terms in the above
decomposition vanish, and we have
L Ranba = Ranbn - (64)

Contracting (62) and using this last result, we find
9" LRap = —Rii + 9"°9°* L Racta - (65)

We can derive another expression for ¢* L R, by starting from the 3+1 decomposition (55) applied
to Rgp (and slightly rearranged):

L Rap = Rap + 2n(q L Rpya — nanpRag, - (66)
Contracting, and using the fact that n* L v, = 0 for any dual-vector v,, we find
9" LRay = R+ Rap - (67)
Equating (65) and (67) and solving for R, we have
R = —2Rpp + g™ L Racva - (68)
Now consider the Einstein field equations
Gap = Rap — %gabR =81 (69)

and contract both indices with the normal field, n®, to produce what could be called the “purely
temporal” Einstein equation:

1
Gapn®n® = Ryynn® — §gabnaan = 81T ynn’, (70)
or, using (68) and (56)
1 1 ab cd 1 ab cd
Rin + 5B = Rag + 5(=2Ras + 979" L Racta) = 599" L Racta = 87p. (71)

But from the first of the Gauss-Codazzi equations (52) we have

9" L Ruepa = 9"°0°““(Racva + KapKea — KaaKpe) = R+ K? — K% K?, . (72)



where

K=K%, (73)
is the trace of the extrinsic curvature tensor. Thus, we find from (71) and (72)
R+ K? - K%K®, = 167p, (74)

which is known as the Hamiltonian constraint.
We now consider the Einstein equation in the form

1
G =R = Sg""R = 8T, (75)

and contract one index with —n, (recall the convention given by equation (7)):
A 1 )
G = R 4+ on®R = 87T (76)

Projecting the remaining index onto the hypersurface and using the definition (57) of the momentum
density, we have ) ) )
LG =1R"™ =8r LTY™ = 8mrj*. (77)

Following a development precisely analogous to (61)—(62), we find
L Rajy = 9" L Racina — L Rani = —9°* L Racas - (78)
Using the second of the Gauss-Codazzi equations (54), this becomes
L Rapy = —g° (DeKad — DaKoi) = Dak — D*Kap. (79)
Raising the remaining free index we have (again recalling (7))
LR™ =1 GY" = D,K® — DK . (80)

Thus, we find
DyK® — D°K = 8nj°, (81)

which is known as the momentum constraint.

The crucial feature of the constraint equations (74) and (81), is that they involve only spatial
tensors (including spatial derivatives of spatial tensors)—in particular, they do not involve explicit
time derivatives of spatial tensors. Thus, these equations are equations of constraint which must
be satisfied by the fundamental 3+1 variables, v, and Ky, at all times (i.e. on all slices).



7) Time and Time Derivatives

In this section we establish some results concerning certain vector fields and Lie derivatives
along these vector fields. The idea here is to introduce sufficiently general notions of “time” and
“time derivatives while maintaining a geometric approach.

We first prove two results concerning Lie derivatives along the normal vector field, n®, of spatial
type (0,1) tensors (spatial covariant tensors). The first result states that if Sy, 4,..q, i a spatial
tensor, so that

n" Sgyq; =0 1=1,2,---,1, (82)

then £,,55,...q, is also a spatial tensor. Denoting the general type (0,!) spatial tensor by S we can
thus write

1£,5S=4£,S. (83)
The proof is straightforward. We have
!
£080a; = NVeSara + Y (Va,n) Sapeca - (84)
i=1
Now contract the jth index with n®:
!
n% £080q, = nY9NVeSara, + Y (Vo) n% Sy, e, - (85)
i=1

Now, because Sg, ...c...q, 1s spatial, all of the terms in the sum (the “correction terms”) vanish except
when i = j (i.e. when the jth index of Sy, ...c...q, is being corrected. Also, we can use n% Sg,...,, =0
to throw the derivative in the first term onto n%. Thus, we have

n% £,84ap = —NVnSq g +nVen¥Sy, .0, =0, (86)

and since this holds for arbitrary j = 1, -- [, we have established (83). Our second result is that if
Saras--a, 18 spatial, and f is an arbitrary function, then

£fnSa1a2---al = f£nSa1a2---al (87)
Again, the proof is straightforward:
l
£fnSa1a2---al = fncvcsal---al + Z vai (fnc) Say--c---al
i=1

!
= fnVeSaa + Z (Vg f)n + f(Va,n°)) Saycoq
i=1

l
= f <nCVcSa1...al +> (V) Sal---c---al>
i=1
= f£nSa1a2"'az . (88)
Below we will argue that the vector field, N® defined by

N®=an’ (89)



is a natural orthogonal vector field with which to Lie-differentiate tensors in computing general
time derivatives. This vector field has the important property that

£y L% =0 (90)
which implies that if S is any spatial tensor (not necessarily type (0,1)), then £58S is also spatial:
1L £NS = £NS (91)

To see that (91) follows from (90), note that for a general type (k,[) spatial tensor we have
SUOT Wy oy = Loy L2y L LBy 1By e Ly SO g, (92)

Now, applying £y to both sides of this expression, and using the Liebnitz rule, we easily see that,
given (90), the only term which survives is the one where the Lie derivative acts on S % 4

LN STy oy = LMoy L%y e L Ly Ly o Ly £SO g g, (93)
and this is precisely (91). It remains to show that (90) is true. We have

£ny1% = N°V.1l% — L9V.N® + 1% V,N¢
(an®) Ve (0% + nnp) — (6% + nnp) Ve (an®) + (0% + nne) Vi (an)
annVenp + anynVen® — Vi (an®) — npnVe (an®) + Vi, (an®) + n*n.Vy, (an®)

an®ap + anya® — anya® — nyn*nVe.a + an®n.Vyn® — n*Vya
= an® (ab —a N (Vya + nbncvca))

= an® (ab - a_lDba) =an®(ap — Dylna) =0. (94)

where we have used (9), (89), (29) and (34).
Now, recall that our foliation is defined by a closed one-form (dual-vector field), Qq:

Qa — VaT . (95)
Since n® = —aQ® and Q%Q, = —a~2, we have
NQ, =1. (96)

It is this normalization which makes N® the natural orthogonal vector field to use in computing “time
derivatives” (i.e. for use in Lie differentiation). However, there is no justification for restricting
attention only to “normal time derivatives” and, in fact, we can and will consider Lie differentiation
along other “time directions”, t*, appropriately normalized via

190, =1, (97)

by adding to N® an arbitrary spatial vector 3% (which is just the shift vector we have previously
discussed):
t* =N+ (% =an® + g%, (98)

B, = 0. (99)

10



8) The Evolution Equations

In order to derive the 341 evolution equations, we have to compute the projection of one more
piece of the spacetime curvature tensor, namely | Ry;p5. Starting from the Ricci identity applied
to n, and using (38) and (6), we have

J_Raﬁbﬁ = 1 (TLC (vacna — VCVbTLa))
= 1L (nV¢(Kpa +npag) — 1V (Keq + neay))
= 1L (nVKpg + apag — nVyKeq + Vipay) ,
(100)
Now, since n°K., = 0, we have
—nVpKeq = VpnKe, . (101)
Thus, using this result, adding and subtracting V,n°Kp., and noting that from (37) we have
— J_Vanchc = Kachc> we find
L Roppn = L (ncchba + VpnKeq + Van Ky — Von Ky + apaq + vbaa)
= 1 (£, Kap + Ko Kpe + agap + Vipay) . (102)

Now, using a, = Dy In o, we have
1 (agap + Vpag) = L (Da Ina Dylna+ Vy (a_lvaa))
= 1 (a_QDaa Dy — a 2Dy Dyov + a1 (VbDaa))
= a 'DyD,a=a 'D,Dya (103)
(the torsion-free property of D, used in the last step follows directly from the torsion free proerty
of V,.) In addition, using the two preliminary results (82) and (87) from the beginning of this

section we have

LE, Ky = £,Kgp = L ENKy, . (104)
Using (103) and (104), (102) becomes

1 Ry, = @ Y ENK oy + Koo K + o' DDy . (105)

8a) The Evolution Equations for the Spatial Metric

The evolution equations for the spatial metric are essentially identities which follow from the
definition (39) of the extrinsic curvature:

1
Ko, = _§£ngab (106)

However, as discussed above, for full generality, we wish to use Lie-differentiation along the vector
field
t* =N+ % =an + p* (107)

as our “time derivative”. Again using (87), as well as a fundamental property of the Lie derivative
for arbitrary vector fields v* and w®, and arbitrary tensor fields S:

LoiwS = £,8 + £,8, (108)

11



we have

£y = E£NYab + £87ab
= aLpye + £,6”Yab . (109)
or
£t7ab = —2aKy + £ﬁ7ab . (110)

8b) The Evolution Equations for the Extrinsic Curvature

We first observe that the Einstein equations

1
Gab = Rap — 59ab ! = 87Ty, (111)
may be contracted to yield
G=—-R=28nrT. (112)
Thus, the field equations may be rewritten as
1 1
Rab = 87TTab + igabR =8m Tab — igabT . (113)
Projecting onto the hypersurface, we have
1
L Ry =87 <J_Tab — §'YabT> . (114)

Now from definitions (56)—(58), as well as our expression (55) for the 34+1 decomposition of a
general, symmetric, type (0,2) tensor, we find

1Tw = S = Ty + 2n(a J_Tb)ﬁ —ngnpThsp - (115)
Contracting, we get
or, using (56)
T=S-p. (117)
Thus, (114) becomes
1
LRy =87 (Su = 57 (5= 9)) (118)

Now, from (62), we have
L Rapy = — L Raipn + 6°4 L Rcpa - (119)

Using (52) and (105), this becomes

LRy = — (a7 K+ KaeK + a7 Doyt ) + ¢ (Raped + Kap Kea — KoaKop)
= —a YENKy — 2K0 K — a ' DyDya + Rop + KKy . (120)
Equating (118) and (120), and using

£NKab = £t7ﬁKab = £tKab - £ﬁKaba (121)
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we solve for £: Ky, to get our evolution equations for the extrinsic curvature:

1
£tKab = £ﬂKab — DanOé + « (Rab + KKab - 2KacKCb — 87 <Sab - i’yab (S - p)>) . (122)

We can derive an alternate version of this evolution equation which involves the “mixed” form, K%,
of the extrinsic curvature, which has been used by several researchers in the past, and which we
will tend to use in the course. We start from

1
ail‘ENKab — 2K, K — ailDana + Rap + KKqp = 87 <Sab - §'Yab (S - p)> ) (123)

and note that because all of the tensors appearing in this expression are spatial, we can raise indices
with 7% to get:

1
a N ENKy — 2K“K oy — a ' DDy + R + KK%, = 87 (Sab — §5ab + nny (S — p)) . (124)

Now
L£NKY = £v(V“Kw)
= ch£N7ac + 7a6£Nch
= O‘ch£n7ac + ’YaC£Nch
= 20K K*+~y*“£NyKy, (125)
SO
’)/ac.£Nch = E£NvK% +20K“K,, . (126)

Substituting this result in (124) and using
ENK® = £,K% — £5K%, (127)
we find

1
£, K% = .f,ﬁKab — D*Dpo + « <Rab + KK% + 8 (5 1% (S — p) — Sab)> . (128)
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9) Summary

Identifying {«, 3%} as kinematical variables and {74, K%} as dynamical variables, the full set
of Einstein equations is:

R+ K? - KY%K", = 167p, (129)
DyK® — DK = 87j°, (130)
£t7ab = £57ab - 2a7acKCba (131)
1
£,K% = £53K% — D*Dyar + <R“b + KK + 87 (5 1% (S —p) — S%)) . (132)
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