Explorations in Gravitational Physics: Numerical Relativity

Perimeter Institute
Waterloo, Ontario
March 15-April 2

Adaptive Mesh Refinement

Matt Choptuik, UBC
Luis Lehner, Perimeter/Guelph
Frans Pretorius, Princeton
Outline

- Reminder: why we need AMR, and properties of the solutions that dictate the particular “flavor” of AMR that is adequate

- Berger & Oliger style AMR
 - ideal for hyperbolic wavelike equations, and certain classes of problems in GR
 - extensions for coupled hyperbolic/elliptic systems
 - example: critical phenomena in gravitational collapse

- PAMR/AMRD
 - infrastructure for implementing B&O AMR on clusters (using MPI)
AMR

- Adaptive Mesh Refinement is a technique to make the solution of discrete PDEs more efficient for certain classes of problem
 - there is a wide range of relevant length scales in the problem, yet the smallest length scales are relatively isolated and not volume filling
 - not known a-priori where the small length scales will develop, or it will be too difficult/cumbersome to construct a non-uniform mesh to efficiently resolve the small length scales
 - computationally too expensive to solve the problem on a single uniform mesh

- AMR allows for solution of such classes of problems by covering the domain with a mesh hierarchy, where high resolution meshes are only added where needed to resolve small length scale features
 - NOTE: AMR is not a technique to increase the accuracy of a solution; in fact, the AMR solution can never be more accurate than a unigrid solution with resolution corresponding to that of the finest AMR mesh
 - furthermore, AMR generically creates unwanted high-frequency solution components (“noise”) at refinement boundaries, and though this can be controlled and made small, it is usually quite challenging to get very high accuracy solutions with AMR
 - Think of AMR as a tool to get an answer to a computationally challenging problem in the first place; worry about the n^{th} digit later
Why would AMR be beneficial in GR?

- In most astrophysical scenarios where GR is important and numerical solution is needed, in particular binary compact object mergers and gravitational collapse, there is a clean hierarchy of a modest range of metric length scales that need to be resolved:
 - compact object radius → near field zone (10’s of gravitational radii) → far field zone (100’s gravitational radii)

- In the strong-field regime small length-scales are isolated (one or two compact objects) and not volume filling:
 - however not always the case in GR, e.g. generic cosmological singularities

- In the strong-field regime temporal scales are commensurate with spatial scales; i.e. rapid temporal variation of the metric is typically confined to correspondingly small spatial length scales

- The equations are non-linear, and in many cases we will not a-priori know where/when refinement will be needed

- Maximum causal speed of propagation (1 !)

- In the weak-field regime gravitational wave propagation is the feature of interest:
 - this will be volume filling, and though the temporal scale for variations is always the same, the spatial scales will reflect the relevant scales of the source at the time of emission
Implications for an AMR algorithm

The preceding properties suggest

- it is *not* important to have sophisticated grid structures that can efficiently track features with complicated shapes; rather simple “aligned box-in-box” type strategies will be adequate.

- it *is* however important for the algorithm to provide a mechanism to automatically generated the hierarchy as evolution proceeds (i.e. “adaptive”!).

- it *is* important to use an algorithm that maintains the same CFL factor everywhere in the domain; i.e. need *time-subcycling*.

AMR by itself, regardless of how sophisticated the algorithm, will *not* help in tracking gravitational wave emission out to large radii with high accuracy ... other technology will be needed to overcome this if it becomes an issue (though in a binary black hole merger the shortest GW wavelength ~ 5 gravitational radii --- *not* too small):

- changing the spatial coordinates to more efficiently represent the wave structure; e.g. spherical polar coordinates, as the angular structure in the wave will not change by much far from the source, and could efficiently be represented with a relatively small set of multipoles.

- changing the slicing to be asymptotically null, to “quickly” propagate the waves to large radii from the source.

In all then, a simplified version of the original Berger and Oliger AMR algorithm (JCP 53, 1984) is ideal for our purposes.

- though some modifications needed if elliptic equations are solved during evolution.
(simplified and extended) Berger and Oliger AMR, as implemented in AMRD [Pretorius & Choptuik, JCP 218, 2006]

- Computational domain covered by a hierarchy of independent uniform rectangular meshes, where higher resolution child meshes are aligned with and entirely contained within coarser resolution parent meshes.

- Original algorithm allowed for child meshes to be rotated relative to the parent mesh.
Berger and Oliger AMR

- recursive time stepping algorithm, so refinements occur in space and time (example in a few slides)
 - a single unigrid time step is taken on a parent level before ρ_t (temporal refinement ratio) unigrid time steps are taken on the child level
 - this ordering is crucial to set boundary conditions for interior equations, in particular the elliptics
 - though alternative strategies are possible for purely hyperbolic systems with explicit time integration, or certain classes of linear elliptic PDEs driven by conserved sources [Lehner et al, CQG 23 (2006) S421-S446]
 - allows the AMR technology to be implemented independently of the particulars or details of the numerics used to solve them, and conversely shields the user from AMR implementation details
 - after ρ_t steps on the child grid, when the parent and child are in sync again, solution from the child region is injected into the overlapping region of the parent level, so that the most accurate solution available at a point is propagated to all levels of the hierarchy containing that point
 - gives near-\(O(N)\) (optimal) solution of the PDEs
hierarchy construction driven by truncation error (TE) estimates

- the B&O proposal to compute this was to periodically make a 2:1 (say) coarsened version of a level in the hierarchy, evolve the two meshes independently for a short time (typically 1 coarse level time step), then *a la* Richardson, subtract the two solutions to give the TE estimate

- here, use a “self-shadow” hierarchy to obviate the need to duplicate levels

 - due to the recursive nature of the algorithm, just before the fine-to-coarse level injection phase, information to compute TE estimates is naturally available

 - to make this work, simply need to “boot-strap” the procedure by requiring that the coarsest level always be fully refined

 - negligible additional cost ... just choose mesh parameters so that the first refined level is the desired “coarsest” level
Berger and Oliger AMR

- need to alter the algorithm to incorporate elliptic PDEs

 - for hyperbolic equations, a poorly resolved interior region of a coarse level will not adversely affect the solution on the parts of the level that are locally of the finest resolution, as the “junk” from the under-resolved region does not have more than 1 time step to propagate to the exterior before it is replaced with finer grid solutions

 - the above does not hold for elliptic equations. To deal with elliptics, in a nutshell, modify the algorithm as follows:

 - when descending the tree in the recursive time-stepping algorithm, evolve hyperbolics one step, using an extrapolated solution of the variables satisfied by elliptic equations

 - getting stable extrapolation is a bit tricky

 - when ascending the tree, post injection, solve the elliptics over the entire sub-hierarchy that is in sync with the given coarse level
B&O AMR Example

Initial hierarchy

2 Levels
\(\rho_{sp} = \rho_t = 2:1 \)
B&O AMR Example

Level 1

time step

- evolve hyperbolics on level 1
- extrapolate elliptics on level 1 from past time levels

2 Levels

\(\rho_{sp} = \rho_t = 2:1 \)
B&O AMR Example

2 Levels

\[\rho_{sp} = \rho_t = 2:1 \]

Level 2

time step

- evolve hyperbolics on level 2 using interpolated boundary conditions
- solve elliptics on level 2 using extrapolated boundary conditions
B&O AMR Example

Level 2

time step

- evolve hyperbolics on level 2 using interpolated boundary conditions
- solve elliptics on level 2 using extrapolated boundary conditions

NOTE: at this moment we have all the information we need to compute a truncation error estimate for the solution at level 2

2 Levels
\[\rho_{sp} = \rho_t = 2:1 \]
B&O AMR Example

Inject from level 2 to 1

- re-solve elliptics over the levels 2 & 1

2 Levels

$\rho_{sp} = \rho_t = 2:1$
B&O AMR Example

3 Levels

$\rho_{sp} = \rho_t = 2:1$
B&O AMR Example

Level 1 time step

- evolve hyperbolics on level 1
- extrapolate elliptics on level 1 from past time levels

3 Levels
\[\rho_{sp} = \rho_t = 2:1 \]
B&O AMR Example

Level 2
time step

- evolve hyperbolics on level 2 using interpolated boundary conditions
- extrapolate elliptics on level 2 from past times levels

3 Levels
\(\rho_{sp} = \rho_t = 2:1 \)
B&O AMR Example

Level 3 time step

• evolve hyperbolic on level 3 using interpolated boundary conditions

• solve elliptics on level 3 using extrapolated boundary conditions

3 Levels $\rho_{sp} = \rho_{t} = 2:1$
B&O AMR Example

3 Levels

\[\rho_{sp} = \rho_t = 2:1 \]

Level 3

time step

- evolve hyperbolics on level 3 using interpolated boundary conditions
- solve elliptics on level 3 using extrapolated boundary conditions
B&O AMR Example

- re-solve elliptics over the levels 3 & 2, using extrapolated boundary conditions

Inject from level 3 to 2

3 Levels
\(\rho_{sp} = \rho_{t} = 2:1 \)
B&O AMR Example

Level 2

time step

- evolve hyperbolics on level 2 using interpolated boundary conditions
- extrapolate elliptics on level 2 from past times levels

3 Levels

$$\rho_{sp} = \rho_t = 2:1$$
B&O AMR Example

Inject from level 2 to 1

$\rho_{sp} = \rho_t = 2:1$

3 Levels
B&O AMR Example

Level 3 time step

• evolve hyperbolics on level 3 using interpolated boundary conditions

• solve elliptics on level 3 using extrapolated boundary conditions

3 Levels
\(\rho_{sp} = \rho_t = 2:1 \)
B&O AMR Example

• evolve hyperbolics on level 3 using interpolated boundary conditions

• solve elliptics on level 3 using extrapolated boundary conditions

Level 3 time step

3 Levels

$\rho_{sp} = \rho_t = 2:1$
Inject from level 3 to 2 to 1

- *re-solve elliptics over the levels 3, 2 and 1*

3 Levels
\[\rho_{sp} = \rho_t = 2:1 \]
Optimistically, what kind of speedup can we expect?

- Imagine
 - $d+1$ dimensional evolution
 - the coarsest level has N^d points
 - 2:1 spatial and temporal refinement ratio
 - L levels of refinement, with $l=1$ the coarsest level, and $l=L$ the finest
 - take N steps on the coarsest level; hence will need $N^{2(l-1)}$ on the level l
 - linear filling factor of $\frac{1}{2}$
 - the total run-time is proportional to the total number of grid points in space and time (i.e. an optimal evolution scheme is used), and the overhead in the AMR algorithm is negligible
 - compare to a unigrid run at the resolution of the finest AMR level

$$T_{AMR} = C \sum_{l=1}^{L} N^d N^{2(l-1)} < CN^{d+1} 2^L$$

$$T_{UNIGRID} = C \sum_{l=1}^{L} N^{2(l-1)} \frac{d+1}{2(d+1)}$$

$$\frac{T_{UNIGRID}}{T_{AMR}} > 2^{d(L-1)-1}$$
PAMR/AMRD

- **PAMR** (parallel adaptive mesh refinement) manages distributed B&O style grid hierarchies.
- **AMRD** (adaptive mesh refinement driver) implements the just-described version of B&O AMR, utilizing PAMR for hierarchy management.
- User codes designed as (in-principle) standalone unigrid/serial numerical solvers, and supply AMRD with a series of “hook functions” to incorporate them into the B&O algorithm.

Reasons for this separation of functionality

- From the point of view of a user writing a code to numerically solve a particular system of PDEs, AMR and parallel distribution are largely extraneous details.
 - All the user should be aware of is the possibility that the code *could* be run in a parallel/adaptive environment, meaning grid boundaries could either be at the physical boundaries of the problem, or interior to the domain.
 - In the latter case, the user leaves the boundaries alone.
- The AMR driver does not need to know the details of how grids will be distributed in parallel, nor what equations the user will be solving on those grids.
- PAMR handles the non-local aspects of parallel grid distribution, and does not care what the underlying programs will do with the grids.
PAMR

• Takes care of most parallel grid distribution issues
 – support for 1,2 and 3D grids, with or without periodic boundaries
 – support for interwoven AMR/multigrid hierarchies
 – simple base application program interface (API)
 • `PAMR_compose_hierarchy()` : regrid function
 • `PAMR_sync()` : synchronize data across ghost zones
 • `PAMR_inject()` : fine-to-coarse level injection
 • `PAMR_interp()` : coarse-to-fine level interpolation
 – a complete set of data structure management API's, so that it can be called from fortran programs

– current version only supports vertex centered arrays; support for cell-centered arrays in the works (pretty much done, thanks to Branson Stephens)
AMRD

- Built on top of PAMR, hence “parallel ready”

- Implements a Berger and Oliker AMR algorithm, modified to support integrated solution of elliptic equations

- Provides a standard full approximation storage (FAS) adaptive multigrid algorithm

- User supplies a set of “hook functions” that are called by AMRD to perform the problem specific numerics

- Berger and Colella algorithm for conservative hyrdodynamics in the works (pretty much done, again thanks to Branson)
A few final remarks

- For the Einstein equations, time taken to evaluate expressions dominates over other tasks, which helps guide coding priorities
 - 'locality' of the data less of an issue in load-balancing a parallel code (strategies designed to guarantee locality, such as space filling curves, may even have a negative impact on the performance)
 - algorithmic tasks (truncation error estimation, regridding, interpolation, injection, etc.) are essentially “free”

- Solving elliptic equations solved using FAS multigrid is optimal and fast
 - at worst a constant factor of 2-3 times slower per equation compared to a typical hyperbolic equation
 - for example, 2D axisymmetric gravitational collapse code solves 4 (3) hyperbolic equations and 3 (4) elliptic equations per time step; profiling indicated roughly 25-45% of the time is spent solving hyperbolics, 50-70% solving elliptics, with the remainder (usually ~ 5-10%) spent on miscellaneous functions in a typical simulation

- Code, including reference manuals and a couple of examples, can be downloaded from Matt Choptuik’s web-page (google “Matt Choptuik”, or see links from my web-page)